Students’ Perspectives on the Educational Benefits of ChatGPT: A Quantitative Exploration
DOI:
https://doi.org/10.24310/ijtei.112.2025.21927Keywords:
Artificial intelligence, ChatGPT, Benefits, Confirmatory factor analysis, Exploratory factor analysis, StudentsAbstract
The objective of this study is to quantitatively analyse the benefits and incentives of using ChatGPT from students’ perspectives. An initial pool of items encompassing various benefits of ChatGPT for students, has been generated on the basis of extant literature. To validate the benefits quantitatively, primary data has been collected using structured questionnaires from 515 students studying in higher educational institutions (HEIs) of Delhi – National Capital Region (NCR), India. Exploratory factor analysis (EFA) was performed to uncover the underlying structure of perceived benefits of using ChatGPT. Further, confirmatory factor analysis (CFA) was employed to confirm the factor structure and ensure the reliability and validity of the identified categories of benefits. The findings indicate six key categories, namely “Learning Support”, “Content Generation”, “Knowledge Acquisition”, “Personalized Learning”, “Academic Writing”, and “Efficiency”. Each category reflects different aspects of how ChatGPT enhances the educational experience for students. The study aims to tools in education by providing empirical evidence on the specific benefits of ChatGPT. Practically, the study provides valuable insights for educators, academic institutions, and policymakers on how to effectively integrate ChatGPT and similar AI tools into the curriculum.
Downloads
Metrics
Publication Facts
Reviewer profiles N/A
Author statements
Indexed in
-
—
- Academic society
- N/A
- Publisher
- Universidad de Málaga
References
Albadarin, Y., Saqr, M., Pope, N., & Tukiainen, M. (2024). A systematic literature review of empirical research on ChatGPT in education. Discover Education, 3(1), 60. https://doi.org/10.1007/s44217-024-00138-2
Baidoo-Anu, D., & Ansah, L. O. (2023). Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. Journal of AI, 7(1), 52-62. http://dx.doi.org/10.2139/ssrn.4337484
Boateng, G. O., Neilands, T. B., Frongillo, E. A., Melgar-Quiñonez, H. R., & Young, S. L. (2018). Best practices for developing and validating scales for health, social, and behavioral research: a primer. Frontiers in public health, 6, 149. https://doi.org/10.3389/fpubh.2018.00149
Byrne, B. M. (2016). Adaptation of assessment scales in cross-national research: Issues, guidelines, and caveats. International Perspectives in Psychology, 5(1), 51-65. https://doi.org/10.1037/ipp0000042
Chiu, T. K., & Churchill, D. (2016). Design of learning objects for concept learning: Effects of multimedia learning principles and an instructional approach. Interactive Learning Environments, 24(6), 1355-1370. https://doi.org/10.1080/10494820.2015.1006237
Cope, A. B., Ramirez, C., DeVellis, R. F., Agans, R., Schoenbach, V. J., & Adimora, A. A. (2016). Measuring concurrency attitudes: Development and validation of a vignette-based scale. PloS one, 11(10), e0163947. https://doi.org/10.1371/journal.pone.0163947
Comrey, A. L., & Lee, H. B. (1992). Interpretation and Application of Factor Analytic Results. In A. L. Comrey, & H. B. Lee (Eds.), A First Course in Factor Analysis (p. 2). Lawrence Eribaum Associates. https://doi.org/10.4324/9781315827506
Cotton, D. R., Cotton, P. A., & Shipway, J. R. (2024). Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. Innovations in education and teaching international, 61(2), 228-239. https://doi.org/10.1080/14703297.2023.2190148
Dai, Y., Liu, A., & Lim, C. P. (2023). Reconceptualizing ChatGPT and generative AI as a student-driven innovation in higher education. Procedia CIRP, 119, 84-90. https://doi.org/10.1016/j.procir.2023.05.002
Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Baabdullah, A. M., Koohang, A., Raghavan, V., Ahuja, M., Albanna, H., Albashrawi, M. A., Al-Busaidi, A. S., Balakrishnan, J., Barlette, Y., Basu, S., Bose, I., Brooks, L., Buhalis, D., ... Wright, R. (2023). “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71, 102642. https://doi.org/10.1016/j.ijinfomgt.2023.102642
Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological methods, 4(3), 272. https://doi.org/10.1037//1082-989X.4.3.272
Farhi, F., Jeljeli, R., Aburezeq, I., Dweikat, F. F., Al-shami, S. A., & Slamene, R. (2023). Analyzing the students' views, concerns, and perceived ethics about chat GPT usage. Computers and Education: Artificial Intelligence, 5, 100180. https://doi.org/10.1016/j.caeai.2023.100180
Farrokhnia, M., Banihashem, S. K., Noroozi, O., & Wals, A. (2024). A SWOT analysis of ChatGPT: Implications for educational practice and research. Innovations in Education and Teaching International, 61(3), 460-474. https://doi.org/10.1080/14703297.2023.2195846
Field, A.P. (2018) Discovering Statistics Using IBM SPSS Statistics. Sage.
