Uses of physiotherapy accelerometers: a review of the literature

Authors

  • JI. Alfonso Mantilla Universidad del Rosario Colombia

DOI:

https://doi.org/10.24310/riccafd.2017.v6i2.3781

Keywords:

accelerometry, physical activity, rehabilitation

Abstract

At present, electronic devices are becoming tools of technological innovation in health sciences. Among the new devices are accelerometers, which are electronic sensors responsible for measuring acceleration during movement. In physiotherapy, the use of technology as a means of evaluation and intervention is taking steps to develop and implement standardized and validated protocols for the use of this equipment, for this reason the objective of this article is to carry out a systematic review of the literature regarding to the use of accelerometers in rehabilitation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

JI. Alfonso Mantilla, Universidad del Rosario

Fisioterapeuta

References

Levac DE, Glegg SM, Sveistrup H, Colquhoun H, Miller P, Finestone H, et al. Promoting Therapists' Use of Motor Learning Strategies within Virtual Reality-Based Stroke Rehabilitation. PLoS One. 2016;11(12):e0168311.

Dockx K, Bekkers EM, Van den Bergh V, Ginis P, Rochester L, Hausdorff JM, et al. Virtual reality for rehabilitation in Parkinson's disease. Cochrane Database Syst Rev. 2016;12:Cd010760.

Maggioni S, Melendez-Calderon A, van Asseldonk E, Klamroth-Marganska V, Lunenburger L, Riener R, et al. Robot-aided assessment of lower extremity functions: a review. J Neuroeng Rehabil. 2016;13(1):72.

Miller LE, Zimmermann AK, Herbert WG. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. Med Devices (Auckl). 2016;9:455-66.

Santos-Lozano A, Garatachea N. Tendencias actuales de la acelerometría para la cuantificación de la actividad física. 2012.

Peter O, Fazekas G, Zsiga K, Denes Z. Robot-mediated upper limb physiotherapy: review and recommendations for future clinical trials. Int J Rehabil Res. 2011;34(3):196-202.

Fernández JM, Acevedo RC, Tabernig CB. Influencia de la fatiga muscular en la señal electromiográfica de músculos estimulados eléctricamente. Revista EIA. 2007(7):111-9.

Torres-Luque G, Fernandez IL, Santos-Lozano A, Garatachea N, Carnero EÁ. Actividad física y acelerometría; orientaciones metodológicas, recomendaciones y patrones. Nutrición Hospitalaria. 2014;31(1):115-28.

Dong B, Biswas S, Montoye A, Pfeiffer K. Comparing metabolic energy expenditure estimation using wearable multi-sensor network and single accelerometer. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:2866-9.

Compagnat M, Daviet JC, Salle JY, Mandigout S, Meurou J, Bordes J. Accelerometers are they accurate for the estimation of total energy expenditure over activities of daily living in stroke survivors? Ann Phys Rehabil Med. 2016;59s:e74.

Clermont CA, Barden JM. Accelerometer-based determination of gait variability in older adults with knee osteoarthritis. Gait Posture. 2016;50:126-30.

Gonzalez I, Fontecha J, Hervas R, Bravo J. Estimation of Temporal Gait Events from a Single Accelerometer Through the Scale-Space Filtering Idea. J Med Syst. 2016;40(12):251.

Ishii M, Mashimo H. Accelerometer based analysis of gait initiation failure in advanced juvenile parkinsonism: a single subject study. J Phys Ther Sci. 2016;28(11):3252-6.

Hickey A, Gunn E, Alcock L, Del Din S, Godfrey A, Rochester L, et al. Validity of a wearable accelerometer to quantify gait in spinocerebellar ataxia type 6. Physiol Meas. 2016;37(11):N105-n17.

Weiss A, Sharifi S, Plotnik M, van Vugt JP, Giladi N, Hausdorff JM. Toward automated, at-home assessment of mobility among patients with Parkinson disease, using a body-worn accelerometer. Neurorehabil Neural Repair. 2011;25(9):810-8.

Machowska-Majchrzak A, Pierzchala K, Pietraszek S. Analysis of selected parameters of tremor recorded by a biaxial accelerometer in patients with parkinsonian tremor, essential tremor and cerebellar tremor. Neurol Neurochir Pol. 2007;41(3):241-50.

Loyen A, Clarke-Cornwell AM, Anderssen SA, Hagstromer M, Sardinha LB, Sundquist K, et al. Sedentary Time and Physical Activity Surveillance Through Accelerometer Pooling in Four European Countries. Sports Med. 2016.

Matthews CE, Keadle SK, Troiano RP, Kahle L, Koster A, Brychta R, et al. Accelerometer-measured dose-response for physical activity, sedentary time, and mortality in US adults. Am J Clin Nutr. 2016;104(5):1424-32.

Froberg A, Larsson C, Berg C, Boldemann C, Raustorp A. Accelerometer-measured physical activity among adolescents in a multicultural area characterized by low socioeconomic status. Int J Adolesc Med Health. 2016.

