Neurogénesis hipocampal adulta y envejecimiento cognitivo

Autores/as

  • Román Darío Moreno Fernández Departmento de Psicobiología. Instituto de Neurociencias. Centro de Investigaciones Biomédicas (CIBM). Universidad de Granada; departamento de Psicobiología y Metodología en CC. Universidad de Málaga. Instituto de Investigaciones Biomédicas de Málaga (IBIMA) España
  • Carmen Pedraza Departamento de Psicobiología y Metodología en CC. Universidad de Málaga. Instituto de Investigaciones Biomédicas de Málaga (IBIMA) España
  • Milagros Gallo Departmento de Psicobiología. Instituto de Neurociencias. Centro de Investigaciones Biomédicas (CIBM). Universidad de Granada España

DOI:

https://doi.org/10.24310/espsiescpsi.v6i3.13285

Palabras clave:

Neurogénesis hipocampal adulta, Envejecimiento, Deterioro Cognitivo, Memoria Espacial

Resumen

El envejecimiento es un proceso normal en el desarrollo del organismo asociado a una serie de cambios neurobiológicos que producen alteraciones cognitivas con funciones preservadas, deterioradas y facilitadas. Se revisa la evidencia obtenida con animales y humanos a fin de explorar un posible papel de la plasticidad hipocampal en los cambios cognitivos asociados con la edad, con especial atención a la neurogénesis hipocampal adulta. Los resultados obtenidos empleando las estrategias de lesión, estimulación, así como datos correlacionales apoyan un papel, ya sea directo, ya sea modulador de las nuevas neuronas en la ejecución cognitiva a edades avanzadas. Avances en la investigación de esta relación pueden favorecer el desarrollo de nuevos tratamientos y la mejora de la calidad de vida de la población de más edad.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Aizawa, K., Ageyama, N., Yokoyama, C. y Hisatsune, T. (2009). Age-dependent alteration in hippocampal neurogenesis correlates with learning performance of macaque monkeys. Experimental Animals, 58, 403-407. http://dx.doi.org/10.1538/expanim.58.403

Alexander, G. E., Ryan, L., Bowers, D., Foster, T. C., Bizon, J. L., Geldmacher, D. S. y Glisky, E. L. (2012). Characterizing cognitive aging in humans with links to animal models. Frontiers in Aging Neuroscience, 4, 21. http://dx.doi.org/10.3389/fnagi.2012.00021

Altman, J. y Das, G. D. (1965). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. Journal of Comparative Neurology, 124, 319-336. http://dx.doi.org/10.1002/cne.901240303

Ball, M. J. (1977). Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with ageing and dementia. A quantitative study. Acta Neuropathologica, 37, 111-118. http://dx.doi.org/10.1007/BF00692056

Barnes, C. A. (1994). Normal aging: regionally specific changes in hippocampal synaptic transmission. Trends in Neuroscience, 17, 13-18. http://dx.doi.org/10.1016/0166-2236(94)90029-9

Bizon, J. L., Lee, H. J. y Gallagher, M. (2004). Neurogenesis in a rat model of age-related cognitive decline. Aging Cell, 3, 227-234. http://dx.doi.org/10.1111/j.1474-9728.2004.00099.x

Brandt, M. D., Jessberger, S., Steiner, B., Kronenberg, G., Reuter, K., Bick-Sander, A., von der Behrens, W. y Kempermann, G. (2003). Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Molecular and Cellular Neurosciences, 24, 603-613. http://dx.doi.org/10.1016/S1044-7431(03)00207-0

Brickman, A. M., Meier, I. B., Korgaonkar, M. S., Provenzano, F. A., Grieve, S. M., Siedlecki, K. L., Wasserman, B. T., Williams, L. M. y Zimmerman, M. E. (2012). Testing the white matter retrogenesis hypothesis of cognitive aging. Neurobiology of Aging, 33, 1699-1715. http://dx.doi.org/10.1016/j.neurobiolaging.2011.06.001

Brody, H. (1955).organization of the cerebral cortex. III. A study of aging in the human cerebral cortex. Journal of Comparative Neurology, 102, 511-516. http://dx.doi.org/10.1002/cne.901020206

Burke, S. N. y Barnes, C. A. (2006). Neural plasticity in the ageing brain. Nature Reviews Neuroscience, 7, 30-40. http://dx.doi.org/10.1038/nrn1809

