Perspectivas de los estudiantes sobre los beneficios educativos de ChatGPT: una exploración cuantitativa

Autores/as

DOI:

https://doi.org/10.24310/ijtei.112.2025.21927

Palabras clave:

Inteligencia artificial, ChatGPT, Beneficios, Análisis Factorial Comfirmatorio, Análisis Factorial Exploratorio, Estudiantes

Resumen

El objetivo de este estudio es analizar cuantitativamente los beneficios e incentivos del uso de ChatGPT desde la perspectiva de los estudiantes. Se generó un conjunto inicial de preguntas que abarcan diversos beneficios de ChatGPT para los estudiantes, basándose en la literatura existente. Para validar cuantitativamente los beneficios, se recopilaron datos primarios mediante cuestionarios estructurados de 515 estudiantes de instituciones de educación superior (IES) de Delhi, Región de la Capital Nacional (NCR), India. Se realizó un análisis factorial exploratorio (AFE) para descubrir la estructura subyacente de los beneficios percibidos del uso de ChatGPT. Además, se empleó un análisis factorial confirmatorio (AFC) para confirmar la estructura factorial y garantizar la fiabilidad y validez de las categorías de beneficios identificadas. Los hallazgos indican seis categorías clave: "Apoyo al aprendizaje", "Generación de contenido", "Adquisición de conocimientos", "Aprendizaje personalizado", "Redacción académica" y "Eficiencia". Cada categoría refleja diferentes aspectos de cómo ChatGPT mejora la experiencia educativa de los estudiantes. El estudio proporciona evidencias empíricas sobre los beneficios específicos de ChatGPT. En la práctica, facilita información valiosa para educadores, instituciones académicas y legisladores sobre cómo integrar eficazmente ChatGPT y herramientas de IA similares en el currículo.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Publicación Facts

Metric
Este artículo
Otros artículos
Revisión pares 
2.4 promedio

Perfil de revisores  N/D

Información adicional autores

Información adicional autores
Este artículo
Otros artículos
Datos de investigación disponibles 
##plugins.generic.pfl.dataAvailability.unsupported##
##plugins.generic.pfl.averagePercentYes##
Financiación 
N/D
32% con financiadores
Conflicto de intereses 
N/D
##plugins.generic.pfl.averagePercentYes##
Metric
Para esta revista
Otras revistas
Artículos aceptados 
Artículos aceptados: 95%
33% aceptado
Días hasta la publicación 
Días hasta la publicación
145

Indexado: {$indexList}

    Indexado en
Perfil de director y equipo editorial
##plugins.generic.pfl.profiles##
Sociedad Académica/Grupo 
N/D
Editora: 
Universidad de Málaga

Biografía del autor/a

Davinder Kaur, Symbiosis International (Deemed University), Pune,

Symbiosis Law School, Pune, India
Symbiosis International (Deemed University), Pune, India

Vartika Kapoor, Symbiosis International (Deemed University), Pune,

Symbiosis Centre for Management Studies, Noida, India
Symbiosis International (Deemed University), Pune, India

Citas

Albadarin, Y., Saqr, M., Pope, N., & Tukiainen, M. (2024). A systematic literature review of empirical research on ChatGPT in education. Discover Education, 3(1), 60. https://doi.org/10.1007/s44217-024-00138-2

Baidoo-Anu, D., & Ansah, L. O. (2023). Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. Journal of AI, 7(1), 52-62. http://dx.doi.org/10.2139/ssrn.4337484

Boateng, G. O., Neilands, T. B., Frongillo, E. A., Melgar-Quiñonez, H. R., & Young, S. L. (2018). Best practices for developing and validating scales for health, social, and behavioral research: a primer. Frontiers in public health, 6, 149. https://doi.org/10.3389/fpubh.2018.00149

Byrne, B. M. (2016). Adaptation of assessment scales in cross-national research: Issues, guidelines, and caveats. International Perspectives in Psychology, 5(1), 51-65. https://doi.org/10.1037/ipp0000042

