Análisis comparativo de redes neuronales profundas para la predicción del precio de mercado de bitcoin

Autores/as

  • Aarón López-García Centro Universitario EDEM, Valencia España

DOI:

https://doi.org/10.24310/recta.24.1.2023.19858

Palabras clave:

Bitcoin, Redes Neuronales, Series temporales, predicción financiera

Resumen

Uno de los problemas más desafiantes de los últimos años es el estudio financiero de las criptomonedas con el fin de conocer su comportamiento futuro. El auge de la inteligencia artificial nos está ofreciendo herramientas que nos permiten abordar el asunto con mayor precisión. En particular, el aprendizaje profundo nos permite generar redes neuronales que aprenden de grandes volúmenes de datos, identificando así patrones imperceptibles para los humanos. En este trabajo, nos centramos en el estudio de Bitcoin, la criptomoneda de mayor valor y popularidad del mercado actualmente. A la hora de pronosticar su precio, se han implementado tres tipos de redes neuronales profundas y un modelo comparativo. Los resultados del análisis comparativo concluyen que los patrones temporales resultan ser mías representativos que los espaciales al estimar el comportamiento del precio de cierre futuro de Bitcoin.

Descargas

Los datos de descargas todavía no están disponibles.

Publicación Facts

Metric
Este artículo
Otros artículos
Revisión pares 
2,4 promedio

Perfil de revisores  N/D

Información adicional autores

Información adicional autores
Este artículo
Otros artículos
Datos de investigación disponibles 
##plugins.generic.pfl.dataAvailability.unsupported##
##plugins.generic.pfl.averagePercentYes##
Financiación 
N/D
32% con financiadores
Conflicto de intereses 
N/D
##plugins.generic.pfl.averagePercentYes##
Metric
Para esta revista
Otras revistas
Artículos aceptados 
Artículos aceptados: 2%
33% aceptado
Días hasta la publicación 
Días hasta la publicación
145

Indexado: {$indexList}

    Indexado en
Perfil de director y equipo editorial
##plugins.generic.pfl.profiles##
Sociedad Académica/Grupo 
N/D
Editora: 
UMA Editorial. Universidad de Málaga

Citas

Abraham, A., Nath, B., y Mahanti, P. K. (2001). Hybrid intelligent systems for stock market analysis. En Proceedings of the International Conference on Computational Science-Part II, ICCS '01, p. 337-345, Berlin, Heidelberg. Springer-Verlag.

https://doi.org/10.1007/3-540-45718-6_38

Aditya Satrio, C. B., Darmawan, W., Nadia, B. U., y Hanafiah, N. (2021). Time series analysis and forecasting of coronavirus disease in indonesia using arima model and prophet. Procedia Computer Science, 179:524-532. 5th International Conference on Computer Science and Computational Intelligence 2020.

https://doi.org/10.1016/j.procs.2021.01.036

Ahmed, N. K., Atiya, A. F., Gayar, N. E., y El-Shishiny, H. (2010). An empirical comparison of machine learning models for time series forecasting. Econometric Reviews, 29(5-6):594-621.

https://doi.org/10.1080/07474938.2010.481556

Ahram, T., Sargolzaei, A., Sargolzaei, S., Daniels, J., y Amaba, B. (2017). Blockchain technology innovations. En 2017 IEEE Technology & Engineering Management Conference (TEMSCON), pp. 137-141.

https://doi.org/10.1109/TEMSCON.2017.7998367

Albawi, S., Mohammed, T. A., y Al-Zawi, S. (2017). Understanding of a convolutional neural network. En 2017 International Conference on Engineering and Technology (ICET), pp. 1-6.

https://doi.org/10.1109/ICEngTechnol.2017.8308186

Almazrouee, A. I., Almeshal, A. M., Almutairi, A. S., Alenezi, M. R., y Alhajeri, S. N. (2020). Longterm forecasting of electrical loads in kuwait using prophet and holt-winters models. Applied Sciences, 10(16).

https://doi.org/10.3390/app10165627

Althelaya, K. A., El-Alfy, E.-S. M., y Mohammed, S. (2018). Evaluation of bidirectional lstm for short-and long-term stock market prediction. En 2018 9th International Conference on Information and Communication Systems (ICICS), pp. 151-156.

https://doi.org/10.1109/IACS.2018.8355458

Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 46(3):175-185.

https://doi.org/10.1080/00031305.1992.10475879

Alzahrani, S. y Daim, T. U. (2019). Analysis of the cryptocurrency adoption decision: Literature review. En 2019 Portland International Conference on Management of Engineering and Technology (PICMET), pp. 1-11.

https://doi.org/10.23919/PICMET.2019.8893819

Anand, N. C., Scoglio, C., y Natarajan, B. (2008). Garch - non-linear time series model for traffic modeling and prediction. En NOMS 2008 - 2008 IEEE Network Operations and Management Symposium, pp. 694-697.

https://doi.org/10.1109/NOMS.2008.4575191

Aradhyula, S. V. y Holt, M. T. (1988). Garch time-series models: An application to retail livestock prices. Western Journal of Agricultural Economics, 13(2):365-374.

