In-vivo stability shoulder assessment during push-ups using force plates in healthy adults
DOI:
https://doi.org/10.24310/riccafd.14.3.2025.22268Keywords:
stability, shoulder, force plates, push-ups, in vivoAbstract
Objective: The main aim was to describe shoulder strength and kinetic parameters during different variations of push-ups, as well as to determine if a widely extended tool in lower limb assessment in sports sciences, force plates, could be valid for shoulder stability assessment.
Methods: Thirty-six healthy active adults were recruited in this cross-sectional study to undergo three variations of push-ups on force plates as well as two strength tests focused on the lateral deltoid and major pectoral using a hand-held dynamometer. The study was focused on the following outcome variables: maximum peak of force, time to peak, rate of force development, vertical force exerted on force plates, and center of pressure displacement in the lateral and anteroposterior axes.
Results: The outcomes showed a moderate to very strong relationship between ground reaction force and stability in the anteroposterior axis (R = 0.450 – 0.989, p < 0.05), allowing the establishment of linear regression models to estimate stability using this variable. Nonetheless, the relationship of ground reaction force with the displacement in the lateral axis was non-statistically significant (p > 0.05). As for dynamometric characteristics, deltoid strength showed a direct relationship with the ground reaction force (R = 0.365 – 0.770, p < 0.001), becoming a key muscle in shoulder instability assessment. These correlations allowed the establishment of estimating regression models (p < 0.001).
Conclusions: Force plates have been demonstrated to be a valid tool in shoulder assessment. However, more research is needed to determine if these parameters could be related to glenohumeral stability.
Downloads
References
Cotter, E.J.; Hannon, C.P.; Christian, D.; Frank, R.M.; Bach, B.R. Comprehensive Examination of the Athlete’s Shoulder. Sports Health Multidiscip. Approach 2018, 10, 366–375, doi:10.1177/1941738118757197.
Veeger, H.E.J.; Van Der Helm, F.C.T. Shoulder Function: The Perfect Compromise between Mobility and Stability. J. Biomech. 2007, 40, 2119–2129, doi:10.1016/j.jbiomech.2006.10.016.
Housset, V.; Ho, S.W.L.; Lädermann, A.; Phua, S.K.A.; Hui, S.J.; Nourissat, G. Multidirectional Instability of the Shoulder: A Systematic Review with a Novel Classification. EFORT Open Rev. 2024, 9, 285–296, doi:10.1530/EOR-23-0029.
Labriola, J.E.; Lee, T.Q.; Debski, R.E.; McMahon, P.J. Stability and Instability of the Glenohumeral Joint: The Role of Shoulder Muscles. J. Shoulder Elbow Surg. 2005, 14, S32–S38, doi:10.1016/j.jse.2004.09.014.
Cameron, K.L.; Mauntel, T.C.; Owens, B.D. The Epidemiology of Glenohumeral Joint Instability: Incidence, Burden, and Long-Term Consequences. Sports Med. Arthrosc. Rev. 2017, 25, 144–149, doi:10.1097/JSA.0000000000000155.
Cools, A.M.J.; Struyf, F.; De Mey, K.; Maenhout, A.; Castelein, B.; Cagnie, B. Rehabilitation of Scapular Dyskinesis: From the Office Worker to the Elite Overhead Athlete. Br. J. Sports Med. 2014, 48, 692–697, doi:10.1136/bjsports-2013-092148.
Croteau, F.; Robbins, S.M.; Pearsall, D. Hand-Held Shoulder Strength Measures Correlate With Isokinetic Dynamometry in Elite Water Polo Players. J. Sport Rehabil. 2021, 30, 1233–1236, doi:10.1123/jsr.2020-0277.
Moroder, P.; Danzinger, V.; Maziak, N.; Plachel, F.; Pauly, S.; Scheibel, M.; Minkus, M. Characteristics of Functional Shoulder Instability. J. Shoulder Elbow Surg. 2020, 29, 68–78, doi:10.1016/j.jse.2019.05.025.