Burke, S. N., Wallace, S. N., Uprety, A. R. y Barnes, C. (2010) Pattern separation deficits may contribute to age-associated recognition memory impairments. Behavioral Neuroscience, 124, 559-573. http://dx.doi.org/10.1037/a0020893

Cansino, S. (2009). Episodic memory decay along the adult lifespan: a review of behavioral and neurophysiological evidence. International Journal of Psychophysiology, 71, 64-69. http://dx.doi.org/10.1016/j.ijpsycho.2008.07.005

Caserta, M. T., Bannon, Y., Fernandez, F., Giunta, B., Schoenberg, M. R. y Tan, J. (2009). Normal brain aging clinical, immunological, neuropsychological, and neuroimaging features. International Review of Neurobiology, 84, 1-19. http://dx.doi.org/10.1016/S0074-7742(09)00401-2

Castilla-Ortega, E., Hoyo-Becerra, C., Pedraza, C., Chun, J., Rodríguez De Fonseca, F., Estivill-Torrús, G. y Santín, L. J. (2011). Aggravation of chronic stress effects on hippocampal neurogenesis and spatial memory in LPA? receptor knockout mice. PLoS One, 6, e25522. http://dx.doi.org/10.1371/journal.pone.0025522

Castilla-Ortega, E., Pedraza, C., Chun, J., de Fonseca, F. R., Estivill-Torrús, G. y Santín, L. J. (2012). Hippocampal c-Fos activation in normal and LPA?-null mice after two object recognition tasks with different memory demands. Behavioural Brain Research, 232, 400-405. http://dx.doi.org/10.1016/j.bbr.2012.04.018

Chawla, M. K. y Barnes, C. A. (2007). Hippocampal granule cells in normal aging: insights from electrophysiological and functional imaging experiments. Progress in Brain Research, 163, 661-678. http://dx.doi.org/10.1016/S0079-6123(07)63036-2

Coras, R., Siebzehnrubl, F. A., Pauli, E., Huttner, H. B., Njunting, M., Kobow, K., Villmann, C., Hahnen, E., Neuhuber, W., Weigel, D., Buchfelder, M., Stefan, H., Beck, H., Steindler, D. A. y Blumcke, I. (2010). Low proliferation and differentiation capacities of adult hippocampal stem cells correlate with memory dysfunction in humans. Brain, 133, 3359-3372. http://dx.doi.org/10.1093/brain/awq215

Couillard-Després, S., Iglseder, B. y Aigner, L. (2011). Neurogenesis, cellular plasticity and cognition: the impact of stem cells in the adult and aging brain -A mini-review. Gerontology, 57, 559-564. http://dx.doi.org/10.1159/000323481

Craik, F. I. y Rose, N. S. (2012). Memory encoding and aging: a neurocognitive perspective. Neuroscience and Biobehavioral Reviews, 36, 1729-1739. http://dx.doi.org/10.1016/j.neubiorev.2011.11.007

Curlik, D. M. 2nd y Shors, T. J. (2013). Training your brain: Do mental and physical (MAP) training enhance cognition through the process of neurogenesis in the hippocampus? Neuropharmacology, 64, 506-514. http://dx.doi.org/10.1016/j.neuropharm.2012.07.027

Drapeau, E. y Abrous D. N. (2008). Stem cell review series: role of neurogenesis in age-related memory disorders. Aging Cell, 7, 569-589. http://dx.doi.org/10.1111/j.1474-9726.2008.00369.x

Drapeau, E., Mayo, W., Aurousseau, C., Le Moal, M., Piazza, P. V. y Abrous, D. N. (2003). Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proceedings of the National Academy of Sciences, 100, 14385–14390. http://dx.doi.org/10.1073/pnas.2334169100

Ehninger, D. y Kempermann, G. (2007). Neurogenesis in the adult hippocampus. Cell and Tissue Research, 331, 243-250. http://dx.doi.org/10.1007/s00441-007-0478-3

Eisch, A. J., Cameron, H. A., Encinas, J. M., Meltzer, L. A. y Ming, G. L. (2008). Adult neurogenesis, mental health, and mental illness: hope or hype? Journal of Neuroscience, 28, 11785-11791. http://dx.doi.org/10.1523/JNEUROSCI.3798-08

