CRISPR/Cas9: The umpteenth revolution

Authors

  • José Joaquin Serrano Spain

Keywords:

science, relativistic and quantum revolution

Abstract

When I started writing this article, they come to mind recent conversations with some good friends; conversations that revolved around whether science was advancing at jumps or, on the contrary, he did it gradually. The answer could be that it followed a gradual process until recently. just over a century, at which time it experienced a spectacular leap, especially in the field of physics, with the relativistic and quantum revolution

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Capecchi, M.R. (1989). Altering the genome by homologous recombination. Science 244, 1288–1292.

Chylinski, K., Le Rhun, A., & Charpentier, E. (2013). The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA

Biology, 10(5), 726-737.

Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819-823

Cronican, J. J., Thompson, D. B., Beier, K. T., McNaughton, B. R., Cepko, C. L., & Liu, D. R. (2010). Potent delivery of functional proteins

into Mammalian cells in vitro and in vivo using a supercharged protein. ACS Chemical Biology, 5(8), 747-752.

Deveau, H., Barrangou, R., Garneau, J.E., Labonte, J., Fremaux, C., Boyaval, P., Romero, D.A., Horvath, P., and Moineau, S. (2008). Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. Journal of Bacteriology 190, 1390–1400

Gaj, T., Gersbach, C. A., & Barbas III, C. F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in

Biotechnology, 31(7), 397-405.

Garneau, J.E., Dupuis, M.E., Villion, M., Romero, D.A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magada´ n, A.H., and Moineau, S. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71.

Gasiunas, G., Sinkunas, T., & Siksnys, V. (2014). Molecular mechanisms of CRISPR-mediated microbial immunity. Cellular and Molecular Life Sciences, 71(3), 449-465.

Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell, 157(6),

-1278.

John, M., Geick, A., Hadwiger, P., Vornlocher, H. P., & Heidenreich, O. (2003). Gene silencing by RNAi in mammalian cells. Current

Protocols in Molecular Biology, 26-2.

Li, W., Teng, F., Li, T., & Zhou, Q. (2013). Simultaneous generation and germline transmission of multiple gene mutations in rat using

CRISPR-Cas systems. Nature Biotechnology, 31(8), 684-686

Perez-Pinera, P., Kocak, D.D., Vockley, C.M., Adler, A.F., Kabadi, A.M., Polstein, L.R., Thakore, P.I., Glass, K.A., Ousterout, D.G., Leong,

K.W., et al. (2013). RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nature Methods 10, 973–976.

Ran, F., Hsu, P. D., Lin, C. Y., Gootenberg, J. S., Konermann, S., Trevino, A. E. & Zhang, F. (2013a). Double nicking by RNA-guided

CRISPR Cas9 for enhanced genome editing specicity. Cell, 154(6), 1380-1389.

Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. (2013b). Genome engineering using the CRISPR-Cas9 system.

Nature Protocols, 8(11), 2281-2308.

Sakuma, T., Nishikawa, A., Kume, S., Chayama, K., & Yamamoto, T. (2014). Multiplex genome engineering in human cells using all-inone CRISPR/Cas9 vector system. Scientic Reports, 4, 5400.

Sampson, T. R., & Weiss, D. S. (2014). Exploiting CRISPR/Cas systems for biotechnology. Bioessays, 36(1), 34-38.

Thompson, D. B., Villaseñor, R., Dorr, B. M., Zerial, M., & Liu, D. R. (2012). Cellular uptake mechanisms and endosomal tracking of

supercharged proteins. Chemistry & Biology, 19(7), 831-843.

Wang, H., Yang, H., Shivalila, C. S., Dawlaty, M. M., Cheng, A. W., Zhang, F., & Jaenisch, R. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4), 910-918.

Wang, T., Wei, J. J., Sabatini, D. M., & Lander, E. S. (2014). Genetic screens in human cells using the CRISPR-Cas9 system. Science,

(6166), 80-84.

Xue, W., Chen, S., Yin, H., Tammela, T., Papagiannakopoulos, T., Joshi, N. S., & Jacks, T. (2014). CRISPR-mediated direct mutation of

cancer genes in the mouse liver. Nature, 514, 380-396.

Zuris, J. A., Thompson, D. B., Shu, Y., Guilinger, J. P., Bessen, J. L., Hu, J. H., & Liu, D. R. (2014). Cationic lipid-mediated delivery of proteins enables eficient protein-based genome editing in vitro and in vivo. Nature Biotechnology, 33, 73-80

Published

2014-12-20

How to Cite

Serrano, J. J. (2014). CRISPR/Cas9: The umpteenth revolution. Encuentros En La Biología, 7(152), 207–210. Retrieved from https://revistas.uma.es/index.php/enbio/article/view/18063