On the dynamic stability of the Cournot duopoly solution under bounded rationality

Authors

  • Joaquín Andaluz Universidad de Zaragoza Spain
  • Jorge Casinos Universidad de Zaragoza Spain
  • Gloria Jarne Universidad de Zaragoza Spain

DOI:

https://doi.org/10.24310/recta.22.1.2021.19873

Keywords:

Nonlinear duopoly, expectations, Cournot-Nash equilibrium, dynamic stability

Abstract

The most of the oligopolistic models described in the existing literature analyze dynamic processes and the stability of the Nash equilibrium by introducing concrete specifications for the demand and the cost functions. This paper analyzes the dynamic stability of the Cournot-Nash equilibrium in the context of a duopoly using general functions to establish both demand and costs. The condition that guarantees the stability of the Nash equilibrium under the adjustment process implicit in the Cournot’s original model is found to be a key requirement underpinning the dynamic stability of the Cournot-Nash equilibrium regardless of the firms’ expectations scheme. Moreover, this condition is more decisive the higher the degree of rationality of firms.

Downloads

Download data is not yet available.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
4%
33%
Days to publication 
1056
145

Indexed in

Editor & editorial board
profiles
Academic society 
N/A
Publisher 
UMA Editorial. Universidad de Málaga

References

Agiza, H. N. (1998) Explicit stability zones for Cournot games with 3 and 4 competitors, Chaos, Solitons and Fractals 9, 1955-1966.

https://doi.org/10.1016/S0960-0779(98)00006-X

Agiza, H. N. (1999) On the analysis of stability, bifurcation, chaos and chaos control of Kopel map, Chaos, Solitons and Fractals 10(11), 1909-1916.

https://doi.org/10.1016/S0960-0779(98)00210-0

Andaluz J. & Jarne, G. (2016) Stability of vertically differentiated Cournot and Bertrand-type models when firms are boundedly rational, Annals of Operations Research 238, 1-25.

https://doi.org/10.1007/s10479-015-2057-4

Andaluz, J., Elsadany, A.A. & Jarne, G. (2020) Dynamic Cournot oligopoly game based on general isoelastc demand, Nonlinear Dynamics 99(2), 1053-1063.

https://doi.org/10.1007/s11071-019-05333-7

Askar, S.S. (2020). Asymmetric information on price can affect Bertrand duopoly players with gradientbased mechanism, Mathematical Problems in Engineering 5, 1-12.

https://doi.org/10.1155/2020/6620570

Bischi, G. I., Naimzada, A. & Sbragia, L. (2007). Oligopoly games with local monopolistic approximation, Journal of Economic Behavior & Organization 62, 371-388.

https://doi.org/10.1016/j.jebo.2005.08.006

Bischi, G. I., Chiarella, C., Kopel, M. & Szidarovszky, F. (2010). Nonlinear oligopolies: stability and bifurcations. Springer.

https://doi.org/10.1007/978-3-642-02106-0

Bulow, J., Geanakoplos, J. & Kemplerer, P. (1985). Multimarket Oligopoly: Strategic Substitutes and Complements, Journal of Political Economy 93(3), 488-511.

https://doi.org/10.1086/261312

Corchón, L. & Mas-Colell, A. (1996). On the stability of best reply and gradient systems with applications to imperfectly competitive models, Economics Letters 51(1), 59-65.

https://doi.org/10.1016/0165-1765(95)00752-0

Cournot, A. (1838). Recherches sur les principes mathématiques de la théorie des richesses. Hachette.

Dana, R. A. & Montrucchio, L. (1986). Dynamic complexity in duopoly games, Journal of Economic Theory 40(1), 40-56.

https://doi.org/10.1016/0022-0531(86)90006-2

Dana, R. A. & Montrucchio, L. (1987) On rational dynamic strategies in infinite horizon models where agents discount the future, Journal of Economic Behavior & Organization, 8, 497-511.

https://doi.org/10.1016/0167-2681(87)90057-6

Dixit, A. (1993). Comparative statics in oligopoly, International Economic Review 27(1), 107-122.

https://doi.org/10.2307/2526609

Friedman, J. W. (1977). Oligopoly and the Theory of Games, North Holland.

Gandolfo, G. (2010). Economic dynamics. Springer.

https://doi.org/10.1007/978-3-642-03871-6

Hahn, F. H. (1962). The Stability of Cournot Oligopoly Solution, Review of Economic Studies 29, 329- 331.

https://doi.org/10.2307/2296310

Kopel, M. (1996). Simple and complex adjustment dynamics in Cournot duopoly models, Chaos, Solitons and Fractals 12, 2031-2048.

https://doi.org/10.1016/S0960-0779(96)00070-7

Martin, S. (1993). Advanced Industrial Economics, Blackwell, 1993.

Milgrom, P. & Roberts, J. (1990). Rationalizability, learning and equilibrium in games with strategic complementarities, Econometrica 58, 1255-1277.

https://doi.org/10.2307/2938316

Okuguchi, K. (1964). The Stability of the Cournot Oligopoly Solution: A Further Generalization, The Review of Economic Studies 31(2), 143-146.

https://doi.org/10.2307/2296196

Okuguchi, K. (1976). Expectations and stability in oligopoly models, Springer Science & Business Media, 138

https://doi.org/10.1007/978-3-642-46347-1

Puu, T. (1991). Chaos in duopoly pricing, Chaos, Solitons and Fractals 1, 573-581.

https://doi.org/10.1016/0960-0779(91)90045-B

Tuinstra, J. (2004). A price adjustment process in a model of monopolistic competition, International Game Theory Review 6(3), 417-442.

https://doi.org/10.1142/S0219198904000289

Vives, X. (1990). Nash equilibrium and strategic complementarities, Journal of Mathematical Economics 19, 305-321.

https://doi.org/10.1016/0304-4068(90)90005-T

Downloads

Published

2021-06-30

How to Cite

Andaluz, J., Casinos, J., & Jarne, G. (2021). On the dynamic stability of the Cournot duopoly solution under bounded rationality. Revista Electrónica De Comunicaciones Y Trabajos De ASEPUMA, 22(1), 51–62. https://doi.org/10.24310/recta.22.1.2021.19873