Encinas, J. M. y Sierra, A. (2012). Neural stem cell deforestation as the main force driving the age-related decline in adult hippocampal neurogenesis. Behavioural Brain Research, 227, 433-439. http://dx.doi.org/10.1016/j.bbr.2011.10.010

Erickson, K. I., Miller, D. L. y Roecklein, K. A. (2012). The aging hippocampus: interactions between exercise, depression, and BDNF. The Neuroscientist, 18, 82-97. http://dx.doi.org/10.1177/1073858410397054

Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A. M., Nordborg, C., Peterson, D. A y Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4, 1313-1317. http://dx.doi.org/10.1038/3305

Foster, T. C. (2012). Challenges and opportunities in characterizing cognitive aging across species. Frontiers in Aging Neuroscience, 4, 1-2. http://dx.doi.org/10.3389/fnagi.2012.00006

Gage, F. H. (2000). Mammalian neural stem cells. Science, 287, 1433-1438. http://dx.doi.org/10.1126/science.287.5457.1433

Gallagher, M. y Rapp, P. R. (1997). The use of animal models to study the effects of aging on cognition. Annual Review of Psychology, 48, 339-370. http://dx.doi.org/10.1146/annurev.psych.48.1.339

Gallo, M., Valouskova, V. y Cándido, A. (1997). Fetal hippocampal transplants restore conditioned blocking in rats with dorsal hippocampal lesions: effect of age. Behavioral Brain Research, 88, 67-74. http://dx.doi.org/10.1016/S0166-4328(97)02311-5

Gámiz, F. y Gallo, M. (2011). Taste learning and memory: a window on the study of brain aging. Frontiers in Systems Neuroscience, 5, 91-97. http://dx.doi.org/10.3389/fnsys.2011.00091

Gámiz, F. y Gallo, M. (2012). Spontaneous object recognition memory in aged rats: complexity versus similarity. Learning and Memory, 19, 444-448. http://dx.doi.org/10.1101/lm.027003.112

Garthe, A., Behr, J. y Kempermann, G. (2009). Adult generated hippocampal neurons allow the flexible use of spatially precise learning strategies. PLoS ONE, 4, e5464. http://dx.doi.org/10.1371/journal.pone.0005464

Geinisman, Y., de Toledo-Morrell, L., Morrell, F., Persina, I. S. y Rossi, M. (1992). Age-related loss of axospinous synapses formed by two afferent systems in the rat dentate gyrus as revealed by the unbiased stereological dissector technique. Hippocampus, 2, 437-444. http://dx.doi.org/10.1002/hipo.450020411

Geinisman, Y., Ganeshina, O., Yoshida, R., Berry, R. W., Disterhoft, J. F. y Gallagher, M. (2004). Aging, spatial learning, and total synapse number in the rat CA1 stratum radiatum. Neurobiology of Aging, 25, 407-416. http://dx.doi.org/10.1016/j.neurobiolaging.2003.12.001

Goh, J. O. y Park, D. C. (2009). Neuroplasticity and cognitive aging: The scaffolding theory of aging and cognition. Restorative Neurology and Neuroscience, 27, 391-403. http://dx.doi.org/10.3233/RNN-2009-0493

Goldman, S. A. y Nottebohm, F. (1983). Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proceedings of the National Academy of Sciences of the United States of America, 80, 2390-2394. http://dx.doi.org/10.1073/pnas.80.8.2390

Gross, C. G. (2000). Neurogenesis in the adult brain: Death of a dogma. Nature Reviews Neuroscience, 1, 67-73. http://dx.doi.org/10.1038/35036235

Head, D., Rodrigue, K. M., Kennedy, K. M. y Raz, N. (2008). Neuroanatomical and cognitive mediators of age-related differences in episodic memory. Neuropsychology, 22, 491-507. http://dx.doi.org/10.1037/0894-4105.22.4.491

Hedden, T. y Gabrieli, J. D. (2004). Insights into the ageing mind: a view from cognitive neuroscience. Nature Reviews Neuroscience, 5, 87-96. http://dx.doi.org/10.1038/nrn1323

Henderson, V. W. (2011). Gonadal hormones and cognitive aging: a midlife perspective. Women’s Health, 7, 81-93. http://dx.doi.org/10.2217/whe.10.87

