Evaluación del impacto de Microsoft Copilot y ChatGPT en el discurso metadiscursivo interactivo de los estudiantes de inglés como lengua extranjera en la escritura argumentativa
DOI:
https://doi.org/10.24310/ijtei.111.2025.20896Palabras clave:
Aprendizaje mejorado con IA, Realización del metadiscurso, Entrevista semiestructuradaResumen
El auge de los chatbots de inteligencia artificial (IA) ha transformado significativamente el panorama educativo, ofreciendo numerosas oportunidades para la innovación y el cambio. El presente estudio evaluó los efectos comparativos de la instrucción basada en ChatGPT y Microsoft Copilot en ayudar a los aprendices iraníes de inglés como lengua extranjera (EFL) a identificar y realizar marcadores de metadiscurso interactivo (IM) en la escritura argumentativa y a explorar sus actitudes hacia estos dos chatbots. Basado en el marco teórico de IM, este estudio siguió un diseño paralelo convergente. El estudio involucró a 90 aprendices de idiomas, tanto hombres como mujeres, asignados aleatoriamente a tres grupos: grupo basado en ChatGPT (n = 30), grupo de Microsoft Copilot (n = 30) y un grupo de control (n = 30). A los grupos experimentales se les proporcionaron 10 consignas por sesión para la implementación de marcadores IM, resultando en 60 consignas a lo largo de seis sesiones. La instrucción incluyó un entrenamiento inicial en el uso de las herramientas de IA respectivas, seguido de sesiones prácticas enfocadas en identificar y usar marcadores IM en la escritura. El grupo de control recibió instrucción convencional, que implicaba identificar marcadores IM en pasajes de lectura con la guía del instructor. Se diseñaron preguntas de entrevista para obtener perspectivas de los aprendices sobre sus experiencias con ChatGPT y Microsoft Copilot. Las respuestas de los datos de la entrevista sobre las percepciones de los aprendices fueron analizadas mediante análisis temático. Los resultados mostraron que el grupo de Microsoft Copilot demostró un rendimiento superior en comparación con los otros dos grupos en la identificación de marcadores IM en el post-test. Sin embargo, un análisis de covarianza (ANCOVA) mostró que la diferencia entre el grupo basado en ChatGPT y el grupo de control no fue estadísticamente significativa. Además, las respuestas a las entrevistas semiestructuradas indicaron que todos los aprendices tenían una percepción positiva de Microsoft Copilot para emplear marcadores IM en la escritura argumentativa. Este estudio contribuye al campo proporcionando evidencia empírica sobre la efectividad de chatbots impulsados por IA específicos en la mejora de habilidades críticas de escritura, específicamente a través de la lente de IM.
Descargas
Métricas
Publicación Facts
Perfil de revisores N/D
Información adicional autores
Indexado: {$indexList}
-
Indexado en
- Sociedad Académica/Grupo
- N/D
- Editora:
- Universidad de Málaga
Citas
Abdelrahim A. A. M., & Abdelrahim, M. A. M. (2020). Teaching and assessing metadiscoursal features in argumentative writing: A professional development training for EFL teachers. International Journal of Applied Linguistics, 30, 70-91. https://doi.org/10.1111/ijal.12264
Ädel, A. (2023). Adopting a ‘move’ rather than a ‘marker’ approach to metadiscourse: A taxonomy for spoken student presentations, English for Specific Purposes, 6(69), 4-18. https://doi.org/10.1016/j.esp.2022.09.001
Adu, P. (2019). A step-by-step guide to qualitative data coding. Taylor & Francis.
Ali, J. K. M., Shamsan, M. A. A., Hezam, T. A., & Mohammed, A. A. Q. (2023). Impact of ChatGPT on learning motivation: Teachers and students’ voices. Journal of English Studies in Arabia Felix, 2(1), 41–49. https://doi.org/10.56540/jesaf.v2
Allagui, B. (2023). Chatbot Feedback on students’ writing: Typology of comments and effectiveness. In O. Gervasi, B. Murgante, A. M. A. C. Rocha, C. Garau, F. Scorza, Y. Karaca, & C. M. Torre (Eds.), International conference on computational science and its applications (pp. 377–384). Springer. https://doi.org/10.1007/978-3-031-37129-5_31
Amirjalili, F., Neysani, M., & Nikbakht. A. (2024). Exploring the boundaries of authorship: a comparative analysis of AI-generated text and human academic writing in English literature. Frontiers in Education, 9(2), 76-98. https://doi.org/10.3389/feduc.2024.1347421
Barrot, J. S. (2023). Using ChatGPT for second language writing: Pitfalls and potentials. Assessing Writing, 57, 100745. https://doi.org/10.1016/j.asw.2023.100745
Bautista, J. (2024). Chat GPT for students: How to become an A+ student using Chat GPT. Benjamin Bautista.
