Artificial Intelligence in Education, Bridging Community Gap: A Phenomenological Approach
DOI:
https://doi.org/10.24310/ijne.14.2024.20505Palabras clave:
Ayuda al aprendizaje, Educación de calidad, Privacidad de los datos, Enfoque fenomenológico, Inteligencia ArtificialResumen
La integración de la Inteligencia Artificial (IA) en la educación encierra un potencial transformador para colmar las lagunas existentes en la comunidad, especialmente en comunidades marginadas y con escasos recursos. Este estudio explora las múltiples formas en que las tecnologías de IA pueden mejorar la accesibilidad, la calidad y la equidad de la educación, fomentando así el desarrollo inclusivo de la comunidad. La disparidad educativa entre las comunidades con escasos recursos y las que carecen de ellos en Nigeria es un problema acuciante, motivado principalmente por la desigualdad en la financiación, la inseguridad, la corrupción, la asignación de recursos y la escasez de profesores. Esta brecha afecta al rendimiento académico y limita las oportunidades futuras de los alumnos de las comunidades con escasos recursos. El estudio profundiza en las iniciativas impulsadas por la IA para reducir la brecha digital, como el despliegue de herramientas educativas impulsadas por la IA en comunidades desatendidas con acceso limitado a una educación de calidad, lo cual es inminente. Aprovechando la IA, esta investigación subraya el potencial para democratizar la educación, ofreciendo experiencias de aprendizaje a medida que puedan adaptarse a las diversas necesidades de los estudiantes en diferentes ubicaciones geográficas de Nigeria. El objetivo principal del estudio es salvar la brecha existente entre las comunidades a través de la IA en la educación utilizando un enfoque fenomenológico. El estudio cualitativo adoptó un enfoque fenomenológico. La población estaba formada por todos los profesores de secundaria de Nigeria. Quince profesores de escuelas públicas de comunidades con pocos recursos constituyeron la muestra del estudio y se extrajeron intencionadamente en función de la disponibilidad. Los datos cualitativos se evaluaron temáticamente, y de la investigación surgieron tres temas (es decir, ayuda al aprendizaje, educación de calidad y deficiencia de infraestructuras). Las conclusiones de este estudio indican que la IA puede proporcionar ayuda al aprendizaje y mejorar la calidad de la educación. Aunque la IA puede mejorar potencialmente las experiencias de aprendizaje, las partes interesadas deben abordar rápidamente las preocupaciones sobre la deficiencia de las infraestructuras, la inseguridad, la corrupción y el impedimento de la interacción social en la educación. El estudio concluye que la incorporación de la tecnología basada en la IA en comunidades con escasos recursos reducirá la brecha comunitaria y permitirá a todos los alumnos competir favorablemente, independientemente de dónde residan.
Descargas
Métricas
Citas
Adams, C., Pente, P., Lemermeyer, G., & Rockwell, G. (2023). Ethical principles for artificial intelligence in K-12 education. Computers and Education: Artificial Intelligence, 4, 100131. https://doi.org/10.1016/j.caeai.2023.100131
Adeleye, O. O., Eden, C. A., & Adeniyi, I. S. (2024). Innovative teaching methodologies in the era of artificial intelligence: A review of inclusive educational practices. World Journal of Advanced Engineering Technology and Sciences, 11(2), 069-079. https://doi.org/10.30574/wjaets.2024.11.2.0091
Adipat, S., & Chotikapanich, R. (2022). Sustainable development goal 4: An education goal to achieve equitable quality education. Academic Journal of Interdisciplinary Studies, 11(6,174-183). https://doi.org/10.36941/ajis-2022-0159
Afzal, A., Khan, S., Daud, S., Ahmad, Z., & Butt, A. (2023). Addressing the Digital Divide: Access and Use of Technology in Education. Journal of Social Sciences Review, 3(2), 883-895. https://doi.org/10.54183/jssr.v3i2.326
Ahmad, K., Iqbal, W., El-Hassan, A., Qadir, J., Benhaddou, D., Ayyash, M., & Al-Fuqaha, A. (2024). Data-Driven Artificial Intelligence in Education: A Comprehensive Review. IEEE Transactions on Learning Technologies, 17, 12-31. https://doi.org/10.1109/TLT.2023.3314610
Alam, A. (2023). Harnessing the Power of AI to Create Intelligent Tutoring Systems for Enhanced Classroom Experience and Improved Learning Outcomes. In G. Rajakumar, K.-L. Du, & Á. Rocha, Intelligent Communication Technologies and Virtual Mobile Networks Singapore.
