Comportamiento de la UVR en el largo plazo

Autores/as

  • Evelyn Lucía Taylor-Conto Universidad Nacional de Colombia Colombia
  • Romario Ademir Conto-López instituto Tecnológico Metropolitano Colombia

DOI:

https://doi.org/10.24310/recta.24.1.2023.19860

Palabras clave:

UVR, series de tiempo, SARIMA, regresión lineal, Holt-Winters, Redes Neuronales

Resumen

En este artículo se implementan diferentes técnicas para predecir la unidad de valor real colombiana (UVR), basándose únicamente en el histórico de su comportamiento. La UVR representa el poder adquisitivo basado en la variación del índice de precios al consumidor (IPC) para el mes calendario inmediatamente anterior al calculado, además muchos créditos de vivienda están indexados a la UVR en Colombia, permitiendo que las entidades financieras conserven el poder adquisitivo del dinero prestado. Para el estudio son consideradas técnicas de pronóstico mediante modelos SARIMA, regresión lineal, suavizamiento Holt-Winters aditivo y multiplicativo, y redes neuronales artificiales. De acuerdo con el análisis, se obtiene que la mejor técnica para realizar predicciones al final del ciclo estacional es el suavizamiento Holt-Winters multiplicativo y para predecir a mitad del ciclo estacional es un modelo SARIMA (1,1,1) (0,1,1).

Descargas

Los datos de descargas todavía no están disponibles.

Publicación Facts

Metric
Este artículo
Otros artículos
Revisión pares 
2.4 promedio

Perfil de revisores  N/D

Información adicional autores

Información adicional autores
Este artículo
Otros artículos
Datos de investigación disponibles 
##plugins.generic.pfl.dataAvailability.unsupported##
##plugins.generic.pfl.averagePercentYes##
Financiación 
N/D
32% con financiadores
Conflicto de intereses 
N/D
##plugins.generic.pfl.averagePercentYes##
Metric
Para esta revista
Otras revistas
Artículos aceptados 
Artículos aceptados: 4%
33% aceptado
Días hasta la publicación 
Días hasta la publicación
145

Indexado: {$indexList}

    Indexado en
Perfil de director y equipo editorial
##plugins.generic.pfl.profiles##
Sociedad Académica/Grupo 
N/D
Editora: 
UMA Editorial. Universidad de Málaga

Citas

Akpinar, M., & Nejat, Y. (2016) Year ahead demand forecast of city natural gas using seasonal Time Series Methods. Energies. 9(9), 727.

https://doi.org/10.3390/en9090727

Al-Gounmeein, R. S. & Ismail, M. T. (2020) Forecasting the Exchange Rate of the Jordanian Dinar versus the US Dollar Using a Box-Jenkins Seasonal ARIMA Model. International Journal of Mathematics & Computer Science. 15(1) 27-40.

Barría-Sandoval C, Ferreira G, Benz-Parra K, López-Flores P (2021) Prediction of confirmed cases of and deaths caused by COVID-19 in Chile through time series techniques: A comparative study. PLoS ONE 16(4): e0245414

https://doi.org/10.1371/journal.pone.0245414

Bilgili, M., & Pinar, E. (2023). Gross electricity consumption forecasting using LSTM and SARIMA approaches: A case study of Türkiye. Energy, 128575.

https://doi.org/10.1016/j.energy.2023.128575

Bowerman, B., O'Connelly, R. & Koehler, A. (2006) Pronósticos, series de Tiempo y Regresión. CENGACE Learnig. 4ta Edición. (2006).

Box, G., Jenkins, G. & Reinsel, G. (2008) Time series analysis forecasting and control, 4th Ed., Wiley & Sons Inc.

https://doi.org/10.1002/9781118619193

Braimllari, A. & Sala, E. (2016) Modeling and Forecasting of Food Imports in Albania. Albanian Journal of Agricultural Sciences. 15(4), 200-205.