White T, Westgate K, Wareham NJ, Brage S. Estimation of Physical Activity Energy Expenditure during Free-Living from Wrist Accelerometry in UK Adults. PLoS One. 2016;11(12):e0167472.

Van Kann DH, de Vries SI, Schipperijn J, de Vries NK, Jansen MW, Kremers SP. Schoolyard Characteristics, Physical Activity, and Sedentary Behavior: Combining GPS and Accelerometry. J Sch Health. 2016;86(12):913-21.

Evenson KR, Wen F, Herring AH. Associations of Accelerometry-Assessed and Self-Reported Physical Activity and Sedentary Behavior With All-Cause and Cardiovascular Mortality Among US Adults. Am J Epidemiol. 2016;184(9):621-32.

Kerr J, Marinac CR, Ellis K, Godbole S, Hipp A, Glanz K, et al. Comparison of Accelerometry Methods for Estimating Physical Activity. Med Sci Sports Exerc. 2016.

Lockwood J, Jeffery A, Schwartz A, Manlhiot C, Schneiderman JE, McCrindle BW, et al. Comparison of a physical activity recall questionnaire with accelerometry in children and adolescents with obesity: a pilot study. Pediatr Obes. 2016.

Weaver RG, Crimarco A, Brusseau TA, Webster CA, Burns RD, Hannon JC. Accelerometry-Derived Physical Activity of First Through Third Grade Children During the Segmented School Day. J Sch Health. 2016;86(10):726-33.

Gomersall SR, Ng N, Burton NW, Pavey TG, Gilson ND, Brown WJ. Estimating Physical Activity and Sedentary Behavior in a Free-Living Context: A Pragmatic Comparison of Consumer-Based Activity Trackers and ActiGraph Accelerometry. J Med Internet Res. 2016;18(9):e239.

Skender S, Ose J, Chang-Claude J, Paskow M, Bruhmann B, Siegel EM, et al. Accelerometry and physical activity questionnaires - a systematic review. BMC Public Health. 2016;16:515.

Corder K, Sharp SJ, Atkin AJ, Andersen LB, Cardon G, Page A, et al. Age-related patterns of vigorous-intensity physical activity in youth: The International Children's Accelerometry Database. Prev Med Rep. 2016;4:17-22.

van Bakergem M, Sommer EC, Heerman WJ, Hipp JA, Barkin SL. Objective reports versus subjective perceptions of crime and their relationships to accelerometer-measured physical activity in Hispanic caretaker-child dyads. Prev Med. 2016.

Brocklebank LA, Falconer CL, Page AS, Perry R, Cooper AR. Accelerometer-measured sedentary time and cardiometabolic biomarkers: A systematic review. Prev Med. 2015;76:92-102.

Henson J, Yates T, Biddle SJ, Edwardson CL, Khunti K, Wilmot EG, et al. Associations of objectively measured sedentary behaviour and physical activity with markers of cardiometabolic health. Diabetologia. 2013;56(5):1012-20.

Healy GN, Winkler EA, Brakenridge CL, Reeves MM, Eakin EG. Accelerometer-derived sedentary and physical activity time in overweight/obese adults with type 2 diabetes: cross-sectional associations with cardiometabolic biomarkers. PLoS One. 2015;10(3):e0119140.

Henson J, Yates T, Edwardson CL, Khunti K, Talbot D, Gray LJ, et al. Sedentary time and markers of chronic low-grade inflammation in a high risk population. PLoS One. 2013;8(10):e78350.

Adair LS, Gordon-Larsen P, Du SF, Zhang B, Popkin BM. The emergence of cardiometabolic disease risk in Chinese children and adults: consequences of changes in diet, physical activity and obesity. Obes Rev. 2014;15 Suppl 1:49-59.

Edwards MK, Loprinzi PD. Associations between accelerometer-assessed sedentary behavior, physical activity and objectively-measured cardiorespiratory fitness with red blood cell distribution width. Int J Cardiol. 2016;221:755-8.

Belcher BR, Moser RP, Dodd KW, Atienza AA, Ballard-Barbash R, Berrigan D. Self-Reported Versus Accelerometer-Measured Physical Activity and Biomarkers Among NHANES Youth. J Phys Act Health. 2015;12(5):708-16.

Giansanti D, Macellari V, Maccioni G. Telemonitoring and telerehabilitation of patients with Parkinson's disease: health technology assessment of a novel wearable step counter. Telemed J E Health. 2008;14(1):76-83.

Giansanti D, Maccioni G, Morelli S. An experience of health technology assessment in new models of care for subjects with Parkinson's disease by means of a new wearable device. Telemed J E Health. 2008;14(5):467-72.

Shull PB, Jirattigalachote W, Hunt MA, Cutkosky MR, Delp SL. Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention. Gait Posture. 2014;40(1):11-9.

Godinho C, Domingos J, Cunha G, Santos AT, Fernandes RM, Abreu D, et al. A systematic review of the characteristics and validity of monitoring technologies to assess Parkinson's disease. J Neuroeng Rehabil. 2016;13:24.