Bowen, J. A., & Watson, C. E. (2024). Teaching with AI: a practical guide to a new era of human learning. Johns Hopkins University Press.
Braun, V., & Clarke, V. (2006) Using thematic analysis in psychology, Qualitative Research in Psychology, 3(2), 77-101. https://doi.org/10.1191/1478088706qp063oa
Campesato, O. (2024). GPT-4 for developers. Mercury Learning and Information.
Chen, X., Xie, H., Zou, D., & Hwang, G. (2020). Application and theory gaps during the rise of artificial intelligence in education. Computers and Education: Artificial Intelligence, 1(4), 100002. https://doi.org/10.1016/j.caeai.2020.100002
Clark, V. E. (2024). First language acquisition. Cambridge University Press.
Dai, W., Lin, J., Jin, F., Li, T., Tsai, Y., Gasevic, D., & Chen, G. (2023). Can large language models provide feedback to students? A case study on ChatGPT. IEEE International Conference on Advanced Learning Technologies. https://doi.org/10.35542/osf.io/hcgzj
El-Dakhs, D. A. S., Yahya, N., & Pawlak, M. (2022). Investigating the impact of explicit and implicit instruction on the use of interactional metadiscourse markers. Asian-Pacific Journal of Second and Foreign Language Education, 44(7), 2-21. https://doi.org/10.1186/s40862-022-00175-0
Escalante, J., Pack, A. & Barrett, A. (2023). AI-generated feedback on writing: insights into efficacy and ENL student preference. International Journal of Educational Technology in Higher Education, 20, Article 57. https://doi.org/10.1186/s41239-023-00425-2
Esfandiari, R., & Allaf-Akbary, O. (2024a). The role of learning-oriented language assessment in promoting interactional metadiscourse in ectenic and synoptic EFL learners. Journal of Modern Research in English Language Studies, 11(3), 181-206. https://doi:10.30479/jmrels.2024.19777.2305
Esfandiari, R., & Allaf-Akbary, O. (2024b). The role of ChatGPT-based instruction and flipped language learning in metadiscourse use in EFL learners’ argumentative writing and their perceptions of the two instructional methods. Teaching English as a Second Language Quarterly (Formerly Journal of Teaching Language Skills), 43(3), 45-65. https://doi: 10.22099/tesl.2024.49975.3277
Esfandiari, R., & Allaf-Akbary, O. (2024c). Assessing interactional metadiscourse in EFL writing through intelligent data-driven learning: the Microsoft Copilot in the spotlight. Language Testing in Asia, 14, Article 51. https://doi.org/10.1186/s40468-024-00326-9
Esfandiari, R., & Khatibi, Z. (2022). A cross-cultural, cross-contextual study of interactional metadiscourse in academic research articles: An interpersonal approach. Southern African Linguistics and Applied Language Studies, 40(2), 227-242, https://doi: 10.2989/16073614.2022.2056064
Gao, C. A., Howard, F. M., Markov, N. S., Dyer, E. C., Ramesh, S., Luo, Y., & Pearson, A. T. (2023). Comparing scientific abstracts generated by ChatGPT to original abstracts using an artificial intelligence output detector, plagiarism detector, and blinded human reviewers. NPJ Digital Medicine, 75(6), 41-57. https://doi.org/10.1038/s41746-023-00819-6
Gordon, C. (2024). Intertextuality 2.0: Metadiscourse and meaning-making in an online community. Oxford University Press.
Guo, K., Wang, J., & Chu, S. K. W. (2022). Using chatbots to scaffold EFL students’ argumentative writing. Assessing Writing, 54, 100666. https://doi.org/10.1016/j.asw.2022.100666
Ho, V., & Li, C. (2018). The use of metadiscourse and persuasion: An analysis of first year university students' timed argumentative essays. Journal of English for Academic Purposes, 33(2), 53-68. https://doi.org/10.1016/j.jeap.2018.02.001
Holmes, W., Persson, J., Chounta, I. A., Wasson, B., & Dimitrova, V. (2022). Artificial intelligence and education: A critical view through the lens of human rights, democracy and the rule of law. Council of Europe.
