Automatic dominance detection in dyadic conversations

Authors

  • Sergio Escalera Universidad de Barcelona Spain
  • Rosa M. Martínez Universidad de Barcelona Spain
  • Jordi Vitrià Universidad de Barcelona Spain
  • Petia Radeva Universidad de Barcelona Spain
  • M. Teresa Anguera Universidad de Barcelona Spain

DOI:

https://doi.org/10.24310/espsiescpsi.v3i2.13335

Keywords:

Dominance detection, Non-verbal communication, Visual features

Abstract

Dominance is referred to the level of influence that a person has in a conversation. Dominance is an important research area in social psychology, but the problem of its automatic estimation is a very recent topic in the contexts of social and wearable computing. In this paper, we focus on the dominance detection of visual cues. We estimate the correlation among observers by categorizing the dominant people in a set of face-to-face conversations. Different dominance indicators from gestural communication are defined, manually annotated, and compared to the observers’ opinion. Moreover, these indicators are automatically extracted from video sequences and learnt by using binary classifiers. Results from the three analyses showed a high correlation and allows the categorization of dominant people in public discussion video sequences.

Downloads

Metrics

Visualizaciones del PDF
84
Jul 2010Jan 2011Jul 2011Jan 2012Jul 2012Jan 2013Jul 2013Jan 2014Jul 2014Jan 2015Jul 2015Jan 2016Jul 2016Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 20267.0
|

References

Babu, D., Hung, H., Yeo, C., & Gatica-Perez, D. (2008). Modeling dominance in group conversations using nonverbal activity cues. IEEE Transactions on Audio, Speech, and Language Processing, 17, 501–513.

Efran, J. S. (1968). Looking for approval: effects of visual behavior of approbation from persons differing in importance. Journal of Personality and Social Psychology, 10, 21–25.

Efron, B., & Tibshirani, R. (1993). An introduction to the bootstrap. New York: Chapman & Hall/CRC.

Ellyson, S. L., & Dovidio, J. F. (1985). Power, dominance, and nonverbal behavior. New York: Springer-Verlag.

Friedman, J., Hastie, T., & Tibshirani, R. (1998). Additive logistic regression: a statistical view of boosting. The Annals of Statistics, 38, 337–374.

Gatica-Perez, D. (2006). Analyzing group interactions in conversations: A review. Multisensor Fusion and Integration for Intelligent Systems, 41–46.

Gatica-Perez, D. (in press). Automatic nonverbal analysis of social interaction in small groups: A review. Image and Vision Computing.

Hung, H., Babu, D., Ba, S., Odobez, J., & Gatica-Perez, D. (2008). Investigating automatic dominance estimation in groups from visual attention and speaking activity. Proceedings of the International Conference on Multimodal Interfaces ICMI), Chania, 233–236,

Hung, H., Jayagopi, D., Yeo, C., Friedland, G., Ba, S., Odobez, J., Ramchandran, K., Mirghafori, N., & Gatica-Perez, D. (2007). Using audio and video features to classify the most dominant person in a group meeting. Proceedings of the ACM International Conference on Mulmedia (ACM, MM), Augsburg, 835–838.

McCowan, I., Gatica-Perez, D., Bengio, S., Lathoud, G., Barnard, M., & Zhang, F. (2005). Automatic analysis of multimodal group actions in meetings. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 305–317.

Pentland, A. (2005). Socially aware computation and communication. Computer, 38, 33–40.

Rienks, R., & Heylen, D. (2005). Automatic dominance detection in meetings using support vector machines. Workshop on Machine Learning for Multimodal Interaction (MLMI), Edinburgh.

Published

2010-05-01

How to Cite

Escalera, S., Martínez, R. M., Vitrià, J., Radeva, P., & Anguera, M. T. (2010). Automatic dominance detection in dyadic conversations. Escritos De Psicología - Psychological Writings, 3(2), 41–45. https://doi.org/10.24310/espsiescpsi.v3i2.13335

Issue

Section

Informe breve