Borms, D.; Cools, A. Upper-Extremity Functional Performance Tests: Reference Values for Overhead Athletes. Int. J. Sports Med. 2018, 39, 433–441, doi:10.1055/a-0573-1388.
McCann, P.D.; Wootten, M.E.; Kadaba, M.P.; Bigliani, L.U. A Kinematic and Electromyographic Study of Shoulder Rehabilitation Exercises. Clin. Orthop. 1993, 179–188.
Ramírez-Pérez, L.; Kerr, G.; Cuesta-Vargas, A.I. In Vivo Assessment of Shoulder Stability in Dynamic Rehabilitation Exercises: A Scoping Review. Gait Posture 2025, 116, 30–39, doi:10.1016/j.gaitpost.2024.11.010.
Meras Serrano, H.; Mottet, D.; Caillaud, K. Validity and Reliability of Kinvent Plates for Assessing Single Leg Static and Dynamic Balance in the Field. Sensors 2023, 23, 2354, doi:10.3390/s23042354.
Saumur, T.M.; Nestico, J.; Mochizuki, G.; Perry, S.D.; Mansfield, A.; Mathur, S. Associations Between Lower Limb Isometric Torque, Isokinetic Torque, and Explosive Force With Phases of Reactive Stepping in Young, Healthy Adults. J. Appl. Biomech. 2022, 38, 190–197, doi:10.1123/jab.2021-0028.
Fanning, E.; Daniels, K.; Cools, A.; Miles, J.J.; Falvey, É. Biomechanical Upper-Extremity Performance Tests and Isokinetic Shoulder Strength in Collision and Contact Athletes. J. Sports Sci. 2021, 39, 1873–1881, doi:10.1080/02640414.2021.1904694.
Kowalski, K.L.; Connelly, D.M.; Jakobi, J.M.; Sadi, J. Shoulder Electromyography Activity during Push-up Variations: A Scoping Review. Shoulder Elb. 2022, 14, 325–339, doi:10.1177/17585732211019373.
Silder, A.; Zifchock, R.; Brown, L.; Sessoms, P.; Jones, D. The Association Between Grip Strength, Upper Body Power, and Limb Dominance in a Military Population. Mil. Med. 2024, 189, e1846–e1850, doi:10.1093/milmed/usae227.
Lefèvre-Colau, M.-M.; Nguyen, C.; Palazzo, C.; Srour, F.; Paris, G.; Vuillemin, V.; Poiraudeau, S.; Roby-Brami, A.; Roren, A. Recent Advances in Kinematics of the Shoulder Complex in Healthy People. Ann. Phys. Rehabil. Med. 2018, 61, 56–59, doi:10.1016/j.rehab.2017.09.001.
Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour. Br. J. Sports Med. 2020, 54, 1451–1462, doi:10.1136/bjsports-2020-102955.
Olds, M.; McLaine, S.; Magni, N. Validity and Reliability of the Kinvent Handheld Dynamometer in the Athletic Shoulder Test. J. Sport Rehabil. 2023, 32, 764–772, doi:10.1123/jsr.2022-0444.
Parry, G.N.; Herrington, L.C.; Horsley, I.G. The Test–Retest Reliability of Force Plate–Derived Parameters of the Countermovement Push-Up as a Power Assessment Tool. J. Sport Rehabil. 2020, 29, 381–383, doi:10.1123/jsr.2018-0419.
Brady, C.J.; Harrison, A.J.; Comyns, T.M. A Review of the Reliability of Biomechanical Variables Produced during the Isometric Mid-Thigh Pull and Isometric Squat and the Reporting of Normative Data. Sports Biomech. 2020, 19, 1–25, doi:10.1080/14763141.2018.1452968.
Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768, doi:10.1213/ANE.0000000000002864.
Sha, Z.; Dai, B. The Validity of Using One Force Platform to Quantify Whole-Body Forces, Velocities, and Power during a Plyometric Push-Up. BMC Sports Sci. Med. Rehabil. 2021, 13, 103, doi:10.1186/s13102-021-00330-z.
