Conditioned place preference: an animal model of motivational properties of drugs

Authors

  • Concepción Roger Sánchez Universitat de Valencia Spain
  • María Pilar García Pardo Universitat de Valencia Spain
  • María Asunción Aguilar Calpe Universitat de Valencia Spain

DOI:

https://doi.org/10.24310/espsiescpsi.v9i2.13210

Keywords:

reward, reinforcement, conditioning, preference, CPP, learning

Abstract

This article investigated the Conditioned Place Preference (CPP) technique as a useful model for studying the motiva-tional properties of drugs of abuse. The background of the technique is presented. Methodological issues that need to be considered when designing a study using CPP are discussed. These issues include the different types of apparatus available, the different phases of the protocol and its possible variations, the type of design (biased vs unbiased), and the need to consider time effects. We discuss data interpretation issues, such what the animal learns, the presentation of the dependent variable, the influence of novelty, state-dependent learning, latent inhibition, the motor and cognitive effects of drugs, and comparison with data from the drug self-administration model. The main applications, advantages, and limitations of the technique are presented. We offer some proposals to address the main criticisms of this model.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Aguilar, M. A., Rodríguez-Arias, M., y Miñarro, J.(2009). Neurobiological mechanisms of the reinstatement of drug-conditioned place preference. Brain Research Reviews, 59, 253-277. http://dx.doi.org/10.1016/j.brainres-rev.2008.08.002

Bardo, M. T., y Bevins, R. A. (2000). Conditioned place preference: What does it add to our preclinical understanding of drug reward? Psychopharmacology, 153, 31-43. http://dx.doi.org/10.1007/s002130000569

Barros, M., Dempster, E. L., Illott, N., Chabrawi, S., Maior, R. S., Tomaz, C., Silva, M.A., Huston, J.P., Mill, J., y Müller, C.P. (2013). Decreased methylation of the NK3 receptor coding gene (TACR3) after cocaine-induced place preference in marmoset monkeys. Addiction biology, 18, 452-454. http://dx.doi.org/10.1111/j.1369-1600.2011.00409.x

Beach, H. D. (1957). Morphine addiction in rats. Cana-dian Journal of Psychology, 11, 104-112. http://dx.doi.org/10.1037/h0083703

Cain, S. W., Chou, T., y Ralph, M. R. (2004). Circadian modulation of performance on an aversion-based place learning task in hamsters. Behavioural Brain Research, 150, 201-205. http://dx.doi.org/10.1016/j.bbr.2003.07.001

Cain, S., Ko, C., Chalmers, J. A., y Ralph, M. R. (2004). Time of day modulation of conditioned place preference in rats depends on the strain of rat used. Neurobiology of Learning and Memory, 81, 217-220. http://dx.doi.org/10.1016/j.nlm.2004.02.003

Cain, S. W., y Ralph, M. R. (2009). Circadian modulation of conditioned place avoidance in hamsters does not require the suprachiasmatic nucleus. Neurobiology of Learning and Memory, 91, 81-84. http://dx.doi.org/10.1016/j.nlm.2008.10.005

Carr, G. D., Fibiger, H. C., y Phillips, A. G. (1989). Conditioned place preference as a measure of drug reward. In: Liebman JM, Cooper SJ, The Neuropharmacological Basis of Reward (pp. 264 – 319). Clarendon Press/Oxford University Press

Childs, E., y De Wit, H. (2009). Amphetamine-induced place preference in humans. Biological Psychiatry, 65, 900-904. http://dx.doi.org/10.1016/j.biopsych.2008.11.016

Childs, E., y De Wit, H. (2013). Contextual conditioning enhances the psychostimulant and incentive properties of damphetamine in humans. Addiction Biology, 18, 985-992. http://dx.doi.org/10.1111/j.1369-1600.2011.00416.x

