Quantitative analysis of English - Spanish translations post-edited by institutional translators

Authors

DOI:

https://doi.org/10.24310/ertci.14.2024.17678

Keywords:

post-editing, machine translation, text length, lexical richness

Abstract

Human post-editing of machine translation keeps growing in the professional translation sector and is getting increasingly prominent in the academic world. However, there is limited research focused on professional practice in specific language combinations that may be used to create training materials for prospective professionals. In this article, we present our findings from quantitative analyses of texts that were translated from a variety of English-language sources into Spanish by the neural machine translation system eTranslation and post-edited by experienced translators from the Directorate-General for Translation of the European Commission. We discuss our findings regarding the use of automated suggestions, text length, and lexical richness.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Arnejšek, Mateja y Unk, Alenka (2020). Multidimensional assessment of the eTranslation output for English-Slovene. En André Martins, Helena Moniz, Sara Fumega, Bruno Martins, Fernando Batista, Luisa Coheur, Carla Parra, Isabel Trancoso, Marco Turchi, Arianna Bisazza, Joss Moorkens, Ana Guerberof, Mary Nurminen, Lena Marg y Mikel L. Forcada (Eds.), Proceedings of the 22nd Annual Conference of the European Association for Machine Translation (pp. 383-392). European Association for Machine Translation. https://aclanthology.org/2020.eamt-1.41

Cadwell, Patrick, Castilho, Sheila, O’Brien, Sharon y Mitchell, Linda (2016). Human factors in machine translation and post-editing among institutional translators. Translation Spaces, 5(2). https://doi.org/10.1075/ts.5.2.04cad

Cadwell, Patrick, O’Brien, Sharon, y Teixeira, Carlos S. C. (2018). Resistance and accommodation: factors for the (non-) adoption of machine translation among professional translators. Perspectives, 26(3). https://doi.org/10.1080/0907676X.2017.1337210

Carmo, Félix do y Moorkens, Joss (2020). Differentiating editing, post-editing and revision. En Maarit Koponen, Brian Mossop, Isabelle S. Robert y Giovanna Scocchera (Eds.), Translation revision and post-editing (pp. 35-49). Routledge.

Castilho, Sheila y Resende, Natália (2022). Post-Editese in literary translations. Information, 13(2). https://doi.org/10.3390/info13020066

Comisión Europea. Dirección General de Traducción (2010). Guía del Departamento de Lengua Española. (2010).

ELIS (2020). European Language Industry Survey 2020.

ELIS (2021). European Language Industry Survey 2021.

ELIS (2022). European Language Industry Survey 2022.

ELIS (2023). European Language Industry Survey 2023.

European Commission, Directorate-General for Translation (2015). DGT translation quality guidelines.

European Commission, Directorate-General for Translation (2020). DGT guidelines for evaluation of outsourced translations (TRAD19).

Gaspari, Federico, Almaghout, Hala y Doherty, Stephen (2015). A survey of machine translation competences: insights for translation technology educators and practitioners. Perspectives, 23(3). https://doi.org/10.1080/0907676X.2014.979842

Ginovart Cid, Clara, Colominas, Carme y Oliver, Antoni (2020). Language industry views on the profile of the post-editor. Translation Spaces, 9(2), 283-313. https://doi.org/10.1075/ts.19010.cid

Jia, Yanfang y Lai, Si (2022). Post-Editing metaphorical expressions: Productivity, quality, and strategies. Journal of Foreign Languages & Cultures, 6(2).

Koehn, P. (2020). Neural machine translation. Cambridge University Press.

Nitzke, Jean y Gros, Anne-Kathrin (2021). Preferential changes in revision and post-editing. En Maarit Koponen, Brian Mossop, Isabelle S. Robert y Giovanna Scocchera (Eds.), Translation revision and post-editing (pp. 21-34). Routledge.

Nunziatini, Mara y Marg, Lena (2020). Machine translation post-editing levels: breaking away from the tradition and delivering a tailored service. En André Martins, Helena Moniz, Sara Fumega, Bruno Martins, Fernando Batista, Luisa Coheur, Carla Parra, Isabel Trancoso, Marco Turchi, Arianna Bisazza, Joss Moorkens, Ana Guerberof, Mary Nurminen, Lena Marg y Mikel L. Forcada (Eds.), Proceedings of the 22nd Annual Conference of the European Association for Machine Translation (pp. 309-318). European Association for Machine Translation. https://www.aclweb.org/anthology/2020.eamt-1.33

O’Brien, S. (2022). How to deal with errors in machine translation: postediting. En Dorothy Kenny (Ed.), Machine translation for everyone: Empowering users in the age of artificial intelligence (pp. 105-120). Language Science Press. https://library.oapen.org/bitstream/handle/20.500.12657/61713/1/external_content.pdf#page=117

Oravecz, Csaba, Bontcheva, Katina, Lardilleux, Adrien, Tihanyi, László, y Eisele, Andreas (2019). eTranslation’s submissions to the WMT 2019 news translation task. En Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, André Martins, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt Post, Marco Turchi y Karin Verspoor (Eds.), Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1) (pp. 320-326). Association for Computational Linguistics. https://doi.org/10.18653/v1/W19-5334

Pym, Anthony y Torres-Simón, Ester (2021). Is automation changing the translation profession? International Journal of the Sociology of Language, 2021(270), 39-57. https://doi.org/10.1515/ijsl-2020-0015

Ragni, Valentina y Vieira, Lucas Nunes (2022). What has changed with neural machine translation? A critical review of human factors. Perspectives, 30(1). https://doi.org/10.1080/0907676X.2021.1889005

Toral, Antonio (2019). Post-editese: an exacerbated translationese. En Mikel Forcada, Andy Way, Barry Haddow y Rico Sennrich (Eds.), Proceedings of machine translation summit XVII: research track (pp. 273-281). European Association for Machine Translation. https://aclanthology.org/W19-6627

Trojszczak, Marcin (2022). Translator training meets machine translation — Selected challenges. En Barbara Lewandowska-Tomaszczyk y Marcin Trojszczak (Eds.), Language use, education, and professional contexts (pp. 179-192). Springer International Publishing. https://doi.org/10.1007/978-3-030-96095-7_11

Vieira, Lucas Nunes (2020). Automation anxiety and translators. Translation Studies, 13(1).

Published

2024-02-27

How to Cite

Vega Exposito, M. (2024). Quantitative analysis of English - Spanish translations post-edited by institutional translators. Entreculturas. Revista De traducción Y comunicación Intercultural, (14), 80–99. https://doi.org/10.24310/ertci.14.2024.17678

Issue

Section

Artículos