Chiu, T. K., & Churchill, D. (2016). Design of learning objects for concept learning: Effects of multimedia learning principles and an instructional approach. Interactive Learning Environments, 24(6), 1355-1370. https://doi.org/10.1080/10494820.2015.1006237

Cope, A. B., Ramirez, C., DeVellis, R. F., Agans, R., Schoenbach, V. J., & Adimora, A. A. (2016). Measuring concurrency attitudes: Development and validation of a vignette-based scale. PloS one, 11(10), e0163947. https://doi.org/10.1371/journal.pone.0163947

Comrey, A. L., & Lee, H. B. (1992). Interpretation and Application of Factor Analytic Results. In A. L. Comrey, & H. B. Lee (Eds.), A First Course in Factor Analysis (p. 2). Lawrence Eribaum Associates. https://doi.org/10.4324/9781315827506

Cotton, D. R., Cotton, P. A., & Shipway, J. R. (2024). Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. Innovations in education and teaching international, 61(2), 228-239. https://doi.org/10.1080/14703297.2023.2190148

Dai, Y., Liu, A., & Lim, C. P. (2023). Reconceptualizing ChatGPT and generative AI as a student-driven innovation in higher education. Procedia CIRP, 119, 84-90. https://doi.org/10.1016/j.procir.2023.05.002

Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Baabdullah, A. M., Koohang, A., Raghavan, V., Ahuja, M., Albanna, H., Albashrawi, M. A., Al-Busaidi, A. S., Balakrishnan, J., Barlette, Y., Basu, S., Bose, I., Brooks, L., Buhalis, D., ... Wright, R. (2023). “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71, 102642. https://doi.org/10.1016/j.ijinfomgt.2023.102642

Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological methods, 4(3), 272. https://doi.org/10.1037//1082-989X.4.3.272

Farhi, F., Jeljeli, R., Aburezeq, I., Dweikat, F. F., Al-shami, S. A., & Slamene, R. (2023). Analyzing the students' views, concerns, and perceived ethics about chat GPT usage. Computers and Education: Artificial Intelligence, 5, 100180. https://doi.org/10.1016/j.caeai.2023.100180

Farrokhnia, M., Banihashem, S. K., Noroozi, O., & Wals, A. (2024). A SWOT analysis of ChatGPT: Implications for educational practice and research. Innovations in Education and Teaching International, 61(3), 460-474. https://doi.org/10.1080/14703297.2023.2195846

Field, A.P. (2018) Discovering Statistics Using IBM SPSS Statistics. Sage.

Firat, M. (2023). What ChatGPT means for universities: Perceptions of scholars and students. Journal of Applied Learning and Teaching, 6(1), 57-63. https://doi.org/10.37074/jalt.2023.6.1.22

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50. https://doi.org/10.2307/3151312

Godsk, M., & Elving, P. R. (2024). ChatGPT for Learning in Higher Education: Benefits, Downsides, and Implications. Journal of Interactive Learning Research, 35(1), 31-69. https://doi.org/10.70725/583781fusvis

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2013). Multivariate data analysis: Pearson new international edition PDF eBook. Pearson Higher Ed.

Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European business review, 31(1), 2-24. https://doi.org/10.1108/EBR-11-2018-0203

Haleem, A., Javaid, M., & Singh, R. P. (2022). An era of ChatGPT as a significant futuristic support tool: A study on features, abilities, and challenges. BenchCouncil transactions on benchmarks, standards and evaluations, 2(4), 100089. https://doi.org/10.1016/j.tbench.2023.100089

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the academy of marketing science, 43, 115-135. https://doi.org/10.1007/s11747-014-0403-8

Hinkin, T. R. (1995). A review of scale development practices in the study of organizations. Journal of management, 21(5), 967-988. https://doi.org/10.1371/journal.pone.0163947

