Main Article Content

Pablo Beltrán-Pellicer
Universidad de Zaragoza
Spain
https://orcid.org/0000-0002-1275-9976
Ángel Alsina
Universitat de Girona
Spain
https://orcid.org/0000-0001-8506-1838
Vol. 3 No. 2 (2022), RESEARCHES, pages 31-58
DOI: https://doi.org/10.24310/mgnmar.v3i2.14693
Submitted: May 17, 2022 Accepted: Jul 5, 2022 Published: Jul 30, 2022
How to Cite

Abstract

The recent curricular reform of Primary Education in Spain incorporates several changes that need to be analysed. Although the competence approach is not new, it is the first time that specific competences have been defined for each subject. This change provides functionality, since the generality of the key competences was not practical. In this article we start by drawing a literature review to delimit the meaning of "mathematical competence". Then, we analyse its presence in the curriculum, both in the stage profiles that are configured in relation to the key competencies, and through the specific competencies and their evaluation criteria. In addition, we point out the relationship of some of these specific competences with the mathematical senses, current "content blocks", but more flexible and interconnected. The analysis carried out offers an interpretation of the new primary mathematics curriculum that may be interesting for anyone who is interested in an approach to teaching mathematics through problem solving, reasoning and proof, communication, connections and representation of mathematical ideas, also considering the socio-affective domain and what it implies. At the same time, we point out those aspects that may result confusing and we elaborate a constructive critic that opens new lines of research, hoping that may serve as inspiration for the last level of curricular specification: educational centres.

Agencies: Grupo S60_20R-Investigación en Educación Matemática (Gobierno de Aragón y Fondo Social Europeo)

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

References

Alsina, Á. (2012). Más allá de los contenidos, los procesos matemáticos en Educación Infantil. Edma 0-6: Educación Matemática en la Infancia, 1(1), 1-14. https://bit.ly/3N3LlzV

Alsina, Á. (2019). Itinerarios didácticos para la enseñanza de las matemáticas (6-12 años). Editorial Graó.

Alsina, Á. (2020). Cinco prácticas productivas para una enseñanza de las matemáticas a través de los procesos. Saber & Educar, 28, 1-13. http://dx.doi.org/10.17346/se.vol0.374

Alsina, Á. (en revisión). Transformando el currículo español de Educación Infantil: la presencia de la competencia matemática y los procesos matemáticos.

Attard, C. (2014). I don’t like it, I don’t love it, but I do it and I don’t mind: Introducing a framework for engagement with mathematics. Curriculum Perspectives, 34(3), 1–14. https://bit.ly/3L1QXJm

Beltrán-Pellicer, P. y Godino, J. D. (2020). An onto-semiotic approach to the analysis of the affective domain in mathematics education. Cambridge Journal of Education, 50(1), 1-20. https://doi.org/10.1080/0305764X.2019.1623175

Beltrán-Pellicer, P. y Martínez-Juste, S. (2021). Enseñar a través de la resolución de problemas. Suma, 98, 11-21. https://bit.ly/3kZ9rzI

Blanco, L. J., Cárdenas, J. A. y Caballero, A. (2015). La resolución de problemas de matemáticas en la formación de matemáticas inicial de profesores de primaria. Universidad de Extremadura. https://bit.ly/3KXG8YW

Boaler, J. y Sengupta-Irving, T. (2012). Gender Equity and Mathematics Education. En J. Banks (Ed.), Encyclopedia of Diversity in Education. SAGE Publications, Inc.

Bråting, K. (2021). From Symbolic Manipulations to Stepwise Instructions: A Curricular Comparison of Swedish School Algebra Content over the Past 40 Years. Scandinavian Journal of Educational Research, 1-15. https://doi.org/10.1080/00313831.2021.2006301

Brown, L. y Coles, A. (2013). On doing the same problem – first lessons and relentless consistency. En C. Margolinas (Ed.), Task design in mathematics education (Proceedings of the International Commission on Mathematical Instruction Study 22) (pp. 617–626). Oxford, UK.

Casey, K. y Sturgis, C. (2018). Levers and Logic Models: A Framework to Guide Research and Design of High-Quality Competency-Based Education Systems. iNACOL. https://bit.ly/3w0QeE9

CEMAT (2021). Bases para la elaboración de un currículo de Matemáticas en Educación no Universitaria. Comité Español de Matemáticas. https://bit.ly/3ytlGg1

Couso, D. (2017). Per a què estem a STEM? Un intent de definer l’alfabetització STEM per a tothom i amb valors. Ciències, 34, 22-30. https://bit.ly/3L1QzKU

De Bellis, V. A. y Goldin, G. A. (2006). Affect and meta-affect in mathematical problem solving: a representational perspective. Educational Studies in Mathematics, 63, 131-147. https://doi.org/10.1007/s10649-006-9026-4

English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3(1), 3. https://doi.org/10.1186/s40594-016-0036-1

English, L. D. y Gainsburg, J. (2015), Problem solving in a 21st-century mathematics curriculum. En L. D. English y D. Kirshner (Eds.), Handbook of international research in mathematics education. Third edition (pp. 313-335). Routledge.