Schilling, D.T.; Elazzazi, A.M. Shoulder Strength and Closed Kinetic Chain Upper Extremity Stability Test Performance in Division III Collegiate Baseball and Softball Players. Int. J. Sports Phys. Ther. 2021, 16, doi:10.26603/001c.24244.
Sung, P.S. The Ground Reaction Force Thresholds for Detecting Postural Stability in Participants with and without Flat Foot. J. Biomech. 2016, 49, 60–65, doi:10.1016/j.jbiomech.2015.11.004.
Balcells-Diaz, E.; Daunis-i-Estadella, P. Shoulder Strength Value Differences between Genders and Age Groups. J. Shoulder Elbow Surg. 2018, 27, 463–469, doi:10.1016/j.jse.2017.10.021.
Wohlann, T.; Warneke, K.; Kalder, V.; Behm, D.G.; Schmidt, T.; Schiemann, S. Influence of 8-Weeks of Supervised Static Stretching or Resistance Training of Pectoral Major Muscles on Maximal Strength, Muscle Thickness and Range of Motion. Eur. J. Appl. Physiol. 2024, 124, 1885–1893, doi:10.1007/s00421-023-05413-y.
Teigen, L.E.; Sundberg, C.W.; Kelly, L.J.; Hunter, S.K.; Fitts, R.H. Ca 2+ Dependency of Limb Muscle Fiber Contractile Mechanics in Young and Older Adults. Am. J. Physiol.-Cell Physiol. 2020, 318, C1238–C1251, doi:10.1152/ajpcell.00575.2019.
Baldwin, C.E.; Paratz, J.D.; Bersten, A.D. Muscle Strength Assessment in Critically Ill Patients with Handheld Dynamometry: An Investigation of Reliability, Minimal Detectable Change, and Time to Peak Force Generation. J. Crit. Care 2013, 28, 77–86, doi:10.1016/j.jcrc.2012.03.001.
Alizadeh, S.; Rayner, M.; Mahmoud, M.M.I.; Behm, D.G. Push-Ups vs. Bench Press Differences in Repetitions and Muscle Activation between Sexes. J. Sports Sci. Med. 2020, 19, 289–297.
Salles, J.I.; Velasques, B.; Cossich, V.; Nicoliche, E.; Ribeiro, P.; Amaral, M.V.; Motta, G. Strength Training and Shoulder Proprioception. J. Athl. Train. 2015, 50, 277–280, doi:10.4085/1062-6050-49.3.84.
Ebben, W.P.; Wurm, B.; VanderZanden, T.L.; Spadavecchia, M.L.; Durocher, J.J.; Bickham, C.T.; Petushek, E.J. Kinetic Analysis of Several Variations of Push-Ups. J. Strength Cond. Res. 2011, 25, 2891–2894, doi:10.1519/JSC.0b013e31820c8587.
Suprak, D.N.; Dawes, J.; Stephenson, M.D. The Effect of Position on the Percentage of Body Mass Supported During Traditional and Modified Push-up Variants. J. Strength Cond. Res. 2011, 25, 497–503, doi:10.1519/JSC.0b013e3181bde2cf.
Gouvali, M.K.; Boudolos, K. Dynamic and Electromyographical Analysis in Variants of Push-Up Exercise. J. Strength Cond. Res. 2005, 19, 146, doi:10.1519/14733.1.
Gill, L.; Huntley, A.H.; Mansfield, A. Does the Margin of Stability Measure Predict Medio-Lateral Stability of Gait with a Constrained-Width Base of Support? J. Biomech. 2019, 95, 109317, doi:10.1016/j.jbiomech.2019.109317.
Shumway-Cook, A.; Woollacott, M.; Rachwani, J.; Santamaria, V. Motor Control: Translating Research into Clinical Practice; Physical Therapy; Sixth edition, revised reprint.; Wolters Kluwer: Philadelphia Baltimore New York London Buenos Aires Hong Kong Sydney Tokyo, 2024; ISBN 978-1-975209-56-8.
Matthews, M.J.; Green, D.; Matthews, H.; Swanwick, E. The Effects of Swimming Fatigue on Shoulder Strength, Range of Motion, Joint Control, and Performance in Swimmers. Phys. Ther. Sport 2017, 23, 118–122, doi:10.1016/j.ptsp.2016.08.011.