Collier, A. D., y Echevarria, D. J. (2013). The utility of the zebrafish model in conditioned place preference to assess the rewarding effects of drugs. Behavioural Pharmacology, 24, 375-383. http://dx.doi.org/10.1097/FBP.0b013e328363d14a

Cunningham, C. L., Henderson, C. M., y Bormann, N. M.(1998). Extinction of ethanol-induced conditioned place preference and conditioned place aversion: Effects of naloxone. Psychopharmacology, 139, 62-70. http://dx.doi.org/10.1007/s002130050690

Cunningham, C. L., Ferree, N. K., y Howard, M. A. (2003). Apparatus bias and place conditioning with ethanol in mice. Psychopharmacology, 170, 409-422. http://dx.doi.org/10.1007/s00213-003-1559-y

Daza-Losada, M., Ribeiro Do Couto, B., Manzanedo, C., Aguilar, M. A., Rodríguez-Arias, M., y Miñarro, J. (2007). Rewarding effects and reinstatement of MDMA-induced CPP in adolescent mice. Neuropsychopharmacology, 32, 1750-1759. http://dx.doi.org/10.1038/sj.npp.1301309

Estellés, J., Rodríguez-Arias, M., Maldonado, C., Manzanedo, C., Aguilar, M. A., y Miñarro, J. (2006). Prenatal cocaine alters later responses to morphine in adult male mice. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 30, 1073-1082. http://dx.doi.org/10.1016/j.pnpbp.2006.04.014

Font, L., Aragon, C. M. G., y Miquel, M. (2006). Ethanol-induced conditioned place preference, but not aversion, is blocked by treatment with D penicillamine, an inactivation agent for acetaldehyde. Psychopharmacology, 184, 56-64. http://dx.doi.org/10.1007/s00213-005-0224-z

Fudala, P. J., y Iwamoto, E. T. (1990). Conditioned aversion after delay place conditioning with amphetamine. Pharmacology, Biochemistry, and Behavior, 35, 89-92. http://dx.doi.org/10.1016/0091-3057(90)90209-Z

García-Pardo, M. P., Escobar-Valero, C., Rodríguez-Arias, M., Miñarro, J., y Aguilar, M. A. (2015). Involvement of NMDA glutamate receptors in the acquisition and reinstatement of the conditioned place preference induced by MDMA. Behavioural Pharmacology, 26, 411-417. http://dx.doi.org/10.1097/FBP.0000000000000138

Garcia, J., Kimeldorf, D. J., y Hunt, E. L. (1957). Spatial avoidance in the rat as a result of exposure to ionizing radiation. The British Journal of Radiology, 30, 318-321. http://dx.doi.org/10.1259/0007-1285-30-354-318

Huston, J. P., de Souza Silva, M. A., Topic, B., y Müller, C. P. (2013). What’s conditioned in conditioned place preference? Trends in Pharmacological Sciences, 34, 163-167. http://dx.doi.org/10.1016/j.tips.2013.01.004

Ikemoto, S., y Donahue, K. M. (2005). A five-minute, but not a fifteen-minute, conditioning trial duration induces conditioned place preference for cocaine administration into the olfactory tubercle. Synapse, 56, 57-59. http://dx.doi.org/10.1002/syn.20124

Kaun, K. R., Azanchi, R., Maung, Z., Hirsh, J., y Heberlein, U. (2011). A drosophila model for alcohol reward. Nature Neuroscience, 14, 612-619. http://dx.doi.org/10.1038/nn.2805

Maldonado, C., Rodríguez-Arias, M., Castillo, A., Aguilar, M. A., y Miñarro, J. (2007). Effect of memantine and CNQX in the acquisition, expression and reinstatement of cocaine-induced conditioned place preference. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 31, 932-939. http://dx.doi.org/10.1016/j.pnpbp.2007.02.012

Maldonado, C., Rodríguez-Arias, M., Aguilar, M. A., y Miñarro, J. (2004). GHB ameliorates naloxone-induced conditioned place aversion and physical aspects of morphine withdrawal in mice. Psychopharmacology, 177, 130-140. http://dx.doi.org/10.1007/s00213-004-1927-2

