Network Accreditation: A distributed accreditation system for lifelong learning
DOI:
https://doi.org/10.24310/innoeduca.2017.v3i2.3057Keywords:
network accedreditation, continuing education, peer-to-peer review, distributed validationAbstract
Continuing education involves learning activities that are usually carried out after traditionally regulated training. A growth of educational offer has spread throughout the world in the form of courses, diplomas, degrees and other types of study programs.
Despite the increasing importance and the offer of continuing education programs, accreditation processes have been restricted to traditional formal education. Accreditation processes are characterized by a centralized accreditation system led by a national government authority. However, this type of accreditation is difficult to effectively implement in continuing education programs.
In this contribution, we present and analyze a network accreditation system (SAR) designed to accredit the quality of continuing education programs. This accreditation system contrasts with the existing "centralized" systems, because it is a "distributed" system, inspired by the system by which the international scientific community validates research articles, i.e. the "peer review". In this work we describe this system, we analyze its theoretical foundations, its potential advantages and disadvantages, and the experiences of its application in a first prototype.Downloads
Metrics
References
Allen, I. E., y Seaman, J. (2013). Changing Course: Ten Years of Tracking Online Education in the United States. Newburyport: Sloan Consortium.
Allen, I. E., y Seaman, J. (2016). Online Report Card: Tracking Online Education in the United States. Babson Survey Research Group.
Benos, D. J., Bashari, E., Chaves, J. M., Gaggar, A., Kapoor, N., LaFrance, y Qadri, Y. (2007). The ups and downs of peer review. Advances in physiology education, 31(2), 145-152.
Bernhard, A. (2012). Quality assurance in an international higher education area: a case study approach and comparative analysis. Wiesbaden: VS Verlag für Sozialwissenschaften.
Bernstein, M. S. (2013). Crowd-powered systems. KI-Künstliche Intelligenz, 27(1), 69-73.
Blanco C., Jerez E., y Rolando R., (2015). Overview of the higher education in Chile 2014, Higher Education Information System (SIES). Ministry of Education, <http://www.mifuturo.cl/index.php/academicos-einvestigadores>.
Camilleri, A., Ulf, D. y Pawlowski, J. (2014). State of the Arte Review of Quality Issues related to Open Educational Resources (OER). JRC Scientific and Policy Reports, European Commission.
CINDA (2012). in MJ Lemaitre y ME Zenteno (eds), Aseguramiento de la calidad en Iberoamérica. Educación Superior–Informe, Centro Interuniversitario de Desarrollo (CINDA) – Universia.
CNA (2017). Comisión Nacional de Acreditación. www.cnachile.cl.
Corchado, J. M., Bajo, J., De Paz, Y., y Tapia, D. I. (2008). Intelligent environment for monitoring Alzheimer patients, agent technology for health care. Decision Support Systems, 44(2), 382-396.
Dorigo, M., Bonabeau, E., y Theraulaz, G. (2000). Ant algorithms and stigmergy. Future Generation Computer Systems, 16(8), 851-871.
EFQUEL (2012). The Need for a European Federated Quality Mark (2012). EFQUEL Green Paper N°4.
Ehlers, D., y Pawlowski, J. (2006). Handbook on quality and standardizaron in e-learning. Springer.
Ehlers, U. (2009). Understanding quality culture. Quality Assurance in Education, 17, 343-363.
Ehlers, U., e Hilera, J. (2012). Special issue on quality in e-learning. Journal of ComputerAssisted Learning, 28(12), 1-3.
Fainholc, B. (2004). La calidad en la educación a distancia continúa siendo un tema muy complejo. Revista de Educación a Distancia, 12, 1-7.
Faure E., Herrera F., Kaddoura A. Lopes H., Petrovsky A., Rahnema M. y Ward F. (1972). Learning to be. The world of education today and tomorrow. First published in 1972 by the United Nations Educational, Scientific and Cultural Organization, UNESCO, Place de Fontenoy, 75700 Paris and George G. Harrap y Co. Ltd. 182-184 High Holborn, London WC1V7AX.
Ferber, J. (1999). Multi-agent systems: an introduction to distributed artificial intelligence (Vol. 1). Reading: Addison-Wesley.
Fernández, N. (2008). Modelos y sistemas de evaluación y acreditación de la educación superior. situación y perspectivas para el mejoramiento de la calidad y la integración regional. E A.L. Gazzola y S. Pires (eds), Hacia una política regional de aseguramiento de la calidad en educación superior para América Latina y el Caribe. Caracas: IESALC, UNESCO, via edshlc (EBSCOhost).