Tsai, L.; Wredmark, T.; Johansson, C.; Gibo, K.; Engstrom, B.; Tornqvist, H. Shoulder Function in Patients with Unoperated Anterior Shoulder Instability. Am. J. Sports Med. 1991, 19, 469–473, doi:10.1177/036354659101900508.
Olds, M.; McNair, P.; Nordez, A.; Cornu, C. Active Stiffness and Strength in People With Unilateral Anterior Shoulder Instability: A Bilateral Comparison. J. Athl. Train. 2011, 46, 642–647, doi:10.4085/1062-6050-46.6.642.
McDonald, A.C.; Mulla, D.M.; Keir, P.J. Using EMG Amplitude and Frequency to Calculate a Multimuscle Fatigue Score and Evaluate Global Shoulder Fatigue. Hum. Factors J. Hum. Factors Ergon. Soc. 2019, 61, 526–536, doi:10.1177/0018720818794604.
Michalak, K.P.; Przekoracka-Krawczyk, A.; Naskręcki, R. Parameters of the Crossing Points between Center of Pressure and Center of Mass Signals Are Potential Markers of Postural Control Efficiency. PLOS ONE 2019, 14, e0219460, doi:10.1371/journal.pone.0219460.
Lehman, G.J.; MacMillan, B.; MacIntyre, I.; Chivers, M.; Fluter, M. Shoulder Muscle EMG Activity during Push up Variations on and off a Swiss Ball. Dyn. Med. 2006, 5, 7, doi:10.1186/1476-5918-5-7.
Youdas, J.W.; Baartman, H.E.; Gahlon, B.J.; Kohnen, T.J.; Sparling, R.J.; Hollman, J.H. Recruitment of Shoulder Prime Movers and Torso Stabilizers During Push-Up Exercises Using a Suspension Training System. J. Sport Rehabil. 2020, 29, 993–1000, doi:10.1123/jsr.2019-0381.
Welch, E.S.; Watson, M.D.; Davies, G.J.; Riemann, B.L. Biomechanical Analysis of the Closed Kinetic Chain Upper Extremity Stability Test in Healthy Young Adults. Phys. Ther. Sport 2020, 45, 120–125, doi:10.1016/j.ptsp.2020.06.010.
Alaqtash, M.; Sarkodie-Gyan, T.; Yu, H.; Fuentes, O.; Brower, R.; Abdelgawad, A. Automatic Classification of Pathological Gait Patterns Using Ground Reaction Forces and Machine Learning Algorithms. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; IEEE: Boston, MA, August 2011; pp. 453–457.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Iberoamericana de Ciencias de la Actividad Física y el Deporte

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
All the contents published in Revista Iberoamericana de Ciencias de la Actividad Física y el Deporte are subject to the Creative Commons Reconocimento-NoComercia-Compartirigual 4.0 license, the full text of which can be found at <http://creativecommons.org/licenses/by-nc-sa/4.0>
They may be copied, used, disseminated, transmitted and publicly exposed, provided that:
The authorship and original source of your publication (Journal, editorial and URL of the work) are cited.
They are not used for commercial purposes.
The existence and specifications of this use license are mentioned.

Copyright is of two kinds: moral rights and patrimonial rights. Moral rights are perpetual, inalienable, inalienable, inalienable, inalienable and imprescriptible prerogatives.
In accordance with copyright legislation, Revista Eviterna recognizes and respects the moral rights of the authors, as well as the ownership of the economic right, which will be transferred to the University of Malaga for dissemination in open access.
The economic rights refer to the benefits obtained by the use or disclosure of the works. Revista Iberoamericana de Ciencias de la Actividad Física y el Deporte is published in open access and is exclusively authorized to carry out or authorize by any means the use, distribution, disclosure, reproduction, adaptation, translation or transformation of the work.
It is the responsibility of the authors to obtain the necessary permissions of the images that are subject to copyright.











9.png)