Alomair, M. A. (2024). The Impact of Artificial Intelligence Applications on Enhancing the Quality of Secondary-Level Education: Perspectives of Teachers and Students aking Skills. Journal of Faculty of Education- Assiut University, 40(5), 1-45. https://doi.org/10.21608/mfes.2024.362334
Alqahtani, T., Badreldin, H. A., Alrashed, M., Alshaya, A. I., Alghamdi, S. S., bin Saleh, K., . . . Albekairy, A. M. (2023). The emergent role of artificial intelligence, natural learning processing, and large language models in higher education and research. Research in Social and Administrative Pharmacy, 19(8), 1236-1242. https://doi.org/10.1016/j.sapharm.2023.05.016
Alwaqdani, M. (2024). Investigating teachers’ perceptions of artificial intelligence tools in education: potential and difficulties. Education and Information Technologies. https://doi.org/10.1007/s10639-024-12903-9
Ayeni, O. O., Al Hamad, N. M., Chisom, O. N., Osawaru, B., & Adewusi, O. E. (2024). AI in education: A review of personalized learning and educational technology. GSC Advanced Research and Reviews, 18(2), 261-271. https://doi.org/10.30574/gscarr.2024.18.2.0062
Bates, T., Cobo, C., Mariño, O., & Wheeler, S. (2020). Can artificial intelligence transform higher education? International Journal of Educational Technology in Higher Education, 17(1), 42. https://doi.org/10.1186/s41239-020-00218-x
Castro, G. P. B., Chiappe, A., Rodríguez, D. F. B., & Sepulveda, F. G. (2024). Harnessing AI for Education 4.0: Drivers of Personalized Learning. Electronic Journal of e-Learning, 22(5), 01-14. https://doi.org/10.34190/ejel.22.5.3467
Devi, J. S., Sreedhar, M. B., Arulprakash, P., Kazi, K., & Radhakrishnan, R. (2022). A path towards child-centric Artificial Intelligence based Education. International Journal of Early Childhood, 14(3), 1-9. https://doi.org/10.9756/INT-JECSE/V14I3.1145
Duraes, D., Bezerra, R., & Novais, P. (2024, 8-11 May 2024). AI-Driven Educational Transformation in Secondary Schools: Leveraging Data Insights for Inclusive Learning Environments. 2024 IEEE Global Engineering Education Conference (EDUCON),
Farahani, M. S., & Ghasmi, G. (2024). Artificial Intelligence in education: A comprehensive study. Forum for Education Studies, 2(3), 1379. https://doi.org/10.59400/fes.v2i3.1379
Herrera-Granda, E. P., Loor-Bautista, J. G., & Mina-Ortega, J. I. (2024). Incidence of Metaphorical Virtual Classrooms and Interactive Learning Objects in the Interaction of Online Students: An Ecuadorian Case Study. Applied Sciences, 14(15), 6447. https://www.mdpi.com/2076-3417/14/15/6447
Holzmeyer, C. (2021). Beyond ‘AI for Social Good’ (AI4SG): social transformations—not tech-fixes—for health equity. Interdisciplinary Science Reviews, 46(1-2), 94-125. https://doi.org/10.1080/03080188.2020.1840221
Hooda, M., Rana, C., Dahiya, O., Rizwan, A., & Hossain, M. S. (2022). Artificial Intelligence for Assessment and Feedback to Enhance Student Success in Higher Education. Mathematical Problems in Engineering, 2022, 5215722. https://doi.org/10.1155/2022/5215722
Hymel, S., & Katz, J. (2019). Designing Classrooms for Diversity: Fostering Social Inclusion. Educational Psychologist, 54(4), 331-339. https://doi.org/10.1080/00461520.2019.1652098