Arias Vel'asquez, R. M. (2022). A case study of neuralprophet and nonlinear evaluation for high accuracy prediction in short-term forecasting in pv solar plant. Heliyon, 8(9):e10639.

https://doi.org/10.1016/j.heliyon.2022.e10639

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3):307-327.

https://doi.org/10.1016/0304-4076(86)90063-1

Bontempi, G., Ben Taieb, S., y Le Borgne, Y.-A. (2013). Machine Learning Strategies for Time Series Forecasting, pp. 62-77. Springer Berlin Heidelberg, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-36318-4_3

Borges, A. F., Laurindo, F. J., Sp'ınola, M. M., Gon¸calves, R. F., y Mattos, C. A. (2021). The strategic use of artificial intelligence in the digital era: Systematic literature review and future research directions. International Journal of Information Management, 57:102225.

https://doi.org/10.1016/j.ijinfomgt.2020.102225

Box, G. y Jenkins, G. (1970). Time Series Analysis: Forecasting and Control. Holden-Day series in time series analysis and digital processing. Holden-Day.

Cerqueira, V., Torgo, L., y Soares, C. (2019). Machine learning vs statistical methods for time series forecasting: Size matters.

Chatfield, C. (1978). The holt-winters forecasting procedure. Journal of the Royal Statistical Society: Series C (Applied Statistics), 27(3):264-279.

https://doi.org/10.2307/2347162

Chatfield, C. (2000). Time-series forecasting. CRC press.

https://doi.org/10.1201/9781420036206

Chatfield, C. (2005). Time-series forecasting. Significance, 2(3):131-133.

https://doi.org/10.1111/j.1740-9713.2005.00117.x

ChikkaKrishna, N. K., Rachakonda, P., y Tallam, T. (2022). Short-term traffic prediction using fb-prophet and neural-prophet. En 2022 IEEE Delhi Section Conference (DELCON), pp. 1-4.

https://doi.org/10.1109/DELCON54057.2022.9753459

Chohan, U. W. (2022). A history of bitcoin. Available at SSRN 3047875.

Cover, T. y Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1):21-27.

https://doi.org/10.1109/TIT.1967.1053964

Crawford, G. W. y Fratantoni, M. C. (2003). Assessing the forecasting performance of regimeswitching, arima and garch models of house prices. Real Estate Economics, 31(2):223-243.

https://doi.org/10.1111/1540-6229.00064

Dingli, A. y Fournier, K. S. (2017). Financial time series forecasting-a deep learning approach. International Journal of Machine Learning and Computing, 7(5):118-122.

https://doi.org/10.18178/ijmlc.2017.7.5.632

Dino, H. I. y Abdulrazzaq, M. B. (2019). Facial expression classification based on svm, knn and mlp classifiers. En 2019 International Conference on Advanced Science and Engineering (ICOASE), pp. 70-75.

https://doi.org/10.1109/ICOASE.2019.8723728

Elamin, N. y Fukushige, M. (2018). Modeling and forecasting hourly electricity demand by sarimax with interactions. Energy, 165:257-268.

https://doi.org/10.1016/j.energy.2018.09.157

Elman, J. L. (1990). Finding Structure in Time, volumen 14, pp. 179-200. .

https://doi.org/10.1016/0364-0213(90)90002-E

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica, 50:987-1007.

https://doi.org/10.2307/1912773

Falatouri, T., Darbanian, F., Brandtner, P., y Udokwu, C. (2022). Predictive analytics for demand forecasting - a comparison of sarima and lstm in retail scm. Procedia Computer Science, 200:993- 1003. 3rd International Conference on Industry 4.0 and Smart Manufacturing.

https://doi.org/10.1016/j.procs.2022.01.298

Franses, P. H. y Van Dijk, D. (1996). Forecasting stock market volatility using (non-linear) garch models. Journal of Forecasting, 15(3):229-235.