Maldonado, C., Rodríguez-Arias, M., Castillo, A., Aguilar, M. A., y Miñarro, J. (2006). Gamma-hydroxybutyric acid affects the acquisition and reinstatement of cocaine-induced conditioned place preference in mice. Behavioural Pharmacology, 17, 119-131. http://dx.doi.org/10.1097/01.fbp.0000190685.84984.ec

Manzanedo, C., Aguilar, M. A., Rodríguez-Arias, M., y Miñarro, J. (2001). Effects of dopamine antagonists with different receptor blockade profiles on morphine-induced place preference in male mice. Behavioural Brain Research, 121, 189-197. http://dx.doi.org/10.1016/S0166-4328(01)00164-4

Manzanedo, C., Aguilar, M. A., Rodríguez-Arias, M., Navarro, M., y Miñarro, J. (2004). Cannabinoid agonist-induced sensitisation to morphine place preference in mice. Neuroreport, 15, 1373-1377. http://dx.doi.org/10.1097/01.wnr.0000126217.87116.8c

Mateos-García, A., Roger-Sánchez, C., Rodríguez-Arias, M., Miñarro, J., Aguilar, M. A., Manzanedo, C., y Arenas, M. C. (2015). Higher sensitivity to the conditioned rewarding effects of cocaine and MDMA in high-novelty-seekers mice exposed to a cocaine binge during adolescence. Psychopharmacology, 232, 101-113. http://dx.doi.org/10.1007/s00213-014-3642-y

Olds, J., y Milner, P. (1954). Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. Journal of Comparative and Physiological Psychology, 47, 419-427. http://dx.doi.org/10.1037/h0058775

Ralph, M. R., Ko, C. H., Antoniadis, E. A., Seco, P., Irani, F., Presta, C., y McDonald, R.J. (2002). The significance of circadian phase for performance on a reward-based learning task in hamsters. Behavioural Brain Research, 136, 179-184. http://dx.doi.org/10.1016/S0166-4328(02)00131-6

Ribeiro Do Couto, B., Aguilar, M. A., Manzanedo, C., Rodríguez-Arias, M., y Miñarro, J. (2005). NMDA glutamate but not dopamine antagonists blocks drug-induced reinstatement of morphine place preference. Brain Research Bulletin, 64, 493-503. http://dx.doi.org/10.1016/j.brainresbull.2004.10.005

Ribeiro Do Couto, B., Aguilar, M. A., Manzanedo, C., Rodríguez-Arias, M., y Miñarro, J. (2004). Effects of NMDA receptor antagonists (MK-801 and memantine) on the acquisition of morphine-induced conditioned place preference in mice. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 28, 1035-1043. http://dx.doi.org/10.1016/j.pnpbp.2004.05.038

Rodríguez-Arias, M., Castillo, A., Daza-Losada, M., Aguilar, M. A., y Miñarro, J. (2009). Effects of extended cocaine conditioning in the reinstatement of place preference. Physiology & Behavior, 96, 620-630. http://dx.doi.org/10.1016/j.physbeh.2008.12.011

Rodríguez-Arias, M., Valverde, O., Daza-Losada, M., Blanco-Gandía, M. C., Aguilar, M. A., y Miñarro, J.(2013). Assessment of the abuse potential of MDMA in the conditioned place preference paradigm: Role of CB1 receptors. Progress in Neuro-Psychopharmacology & Bio-logical Psychiatry, 47, 77-84. http://dx.doi.org/10.1016/j.pnpbp.2013.07.013

Roger-Sánchez, C., Aguilar, M. A., Rodríguez-Arias, M., Aragon, C. M., y Miñarro, J. (2012). Age and sex-related differences in the acquisition and reinstatement of ethanol CPP in mice. Neurotoxicology and Teratology, 34, 108-115. http://dx.doi.org/10.1016/j.ntt.2011.07.011