Huang, A. Y. Q., Lu, O. H. T., & Yang, S. J. H. (2023). Effects of artificial intelligence–enabled personalized recommendations on learners’ learning engagement, motivation, and outcomes in a flipped classroom. Computers & Education, 194(2), 104684. https://doi.org/10.1016/j.compedu.2022.104684
Huang, F., & Zou, B. (2024). English speaking with artificial intelligence (AI): The roles of enjoyment, willingness to communicate with AI, and innovativeness. Computers in Human Behavior, 159(2), 108355. https://doi.org/10.1016/j.chb.2024.108355
Huang, Q., Liu, Y., Chen, S., & Zhao, M. (2024). Generative AI acceptance, teachers' enthusiasm, and learners' self-efficacy: Impact on EFL learners' well-being. Journal of Language and Education Research, 38, 75-89. https://doi.org/10.1111/ejed.12770
Hyland, K. (2019). Metadiscourse: Exploring interaction in writing (2nd edition). Continuum.
Hyland, K., & Jiang, F. K. (2022). Metadiscourse choices in EAP: An intra-journal study of JEAP. Journal of English for Academic Purposes, 60(3), 101-165. https://doi.org/10.1016/j.jeap.2022.101165
Khadimally, S. (2022). Applications of machine learning and artificial intelligence in education. IGI Global.
Kim, J., Lee, H., & Cho, Y. H. (2022). Learning design to support student-AI collaboration: Perspectives of leading teachers for AI in education. Education and Information Technologies, 27(5), 6069–6104. https://doi.org/10.1007/s10639-021-10831-6
Kim, J., Yu, S., Detrick, R., & Li, N. (2024). Exploring students’ perspectives on generative AI-assisted academic writing. Education and Information Technologies, 2(34), 1-36 https://doi.org/10.1007/s10639-024-12878-7
Kohnke, L., Moorhouse, B. L., & Zou, D. (2023). ChatGPT for language teaching and learning. RELC Journal, 54(2), 537-550. https://doi.org/10.1177/00336882231162868
LaRue Keeley, K. (2024). AI Applications and Strategies in Teacher Education. Information Science Reference. https://doi.org/10.4018/979-8-3693-5443-8
Lee, S. S., Li, N., & Kim, J. (2023). Conceptual model for Mexican teachers’ adoption of learning analytics systems: The integration of the information system success model and the technology acceptance model. Education and Information Technologies, 1–26. https://doi.org/10.1007/ s10639-023-12371-7
Li, Z., & Xu, J. (2020). Reflexive metadiscourse in Chinese and English sociology research article introductions and discussions. Journal of Pragmatics, 159(2), 47-59. https://doi.org/10.1016/j.pragma.2020.02.003
Lim, G. S. (2011). The development and maintenance of rating quality in performance writing assessment: A longitudinal study of new and experienced raters. Language Testing, 28(4), 543-560.
Lo, C. K., Yu, P. L. H., Xu, S., Ng, D. T. K., & Jong, M. S. Y. (2024). Exploring the application of ChatGPT in ESL/EFL education and related research issues: a systematic review of empirical studies. Smart Learning Environments, 11(50), 1-24. https://doi.org/10.1186/s40561-024-00342-5
Mackey, A. (2020). Interaction, feedback and task research in second language learning methods and design. Cambridge University Press.
Mackey, A., & Gass, S. M. (2023). Current approaches in second language acquisition research: A practical guide. Wiley.
Mahapatra, S. (2024). Impact of ChatGPT on ESL students’ academic writing skills: A mixed methods intervention study. Smart Learning Environment, 11, 9 https://doi.org/10.1186/s40561-024-00295-9
Mahapatra, S. K. (2021). Online formative assessment and feedback practices of ESL teachers in India, Bangladesh and Nepal: A multiple case study. Asia-Pacific Education Researcher, 30(6), 519–530. https://doi.org/10.1007/s40299-021-00603-8
Marzuki, S., Widiati, U., Rusdin, D., Darwin, R., & Indrawati, I. (2023). The impact of AI writing tools on the content and organization of students’ writing: EFL teachers’ perspective. Cogent Education, 10(2), 2236469. https://doi.org/10.1080/2331186X.2023.2236469
Mathur, M., & Mahapatra, S. (2022). Impact of ePortfolio assessment as an instructional strategy on students’ academic speaking skills: An experimental study. Computer-Assisted Language Learning Electronic Journal, 23(3), 1–23.
McCourt, D. M. (2023). The new constructivism in international relations theory. Bristol University Press.
Miller, M. (2024). Using artificial intelligence: Absolute beginners guide. Pearson Education INC.
Minnick, C. (2025). Microsoft Copilot for Dummies. John Wiley & Sons, Inc.