Jacobson, L. y Sapolsky, R. (1991). The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocrine Reviews, 12, 118-134. http://dx.doi.org/10.1210/edrv-12-2-118

Jagust, W. (2013). Vulnerable neural systems and the borderland of brain aging and neurodegeneration. Neuron, 77, 219-234. http://dx.doi.org/10.1016/j.neuron.2013.01.002

Jessberger, S. y Gage, F. H. (2008). Stem Cell-associated structural and functional plasticity in the aging hippocampus. Psychology and Aging, 23, 684-691. http://dx.doi.org/10.1037/a0014188

Junqué, C. y Jurado, M. A. (1994). Envejecimiento normal. En: Junqué, C. y Jurado, M. A. Envejecimiento y demencias (pp. 13-203). Barcelona: Martínez Roca.

Kemp, J., Després, O., Sellal, F. y Dufour, A. (2012). Theory of Mind in normal ageing and neurodegenerative pathologies. Ageing Research Reviews, 11, 199-221. http://dx.doi.org/10.1016/j.arr.2011.12.001

Kempermann, G. (2012). New neurons for ‘survival of the fittest’. Nature Reviews Neuroscience, 13, 727-736. http://dx.doi.org/10.1038/nrn3319

Kempermann, G. y Gage, F. H. (2002). Genetic influence on phenotypic differentiation in adult hippocampal neurogenesis. Developmental Brain Research, 134, 1-12. http://dx.doi.org/10.1016/S0165-3806(01)00224-3

Kempermann, G., Gast, D. y Gage, F. H. (2002). Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Developmental Annals of Neurology, 52, 135-143. http://dx.doi.org/10.1002/ana.10262

Kempermann, G., Jessberger, S., Steiner, B. y Kronenberg, G. (2004). Milestones of neuronal development in the adult hippocampus. Trends in Neurosciences, 27, 447-452. http://dx.doi.org/10.1016/j.tins.2004.05.013

Kempermann, G., Krebs, J. y Fabel, K. (2008). The contribution of failing adult hippocampal neurogenesis to psychiatric disorders. Current Opinion in Psychiatry, 21, 290-295. http://dx.doi.org/10.1097/YCO.0b013e3282fad375

Kempermann, G., Kuhn, H. G. y Gage, F. H. (1998). Experience-induced neurogenesis in the senescent dentate gyrus. The Journal of Neuroscience, 18, 3206-3212.

Kirby, E. D., Kirby, E. D., Friedman, A. R., Covarrubias, D., Ying, C., Sun, W. G., Goosens, K. A., Sapolsky, R. M. y Kaufer, D. (2012). Basolateral amygdala regulation of adult hippocampal neurogenesis and fear-related activation of newborn neurons. Molecular Psychiatry, 17, 527-536. http://dx.doi.org/10.1038/mp.2011.71

Koehl, M. y Abrous, D. N. (2011). A new chapter in the field of memory: adult hippocampal neurogenesis. The European Journal of Neuroscience, 33, 1101-1114. http://dx.doi.org/10.1111/j.1460-9568.2011.07609.x

Koh, M. T., Haberman, R. P., Foti, S., McCown, T. J. y Gallagher, M. (2010). Treatment strategies targeting excess hippocampal activity benefit aged rats with cognitive impairment. Neuropsychopharmacology, 35, 1016-1025. http://dx.doi.org/10.1038/npp.2009.207

Koh, M. T., Rosenzweig-Lipson, S. y Gallagher, M. (2013). Selective GABA(A) ?5 positive allosteric modulators improve cognitive function in aged rats with memory impairment. Neuropharmacology, 64, 145-152. http://dx.doi.org/10.1016/j.neuropharm.2012.06.023

Korosi, A., Naninck, E. F., Oomen, C. A., Schouten, M., Krugers, H., Fitzsimons, C. y Lucassen, P. J. (2012). Early-life stress mediated modulation of adult neurogenesis and behavior. Behavioural Brain Research, 227, 400-409. http://dx.doi.org/10.1016/j.bbr.2011.07.037

Lazarov, O. y Marr, R. A. (2013). Of mice and men: neurogenesis, cognition and Alzheimer’s disease. Frontiers in Aging Neuroscience, 5, 43. http://dx.doi.org/10.3389/fnagi.2013.00043

