Cuando 7+3=4 parece correcto: resolución automática de las restas en una tarea de verificación

Authors

  • Valle Lara Carmona Universidad de Málaga Spain
  • Javier García Orza Universidad de Málaga Spain
  • Patricia Carratalá Cepedal I.E.S. Universidad Laboral de Málaga Spain

DOI:

https://doi.org/10.24310/espsiescpsi.v2i3.13385

Keywords:

Rubtraction, automatic, verification, interference, arithmetical facts

Abstract

There is a great amount of evidence showing that adults solve single-digit multiplications and additions automatically. Nevertheless, evidence regarding subtraction and division is scarce. The present study explores whether the solving of single-digit subtractions is automatic or not. Seventeen psychology students took part in our experiment. They have to judge the correctness of single-digit additions. In the “false additions” the result could be the subtraction of the operands (e.g., 7+3=4) or could be unrelated with the operands (e.g., 7+3=2). The data analysis showed the presence of an interference effect, this is, worse performance in the subtraction condition than in the unrelated condition. These results suggest that subtraction solving is highly automatic.

Downloads

Metrics

Visualizaciones del PDF
72
Jan 2010Jul 2010Jan 2011Jul 2011Jan 2012Jul 2012Jan 2013Jul 2013Jan 2014Jul 2014Jan 2015Jul 2015Jan 2016Jul 2016Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 20265.0
|

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
14%
33%
Days to publication 
4383
145

Indexed in

Editor & editorial board
profiles
Academic society 
N/A
Publisher 
UNIVERSIDAD DE MÁLAGA

PFL

1 2 3 4 5
Not useful Very useful

References

Beringer, J. (1999). Experimental run time system (ERTS). Version 3.28. Frankfurt: Berisoft.

Campbell, J. I. D. (2005). Handbook of mathematical cognition. New York: Psychology Press.

Campbell, J. I. D. y Penner-Wilger, M. (2006). Calculation latency: The ? of memory and the ? of transformation. Memory & Cognition, 34, 217-226.

Cipolotti, L. y Butterworth, B. (1995). Towards a multiroutte model of number processing: Impaired number transcoding with preserved calculation skills. Journal of Experimental Psychology: General, 124, 375-390.

Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1-42.

Dehaene, S. y Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1(1), 83-120.

De Brauwer, J. y Fias, W. (2007). The memory representation of multiplication and division facts. Comunicación presentada al XV Meeting de la European Society for Cognitive Psychology. Agosto, Marsella, Francia.

Galfano, G., Rusconi, E. y Umiltà, C. (2003). Automatic activation of multiplication facts: evidence from the nodes adjacent to the product. The Quarterly Journal of Experimental Psychology 56A (1). 31-61.

García-Orza, J., Damas-López, J., Matas, A. y Rodríguez, J.M. (2009). “2 x 3” primes naming “6”: Evidence from masked priming. Attention, Perception & Psychophysics, 71 (3), 471-480.

Hecht, S. A. (1999). Individual solution processes while solving addition and multiplication math facts in adults. Memory & Cognition, 27, 1097-1107.

LeFevre, J.A., Bisanz, J., Daley, K.E., Buffone, L., Greenham, S.L., y Sadesky, G.S. (1996). Multiple routes to solution of single-digit multiplication problems. Journal of Experimental Psychology: General, 125, 284-306.

LeFevre, J.A., Bisanz, J. y Mrkonjic, L. (1988). Cognitive arithmetic: Evidence for obligatory activation of arithmetic facts. Memory & Cognition, 16, 45-53.

Lemaire, P., Barret, S.E., Fayol, M. y Abdí, H. (1994). Automatic activation of addition and multiplication facts in elementary school children. Journal of Experimental Child Psychology, 57, 224-258.

McCloskey, M. (1992). Cognitive mechanisms in numerical processing: Evidence from acquired dyscalculia. Cognition, 44, 107-157.

Romero, S.G., Rickard, T.C. y Bourne, L.E. (2006). Verification of multiplication facts: An investigation using retrospective protocols. American Journal of Psychology, 119, 87-121.

Rusconi, E., Galfano, G., Rebonato, E. y Umiltà (2006). Bidirectional links in the network of multiplication facts. Psychological Research, 70. 32-42.

Thibodeau, M.H., LeFevre, J., y Bisanz, J. (1996). The extension of the interference effect to multiplication. Canadian Journal of Experimental Psychology, 50, 393-396.

Winkelman, J.H. y Schmidt, J. (1974). Associative confusions in mental arithmetic. Journal of Experimental Psychology, 102, 734-736.

Zbrodoff, N.J., y Logan, G.D. (1986). On the autonomy of mental processes: A case study of arithmetic. Journal of Experimental Psychology: General, 115, 118-131.

Published

2009-09-01

How to Cite

Lara Carmona, V., García Orza, J., & Carratalá Cepedal, P. (2009). Cuando 7+3=4 parece correcto: resolución automática de las restas en una tarea de verificación. Escritos De Psicología - Psychological Writings, 2(3), 35–39. https://doi.org/10.24310/espsiescpsi.v2i3.13385

Issue

Section

Reports