Evaluación in vivo de la estabilidad de hombro durante push-ups usando plataformas de fuerza en adultos sanos
DOI:
https://doi.org/10.24310/riccafd.14.3.2025.22268Palabras clave:
estabilidad, hombro, plataformas de fuerza, push-up, in vivoResumen
Objetivo: El principal objetivo fue describir la fuerza y los parámetros cinéticos del hombro durante diferentes variantes de push-up, así como determinar si una herramienta de uso extendido en la evaluación del miembro inferior en las ciencias del deporte, como son las plataformas de fuerza, podría ser válida para el análisis de la estabilidad de hombro.
Métodos: Treinta y seis adultos sanos activos fueron reclutados para este estudio transversal para llevar a cabo tres variantes de push-up en plataformas de fuerza así como dos pruebas de fuerza centradas en el deltoides medio y el pectoral mayor usando un dinamómetro manual. El estudio se centró en las siguientes variables de resultado: pico máximo de fuerza, tiempo al pico de fuerza, tasa de desarrollo de fuerza, fuerza vertical ejercida en las plataformas de fuerza, y desplazamiento del centro de presiones en los ejes lateral y anteroposterior.
Resultados: Los resultados mostraron una correlación de moderada a muy fuerte entre la fuerza de reacción del suelo y la estabilidad en el eje anteroposterior (R = 0.450 – 0.989, p < 0.05), permitiendo establecer modelos de regresión lineal para estimar la estabilidad usando esta variable. Sin embargo, la relación de la fuerza de reacción del suelo con el desplazamiento en el eje lateral no fue estadísticamente significativa (p > 0.05). En cuanto a las características dinamométricas, la fuerza del deltoides mostró una correlación directa con la fuerza de reacción del suelo (R = 0.365 – 0.770, p < 0.001), convirtiéndolo en un músculo clave en el manejo de la inestabilidad de hombro. Estas correlaciones permitieron establecer modelos de regresión predictivos estadísticamente significativos (p > 0.001).
Conclusiones: Las plataformas de fuerza han demostrado ser una herramienta válida en la evaluación de hombro. Sin embargo, se necesita más investigación para determinar si estos parámetros pueden estar relacionados con la estabilidad glenohumeral.
Descargas
Citas
Cotter, E.J.; Hannon, C.P.; Christian, D.; Frank, R.M.; Bach, B.R. Comprehensive Examination of the Athlete’s Shoulder. Sports Health Multidiscip. Approach 2018, 10, 366–375, doi:10.1177/1941738118757197.
Veeger, H.E.J.; Van Der Helm, F.C.T. Shoulder Function: The Perfect Compromise between Mobility and Stability. J. Biomech. 2007, 40, 2119–2129, doi:10.1016/j.jbiomech.2006.10.016.
Housset, V.; Ho, S.W.L.; Lädermann, A.; Phua, S.K.A.; Hui, S.J.; Nourissat, G. Multidirectional Instability of the Shoulder: A Systematic Review with a Novel Classification. EFORT Open Rev. 2024, 9, 285–296, doi:10.1530/EOR-23-0029.
Labriola, J.E.; Lee, T.Q.; Debski, R.E.; McMahon, P.J. Stability and Instability of the Glenohumeral Joint: The Role of Shoulder Muscles. J. Shoulder Elbow Surg. 2005, 14, S32–S38, doi:10.1016/j.jse.2004.09.014.
Cameron, K.L.; Mauntel, T.C.; Owens, B.D. The Epidemiology of Glenohumeral Joint Instability: Incidence, Burden, and Long-Term Consequences. Sports Med. Arthrosc. Rev. 2017, 25, 144–149, doi:10.1097/JSA.0000000000000155.
Cools, A.M.J.; Struyf, F.; De Mey, K.; Maenhout, A.; Castelein, B.; Cagnie, B. Rehabilitation of Scapular Dyskinesis: From the Office Worker to the Elite Overhead Athlete. Br. J. Sports Med. 2014, 48, 692–697, doi:10.1136/bjsports-2013-092148.
Croteau, F.; Robbins, S.M.; Pearsall, D. Hand-Held Shoulder Strength Measures Correlate With Isokinetic Dynamometry in Elite Water Polo Players. J. Sport Rehabil. 2021, 30, 1233–1236, doi:10.1123/jsr.2020-0277.