Lazarov, O., Mattson, M. P., Peterson, D. A., Pimplikar, S. W. y van Praag, H. (2010). When neurogenesis encounters aging and disease. Trends in Neurosciences, 33, 569-579. http://dx.doi.org/10.1016/j.tins.2010.09.003

Lee, E. y Son, H. (2009). Adult hippocampal neurogenesis and related neurotrophic factors. BMB Reports, 42, 239-244. http://dx.doi.org/10.5483/BMBRep.2011.44.6.421

Lee, M. M., Reif, A. y Schmitt, A. G. (2013). Major depression: a role for hippocampal neurogenesis? Current Topics in Behavioral Neurosciences, 14, 153-179. http://dx.doi.org/10.1007/7854_2012_226

Lee, S. W., Clemenson, G. D. y Gage, F. H. (2012). New neurons in an aged brain. Behavioural Brain Research, 227, 497-507. http://dx.doi.org/10.1016/j.bbr.2011.10.009

Lemaire, V., Koehl, M., Le Moal, M., y Abrous, D.N. (2000). Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proceedings of the National Academy of Sciences USA, 97, 11032-11037. http://dx.doi.org/10.1073/pnas.97.20.11032

Lemaire, V., Lamarque, S., Le Moal, M., Piazza, P.V. y Abrous, D.N. (2006). Postnatal stimulation of the pups counteracts prenatal stress-induced deficits in hippocampal neurogenesis. Biological Psychiatry, 59, 786-792. http://dx.doi.org/10.1016/j.biopsych.2005.11.009

Lister, J. P. y Barnes, C. A. (2009). Neurobiological changes in the hippocampus during normative aging. Archives of Neurology, 66, 829-833. http://dx.doi.org/10.1001/archneurol.2009.125

Lithfous, S., Dufour, A. y Després, O. (2013). Spatial navigation in normal aging and the prodromal stage of Alzheimer’s disease: Insights from imaging and behavioral studies. Ageing Research Reviews, 12, 201-213. http://dx.doi.org/10.1016/j.arr.2012.04.007

Lucassen, P. J., Meerlo, P., Naylor, A. S., van Dam, A. M., Dayer, A. G., Fuchs, E., Oomen, C. A. y Czeh, B. (2010). Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: Implications for depression and antidepressant action. European Neuropsychopharmacology, 20, 1-17. http://dx.doi.org/10.1016/j.euroneuro.2009.08.003

Manrique, T., Morón, I., Ballesteros, M. A., Guerrero, R. M. y Gallo, M. (2007). Hippocampus, Ageing, and Taste Memories. Chemical Senses, 32, 111-117. http://dx.doi.org/10.1093/chemse/bjl042

Manrique, T., Morón, I., Ballesteros, M. A., Guerrero, R. M., Fenton, A. A. y Gallo, M. (2009). Hippocampus, aging, and segregating memories. Hippocampus, 19, 57-65. http://dx.doi.org/10.1002/hipo.20481

Masiulis, I., Sanghee, Y. y Eisch, A. J. (2011). The interesting interplay between interneurons and adult hippocampal neurogenesis. Molecular Neurobiology, 44, 287-302. http://dx.doi.org/10.1007/s12035-011-8207-z

Meaney, M. J., Aitken, D. H., Bhatnagar, S., y Sapolsky, R. M. (1991). Postnatal handling attenuates certain neuroendocrine, anatomical and cognitive dysfunction associated with aging in female rats. Neurobiology of Aging, 12, 31-38. http://dx.doi.org/10.1016/0197-4580(91)90036-J

Mendelsohn, A. R. y Larrick, J. W. (2012). Epigenetic-mediated decline in synaptic plasticity during aging. Rejuvenation Research, 15, 98-101. http://dx.doi.org/10.1089/rej.2012.1312

Milner, B. (2005). The medial temporal-lobe amnesic syndrome. The Psychiatric Clinics of North America, 28, 599-611. http://dx.doi.org/10.1016/j.psc.2005.06.002

Morón, I y Gallo, M. (2007) Effect of previous taste experiences on taste neophobia in young-adult and aged rats. Physiology and Behavior, 90, 308-317. http://dx.doi.org/10.1016/j.physbeh.2006.09.036

Morón, I., Ballesteros, M. A., Cándido, A. y Gallo, M. (2002). Taste aversion learning and aging: A comparison with the effect of dorsal hippocampal lesions in rats. Physiological Research, 51, S21-S27.

