Instruments for the analysis of orders based on multi-criteria methods. Application to Iberoamerican universities
DOI:
https://doi.org/10.24310/recta.26.1.2025.20777Keywords:
UW-TOPSIS, Multiple-criteria decision analysis, SCIMAGO, Iberoamerican UniversitiesAbstract
Traditional multi-criteria decision-making methods can be adapted to uncertainty scenarios, allowing for rankings even when some model requirements are imprecise. In this work, we demonstrate another use of these methods: the Unweighted TOPSIS (UW-TOPSIS) method will be used to detect anomalies in rankings made with precise data. By applying UW-TOPSIS, each alternative is associated with an interval indicating its worst and best overall evaluation position in the ranking. To extract useful information from this range of possibilities, we introduce the intervention coefficient, which measures the similarity between the position of an alternative and its best possible situation.
The proposal is applied to the ranking of Ibero-American universities (including Andorra, Spain and Portugal) published by SCImago IBER for the five-year period 2018-2022. Different levels detected by the intervention coefficient are studied, and an alternative ranking method that better fits the data from the database itself is proposed.
Downloads
Publication Facts
Reviewer profiles N/A
Author statements
Indexed in
-
—
- Academic society
- N/A
- Publisher
- UMA Editorial. Universidad de Málaga
References
Acuña-Soto, C, Liern, V., Pérez-Gladish, B. (2021). Normalization in TOPSIS-based approaches with data of different nature: application to the ranking of mathematical videos, Annals of Operations Research, 296, 541-569.
https://doi.org/10.1007/s10479-018-2945-5
Hwang, C. L. & Yoon, K. (1981). Multiple Atribute Decision Making: Methods and Applications. New York: Springer-Verlag.
https://doi.org/10.1007/978-3-642-48318-9
Benítez, R., Liern, V. (2021). Unweighted TOPSIS: a new multi-criteria tool for sustainability analysis, International Journal of Sustainable Development & World Ecology, 28, 36-48.
https://doi.org/10.1080/13504509.2020.1778583
Bouslah, K., Liern, V., Ouenniche, J. & B. Pérez-Gladish, B. (2022). Ranking firms based on their financial and diversity performance using multiple-stage unweighted TOPSIS. International Transactions in Operational Research, available online, https://doi.org/10.1111/itor.13143.
Carlsson, C., Fullér, R. (2001). Fuzzy Reasoning in Decision Making and Optimization. PhysicaVerlag.
https://doi.org/10.1007/978-3-7908-1805-5
IREG (2023) Observatory on Academic Ranking and Excellence https://ireg-observatory.org/en/aboutus/ - Berlin principles (Recuperado el 14 de noviembre 2023).
Liern, V., Parada-Rico, S.E. y Blasco-Blasco, O. (2020). Construction of quality indicators based on pre-established goals: Application to a Colombian Public University, Mathematics 8 (7), 1075.
https://doi.org/10.3390/math8071075
Liern, V., Pérez-Gladish, B. (2022). An algorithmic method to Multiple criteria ranking method based on functional proximity index: un-weighted TOPSIS, Annals of Operations Research, 311, 1099- 1121.
https://doi.org/10.1007/s10479-020-03718-1
López-García, A., Liern, V., Pérez-Gladish, B. (2023). Determining the underlying role of corporate sustainability criteria in a ranking problem using UW-TOPSIS. Annals of Operations Research. https://doi.org/10.1007/s10479-023-05543-8.
Martínez Rizo, F. (2010). Los rankings de universidades: Una visión crítica. Revista de la educación superior. México.
Ouenniche, J., Pérez-Gladish, B., Bouslah, K. (2018). An out-of-sample framework for TOPSIS-based classifiers with application in bankruptcy prediction. Technological Forecasting and Social Change, 131, 111-116.
https://doi.org/10.1016/j.techfore.2017.05.034
Pinto-Delacadena, P.A., Liern,V., Acosta-Vargas, P, and Vinueza-Cabezas, A. (2024). A multicriteria approach to ranking Latin-American universities based on region-specific criteria. Technological Forecasting and Social Change 208, 123725.
https://doi.org/10.1016/j.techfore.2024.123725
Pardo-Quintanilla, R. (2023). Un instrumento para el análisis de ordenaciones. Aplicación a las universidades iberoamericanas. Trabajo de Fin de Máster. Universitat de València.
Pardo-Quintanilla, R., Rojas-Puebla, C., Liern, V. (2023). Asignación de ayudas a la investigación basado en técnicas multicriterio. Comunicación en ASEPUMA 2023.
Reyes C. (2016). Medición de la calidad universitaria en Chile: la influencia de los rankings. Calidad en la Educación, 44, 158-196.
https://doi.org/10.4067/S0718-45652016000100007
SCImago IBER (2023). https://www.scimagoiber.com/institutions.php (Recuperado el 2 de octubre de 2023).
SCImago Lab (2023). https://www.scimagolab.com/sobre-scimago/ (Recuperado el 2 de octubre de 2023).
SCImago IR (2023). https://www.scimagoir.com/methodology.php (Recuperado el 2 de octubre de 2023).
Webster, David S. (1983). "America's Higher-Ranked Graduate Schools, 1925-1982", en Change, May-June, pp. 13-24.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rodrigo Andrés Pardo, Carla Rojas Puebla, Vicente Liern

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.