Moroder, P.; Danzinger, V.; Maziak, N.; Plachel, F.; Pauly, S.; Scheibel, M.; Minkus, M. Characteristics of Functional Shoulder Instability. J. Shoulder Elbow Surg. 2020, 29, 68–78, doi:10.1016/j.jse.2019.05.025.
Borms, D.; Cools, A. Upper-Extremity Functional Performance Tests: Reference Values for Overhead Athletes. Int. J. Sports Med. 2018, 39, 433–441, doi:10.1055/a-0573-1388.
McCann, P.D.; Wootten, M.E.; Kadaba, M.P.; Bigliani, L.U. A Kinematic and Electromyographic Study of Shoulder Rehabilitation Exercises. Clin. Orthop. 1993, 179–188.
Ramírez-Pérez, L.; Kerr, G.; Cuesta-Vargas, A.I. In Vivo Assessment of Shoulder Stability in Dynamic Rehabilitation Exercises: A Scoping Review. Gait Posture 2025, 116, 30–39, doi:10.1016/j.gaitpost.2024.11.010.
Meras Serrano, H.; Mottet, D.; Caillaud, K. Validity and Reliability of Kinvent Plates for Assessing Single Leg Static and Dynamic Balance in the Field. Sensors 2023, 23, 2354, doi:10.3390/s23042354.
Saumur, T.M.; Nestico, J.; Mochizuki, G.; Perry, S.D.; Mansfield, A.; Mathur, S. Associations Between Lower Limb Isometric Torque, Isokinetic Torque, and Explosive Force With Phases of Reactive Stepping in Young, Healthy Adults. J. Appl. Biomech. 2022, 38, 190–197, doi:10.1123/jab.2021-0028.
Fanning, E.; Daniels, K.; Cools, A.; Miles, J.J.; Falvey, É. Biomechanical Upper-Extremity Performance Tests and Isokinetic Shoulder Strength in Collision and Contact Athletes. J. Sports Sci. 2021, 39, 1873–1881, doi:10.1080/02640414.2021.1904694.
Kowalski, K.L.; Connelly, D.M.; Jakobi, J.M.; Sadi, J. Shoulder Electromyography Activity during Push-up Variations: A Scoping Review. Shoulder Elb. 2022, 14, 325–339, doi:10.1177/17585732211019373.
Silder, A.; Zifchock, R.; Brown, L.; Sessoms, P.; Jones, D. The Association Between Grip Strength, Upper Body Power, and Limb Dominance in a Military Population. Mil. Med. 2024, 189, e1846–e1850, doi:10.1093/milmed/usae227.
Lefèvre-Colau, M.-M.; Nguyen, C.; Palazzo, C.; Srour, F.; Paris, G.; Vuillemin, V.; Poiraudeau, S.; Roby-Brami, A.; Roren, A. Recent Advances in Kinematics of the Shoulder Complex in Healthy People. Ann. Phys. Rehabil. Med. 2018, 61, 56–59, doi:10.1016/j.rehab.2017.09.001.
Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour. Br. J. Sports Med. 2020, 54, 1451–1462, doi:10.1136/bjsports-2020-102955.
Olds, M.; McLaine, S.; Magni, N. Validity and Reliability of the Kinvent Handheld Dynamometer in the Athletic Shoulder Test. J. Sport Rehabil. 2023, 32, 764–772, doi:10.1123/jsr.2022-0444.
Parry, G.N.; Herrington, L.C.; Horsley, I.G. The Test–Retest Reliability of Force Plate–Derived Parameters of the Countermovement Push-Up as a Power Assessment Tool. J. Sport Rehabil. 2020, 29, 381–383, doi:10.1123/jsr.2018-0419.
Brady, C.J.; Harrison, A.J.; Comyns, T.M. A Review of the Reliability of Biomechanical Variables Produced during the Isometric Mid-Thigh Pull and Isometric Squat and the Reporting of Normative Data. Sports Biomech. 2020, 19, 1–25, doi:10.1080/14763141.2018.1452968.
Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768, doi:10.1213/ANE.0000000000002864.
Sha, Z.; Dai, B. The Validity of Using One Force Platform to Quantify Whole-Body Forces, Velocities, and Power during a Plyometric Push-Up. BMC Sports Sci. Med. Rehabil. 2021, 13, 103, doi:10.1186/s13102-021-00330-z.