Hoffmann, S., Lasarov, W., & Dwivedi, Y. K. (2024). AI-empowered scale development: Testing the potential of ChatGPT. Technological Forecasting and Social Change, 205, 123488. https://doi.org/10.1016/j.techfore.2024.123488

Hojeij, Z., Kuhail, M. A., & ElSayary, A. (2024). Investigating in-service teachers’ views on ChatGPT integration. Interactive Technology and Smart Education. https://doi.org/10.1108/ITSE-04-2024-0094

Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118

Ilić, J., Ivanović, M., & Klašnja-Milićević, A. (2024, November). The Impact of ChatGPT on Student Learning Experience in Higher STEM Education: A Systematic Literature Review. In 2024 21st International Conference on Information Technology Based Higher Education and Training (ITHET) (pp. 1-9). IEEE. https://doi.org/10.1109/ITHET61869.2024.10837649

Imran, M., & Almusharraf, N. (2023). Analyzing the role of ChatGPT as a writing assistant at higher education level: A systematic review of the literature. Contemporary Educational Technology, 15(4), ep464. https://doi.org/10.30935/cedtech/13605

Javaid, M., Haleem, A., Singh, R. P., Khan, S., & Khan, I. H. (2023). Unlocking the opportunities through ChatGPT Tool towards ameliorating the education system. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 3(2), 100115. https://doi.org/10.1016/j.tbench.2023.100115

Jo, H. (2024). From concerns to benefits: a comprehensive study of ChatGPT usage in education. International Journal of Educational Technology in Higher Education, 21(1), 35. https://doi.org/10.1186/s41239-024-00471-4

Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., ... & Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and individual differences, 103, 102274. https://doi.org/10.1016/j.lindif.2023.102274

King, M. R. (2023). Outsourcing Your Faculty Application to ChatGPT: Would this Work? Should this Work? Cellular and Molecular Bioengineering, 16(4), 423-426. https://doi.org/10.1007/s12195-023-00777-9

Kline, B., & Tamer, E. (2016). Bayesian inference in a class of partially identified models. Quantitative Economics, 7(2), 329-366. https://doi.org/10.25336/csp29418

Kock, N. (2015). WarpPLS 5.0 user manual. Laredo, TX: Script Warp Systems.

Kock, N. (2017). Going beyond composites: Conducting a factor-based PLS-SEM analysis. Partial least squares path modeling: Basic concepts, methodological issues and applications, 41-53. https://doi.org/10.1007/978-3-319-64069-3_3

Kohnke, L., Moorhouse, B. L., & Zou, D. (2023). ChatGPT for language teaching and learning. Relc Journal, 54(2), 537-550. https://doi.org/10.1177/00336882231162868

Lee, H. (2024). The rise of ChatGPT: Exploring its potential in medical education. Anatomical sciences education, 17(5), 926-931. https://doi.org/10.1002/ase.2270

Mahapatra, S. (2024). Impact of ChatGPT on ESL students’ academic writing skills: a mixed methods intervention study. Smart Learning Environments, 11(1), 9. https://doi.org/10.1186/s40561-024-00295-9

McNeish, D. (2018). Thanks coefficient alpha, we’ll take it from here. Psychological methods, 23(3), 412. http://dx.doi.org/10.1037/met0000144

Meade, A. W., & Craig, S. B. (2012). Identifying careless responses in survey data. Psychological methods, 17(3), 437. Httos://doi.org/10.1037/a0028085

McMurtrie, B. (2023). ChatGPT Is Everywhere: Love it or hate it, academics can't ignore the already pervasive technology. The Chronicle of Higher Education, 69(15), 32-38.

Murphy, K. R. (1984). Cost‐benefit considerations in choosing among cross‐validation methods. Personnel Psychology, 37(1), 15-22. https://doi.org/10.1111/j.1744-6570.1984.tb02244.x

Ngo, T. T. A. (2023). The perception by university students of the use of ChatGPT in education. International Journal of Emerging Technologies in Learning (Online), 18(17), 4-19. https://doi.org/10.3991/ijet.v18i17.39019

Nunnally, J. C., & Bernstein, I. H. (1994). The Assessment of Reliability. Psychometric Theory, 3, 248-292.