Canova, F., & Hansen, B. E. (1995). Are seasonal patterns constant over time? A test for seasonal stability. Journal of Business & Economic Statistics, 13(3), 237-252.

https://doi.org/10.1080/07350015.1995.10524598

Chen, C., Chang, Y. & Chang, Y. (2009) Seasonal ARIMA forecasting of inbound air travel arrivals to Taiwan. Transportmetrica. 5, 125-140.

https://doi.org/10.1080/18128600802591210

Dickey, D. & Fuller, W. (1979) Distribution of the estimators for autoregressive time series with a unit root. Journal of American Statistical Association 74(366), 427-431.

https://doi.org/10.1080/01621459.1979.10482531

Diebold, F. (1999) Elementos de Pronóstico. International Thomson Editores, S.A. de C.V.

Gil, V. D. (2016). Pronóstico de la demanda mensual de electricidad con series de tiempo. Revista EIA. 13(26), 111-120.

https://doi.org/10.24050/reia.v13i26.749

Goh, C. & Law, R. (2001) Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention. Tourism Management. 23(5), 499-510.

https://doi.org/10.1016/S0261-5177(02)00009-2

Hankey, J. & Wichern, D. (2010) Pronósticos en los Negocios. Pearson. 9na edición. Ed. Pearson.

Hylleberg, S., Engle, R. F., Granger, C. W., & Yoo, B. S. (1990). Seasonal integration and cointegration. Journal of econometrics, 44(1-2), 215-238.

https://doi.org/10.1016/0304-4076(90)90080-D

Hyndman, R. & Athanasopoulos, G. (2021) Forecasting: principles and practice, 3rd edition, OTexts: Melbourne, Australia. Web: OTexts.com/fpp3.

Kumar, M. & Anand, M. (2015) An application of time series ARIMA forecasting model for predicting sugarcane production in India. Studies in Business and Economics. 9(1), 81-95.

Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root?. Journal of econometrics, 54(1-3), 159-178.

https://doi.org/10.1016/0304-4076(92)90104-Y

Shapiro, S. & Wilk, M. (1965) An analysis of variance test for normality (complete samples). Biometrika. 52(3), 591-611.

https://doi.org/10.1093/biomet/52.3-4.591

Stellwagen, E. & Tashman, L. (2013) ARIMA: The models of Box & Jenkins. International Journal of Applied Forecasting. 30, 28-33.

Tsitsika, E. C., Maravelias, C. and Haralabous,V J. (2007) Modeling and forecasting pelagic fish production using univariate and multivariate ARIMA models. Fisheries Science. 73, 979-988.

https://doi.org/10.1111/j.1444-2906.2007.01426.x

Velásquez J. & Aguilar, S. (2011). Un análisis de la dinámica de largo plazo de la UVR. Revista Ingenierías Universidad de Medellín. 10, 97-106.

Villazón-Bustillos, D., Rubio-Arias, H., Ortega-Gutiérrez, J., Rentería-Villalobos, M., González-Gurrola L. & Pinales-Munguia A. (2016) Análisis en series de tiempo para el pronóstico de sequía en la región noroeste del estado de Chihuahua. Ecosistemas y recursos agropecuarios. 3(9), 307-315.

https://doi.org/10.21640/ns.v9i19.953

Yamacli, D. S., & Yamacli, S. (2023). Estimation of the unemployment rate in Turkey: A comparison of the ARIMA and machine learning models including Covid-19 pandemic periods. Heliyon, 9(1) 1-10.

https://doi.org/10.1016/j.heliyon.2023.e12796

Youness, J., & Driss, M. (2022). An ARIMA model for modeling and forecasting the dynamic of univariate time series: the case of moroccan inflation rate. In 2022 International Conference on Intelligent Systems and Computer Vision (ISCV) (pp. 1-5). IEEE.

https://doi.org/10.1109/ISCV54655.2022.9806073

Youness J., & Driss, M. (2023). Comparing The Forecasting Accuracy Metrics of Support Vector Regression and ARIMA Algorithms for Non-Stationary Time Process. Mathematics and Statistics, 11(2), 294 - 299.

Descargas

Publicado

2023-06-30

Cómo citar

Taylor-Conto, E. L., & Conto-López, R. A. (2023). Comportamiento de la UVR en el largo plazo. Revista Electrónica De Comunicaciones Y Trabajos De ASEPUMA, 24(1), 21–34. https://doi.org/10.24310/recta.24.1.2023.19860