On the dynamic stability of the Cournot duopoly solution under bounded rationality
DOI:
https://doi.org/10.24310/recta.22.1.2021.19873Keywords:
Nonlinear duopoly, expectations, Cournot-Nash equilibrium, dynamic stabilityAbstract
The most of the oligopolistic models described in the existing literature analyze dynamic processes and the stability of the Nash equilibrium by introducing concrete specifications for the demand and the cost functions. This paper analyzes the dynamic stability of the Cournot-Nash equilibrium in the context of a duopoly using general functions to establish both demand and costs. The condition that guarantees the stability of the Nash equilibrium under the adjustment process implicit in the Cournot’s original model is found to be a key requirement underpinning the dynamic stability of the Cournot-Nash equilibrium regardless of the firms’ expectations scheme. Moreover, this condition is more decisive the higher the degree of rationality of firms.
Downloads
Publication Facts
Reviewer profiles N/A
Author statements
Indexed in
-
—
- Academic society
- N/A
- Publisher
- UMA Editorial. Universidad de Málaga
References
Agiza, H. N. (1998) Explicit stability zones for Cournot games with 3 and 4 competitors, Chaos, Solitons and Fractals 9, 1955-1966.
https://doi.org/10.1016/S0960-0779(98)00006-X
Agiza, H. N. (1999) On the analysis of stability, bifurcation, chaos and chaos control of Kopel map, Chaos, Solitons and Fractals 10(11), 1909-1916.
https://doi.org/10.1016/S0960-0779(98)00210-0
Andaluz J. & Jarne, G. (2016) Stability of vertically differentiated Cournot and Bertrand-type models when firms are boundedly rational, Annals of Operations Research 238, 1-25.
https://doi.org/10.1007/s10479-015-2057-4
Andaluz, J., Elsadany, A.A. & Jarne, G. (2020) Dynamic Cournot oligopoly game based on general isoelastc demand, Nonlinear Dynamics 99(2), 1053-1063.
https://doi.org/10.1007/s11071-019-05333-7
Askar, S.S. (2020). Asymmetric information on price can affect Bertrand duopoly players with gradientbased mechanism, Mathematical Problems in Engineering 5, 1-12.
https://doi.org/10.1155/2020/6620570
Bischi, G. I., Naimzada, A. & Sbragia, L. (2007). Oligopoly games with local monopolistic approximation, Journal of Economic Behavior & Organization 62, 371-388.
https://doi.org/10.1016/j.jebo.2005.08.006
Bischi, G. I., Chiarella, C., Kopel, M. & Szidarovszky, F. (2010). Nonlinear oligopolies: stability and bifurcations. Springer.
https://doi.org/10.1007/978-3-642-02106-0
Bulow, J., Geanakoplos, J. & Kemplerer, P. (1985). Multimarket Oligopoly: Strategic Substitutes and Complements, Journal of Political Economy 93(3), 488-511.
https://doi.org/10.1086/261312
Corchón, L. & Mas-Colell, A. (1996). On the stability of best reply and gradient systems with applications to imperfectly competitive models, Economics Letters 51(1), 59-65.
https://doi.org/10.1016/0165-1765(95)00752-0
Cournot, A. (1838). Recherches sur les principes mathématiques de la théorie des richesses. Hachette.
Dana, R. A. & Montrucchio, L. (1986). Dynamic complexity in duopoly games, Journal of Economic Theory 40(1), 40-56.
https://doi.org/10.1016/0022-0531(86)90006-2
Dana, R. A. & Montrucchio, L. (1987) On rational dynamic strategies in infinite horizon models where agents discount the future, Journal of Economic Behavior & Organization, 8, 497-511.
https://doi.org/10.1016/0167-2681(87)90057-6
Dixit, A. (1993). Comparative statics in oligopoly, International Economic Review 27(1), 107-122.
https://doi.org/10.2307/2526609
Friedman, J. W. (1977). Oligopoly and the Theory of Games, North Holland.
Gandolfo, G. (2010). Economic dynamics. Springer.
https://doi.org/10.1007/978-3-642-03871-6
Hahn, F. H. (1962). The Stability of Cournot Oligopoly Solution, Review of Economic Studies 29, 329- 331.
https://doi.org/10.2307/2296310
Kopel, M. (1996). Simple and complex adjustment dynamics in Cournot duopoly models, Chaos, Solitons and Fractals 12, 2031-2048.
https://doi.org/10.1016/S0960-0779(96)00070-7
Martin, S. (1993). Advanced Industrial Economics, Blackwell, 1993.
Milgrom, P. & Roberts, J. (1990). Rationalizability, learning and equilibrium in games with strategic complementarities, Econometrica 58, 1255-1277.
https://doi.org/10.2307/2938316
Okuguchi, K. (1964). The Stability of the Cournot Oligopoly Solution: A Further Generalization, The Review of Economic Studies 31(2), 143-146.
https://doi.org/10.2307/2296196
Okuguchi, K. (1976). Expectations and stability in oligopoly models, Springer Science & Business Media, 138
https://doi.org/10.1007/978-3-642-46347-1
Puu, T. (1991). Chaos in duopoly pricing, Chaos, Solitons and Fractals 1, 573-581.
https://doi.org/10.1016/0960-0779(91)90045-B
Tuinstra, J. (2004). A price adjustment process in a model of monopolistic competition, International Game Theory Review 6(3), 417-442.
https://doi.org/10.1142/S0219198904000289
Vives, X. (1990). Nash equilibrium and strategic complementarities, Journal of Mathematical Economics 19, 305-321.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.