Nyhan, RC, and HA Marlowe. (1997). Development And Psychometric Properties Of The Organizational Trust Inventory. Evaluation Review, 21(5), 614-635.

Onyekwere, J., & Enamul Hoque, K. (2023). Relationship between technological change, digitization, and students' attitudes toward distance learning in Lagos Higher Education institutes. Innoeduca. International Journal of Technology and Educational Innovation, 9(1), 126–142. https://doi.org/10.24310/innoeduca.2023.v9i1.15286

Padilla-Hernández, A. L., Gámiz-Sánchez, V. M., & Romero-López, M. A. (2019). Proficiency levels of teachers' digital competence: A review of recent international frameworks. Innoeduca. International Journal of Technology and Educational Innovation, 5(2), 140–150. https://doi.org/10.24310/innoeduca.2019.v5i2.5600

Rasul, T., Nair, S., Kalendra, D., Robin, M., de Oliveira Santini, F., Ladeira, W. J., ... & Heathcote, L. (2023). The role of ChatGPT in higher education: Benefits, challenges, and future research directions. Journal of Applied Learning and Teaching, 6(1), 41-56. https://doi.org/10.37074/jalt.2023.6.1.29

Rudolph, J., Tan, S., & Tan, S. (2023). War of the chatbots: Bard, Bing Chat, ChatGPT, Ernie and beyond. The new AI gold rush and its impact on higher education. Journal of Applied Learning and Teaching, 6(1), 364-389. https://doi.org/10.37074/jalt.2023.6.1.23

Sharples, M. (2022). Automated essay writing: An AIED opinion. International journal of artificial intelligence in education, 32(4), 1119-1126. https://doi.org/10.1007/s40593-022-00300-7

Shoufan, A. (2023). Exploring students’ perceptions of ChatGPT: Thematic analysis and follow-up survey. IEEE Access, 11, 38805-38818. https://doi.org/10.1109/ACCESS.2023.3268224

Singh, S., Singh, P., & Kaur, V. (2025). Understanding ChatGPT adoption among higher education students in Punjab, India: an application of UTAUT2 model. Innoeduca: international journal of technology and educational innovation, 11(1), 5-28. https://doi.org/10.24310/ijtei.111.2025.20219

Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2007). Using multivariate statistics (Vol. 5, No. 7). Pearson.

Van Dis, E. A., Bollen, J., Zuidema, W., Van Rooij, R., & Bockting, C. L. (2023). ChatGPT: five priorities for research. Nature, 614(7947), 224-226. https://doi.org/10.1038/d41586-023-00288-7

Vázquez-Cano, E., Ramirez-Hurtado, J. M., Saez-Lopez, J. M., & Lopez-Meneses, E. (2023). ChatGPT: The brightest student in the class. Thinking Skills and Creativity, 49, 101380. https://doi.org/10.1016/j.tsc.2023.101380

Veletsianos, G., & Moe, R. (2017). The rise of educational technology as a sociocultural and ideological phenomenon. EDUCAUSE Review (Online).

Wang, J., & Fan, W. (2025). The effect of ChatGPT on students’ learning performance, learning perception, and higher-order thinking: insights from a meta-analysis. Humanities and Social Sciences Communications, 12, 621. https://doi.org/10.1057/s41599-025-04787-y

Zhang, P., & Tur, G. (2024). A systematic review of ChatGPT use in K‐12 education. European Journal of Education, 59(2), e12599. https://doi.org/10.1111/ejed.12599

Publicado

30-11-2025

Cómo citar

Kaur, D., & Kapoor, V. (2025). Perspectivas de los estudiantes sobre los beneficios educativos de ChatGPT: una exploración cuantitativa. Innoeduca. International Journal of Technology and Educational Innovation, 11(2), 5–24. https://doi.org/10.24310/ijtei.112.2025.21927

Número

Sección

Artículos