https://doi.org/10.1002/(SICI)1099-131X(199604)15:3<229::AID-FOR620>3.0.CO;2-3

Gardner, E. S. y Mckenzie, E. (1985). Forecasting trends in time series. Management Science, 31(10):1237-1246.

https://doi.org/10.1287/mnsc.31.10.1237

Gorgolis, N., Hatzilygeroudis, I., Istenes, Z., y Gyenne, L.-G. (2019). Hyperparameter optimization of lstm network models through genetic algorithm. En 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA), pp. 1-4.

https://doi.org/10.1109/IISA.2019.8900675

Ho, S. y Xie, M. (1998). The use of arima models for reliability forecasting and analysis. Computers & Industrial Engineering, 35(1):213-216.

https://doi.org/10.1016/S0360-8352(98)00066-7

Ho, T. K. (1995). Random decision forests. En Proceedings of 3rd International Conference on Document Analysis and Recognition, volumen 1, pp. 278-282 vol.1.

https://doi.org/10.1109/ICDAR.1995.598994

Hochreiter, S. y Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8):1735-1780.

https://doi.org/10.1162/neco.1997.9.8.1735

Hyndman, R. J. (2020). A brief history of forecasting competitions. International Journal of Forecasting, 36(1):7-14. M4 Competition.

https://doi.org/10.1016/j.ijforecast.2019.03.015

Jakasa, Tina & Androcec, Ivan & Sprčić, Petar. (2011). Electricity price forecasting - ARIMA model approach. 10.1109/EEM.2011.5953012.

https://doi.org/10.1109/EEM.2011.5953012

Ji, S., Kim, J., e Im, H. (2019). A comparative study of bitcoin price prediction using deep learning. Mathematics, 7(10).

https://doi.org/10.3390/math7100898

Kihoro, J., Otieno, R. O., y Wafula, C. (2004). Seasonal time series forecasting: A comparative study of arima and ann models. .

Kim, K. J. (2003). Financial time series forecasting using support vector machines. Neurocomputing, 55:307-319.

https://doi.org/10.1016/S0925-2312(03)00372-2

Kim, Y. B., Kim, J. G., Kim, W., Im, J. H., Kim, T. H., Kang, S. J., y Kim, C. H. (2016). Predicting fluctuations in cryptocurrency transactions based on user comments and replies. PLOS ONE, 11(8):1-17.

https://doi.org/10.1371/journal.pone.0161197

Kingma, D. P. y Ba, J. (2017). Adam: A method for stochastic optimization.

Krauss, C., Do, X. A., y Huck, N. (2017). Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the s&p 500. European Journal of Operational Research, 259:689- 702.

https://doi.org/10.1016/j.ejor.2016.10.031

Kumar Jha, B. y Pande, S. (2021). Time series forecasting model for supermarket sales using fb-prophet. En 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), pp. 547-554.

https://doi.org/10.1109/ICCMC51019.2021.9418033

Lachtermacher, G. y Fuller, J. D. (1995). Back propagation in time-series forecasting. Journal of Forecasting, 14(4):381-393.

https://doi.org/10.1002/for.3980140405

LeCun, Y. y Bengio, Y. (1998). Convolutional Networks for Images, Speech, and Time Series, p. 255-258. MIT Press, Cambridge, MA, USA.

Li, Z., Liu, F., Yang, W., Peng, S., y Zhou, J. (2021). A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Transactions on Neural Networks and Learning Systems, pp. 1-21.

Lim, B. y Zohren, S. (2021). Time-series forecasting with deep learning: a survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2194):20200209.

https://doi.org/10.1098/rsta.2020.0209

Long, B., Tan, F., y Newman, M. (2023). Forecasting the monkeypox outbreak using arima, prophet, neuralprophet, and lstm models in the united states. Forecasting, 5(1):127-137.

https://doi.org/10.3390/forecast5010005

Lowd, D. y Domingos, P. (2005). Naive bayes models for probability estimation. En Proceedings of the 22nd International Conference on Machine Learning, ICML '05, p. 529-536, New York, NY, USA. Association for Computing Machinery.

https://doi.org/10.1145/1102351.1102418

Masini, R. P., Medeiros, M. C., y Mendes, E. F. (2023). Machine learning advances for time series forecasting. Journal of Economic Surveys, 37(1):76-111.

https://doi.org/10.1111/joes.12429

McNally, S., Roche, J., y Caton, S. (2018). Predicting the price of bitcoin using machine learning. En 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP), pp. 339-343.

https://doi.org/10.1109/PDP2018.2018.00060

Mehrmolaei, S. y Keyvanpour, M. R. (2016). Time series forecasting using improved arima. En 2016 Artificial Intelligence and Robotics (IRANOPEN), pp. 92-97.