Moser, A. (2020). Written corrective feedback: The role of learner engagement: A practical approach. Springer International Publishing.
Nassaji, H., & Kartchava, E. (2024). The Cambridge handbook of corrective feedback in second language learning and teaching. Cambridge University Press.
Pallant, J. (2020). SPSS Survival Manual: A step by step guide to data analysis using IBM SPSS (7th ed.). Routledge.
Pan, F. (2024). AI in language teaching, learning, and assessment. IGI Global.
Pearson, S. W., & Abdollahzadeh, E. (2023). Metadiscourse in academic writing: A systematic review. Lingua, 293(9), 103-561. https://doi.org/10.1016/j.lingua.2023.103561
Phakiti, A. (2003). A closer look at gender and strategy use in L2 reading. Language Learning, 53(4), 649-702. https://doi.org/10.1046/j.1467-9922.2003.00239.x
Pym, A., & Hao, Y. (2024). How to augment language skills: Generative ai and machine translation in language learning and translator training. Taylor & Francis.
Qiu, X., Wang, Y., Dartey, E. A., & Kim, M. (2024). Interactional metadiscourse in expert and student disciplinary writing: Exploring intrageneric and functional variation. English for Specific Purposes, 73(5), 124-140. https://doi.org/10.1016/j.esp.2023.10.007
Rostami Aboo saeedi, A. A., Hasanpour Ghaleh, M., Kheiri, S., & Mohammadi, S. (2023). A qualitative account of writers’ perceptions of thesis writing in applied linguistics: The case of interactional meta-discourse markers. Iranian Journal of English for Academic Purposes, 12(2), 31-48.
Roumeliotis, K. I., & Tselikas, D. N. (2023). ChatGPT and Open-AI Models: A Preliminary Review, Future Internet, 15(6), 192. https://doi.org/10.3390/fi15060192
Rudolph, J., Tan, S., & Tan, S. (2023). ChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Journal of Applied Learning & Teaching, 6(1), 342–363. https://doi.org/10.37074/jalt.2023.6.1.9
Sadiku., M. N. O., Musa, M. S., & Chukwu, U. C. (2022). Artificial Intelligence in Education. iUniverse.
Scholl, H. (2024). Microsoft CoPilot AI expertise. Publisher s21598.
Shneiderman, B. (2022). Human-centered AI. Oxford University Press.
Stratton, J. (2024). Copilot for Microsoft 365: Harness the power of generative AI in the Microsoft apps you use every day. Apress.
Vurdien, R., & Chambers, W. (2024). Technology-mediated language learning and teaching. IGI Global.
Wang, M., & Guo, W. (2023). The potential impact of ChatGPT on education: Using history as a rearview mirror. ECNU Review Education. https://doi.org/10.1177/20965311231189826
Winstone, N. E., & Carless, D. (2020). Designing effective feedback processes in higher education: A learning-focused approach. Routledge.
Wu, X., Zhang, Y., Li, J., & Wang, L. (2024). Exploring the factors influencing EFL college learners' willingness to use AI tools in distributed learning environments. Journal of Educational Technology & Society, 13, 45-59. https://doi.org/10.3389/fpsyg.2022.870777
Xue, Y. (2024). Towards automated writing evaluation: A comprehensive review with bibliometric, scientometric, and meta-analytic approaches. Education and Information Technologies, 29, 19553–19594. https://doi.org/10.1007/s10639-024-12596-0
Yan, D. (2023). Impact of ChatGPT on learners in a L2 writing practicum: An exploratory investigation. Educational Information Technology, 28(2), 13943–13967 https://doi.org/10.1007/s10639-023-11742-4
Zhao, X. (2022). Leveraging artificial intelligence (AI) technology for English writing: Introducing word tune as a digital writing assistant for EFL writers. RELC Journal, 54(3), 65-89. https://doi.org/10.1177/00336882221094089
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Innoeduca. International Journal of Technology and Educational Innovation

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Todos los contenidos publicados por Innoeduca. International Journal of Technology and Educational Innovation están sujetos a la licencia de Creative Commons Reconocimiento-No comercial- SinObraDerivada 4.0 Internacional, cuyo texto completo se puede consultar en https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode. Por lo tanto, la copia, distribución, comunicación pública, obras derivadas y el uso comercial de los contenidos están permitidas siempre que la fuente y el autor del texto se citen.
Es responsabilidad de los autores obtener los permisos necesarios de las imágenes que están sujetas a derechos de autor.

Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.






241.png)