Morón, I., Ballesteros, M. A., Valouskova, V. y Gallo, M. (2001). Conditioned blocking is re-established by neurotrasplantation in mature rats. NeuroReport, 12, 2297-2301.

Okun, E., Griffioen, K., Barak, B., Roberts, N. J., Castro, K., Pita, M.A., Cheng, A., Mughal, M. R., Wan, R., Ashery, U. y Mattson, M. P. (2010). Toll-like receptor 3 inhibits memory retention and constrains adult hippocampal neurogenesis. Proceedings of the National Academy of Sciences, 107, 15625-15630. http://dx.doi.org/10.1073/pnas.1005807107

Pannese, E. (2011). Morphological changes in nerve cells during normal aging. Brain Structure & Function, 216, 85-89. http://dx.doi.org/10.1007/s00429-011-0308-y

Park, D. C. y Bischof, G. N. (2013). The aging mind: neuroplasticity in response to cognitive training. Dialogues in Clinical Neuroscience, 15, 109-119.

Park, D. C. y Reuter-Lorenz, P. (2009). The adaptive brain: aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173-196. http://dx.doi.org/10.1146/annurev.psych.59.103006.093656

Patrylo, P. R. y Williamson, A. (2007). The effects of aging on dentate circuitry and function. Progress in Brain Research, 163, 679-696. http://dx.doi.org/10.1016/S0079-6123(07)63037-4

Qiao, C., Den, R., Kudo, K., Yamada, K., Takemoto, K., Wati, H. y Kanba, S. (2005). Ginseng enhances contextual fear conditioning and neurogenesis in rats. Neuroscience Research, 51, 31-38. http://dx.doi.org/10.1016/j.neures.2004.09.004

Reuter-Lorenz, P.A. y Lustig, C. (2005) Brain aging: reorganizing discoveries about the aging mind. Current Opinion in Neurobiology, 15, 245-251. http://dx.doi.org/10.1016/j.conb.2005.03.016

Rieckmann, A. y Bäckman, L. (2009). Implicit learning in aging: extant patterns and new directions. Neuropsychological Review, 19, 490-503. http://dx.doi.org/10.1007/s11065-009-9117-y

Rosenzweig, E. S. y Barnes, C. A. (2003). Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Progress in Neurobiology, 69, 143-179. http://dx.doi.org/10.1016/S0301-0082(02)00126-0

Salat, D. H. (2011). The declining infrastructure of the aging brain. Brain Connectivity, 1, 279-293. http://dx.doi.org/10.1089/brain.2011.0056

Samson, R. D. y Barnes, C. A. (2013). Impact of aging brain circuits on cognition. European Journal of Neuroscience, 37, 1903-1915. http://dx.doi.org/10.1111/ejn.12183

Shelton, J. B. y Rajfer, J. (2012). Androgen deficiency in aging and metabolically challenged men. The Urologic Clinics of North America, 39, 63-75. http://dx.doi.org/10.1016/j.ucl.2011.09.007

Snyder, J. S. y Cameron, H. A. (2012). Could adult hippocampal neurogenesis be relevant for human behavior? Behavioural Brain Research, 227, 384-390. http://dx.doi.org/10.1016/j.bbr.2011.06.024

Snyder, J. S., Soumier, A., Brewer, M., Pickel, J. y Cameron, H. A. (2011). .Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature. 476, 458-461. http://dx.doi.org/10.1038/nature10287

Spreng, R. N., Wojtowicz, M. y Grady, Ch. L. (2010). Reliable differences in brain activity between young and old adults: a quantitative meta-analysis across multiple cognitive domains. Neuroscience and Biobehavioral Reviews, 34, 1178-1194. http://dx.doi.org/10.1016/j.neubiorev.2010.01.009

Song, J., Christian, K. M., Ming, G. L. y Song, H. (2012). Modification of hippocampal circuitry by adult neurogenesis. Developmental Neurobiology, 72, 1032-1043. http://dx.doi.org/10.1002/dneu.22014

Speisman, R. B., Kumar, A., Rani, A., Foster, T. C. y Ormerod, B. K. (2013). Daily exercise improves memory, stimulates hippocampal neurogenesis and modulates immune and neuroimmune cytokines in aging rats. Brain, Behavior, and Immunity, 28, 25-43. http://dx.doi.org/10.1016/j.bbi.2012.09.013