https://doi.org/10.1109/RIOS.2016.7529496

Mondal, P., Shit, L., y Goswami, S. (2014). Study of effectiveness of time series modeling (arima) in forecasting stock prices. International Journal of Computer Science, Engineering and Applications, 4(2):13.

https://doi.org/10.5121/ijcsea.2014.4202

Mudassir, M., Bennbaia, S., Unal, D., y Hammoudeh, M. (2020). Time-series forecasting of bitcoin prices using high-dimensional features: a machine learning approach. Neural Computing and Applications.

https://doi.org/10.1007/s00521-020-05129-6

Nakisa, B., Rastgoo, M. N., Rakotonirainy, A., Maire, F., y Chandran, V. (2018). Long short term memory hyperparameter optimization for a neural network based emotion recognition framework. IEEE Access, 6:49325-49338.

https://doi.org/10.1109/ACCESS.2018.2868361

Newbold, P. (1983). Arima model building and the time series analysis approach to forecasting. Journal of Forecasting, 2(1):23-35.

https://doi.org/10.1002/for.3980020104

O'Dwyer, K. J. y Malone, D. (2014). Bitcoin mining and its energy footprint. En 25th IET

https://doi.org/10.1049/cp.2014.0699

Irish Signals & Systems Conference 2014 and 2014 China-Ireland International Conference on Information and Communications Technologies (ISSC 2014/CIICT 2014). IET.

O'Shea, K. y Nash, R. (2015). An introduction to convolutional neural networks.

Pannu, A. (2015). Artificial intelligence and its application in different areas. Artificial Intelligence, 4(10):79-84.

Pasero, E., Raimondo, G., y Ruffa, S. (2010). Mulp: A multi-layer perceptron application to long-term, out-of-sample time series prediction. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6064 LNCS:566-575.

https://doi.org/10.1007/978-3-642-13318-3_70

Patil, A. P., Akarsh, T., y Parkavi, A. (2018). A study of opinion mining and data mining techniques to analyse the cryptocurrency market. En 2018 3rd International Conference on Computational Systems and Information Technology for Sustainable Solutions (CSITSS), pp. 198-203.

https://doi.org/10.1109/CSITSS.2018.8768762

Pavlyshenko, B. M. (2019). Machine-learning models for sales time series forecasting. Data, 4(1).

https://doi.org/10.3390/data4010015

Pongdatu, G. A. N. y Putra, Y. H. (2018). Seasonal time series forecasting using sarima and holt winter's exponential smoothing. IOP Conference Series: Materials Science and Engineering, 407(1):012153.

https://doi.org/10.1088/1757-899X/407/1/012153

Rahouti, M., Xiong, K., y Ghani, N. (2018). Bitcoin concepts, threats, and machine-learning security solutions. IEEE Access, 6:67189-67205.

https://doi.org/10.1109/ACCESS.2018.2874539

Roa, M. M. (2021). Bitcoin alcanza un nuevo m'aximo hist'orico y supera los 66.000 d'olares.

Rosenblatt, F. (1957). The Perceptron, a Perceiving and Recognizing Automaton. Report 85-60-1. Cornell Aeronautical Laboratory, Buffalo, New York.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65 6:386-408.

https://doi.org/10.1037/h0042519

Rosenblatt, F. (1963). Principles of neurodynamics. perceptrons and the theory of brain mechanisms. American Journal of Psychology, 76:705.

https://doi.org/10.2307/1419730

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61:85- 117.

https://doi.org/10.1016/j.neunet.2014.09.003

Schuster, M. y Paliwal, K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11):2673-2681.

https://doi.org/10.1109/78.650093

Selvin, S., Vinayakumar, R., Gopalakrishnan, E. A., Menon, V. K., y Soman, K. P. (2017). Stock price prediction using LSTM, RNN and CNN-sliding window model. En 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1643- 1647.

https://doi.org/10.1109/ICACCI.2017.8126078

Sezer, O. B., Gudelek, M. U., y Ozbayoglu, A. M. (2020). Financial time series forecasting with deep learning : A systematic literature review: 2005-2019. Applied Soft Computing, 90:106181.

https://doi.org/10.1016/j.asoc.2020.106181

Shohan, M. J. A., Faruque, M. O., y Foo, S. Y. (2022). Forecasting of electric load using a hybrid lstm-neural prophet model. Energies, 15(6).