Firat, M. (2023). What ChatGPT means for universities: Perceptions of scholars and students. Journal of Applied Learning and Teaching, 6(1), 57-63. https://doi.org/10.37074/jalt.2023.6.1.22
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50. https://doi.org/10.2307/3151312
Godsk, M., & Elving, P. R. (2024). ChatGPT for Learning in Higher Education: Benefits, Downsides, and Implications. Journal of Interactive Learning Research, 35(1), 31-69. https://doi.org/10.70725/583781fusvis
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2013). Multivariate data analysis: Pearson new international edition PDF eBook. Pearson Higher Ed.
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European business review, 31(1), 2-24. https://doi.org/10.1108/EBR-11-2018-0203
Haleem, A., Javaid, M., & Singh, R. P. (2022). An era of ChatGPT as a significant futuristic support tool: A study on features, abilities, and challenges. BenchCouncil transactions on benchmarks, standards and evaluations, 2(4), 100089. https://doi.org/10.1016/j.tbench.2023.100089
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the academy of marketing science, 43, 115-135. https://doi.org/10.1007/s11747-014-0403-8
Hinkin, T. R. (1995). A review of scale development practices in the study of organizations. Journal of management, 21(5), 967-988. https://doi.org/10.1371/journal.pone.0163947
Hoffmann, S., Lasarov, W., & Dwivedi, Y. K. (2024). AI-empowered scale development: Testing the potential of ChatGPT. Technological Forecasting and Social Change, 205, 123488. https://doi.org/10.1016/j.techfore.2024.123488
Hojeij, Z., Kuhail, M. A., & ElSayary, A. (2024). Investigating in-service teachers’ views on ChatGPT integration. Interactive Technology and Smart Education. https://doi.org/10.1108/ITSE-04-2024-0094
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
Ilić, J., Ivanović, M., & Klašnja-Milićević, A. (2024, November). The Impact of ChatGPT on Student Learning Experience in Higher STEM Education: A Systematic Literature Review. In 2024 21st International Conference on Information Technology Based Higher Education and Training (ITHET) (pp. 1-9). IEEE. https://doi.org/10.1109/ITHET61869.2024.10837649
Imran, M., & Almusharraf, N. (2023). Analyzing the role of ChatGPT as a writing assistant at higher education level: A systematic review of the literature. Contemporary Educational Technology, 15(4), ep464. https://doi.org/10.30935/cedtech/13605
Javaid, M., Haleem, A., Singh, R. P., Khan, S., & Khan, I. H. (2023). Unlocking the opportunities through ChatGPT Tool towards ameliorating the education system. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 3(2), 100115. https://doi.org/10.1016/j.tbench.2023.100115
Jo, H. (2024). From concerns to benefits: a comprehensive study of ChatGPT usage in education. International Journal of Educational Technology in Higher Education, 21(1), 35. https://doi.org/10.1186/s41239-024-00471-4
Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., ... & Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and individual differences, 103, 102274. https://doi.org/10.1016/j.lindif.2023.102274
King, M. R. (2023). Outsourcing Your Faculty Application to ChatGPT: Would this Work? Should this Work? Cellular and Molecular Bioengineering, 16(4), 423-426. https://doi.org/10.1007/s12195-023-00777-9
Kline, B., & Tamer, E. (2016). Bayesian inference in a class of partially identified models. Quantitative Economics, 7(2), 329-366. https://doi.org/10.25336/csp29418
Kock, N. (2015). WarpPLS 5.0 user manual. Laredo, TX: Script Warp Systems.
Kock, N. (2017). Going beyond composites: Conducting a factor-based PLS-SEM analysis. Partial least squares path modeling: Basic concepts, methodological issues and applications, 41-53. https://doi.org/10.1007/978-3-319-64069-3_3
Kohnke, L., Moorhouse, B. L., & Zou, D. (2023). ChatGPT for language teaching and learning. Relc Journal, 54(2), 537-550. https://doi.org/10.1177/00336882231162868
Lee, H. (2024). The rise of ChatGPT: Exploring its potential in medical education. Anatomical sciences education, 17(5), 926-931. https://doi.org/10.1002/ase.2270
Mahapatra, S. (2024). Impact of ChatGPT on ESL students’ academic writing skills: a mixed methods intervention study. Smart Learning Environments, 11(1), 9. https://doi.org/10.1186/s40561-024-00295-9
McNeish, D. (2018). Thanks coefficient alpha, we’ll take it from here. Psychological methods, 23(3), 412. http://dx.doi.org/10.1037/met0000144
Meade, A. W., & Craig, S. B. (2012). Identifying careless responses in survey data. Psychological methods, 17(3), 437. Httos://doi.org/10.1037/a0028085
McMurtrie, B. (2023). ChatGPT Is Everywhere: Love it or hate it, academics can't ignore the already pervasive technology. The Chronicle of Higher Education, 69(15), 32-38.