Igbokwe, I. C. (2023). Application of artificial intelligence (AI) in educational management. International Journal of Scientific and Research Publications, 13(3), 300-307. https://doi.org/10.29322/IJSRP.13.03.2023.p13536
Jimola, F. E., & Ofodu, G. O. (2021). Sustaining Learning during COVID-19 Seismic Shift : The Need to Develop Flexible Pedagogy. Interdisciplinary Journal of Education Research, 3(1), 14-26. https://doi.org/doi:10.51986/ijer-2021.vol3.01.02
Joshi, B. M., Acharya, U., & Khatiwada, S. P. (2024). Difficulties in Open and Distance Learning Mode of Education: Students’ Perspectives. Education and Development, 33(1), 17-28. https://doi.org/10.3126/ed.v33i1.66764
Kanu, I. A., Paul, P. M., Bazza, M. B., Kamai, P. H., Kanyip, P. B., & Onukwuba, M. (2024). Educational Insecurity in Northwest Nigeria. International Journal of Religion, 5(7), 151-164. https://doi.org/10.61707/9zmetc45
Kaswan, K. S., Dhatterwal, J. S., & Ojha, R. P. (2024). AI in personalized learning. In Advances in Technological Innovations in Higher Education (pp. 103-117). CRC Press.
Kim, J. (2024). Leading teachers' perspective on teacher-AI collaboration in education. Education and Information Technologies, 29(7), 8693-8724. https://doi.org/10.1007/s10639-023-12109-5
Konidena, B. K., Malaiyappan, J. N. A., & Tadimarri, A. (2024). Ethical Considerations in the Development and Deployment of AI Systems. European Journal of Technology, 8(2), 41-53. https://doi.org/10.47672/ejt.1890
Lin, M. P.-C., & Chang, D. (2024). Exploring Inclusivity in AI Education: Perceptions and Pathways for Diverse Learners. In A. Sifaleras & F. Lin, Generative Intelligence and Intelligent Tutoring Systems Cham.
Lokare, V. T., & Jadhav, P. M. (2024). An AI-based learning style prediction model for personalized and effective learning. Thinking Skills and Creativity, 51, 101421. https://doi.org/10.1016/j.tsc.2023.101421
Luan, H., Geczy, P., Lai, H., Gobert, J., Yang, S. J. H., Ogata, H., . . . Tsai, C.-C. (2020). Challenges and Future Directions of Big Data and Artificial Intelligence in Education [Review]. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.580820
Mlodzianowska, S., Olivos Rossini, M., & Singh Manhas, P. (2024). International Collaboration Through Online Learning Between Students from Peru and India. Journal of Teaching in International Business, 35(1-2), 20-49. https://doi.org/10.1080/08975930.2024.2330022
Nguyen, A., Ngo, H. N., Hong, Y., Dang, B., & Nguyen, B.-P. T. (2023). Ethical principles for artificial intelligence in education. Education and Information Technologies, 28(4), 4221-4241. https://doi.org/10.1007/s10639-022-11316-w
Njeri, M., & Taym, A. (2024). Analysing the power of socioeconomic status on access to technology-enhanced learning in secondary schools. Research Studies in English Language Teaching and Learning, 2(4), 223-250. https://doi.org/10.62583/rseltl.v2i4.55
Okoi, I., Ameh, E., & Omini, E. (2024). Analysis of differential distribution of educational resources between urban and rural schools in Ikom education zone Cross River State, Nigeria. Journal of Education in Developing Areas, 32(1), 154-161.
