Modelling split-plot data and nonstationary covariance structures: a simulation study

Authors

  • Roser Bono Facultad de Psicología, Universidad de Barcelona Spain
  • Jaume Arnau Facultad de Psicología, Universidad de Barcelona Spain
  • Guillermo Vallejo Facultad de Psicología, Universidad de Oviedo Spain

DOI:

https://doi.org/10.24310/espsiescpsi.v3i3.13341

Keywords:

Covariance structures, split-plot designs, random coefficient models, Akaike criterion, Monte Carlo simulation

Abstract

A topic that has aroused great interest among researchers who analyse longitudinal data has been the development, by means of simulation studies, of analytic models that incorporate the covariance structures which best fit the data. When analysing covariance structures within the context of longitudinal data one finds that the variances are not always constant. Indeed, the variances commonly increase over time when the correlations between equally spaced observations are not homogeneous. This paper reports a simulation study which analysed two random coefficient models with nonstationary correlations. The first had constant variances (RC), while the second, given its utility in longitudinal contexts, showed variances with a linear structure (RCL). Once the two covariance matrices (RC and RCL) had been generated, eleven covariance structures were fitted by means of PROC MIXED for the Akaike criterion, thus enabling the best fit to be selected. The aim of the study was to determine the fit percentages of the different covariance matrices and the extent to which the one with the best fit corresponds to the population covariance matrix.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Algina, J. y Keselman, H. J. (1998). A power comparison of the Welch-James and Improved General Approximation tests in the split-plot designs. Journal of educational and Behavioral Statistics, 23, 152-169.

Arnau, J. y Bono, R. (2008). Estudios longitudinales. Modelos de diseño y análisis. Escritos de Psicología, 2, 30-39.

Arnau, J., Bono, R. y Vallejo, G. (2009). Analyzing small samples of repeated measures data with the mixed-model adjusted F test. Communications in Statistics. Simulation and Computations, 38, 1083-1103.

Bono, R., Arnau, J. y Vallejo, G. (2008). Técnicas de análisis aplicadas a datos longitudinales en Psicología y Ciencias de la Salud: Período 1985-2005. Papeles del Psicólogo, 29, 136-146.

Cnaan, A., Laird, N. M. y Slasor, P. (1997). Using the general linear mixed model to analyze unbalanced repeated measures and longitudinal data. Statistics in Medicine, 16, 2349-2380.

Diggle, P. J., Liang, K. Y. y Zeger, S. L. (1994). Analysis of longitudinal data. New York: Oxford University Press.

Edwards, L. J. (2000). Modern statistical techniques for the analysis of longitudinal data in biomedical research. Pediatric Pulmony, 30, 330-344.

Ferron, J., Dailey, R. y Yi, Q. (2002). Effects of misspecifying the first-level error structure in two-levels models of change. Multivariate Behavior Research, 37, 379-403.

Gomez, E. V., Schaalje, G. B. y Fellingham, G. W. (2005). Performance of the Kenward-Roger method when the covariancia structure is selected using AIC and BIC. Communication in Statistics. Theory and Methods, 34, 377-392.

Helms, R. W. (1992). Intentionally incomplete longitudinal designs: I. Methodology and comparison of some full span designs. Statistics in Medicine, 11, 1889-1993.

Keselman, H. J., Algina, J., Kowalchuk R. K. y Wolfinger, R. D. (1998). A comparison of two approaches for selecting covariance structures in the analysis of repeated measurements. Communications in Statistics. Simulation and Computation, 27, 591-604.

Keselman, H. J., Algina, J., Kowalchuk R. K. y Wolfinger, R. D. (1999). A comparison of recent approaches to the analysis of repeated measurements. British Journal of Mathematical and Statistical Psychology, 52, 63-78.

Keselman, H. J., Carriere, K. C. y Lix, L. M. (1993). Testing repeated measures hypotheses when covariance matrices are heterogeneous. Journal of Educational Statistics, 18, 305-319.

Laird, N. M. y Ware, J. H. (1982). Random effects models for longitudinal data. Biometrics, 38, 963-974.

Littell, R. C., Milliken, G. A., Stroup, W. W. y Wolfinger, R. D. (1996). SAS system for mixed models. Cary, NC: SAS Institute.

Livacic-Rojas, P., Vallejo, G. y Fernández, P. (2006). Procedimientos estadísticos alternativos para evaluar la robustez mediante diseños de medidas repetidas. Revista Latinoamericana de Psicología, 38, 579-599.

Lix, L. M., Algina, J., Keselman, H. J. (2003). Analyzing multivariate repeated measures designs: A comparison of two approximate degrees of freedom procedures. Multivariate Behavioral Research, 38, 403-431.

Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin, 105, 156-166

Núñez-Antón. V. y Zimmerman, D. L. (2000). Modeling nonstationary longitudinal data. Biometrics, 56, 699-705.

Núñez-Antón. V. y Zimmerman, D. L. (2001). Modelización de datos longitudinales con estructuras de covarianza no estacionarias : modelos de coeficientes aleatorios frente a modelos alternativos. Qu?estió, 25, 225-262.

SAS Institute. (1997). SAS Macro language: Reference. Cary, NC: Author.

SAS Institute. (1999a). SAS/IML software, usage and reference, Version 8. Cary, NC: Author.

SAS Institute. (1999b). SAS Language reference: Dictionary, Version 8. Cary, NC: Author.

Singer, J. D. y Willett, J. B. (2005). Longitudinal research: Current status and future prospects. Consulta 12 de septiembre de 2007 de la World Wide Web: http://gseweb.harvard.edu/~faculty/singer/Presentations/Longitudinal%20research.ppt.

Vallejo, G., Arnau, J., Bono, R., Fernández, P. y Tuero, E. (2010). Selección de modelos anidados para datos longitudinales usando criterios de información y la estrategia de ajuste condicional. Psicothema, 22, 323-333.

Vallejo, G. y Ato, M. (2006). Modified Brown-Forsythe procedure for testing interactions effects in split-plot designs. Multivariate Behavioral Research, 41, 549-578.

Vallejo, G., Ato, M. y Valdés, T. (2008). Consequences of misspecifying the error covariance structure in linear mixed models for longitudinal data. Methodology. European Journal of Research for the Behavioral and Social Sciences, 4, 10-11.

Vallejo, G., Fidalgo, A. y Fernández, P. (2001). Effects of covariance heterogeneity on three procedures for analyzing multivariate repeated measures designs. Multivariate Behavioral Research, 36, 1-27.

Verbeke, G. y Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New York: Springer-Verlag.

Wolfinger, R. D. (1996). Heterogeneous variance-covariance structures for repeated measurements. Journal of Agricultural, Biological, and Enviromental Statistics, 1, 205-230.

Zeger S. L. y Liang, K. Y. (1992). An overview of methods for the analysis of longitudinal dada. Statistics in Medicine, 11, 1825-1839.

Published

2010-09-01

How to Cite

Bono, R., Arnau, J., & Vallejo, G. (2010). Modelling split-plot data and nonstationary covariance structures: a simulation study. Escritos De Psicología - Psychological Writings, 3(3), 1–7. https://doi.org/10.24310/espsiescpsi.v3i3.13341

Issue

Section

Reports