Methods for estimating the runoff in watersheds of non-aquifer lithology in Mediterranean environments

Authors

  • J.D. Ruiz Sinoga et al.

DOI:

https://doi.org/10.24310/BAETICA.2002.v0i24.401

Abstract

The study of the slopes hydrological behavior has been and is a very recurrent subject as much from the hydrological as of the hydrodynamics optics, throughout the last decades. The Works of Ven Te Chow, (1994); Ward&Robinson, (2000); Horton, (1945); Hewlet, (1967); Smith (1970); Laveeh, (1998); Yair (1985); they constitute good examples of the necessity of explanation of the mechanisms and the relationships between surface water and channels, as well as of the timing and spatial variability of such. This preoccupation is increased in environments where the ecosystems acquire a greater diversity with differential response of the biotics and abiotics factors and, consequently, with a diverse hydrological answer. One of these environments is the Mediterranean, located between arids and humids climates with direct repercussions in the ecogeomorfological system and the hydrological behavior. And in this sense, commonly, the theory of a mechanism own of generation of slope run-off has been accepted under Mediterranean conditions, different from the existing ones in other environments: the denominated discontinuous or mixed hortonian model. This paper tries, from the hydrological optics and accepting the hydrodynamics principles of Mediterranean conditions, to establish the adjustment gears between both approaches. And once determined both models, to compare them with the results of the field experimentation, and to make the adjustments between both approaches, in order to validate the method. All applied it in two slopes of opposed orientation in middle mountains of Malaga.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

BERGKAMP, G. (1998): “A hierachical view of the interactions of runoff and infiltration with vegetation and microtopography semiarid shrublands”. Catena, 33, 201-220.

BERGKAMP, G, CERDÁ, A., IMESON, A.C. (1998): “Magnitude-frecuency análisis of water redistribution along a climate gradient in Spain”. Catena, 37, 129-146.

BOIX-FAYOS, C. CALVO-CASES, A., IMESON, A.C., SORIANO-SOTO, M.D., TIEMESSEN, I.R. (1998): “Spatial and short-term temporal variations in runoff, soil aggregation and other soil properties along a mediterranean climatological gradient”. Catena, 33, 123-128.

CERDÁ, A. IBÁÑEZ, S. y CALVO, A. (1997): “Design and operation of a small and portable rainfall simulator for rugged terrain”. Soil Technology, 11, 163-170.

CERDÁ, A. (1997): “Seasonal changes of the infiltration rates in a Mediterranean scrubland on limestone”. Journal of Hydrology, 198, 209-225.

De PEDRAZA GILSANZ, J. et al. (1996): Geomorfología. Principios, métodos y aplicaciones, Rueda. Madrid.

HUANG, Ch. (1998): “Sediment regimes under different slope and Surface hydrologic conditions”. Soil Science society of America, 62, 423-430.

HUANG, C., GASCUEL-ODOUX, C., CROS-CAYOT, S. (2001): “Hillslope topographic and hydrologic effects on overland Flow and erosión”. Catena, 46. 177-188.

IMESON, A.C. and LAVEE, H. (1998): “Soil erosion and climate change: the transect approach and the influence of scale”. Geomorphology, 23, 219-227.

KOSMAS, C., DANALATOS, N., CAMMERAAT, L.H., CHABART, M., DIAMANTOPOULOS, J., FARAND, R., GUTIÉRREZ, L., JACOB, A., MARQUES, H., MARTÍNEZ-FERNÁNDEZ, J., MIZARA, A., MOUSTAKAS, N., NICOLAU, J.M., OLIVEROS, C., PINNA, G., PUDDU, R., PUIGDEFABREGAS, J., ROXO, M., SIMAO, A., STAMOU, G., TOMASI, N., USAI, D., VACCA, A. (1997): “The effect om land use on runoff and soil erosion rates under Mediterranean conditions”. Catena 29, 45-59.

KULITEK M. & NIELSEN D.R. (1994): Soil Hydrology. Geo ecology. Text Book.

LAVEEM, H., IMESON, A.C., SARAH, P. (1998): “The impact of climate change on geomorphology and desertification along a Mediterranean – arid transect”. Land Degradation and Development, 9, 407-422.

LÓPEZ-BERMÚDEZ, F., MARTÍNEZ-FERNÁNDEZ, J., ROMERO-DÍAZ, A. (1995): “Land use and soil-vegetation relationships in a Mediterranean ecosystem: El Ardal Murcia, Spain”. Catena 25, 153-167.

MINTEGUI AGUIRRE, J.A. y LÓPEZ UNZU, F. (1990): La ordenación agrohidrológica en la planificación. Departamento de Agricultura y Pesca del Gobierno Vasco. Vitoria.

PÉREZ LATORRE, A., NIETO CALDERA, J.M. y CABEZUDO, B. (1994): “Datos sobre la vegetación de Andalucía III. Series de vegetación caracterizada por Quercus suber L.” Acta Botánica Malacitana. 19, 169-183. Universidad de Málaga.

SIEPEL A.C., STEENHUIS T.S., ROSE C.W., PARLANGE J. y MCISAAC, G.F. (2002): “A simplified hillslope erosion with vegetation elements for practical applications”. Journal of Hydrology.

SMITH, D.B., WEARN, H.J. (1970): “Water movement in the unsaturaded zone of high and low permeability strata”. International Atomic Energy Authority, Vienna, pp. 73-81.

TRAGSA: Restauración hidrológico forestal de cuencas y control de la erosión.

TRIMBLE, S.W. (1990): “Geomorphic effects of vegetation cover and management: some time and space considerations in prediction of erosion and sediment yield”. In: Thornes, J.B. Ed., Vegetation and Erosion Processes and Environments. Wiley, pp. 55-66.

USÓN, A. y RAMOS, M.C. (2001): “A improved rainfall erosivity index obtained from experimental interrill soil losses in soils with a Mediterranean climate”. Catena, 43, 293-305.

VEN TE CHOW et al. (1994): Hidrología aplicada. Mc Graw Hill. Londres.

WARD R.C. & ROBINSON, M. (2000): Principles of hydrology. Mc Graw Hill. Londres.

YAIR, A. & LAVEEH, H. (1985): “Runoff generation in arid and semiarid zones”. Anderson M.G. & Burt, T.P.: Hydrologycal Forecasting, 183-220. John Willey and sons LTD.

Published

2015-06-02

How to Cite

Ruiz Sinoga et al., J. (2015). Methods for estimating the runoff in watersheds of non-aquifer lithology in Mediterranean environments. BAETICA. Estudios De Historia Moderna Y Contemporánea, (24). https://doi.org/10.24310/BAETICA.2002.v0i24.401

Issue

Section

Histórico