European Comission (2004). Europe needs more Scientists. European Commission. https://bit.ly/3sxPiou

Felmer, P., Pehkonen, E. y Kilpatrick, J. (2016). Posing and Solving Mathematical Problems. Springer. https://doi.org/10.1007/978-3-319-28023-3

Fernández-Navas, M. (2015). Internet, organización en red y educ@ción: Estudio de un caso de buenas prácticas en Enseñanza Superior. Tesis doctoral. Universidad de Málaga. https://bit.ly/3sln7ZI

Freire, P. (1993). Política y educación. Editorial Siglo XXI.

Gomez-Chacón, I. M. (2000). Affective influences in the knowledge of mathematics. Educational Studies in Mathematics, 43(2), 149–168.

Ley Orgánica 2/2006, de 3 de mayo, de Educación. https://bit.ly/3wvxhZg

Ley Orgánica 8/2013, de 9 de diciembre, para la mejora de la calidad educativa. https://bit.ly/3Nhyytx

Ley Orgánica 3/2020, de 29 de diciembre, por la que se modifica la Ley Orgánica 2/2006, de 3 de mayo, de Educación. https://bit.ly/39NrMgQ

Kaiser, G., Hoffstall, M. y Orschulik, A.B. (2012). Gender Role Stereotypes in the Perception of Mathematics: An Empirical Study with Secondary Students in Germany. En: H. Forgasz y F. Rivera (Eds.) Towards Equity in Mathematics Education. Advances in Mathematics Education. Springer. https://doi.org/10.1007/978-3-642-27702-3_11

Kilhamn, C. y Bråting, K. (2019). Algebraic thinking in the shadow of programming. Eleventh Congress of the European Society for Research in Mathematics Education (pp. 1-9). Utrecht University.

Liljedahl, P. (2021). Building Thinking Classrooms. Corwin.

Macho Stadler, M., Padrón Fernández, E., Calaza Díaz, L., Casanellas Rius, M., Conde Amboage, M., Lorenzo García, E., & Vázquez Abal, M. E. (2020). Igualdad de género en el ámbito de las Matemáticas. En Libro Blanco de Las Matemáticas (pp. 375–420). Fundación Ramón Areces y RSME. https://bit.ly/3N1NkVa

McLeod, D. B. (1992). Research on affect in mathematics education: A reconceptualization. En D. A. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 575-598). Macmillan.

Ministerio de Educación, Cultura y Deporte (MECD, 2014). Real Decreto 126/2014, de 28 de febrero, por el que se establece el currículo básico de la Educación Primaria. https://bit.ly/3yDUhYL

Ministerio de Educación y Formación Profesional (MEFP) (2022a). Real Decreto 157/2022, de 1 de marzo, por el que se establecen la ordenación y las enseñanzas mínimas de la Educación Primaria. MEFP. https://bit.ly/3MWojuA

Ministerio de Educación y Formación Profesional (MEFP) (2022b). Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria. MEFP. https://bit.ly/3MR6Bsu

NCTM (2000). Principles and standards for school mathematics. NCTM.

Niss, M. (2002). Mathematical competencies and the learning of mathematics: the Danish Kom Project. Roskilde University.

OECD (2003). PISA 2003 Assessment Framework: Mathematics, Reading, Science and Problem Solving Knowledge and Skills. OECD. https://bit.ly/3N0TogJ

OECD (2005). La definición y selección de competencias clave. Resumen ejecutivo. OECD. https://bit.ly/3LXVHRE

OECD (2018). PISA 2018 Assessment and Analytical Framework. OECD. https://doi.org/10.1787/b25efab8-en

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.

Rychen, D.S., Salganik, L.H. y McLaughlin, M.E. (Eds.) (2001). Defining and selecting key competencies. OECD.

Rychen, D.S. y Salganik, L.H. (Eds.) (2003). Key competencies for a successful life and a well-functioning society. OECD.

Salganik, L.H., Rychen, D.S., Moser, U. y Konstant, J. (1999). Projects on competencies in the OECD context: Analysis of theoretical and conceptual foundations. OECD science and problem solving knowledge and skills. OECD.

Shaughnessy, J. M. (2012). STEM: An Advocacy Position, Not a Content Area. Web page. NCTM. https://bit.ly/3P9MUhi

Shaughnessy, J. M. (2013). Mathematics in a STEM Context. Mathematics Teaching in the Middle School, 18(6), 324.

Shute, V. J., Sun, C. y Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142-158. https://doi.org/10.1016/j.edurev.2017.09.003

Skovsmose, O. y Valero, P. (2001). Breaking political neutrality: The critical engagement of mathematics education with democracy. En B. Atweh, H. Forgasz y B. Nebres (Eds.), Sociocultural research on mathematics education. An international perspective (pp. 37-55). Erlbaum.

Sullivan, P., Knott, L. y Yang, Y. (2015). The Relationships Between Task Design, Anticipated Pedagogies, and Student Learning. En: A. Watson y M. Ohtani, (Eds.) Task Design In Mathematics Education. New ICMI Study Series. Springer. https://doi.org/10.1007/978-3-319-09629-2_3

Vila, A. y Callejo, M. L. (2004). Matemáticas para aprender a pensar: el papel de las creencias en la resolución de problemas. Narcea Ediciones.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L. y Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127-147. https://doi.org/10.1007/s10956-015-9581-5

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Yadav, A. y Berthelsen, U. D. (Eds.). (2021). Computational Thinking in Education: A Pedagogical Perspective. Routledge. https://doi.org/10.4324/9781003102991