Maccioni G, Macellari V, Giansanti D. Design and construction of step counters for disable people: preliminary experience at the Italian Institute of Health. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:4927-9.

Cahill-Rowley K, Rose J. Temporal-spatial reach parameters derived from inertial sensors: Comparison to 3D marker-based motion capture. J Biomech. 2016.

Barden JM, Clermont CA, Kobsar D, Beauchet O. Accelerometer-Based Step Regularity Is Lower in Older Adults with Bilateral Knee Osteoarthritis. Front Hum Neurosci. 2016;10:625.

Hsu CY, Tsai YS, Yau CS, Shie HH, Wu CM. Test-Retest Reliability of an Automated Infrared-Assisted Trunk Accelerometer-Based Gait Analysis System. Sensors (Basel). 2016;16(8).

Rezvanian S, Lockhart TE. Towards Real-Time Detection of Freezing of Gait Using Wavelet Transform on Wireless Accelerometer Data. Sensors (Basel). 2016;16(4).

Matsumoto H, Hagino H, Osaki M, Tanishima S, Tanimura C, Matsuura A, et al. Gait variability analysed using an accelerometer is associated with locomotive syndrome among the general elderly population: The GAINA study. J Orthop Sci. 2016;21(3):354-60.

Ahlrichs C, Sama A, Lawo M, Cabestany J, Rodriguez-Martin D, Perez-Lopez C, et al. Detecting freezing of gait with a tri-axial accelerometer in Parkinson's disease patients. Med Biol Eng Comput. 2016;54(1):223-33.

Tomite T, Saito H, Aizawa T, Kijima H, Miyakoshi N, Shimada Y. Gait Analysis of Conventional Total Knee Arthroplasty and Bicruciate Stabilized Total Knee Arthroplasty Using a Triaxial Accelerometer. Case Rep Orthop. 2016;2016:6875821.

Yungher DA, Morris TR, Dilda V, Shine JM, Naismith SL, Lewis SJ, et al. Temporal Characteristics of High-Frequency Lower-Limb Oscillation during Freezing of Gait in Parkinson's Disease. Parkinsons Dis. 2014;2014:606427.

Wallen MB, Dohrn IM, Stahle A, Franzen E, Hagstromer M. Comparison of pedometer and accelerometer derived steps in older individuals with Parkinson's disease or osteoporosis under free-living conditions. J Aging Phys Act. 2014;22(4):550-6.

Matsushima A, Yoshida K, Genno H, Murata A, Matsuzawa S, Nakamura K, et al. Clinical assessment of standing and gait in ataxic patients using a triaxial accelerometer. Cerebellum Ataxias. 2015;2:9.

Demonceau M, Donneau AF, Croisier JL, Skawiniak E, Boutaayamou M, Maquet D, et al. Contribution of a Trunk Accelerometer System to the Characterization of Gait in Patients With Mild-to-Moderate Parkinson's Disease. IEEE J Biomed Health Inform. 2015;19(6):1803-8.

Howell D, Osternig L, Chou LS. Monitoring recovery of gait balance control following concussion using an accelerometer. J Biomech. 2015;48(12):3364-8.

Del Din S, Godfrey A, Rochester L. Validation of an accelerometer to quantify a comprehensive battery of gait characteristics in healthy older adults and Parkinson's disease: toward clinical and at home use. IEEE J Biomed Health Inform. 2015.

Godfrey A, Del Din S, Barry G, Mathers JC, Rochester L. Instrumenting gait with an accelerometer: a system and algorithm examination. Med Eng Phys. 2015;37(4):400-7.

Godfrey A, Morris R, Hickey A, Del Din S. Beyond the front end: Investigating a thigh worn accelerometer device for step count and bout detection in Parkinson's disease. Med Eng Phys. 2016;38(12):1524-9.

Zach H, Janssen AM, Snijders AH, Delval A, Ferraye MU, Auff E, et al. Identifying freezing of gait in Parkinson's disease during freezing provoking tasks using waist-mounted accelerometry. Parkinsonism Relat Disord. 2015;21(11):1362-6.

Del Din S, Hickey A, Hurwitz N, Mathers JC, Rochester L, Godfrey A. Measuring gait with an accelerometer-based wearable: influence of device location, testing protocol and age. Physiol Meas. 2016;37(10):1785-97.

Corcoran MP, Chui KK, White DK, Reid KF, Kirn D, Nelson ME, et al. Accelerometer Assessment of Physical Activity and Its Association with Physical Function in Older Adults Residing at Assisted Care Facilities. J Nutr Health Aging. 2016;20(7):752-8.

Published

2017-07-17

How to Cite

Alfonso Mantilla, J. (2017). Uses of physiotherapy accelerometers: a review of the literature. Revista Iberoamericana De Ciencias De La Actividad Física Y El Deporte, 6(2), 38–45. https://doi.org/10.24310/riccafd.2017.v6i2.3781

Issue

Section

Artículos