Murphy, K. R. (1984). Cost‐benefit considerations in choosing among cross‐validation methods. Personnel Psychology, 37(1), 15-22. https://doi.org/10.1111/j.1744-6570.1984.tb02244.x
Ngo, T. T. A. (2023). The perception by university students of the use of ChatGPT in education. International Journal of Emerging Technologies in Learning (Online), 18(17), 4-19. https://doi.org/10.3991/ijet.v18i17.39019
Nunnally, J. C., & Bernstein, I. H. (1994). The Assessment of Reliability. Psychometric Theory, 3, 248-292.
Nyhan, RC, and HA Marlowe. (1997). Development And Psychometric Properties Of The Organizational Trust Inventory. Evaluation Review, 21(5), 614-635.
Onyekwere, J., & Enamul Hoque, K. (2023). Relationship between technological change, digitization, and students' attitudes toward distance learning in Lagos Higher Education institutes. Innoeduca. International Journal of Technology and Educational Innovation, 9(1), 126–142. https://doi.org/10.24310/innoeduca.2023.v9i1.15286
Padilla-Hernández, A. L., Gámiz-Sánchez, V. M., & Romero-López, M. A. (2019). Proficiency levels of teachers' digital competence: A review of recent international frameworks. Innoeduca. International Journal of Technology and Educational Innovation, 5(2), 140–150. https://doi.org/10.24310/innoeduca.2019.v5i2.5600
Rasul, T., Nair, S., Kalendra, D., Robin, M., de Oliveira Santini, F., Ladeira, W. J., ... & Heathcote, L. (2023). The role of ChatGPT in higher education: Benefits, challenges, and future research directions. Journal of Applied Learning and Teaching, 6(1), 41-56. https://doi.org/10.37074/jalt.2023.6.1.29
Rudolph, J., Tan, S., & Tan, S. (2023). War of the chatbots: Bard, Bing Chat, ChatGPT, Ernie and beyond. The new AI gold rush and its impact on higher education. Journal of Applied Learning and Teaching, 6(1), 364-389. https://doi.org/10.37074/jalt.2023.6.1.23
Sharples, M. (2022). Automated essay writing: An AIED opinion. International journal of artificial intelligence in education, 32(4), 1119-1126. https://doi.org/10.1007/s40593-022-00300-7
Shoufan, A. (2023). Exploring students’ perceptions of ChatGPT: Thematic analysis and follow-up survey. IEEE Access, 11, 38805-38818. https://doi.org/10.1109/ACCESS.2023.3268224
Singh, S., Singh, P., & Kaur, V. (2025). Understanding ChatGPT adoption among higher education students in Punjab, India: an application of UTAUT2 model. Innoeduca: international journal of technology and educational innovation, 11(1), 5-28. https://doi.org/10.24310/ijtei.111.2025.20219
Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2007). Using multivariate statistics (Vol. 5, No. 7). Pearson.
Van Dis, E. A., Bollen, J., Zuidema, W., Van Rooij, R., & Bockting, C. L. (2023). ChatGPT: five priorities for research. Nature, 614(7947), 224-226. https://doi.org/10.1038/d41586-023-00288-7
Vázquez-Cano, E., Ramirez-Hurtado, J. M., Saez-Lopez, J. M., & Lopez-Meneses, E. (2023). ChatGPT: The brightest student in the class. Thinking Skills and Creativity, 49, 101380. https://doi.org/10.1016/j.tsc.2023.101380
Veletsianos, G., & Moe, R. (2017). The rise of educational technology as a sociocultural and ideological phenomenon. EDUCAUSE Review (Online).
Wang, J., & Fan, W. (2025). The effect of ChatGPT on students’ learning performance, learning perception, and higher-order thinking: insights from a meta-analysis. Humanities and Social Sciences Communications, 12, 621. https://doi.org/10.1057/s41599-025-04787-y
Zhang, P., & Tur, G. (2024). A systematic review of ChatGPT use in K‐12 education. European Journal of Education, 59(2), e12599. https://doi.org/10.1111/ejed.12599
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Innoeduca. International Journal of Technology and Educational Innovation

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
All contents published by Innoeduca. International Journal of Technology and Educational Innovation are subject to Creative Commons Attribution-Nocomercial-NoDerivatives 4.0 International License, whose complete text can be consulted at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode. Thus, copying, distribution, public communication, derivative works and commercial use of content are permitted as of the aforementioned issue provided that the source and the author of the text are cited.
It is the responsibility of the authors to obtain the necessary permits for images that are subject to copyright.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.






242.png)