Schilling, D.T.; Elazzazi, A.M. Shoulder Strength and Closed Kinetic Chain Upper Extremity Stability Test Performance in Division III Collegiate Baseball and Softball Players. Int. J. Sports Phys. Ther. 2021, 16, doi:10.26603/001c.24244.
Sung, P.S. The Ground Reaction Force Thresholds for Detecting Postural Stability in Participants with and without Flat Foot. J. Biomech. 2016, 49, 60–65, doi:10.1016/j.jbiomech.2015.11.004.
Balcells-Diaz, E.; Daunis-i-Estadella, P. Shoulder Strength Value Differences between Genders and Age Groups. J. Shoulder Elbow Surg. 2018, 27, 463–469, doi:10.1016/j.jse.2017.10.021.
Wohlann, T.; Warneke, K.; Kalder, V.; Behm, D.G.; Schmidt, T.; Schiemann, S. Influence of 8-Weeks of Supervised Static Stretching or Resistance Training of Pectoral Major Muscles on Maximal Strength, Muscle Thickness and Range of Motion. Eur. J. Appl. Physiol. 2024, 124, 1885–1893, doi:10.1007/s00421-023-05413-y.
Teigen, L.E.; Sundberg, C.W.; Kelly, L.J.; Hunter, S.K.; Fitts, R.H. Ca 2+ Dependency of Limb Muscle Fiber Contractile Mechanics in Young and Older Adults. Am. J. Physiol.-Cell Physiol. 2020, 318, C1238–C1251, doi:10.1152/ajpcell.00575.2019.
Baldwin, C.E.; Paratz, J.D.; Bersten, A.D. Muscle Strength Assessment in Critically Ill Patients with Handheld Dynamometry: An Investigation of Reliability, Minimal Detectable Change, and Time to Peak Force Generation. J. Crit. Care 2013, 28, 77–86, doi:10.1016/j.jcrc.2012.03.001.
Alizadeh, S.; Rayner, M.; Mahmoud, M.M.I.; Behm, D.G. Push-Ups vs. Bench Press Differences in Repetitions and Muscle Activation between Sexes. J. Sports Sci. Med. 2020, 19, 289–297.
Salles, J.I.; Velasques, B.; Cossich, V.; Nicoliche, E.; Ribeiro, P.; Amaral, M.V.; Motta, G. Strength Training and Shoulder Proprioception. J. Athl. Train. 2015, 50, 277–280, doi:10.4085/1062-6050-49.3.84.
Ebben, W.P.; Wurm, B.; VanderZanden, T.L.; Spadavecchia, M.L.; Durocher, J.J.; Bickham, C.T.; Petushek, E.J. Kinetic Analysis of Several Variations of Push-Ups. J. Strength Cond. Res. 2011, 25, 2891–2894, doi:10.1519/JSC.0b013e31820c8587.
Suprak, D.N.; Dawes, J.; Stephenson, M.D. The Effect of Position on the Percentage of Body Mass Supported During Traditional and Modified Push-up Variants. J. Strength Cond. Res. 2011, 25, 497–503, doi:10.1519/JSC.0b013e3181bde2cf.
Gouvali, M.K.; Boudolos, K. Dynamic and Electromyographical Analysis in Variants of Push-Up Exercise. J. Strength Cond. Res. 2005, 19, 146, doi:10.1519/14733.1.
Gill, L.; Huntley, A.H.; Mansfield, A. Does the Margin of Stability Measure Predict Medio-Lateral Stability of Gait with a Constrained-Width Base of Support? J. Biomech. 2019, 95, 109317, doi:10.1016/j.jbiomech.2019.109317.
Shumway-Cook, A.; Woollacott, M.; Rachwani, J.; Santamaria, V. Motor Control: Translating Research into Clinical Practice; Physical Therapy; Sixth edition, revised reprint.; Wolters Kluwer: Philadelphia Baltimore New York London Buenos Aires Hong Kong Sydney Tokyo, 2024; ISBN 978-1-975209-56-8.