Roma, P. G., y Riley, A. L. (2005). Apparatus bias and the use of light and texture in place conditioning. Pharmacology, Biochemistry, and Behavior, 82, 163-169. http://dx.doi.org/10.1016/j.pbb.2005.08.004

Rossi, N. A., y Reid, L. D. (1976). Affective states associated with morphine injections. Psychobiology, 4, 269-274. http://dx.doi.org/10.3758/BF03332869

Ruiz G, Sánchez N, y de la Casa LG (1999). Edward Lee Thorndike y la psicología animal. En Tortosa F., (editor), Una Historia de la Psicología Moderna (pp. 283-292). Madrid: McGraw-Hill.

Sanchis-Segura, C., y Spanagel, R. (2006). Behavioural assessment of drug reinforcement and addictive features in rodents: An overview. Addiction Biology, 11, 2-38. http://dx.doi.org/10.1111/j.1369-1600.2006.00012.x

Schechter, M. D., y Calcagnetti, D. J. (1993). Trends in place preference conditioning with a cross-indexed bibliography; 1957-1991. Neuroscience and Biobehavioral Reviews, 17, 21-41. http://dx.doi.org/10.1016/S0149-7634(05)80228-3

Spragg S.D.S. (1940). Morphine addiction in chimpanzees. Comparative Psychology Monographs, 15:1–132

Spyraki, C., Kazandjian, A., y Varonos, D. (1985). Diazepam-induced place preference conditioning: Appetitive and antiaversive properties. Psychopharmacology, 87, 225-232. http://dx.doi.org/10.1007/BF00431813

Stefanski, R., Ladenheim, B., Lee, S. H., Cadet, J. L., y Goldberg, S. R. (1999). Neuroadaptations in the dopaminergic system after active self-administration but not after passive administration of methamphetamine. European Journal of Pharmacology, 371, 123-135. http://dx.doi.org/10.1016/S0014-2999(99)00094-1

Swerdlow, N. R., van der Kooy, D., Koob, G. F., y Wenger, J. R. (1983). Cholecystokinin produces conditioned place-aversions, not place-preferences, in food-deprived rats: Evidence against involvement in satiety. Life Sciences, 32, 2087-2093. http://dx.doi.org/10.1016/0024-3205(83)90096-6

Tzschentke, T. M. (1998). Measuring reward with the conditioned place preference paradigm: A comprehensive review of drug effects, recent progress and new issues. Progress in Neurobiology, 56, 613-672. http://dx.doi.org/10.1016/S0301-0082(98)00060-4

Tzschentke, T. M. (2007). Measuring reward with the conditioned place preference (CPP) paradigm: Update of the last decade. Addiction Biology, 12, 227-462. http://dx.doi.org/10.1111/j.1369-1600.2007.00070.x

Van der Kooy, D. (1987). Place conditioning: A simple and effective method for assessing the motivational properties of drugs. In: Bozarth (editor), Methods of assessing the reinforcing properties of abused drugs (pp. 229-240). New York: Springer-Verlag. http://dx.doi.org/10.1007/978-1-4612-4812-5_13

Vidal-Infer, A., Roger-Sánchez, C., Daza-Losada, M., Aguilar, M. A., Minarro, J., y Rodriguez-Arias, M. (2012). Role of the dopaminergic system in the acquisition, expression and reinstatement of MDMA-induced conditioned place preference in adolescent mice. PloS One, 7, e43107. http://dx.doi.org/10.1371/journal.pone.0043107

Published

2016-09-01

How to Cite

Roger Sánchez, C., García Pardo, M. P., & Aguilar Calpe, M. A. (2016). Conditioned place preference: an animal model of motivational properties of drugs. Escritos De Psicología - Psychological Writings, 9(2), 53–62. https://doi.org/10.24310/espsiescpsi.v9i2.13210

Issue

Section

Metodología e instrumentación