Gazzaniga, M. S. (2004). The cognitive neurosciences. MIT press.
Harasim, L. (1996). Online education. Computer networking and scholarly communication in the twenty-first-century university, 203-214.
Hasan, A. (2012). Lifelong Learning in OECD and Developing Countries: An Interpretation and Assessment. En Aspin D., Chapman J., Evans K., Bagnall R. (eds), Second International Handbook of Lifelong Learning. Springer International Handbooks of Education, vol 26. Springer, Dordrecht.
Hilbert, M., y López, P. (2011). The world’s technological capacity to store, communicate, and compute information. Science, 332(6025), 60-65.
Hirsh-Pasek, K., Zosh, J. M., Golinkoff, R. M., Gray, J. H., Robb, M. B., y Kaufman, J. (2015). Putting education in “educational” apps: lessons from the science of learning. Psychological Science in the Public Interest, 16(1), 3-34.
Kitano, H. (2002). Systems biology: a brief overview. Science, 295(5560), 1662-1664.
Kittur, A., Nickerson, J. V., Bernstein, M., Gerber, E., Shaw, A., Zimmerman, et al. y Horton, J. (2013). The future of crowd work. In Proceedings of the 2013 conference on Computer supported cooperative work (pp. 1301-1318). ACM.
Kuhlmann, S., Boekholt, P., Georghiou, L., Guy, K., Héraud, J. A., Laredo, et al. y Polt, W. (1999). Improving distributed intelligence in complex innovation systems. En ASTPP Thematic Network, TSER No. Final Report (pp. 1-87).
Langton, C. G. (1986). Studying artificial life with cellular automata. Physica D: Nonlinear Phenomena, 22(1-3), 120-149.
LeCun, Y., Bengio, Y., y Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
Li, W., Wu, W. J., Wang, H. M., Cheng, X. Q., Chen, H. J., Zhou, Z. H., y Ding, R. (2017). Crowd intelligence in AI 2.0 era. Frontiers of Information Technology & Electronic Engineering, 18(1), 15-43.
May, R. M. (2001). Stability and complexity in model ecosystems (Vol. 6). Princeton university press.
Mathews, K. M., White, M. C., y Long, R. G. (1999). Why study the complexity sciences in the social sciences? Human relations, 52(4), 439-462.
Mejía, J. F, y López, D. (2016). Modelo de Calidad de E-learning para Instituciones de Educación Superior en Colombia. Formación universitaria, 9(2), 59-72. https://dx.doi.org/10.4067/S0718-50062016000200007
OCDE (2013). Reviews of national policies for education: quality assurance in higher education in Chile, OECD Publishing.
OCDE y the World Bank (2009). Reviews of national policies for education: tertiary education in Chile, OCDE Publishing.
Ossiannilsson, E., y Landgren, L. (2012). Quality in e-learning - a conceptual framework based on experiences from three international benchmarking projectsjcal_439. Quality enhancement on e-learning.
O'Hare, G. M., y Jennings, N. (Eds.). (1996). Foundations of distributed artificial intelligence (Vol. 9). John Wiley & Sons.
Razeto-Barry, P. (2007). Educación indirecta. Bases y desafíos de un nuevo sistema educativo. Polis 5(17), 383-406.
Spier, R. (2002). The history of the peer-review process. Trends in Biotechnology, 20(8), 357–8.
Vega García, R. (2005). La educación continua a distancia en México: transformaciones y retos. Revista de la Educación Superior, 34(133).
Vivanco, M. (2009). Sociedad y Complejidad. Del Discurso al Modelo. Editorial LOM.
Theraulaz, G., y Bonabeau, E. (1999). A brief history of stigmergy. Artificial life, 5(2), 97-116.
Trow, M. (2000). From Mass Higher Education to Universal Access: The American Advantage. Research and Occasional Paper Series: CSHE.1.00. University Of California, Berkeley, http://ishi.lib.berkeley.edu/cshe/
Zare, R. N. (1997). Knowledge and distributed intelligence. Science, 275(5303), 1047-0.
Downloads
Published
How to Cite
Issue
Section
License
All contents published by Innoeduca. International Journal of Technology and Educational Innovation are subject to Creative Commons Attribution-Nocomercial-NoDerivatives 4.0 International License, whose complete text can be consulted at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode. Thus, copying, distribution, public communication, derivative works and commercial use of content are permitted as of the aforementioned issue provided that the source and the author of the text are cited.
It is the responsibility of the authors to obtain the necessary permits for images that are subject to copyright.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.