https://doi.org/10.3390/en15062158

Siami-Namini, S., Tavakoli, N., y Namin, A. S. (2019). A comparison of arima and lstm in forecasting time series. Proceedings - 17th IEEE International Conference on Machine Learning and Applications, ICMLA 2018, pp. 1394-1401.

https://doi.org/10.1109/ICMLA.2018.00227

Siami-Namini, S., Tavakoli, N., y Siami Namin, A. (2018). A comparison of arima and lstm in forecasting time series. En 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1394-1401.

https://doi.org/10.1109/ICMLA.2018.00227

Suganthi, L. y Samuel, A. A. (2012). Energy models for demand forecasting-a review. Renewable and Sustainable Energy Reviews, 16(2):1223-1240.

https://doi.org/10.1016/j.rser.2011.08.014

Svozil, D., Kvasnicka, V., y Pospichal, J. (1997). Introduction to multi-layer feed-forward neural networks. Chemometrics and Intelligent Laboratory Systems, 39(1):43-62.

https://doi.org/10.1016/S0169-7439(97)00061-0

Taylor, S. J. y Letham, B. (2018). Forecasting at scale. The American Statistician, 72(1):37-45.

https://doi.org/10.1080/00031305.2017.1380080

Torres, J. F., Hadjout, D., Sebaa, A., Mart'ınez-Alvarez, F., y Troncoso, A. (2021). Deep learning' for time series forecasting: A survey. Big Data, 9(1):3-21. PMID: 33275484.

https://doi.org/10.1089/big.2020.0159

Triebe, O., Hewamalage, H., Pilyugina, P., Laptev, N., Bergmeir, C., y Rajagopal, R. (2021). Neuralprophet: Explainable forecasting at scale.

Tsay, R. S. (2000). Time series and forecasting: Brief history and future research. Journal of the American Statistical Association, 95(450):638-643.

https://doi.org/10.1080/01621459.2000.10474241

Turabieh, H. (2019). Hybrid machine learning classifiers to predict student performance. 2019 2nd International Conference on New Trends in Computing Sciences, ICTCS 2019 - Proceedings.

https://doi.org/10.1109/ICTCS.2019.8923093

Velankar, S., Valecha, S., y Maji, S. (2018). Bitcoin price prediction using machine learning. En 2018 20th International Conference on Advanced Communication Technology (ICACT), pp. 144-147.

https://doi.org/10.23919/ICACT.2018.8323676

Wang, L., Zou, H., Su, J., Li, L., y Chaudhry, S. (2013). An arima-ann hybrid model for time series forecasting. Systems Research and Behavioral Science, 30(3):244-259.

https://doi.org/10.1002/sres.2179

Wu, J., Liu, J., Zhao, Y., y Zheng, Z. (2021). Analysis of cryptocurrency transactions from a network perspective: An overview. Journal of Network and Computer Applications, 190:103139.

https://doi.org/10.1016/j.jnca.2021.103139

Yenidogan, I., Cayir, A., Kozan, O., Dag, T., y Arslan, C. (2018). Bitcoin forecasting using arima and prophet. En 2018 3rd International Conference on Computer Science and Engineering (UBMK), pp. 621-624.

https://doi.org/10.1109/UBMK.2018.8566476

Yule, G. U. (1927). On a method of investigating periodicities in disturbed series, with special reference to wolfer's sunspot numbers. Philosophical Transactions of the Royal Society of London, 226:267-298.

https://doi.org/10.1098/rsta.1927.0007

Zhang, G. (2003). Time series forecasting using a hybrid arima and neural network model. Neurocomputing, 50:159-175.

https://doi.org/10.1016/S0925-2312(01)00702-0

Zhang, J.-S. y Xiao, X.-C. (2000). Predicting chaotic time series using recurrent neural network. Chinese Physics Letters, 17:88-90.

https://doi.org/10.1088/0256-307X/17/2/004

Zhang, Y., Qu, H., Wang, W., y Zhao, J. (2020). A novel fuzzy time series forecasting model based on multiple linear regression and time series clustering. Mathematical Problems in Engineering, 2020:9546792.

https://doi.org/10.1155/2020/9546792

Onkal, D. (2020). M4 competition: What's next?¨ International Journal of Forecasting, 36(1):206- 207. M4 Competition.

https://doi.org/10.1016/j.ijforecast.2019.03.011

Descargas

Publicado

2023-06-30

Cómo citar

López-García, A. (2023). Análisis comparativo de redes neuronales profundas para la predicción del precio de mercado de bitcoin. Revista Electrónica De Comunicaciones Y Trabajos De ASEPUMA, 24(1), 1–16. https://doi.org/10.24310/recta.24.1.2023.19858