Matthews, M.J.; Green, D.; Matthews, H.; Swanwick, E. The Effects of Swimming Fatigue on Shoulder Strength, Range of Motion, Joint Control, and Performance in Swimmers. Phys. Ther. Sport 2017, 23, 118–122, doi:10.1016/j.ptsp.2016.08.011.
Tsai, L.; Wredmark, T.; Johansson, C.; Gibo, K.; Engstrom, B.; Tornqvist, H. Shoulder Function in Patients with Unoperated Anterior Shoulder Instability. Am. J. Sports Med. 1991, 19, 469–473, doi:10.1177/036354659101900508.
Olds, M.; McNair, P.; Nordez, A.; Cornu, C. Active Stiffness and Strength in People With Unilateral Anterior Shoulder Instability: A Bilateral Comparison. J. Athl. Train. 2011, 46, 642–647, doi:10.4085/1062-6050-46.6.642.
McDonald, A.C.; Mulla, D.M.; Keir, P.J. Using EMG Amplitude and Frequency to Calculate a Multimuscle Fatigue Score and Evaluate Global Shoulder Fatigue. Hum. Factors J. Hum. Factors Ergon. Soc. 2019, 61, 526–536, doi:10.1177/0018720818794604.
Michalak, K.P.; Przekoracka-Krawczyk, A.; Naskręcki, R. Parameters of the Crossing Points between Center of Pressure and Center of Mass Signals Are Potential Markers of Postural Control Efficiency. PLOS ONE 2019, 14, e0219460, doi:10.1371/journal.pone.0219460.
Lehman, G.J.; MacMillan, B.; MacIntyre, I.; Chivers, M.; Fluter, M. Shoulder Muscle EMG Activity during Push up Variations on and off a Swiss Ball. Dyn. Med. 2006, 5, 7, doi:10.1186/1476-5918-5-7.
Youdas, J.W.; Baartman, H.E.; Gahlon, B.J.; Kohnen, T.J.; Sparling, R.J.; Hollman, J.H. Recruitment of Shoulder Prime Movers and Torso Stabilizers During Push-Up Exercises Using a Suspension Training System. J. Sport Rehabil. 2020, 29, 993–1000, doi:10.1123/jsr.2019-0381.
Welch, E.S.; Watson, M.D.; Davies, G.J.; Riemann, B.L. Biomechanical Analysis of the Closed Kinetic Chain Upper Extremity Stability Test in Healthy Young Adults. Phys. Ther. Sport 2020, 45, 120–125, doi:10.1016/j.ptsp.2020.06.010.
Alaqtash, M.; Sarkodie-Gyan, T.; Yu, H.; Fuentes, O.; Brower, R.; Abdelgawad, A. Automatic Classification of Pathological Gait Patterns Using Ground Reaction Forces and Machine Learning Algorithms. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; IEEE: Boston, MA, August 2011; pp. 453–457.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Revista Iberoamericana de Ciencias de la Actividad Física y el Deporte

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Todos los contenidos publicados en Revista Iberoamericana de Ciencias de la Actividad Física y el Deporte están sujetos a la licencia Creative Commons Reconocimento-NoComercia-Compartirigual 4.0 cuyo texto completo puede consultar en <http://creativecommons.org/licenses/by-nc-sa/4.0>

Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que:
- Se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra).
- No se usen para fines comerciales.
- Se mencione la existencia y especificaciones de esta licencia de uso.
Los derechos de autor son de dos clases: derechos morales y derechos patrimoniales. Los derechos morales son prerrogativas perpetuas, irrenunciables, intransferibles, inalienables, inembargables e imprescriptibles.
De acuerdo con la legislación de derechos de autor, Revista Iberoamericana de Ciencias de la Actividad Física y el Deporte reconoce y respeta el derecho moral de los autores/as, así como la titularidad del derecho patrimonial, el cual será cedido a la Universidad de Málaga para su difusión en acceso abierto.
Los derechos patrimoniales, se refieren a los beneficios que se obtienen por el uso o divulgación de las obras. Revista Iberoamericana de Ciencias de la Actividad Física y el Deporte se publica en open access y queda autorizada en exclusiva para realizar u autorizar por cualquier medio el uso, distribución, divulgación, reproducción, adaptación, traducción o transformación de la obra.
Es responsabilidad de los autores/as obtener los permisos necesarios de las imágenes que están sujetas a derechos de autor.











9.png)