Olawale, B. E. (2024). Inclusive Innovations: Promoting Digital Equity and Inclusion through Technological Solutions. https://doi.org/10.5772/intechopen.1005532
Opesemowo, O. A. (2024). Artificial Intelligence in Mathematics Education: The Pros and Cons. In D. B. A. E. M. Khosrow-Pour (Ed.). Encyclopedia of Information Science and Technology, Sixth Edition. Advance online publication. . https://doi.org/10.4018/978-1-6684-7366-5.ch084
Opesemowo, O. A. G., Abanikannda, M. O., & Iwintolu, R. O. (2024). Exploring the potentials of ChatGPT for instructional assessment: Lecturers' attitude and perception. Interdisciplinary Journal of Education Research, 6, 1-12. https://doi.org/10.38140/ijer-2024.vol6.21
Opesemowo, O. A. G., & Adekomaya, V. (2024). Harnessing Artificial Intelligence for Advancing Sustainable Development Goals in South Africa's Higher Education System: A Qualitative Study. International Journal of Learning, Teaching and Educational Research, 23(3), 67-86. https://doi.org/10.26803/ijlter.23.3.4
Opesemowo, O. A. G., & Ndlovu, M. (2024). Artificial intelligence in mathematics education: The good, the bad, and the ugly. Journal of Pedagogical Research, 1-14. https://doi.org/10.33902/JPR.202426428
Pradana, M. R. A., & Josiah, T. (2024). Application of Technology in Educational Management in Rural Schools. Ensiklopedia: Jurnal Pendidikan dan Inovasi Pembelajaran Saburai, 4(01), 37-43. https://doi.org/10.24967/esp.v4i01.3183
Shafique, M., Fazli, A. F., Qureshi, L., & Saleem, W. (2023, 17-18 Nov. 2023). Adaptive Learning for Standardised Test Preparation. 2023 25th International Multitopic Conference (INMIC),
Shoaib, M., Sayed, N., Singh, J., Shafi, J., Khan, S., & Ali, F. (2024). AI student success predictor: Enhancing personalized learning in campus management systems. Computers in Human Behavior, 158, 108301. https://doi.org/10.1016/j.chb.2024.108301
Sims, D. (2024). Introducing the research design of phenomenography. Medical Science Educator. https://doi.org/10.1007/s40670-024-02082-0
Sit, F. (2024). Global Inequalities in Access and Success in Higher Education. New Vistas, 10(1). https://doi.org/10.36828/newvistas.252
Srinivasa, K. G., Kurni, M., & Saritha, K. (2022). Harnessing the Power of AI to Education. In Learning, Teaching, and Assessment Methods for Contemporary Learners: Pedagogy for the Digital Generation (pp. 311-342). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-6734-4_13
Vetrivel, S., Arun, V., Maheswari, R., & Saravanan, T. (2024). Technology Integration in Online Learning Platforms: Blended Learning Gamification. In Transdisciplinary Teaching and Technological Integration for Improved Learning: Case Studies and Practical Approaches (pp. 219-247). IGI Global. https://doi.org/10.4018/979-8-3693-8217-2.ch011
Wang, Y. (2021). When artificial intelligence meets educational leaders’ data-informed decision-making: A cautionary tale. Studies in Educational Evaluation, 69, 100872. https://doi.org/10.1016/j.stueduc.2020.100872
Yang, Y., Chen, L., He, W., Sun, D., & Salas-Pilco, S. Z. (2024). Artificial Intelligence for Enhancing Special Education for K-12: A Decade of Trends, Themes, and Global Insights (2013–2023). International Journal of Artificial Intelligence in Education. https://doi.org/10.1007/s40593-024-00422-0
Yeti̇şensoy, O., & Karaduman, H. (2024). The effect of AI-powered chatbots in social studies education. Education and Information Technologies. https://doi.org/10.1007/s10639-024-12485-6
Yılmaz, Ö. (2024). Personalised learning and artificial intelligence in science education: current state and future perspectives. Educational Technology Quarterly. https://doi.org/10.55056/etq.744
Zheng, L., Fan, Y., Gao, L., Huang, Z., Chen, B., & Long, M. (2024). Using AI-empowered assessments and personalized recommendations to promote online collaborative learning performance. Journal of Research on Technology in Education, 1-27. https://doi.org/10.1080/15391523.2024.2304066
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Las obras se publican en edición electrónica bajo una licencia Creative Commons Reconocimiento-NoComercial 4.0 España: se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que:
a) Se cite la autoría y la fuente original de su publicación (revista,
editorial y URL de la obra.
b) No se usen para fines comerciales.
c) Se mencione la existencia y especificaciones de esta licencia de uso.
Será responsabilidad exclusiva de los autores obtener los permisos necesarios de las imágenes que estén sujetas a derechos de autor.