Stangl, D. y Thuret, S. (2009). Impact of diet on adult hippocampal neurogenesis. Genes & Nutrition, 4, 271-282. http://dx.doi.org/10.1007/s12263-009-0134-5

Steffener, J. y Stern, Y. (2012). Exploring the neural basis of cognitive reserve in aging. Biochimica et Biophysica Acta, 1822, 467-473. http://dx.doi.org/10.1016/j.bbadis.2011.09.012

Surget, A., Tanti, A., Leonardo, E. D., Laugeray, A., Rainer, Q., Touma, C., Palme, R., Griebel, G., Ibarguen-Vargas, Y., Hen, R. y Belzung, C. (2011). Antidepressants recruit new neurons to improve stress response regulation. Molecular Psychiatry, 16, 1177-1188. http://dx.doi.org/10.1038/mp.2011.48

Turner, G. R. y Spreng, R. N. (2012). Executive functions and neurocognitive aging: dissociable patterns of brain activity. Neurobiology of Aging, 33, 826, e1-13. http://dx.doi.org/10.1016/j.neurobiolaging.2011.06.005

Van Praag, H., Shubert, T., Zhao, C. y Gage, F.H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. The Journal of Neuroscience, 25, 8680–8685. http://dx.doi.org/10.1523/JNEUROSCI.1731-05.2005

Varela-Nallar, L., Aranguiz, F. C., Abbott, A. C., Slater, P. G e Inestrosa, N. C. (2010). Adult hippocampal neurogenesis in aging and Alzheimer’s disease. Birth Defects Research. Part C, Embryo Today: Reviews, 90, 284-296. http://dx.doi.org/10.1002/bdrc.20193

Wainwright, S. R. y Galea, L. A. (2013). The Neural Plasticity Theory of Depression: Assessing the roles of adult neurogenesis and PSA-NCAM within the hippocampus. Neural Plasticity, http://dx.doi.org/10.1155/2013/805497

Wang, M., Gamo, N. J., Yang, Y., Jin, L. E., Wang, X. J., Laubach, M., Mazer, J. A., Lee, D. y Arnsten, A. F. (2011). Neuronal basis of age-related working memory decline. Nature, 476, 210-223. http://dx.doi.org/10.1038/nature10243

Wilson, I. A., Ikonen, S., Gallagher, M., Eichenbaum, H. y Tanila, H. (2005). Age-associated alterations of hippocampal place cells are subregion specific. Journal of Neuroscience, 25, 6877-6886. http://dx.doi.org/10.1523/JNEUROSCI.1744-05.2005

Wilson, I. A., Ikonen, S., McMahan, R. W., Gallagher, M., Eichenbaum, H. y Tanila, H. (2003). Place cell rigidity cor relates with impaired spatial learning in aged rats. Neurobiology of Aging, 24, 297-305. http://dx.doi.org/10.1016/S0197-4580(02)00080-5

Wong, E. Y. y Herbert, J. (2004). The corticoid environment: a determining factor for neural progenitors’ survival in the adult hippocampus. The European Journal of Neuroscience, 20, 2491-2498. http://dx.doi.org/10.1111/j.1460-9568.2004.03717.x

Yau, S. Y., Lau, B. W. y So, K. F. (2011). Adult hippocampal neurogenesis: a possible way how physical exercise counteracts stress. Cell Transplantation, 20, 99-111. http://dx.doi.org/10.3727/096368910X532846

Zeng, Y., Tan, M., Kohyama, J., Sneddon, M., Watson, J. B., Sun, Y. E. y Xie, C. W. (2011). Epigenetic enhancement of BDNF signaling rescues synaptic plasticity in aging. The Journal of Neuroscience, 31, 17800-17810. http://dx.doi.org/10.1523/JNEUROSCI.3878-11.2011

Descargas

Publicado

2013-12-31

Cómo citar

Moreno Fernández, R. D., Pedraza, C., & Gallo, M. (2013). Neurogénesis hipocampal adulta y envejecimiento cognitivo. Escritos De Psicología - Psychological Writings, 6(3), 14–24. https://doi.org/10.24310/espsiescpsi.v6i3.13285

Número

Sección

Revisión teórica