Prática física ou mental ou ambas: uma revisão sistemática com meta-análise

Autores

  • Judith Jiménez-Díaz Escuela de Educación Física y Deportes Centro de Investigación en Ciencias del Movimiento Humano Universidad de Costa Rica Costa Rica http://orcid.org/0000-0001-8663-7413
  • Karla Chaves-Castro 1Escuela de Educación Física y Deportes, Universidad de Costa Rica, Costa Rica. 2Centro de Investigación en Ciencias del Movimiento Humano, Universidad de Costa Rica, Costa Rica Costa Rica
  • María Morera-Castro 3Escuela de Ciencias del Movimiento Humano y Calidad de Vida Universidad Nacional, Heredia, Costa Rica. Costa Rica
  • Priscilla Portuguez-Molina Costa Rica
  • Gabriela Morales-Scholz Costa Rica

DOI:

https://doi.org/10.24310/jpehm.5.2.2023.17875

Palavras-chave:

imagens mentais, execução motora, aprendizagem motora, habilidade motora, desempenho do motor

Resumo

Introdução. Pesquisas anteriores chegaram a conclusões positivas sobre os efeitos da prática mental no desempenho e no aprendizado de uma habilidade motora. O objetivo deste estudo foi utilizar a abordagem meta-analítica de dados agregados para avaliar o impacto da prática física (PP), da prática mental (MP) e da combinação de ambas em testes de aquisição, retenção e transferência no desempenho das habilidades motoras. . Metodologia: Foram incluídos 27 estudos publicados até 2022 por meio de busca em seis bases de dados. Um modelo de efeitos aleatórios foi utilizado usando o tamanho do efeito da diferença média padronizada (SE) para agrupar os resultados. Resultados: Um total de 42 ES foram calculados e separados em comparações pareadas para a fase de aquisição, retenção e transferência. Na fase de aquisição observou-se que o MP foi mais eficaz do que não praticar (ES=0,508; n=25; IC=0,29,0,72), o PP foi mais eficaz do que não praticar (ES=1,78; n= 15; IC= 0,97,2,60), CP foi mais eficaz que não praticar (ES=1,16; n=12; IC=0,57,1,75), PP foi mais eficaz que MP (ES=-1,16; n=23; IC= -1,88, - 0,45), o PP obteve resultados semelhantes ao CP (ES=-0,01; n=16; IC=-0,31,0,28), e o CP foi mais eficaz que o MP (ES=0,61; n=12; IC=0,17,1,04). Na fase de retenção observou-se que a MP foi mais eficaz do que não praticar (ES=1,11; n=5; IC=0,44,1,79), a PP foi mais eficaz do que não praticar (ES=1,03; n=4; IC= 0,08, 1,99), o PP foi mais eficaz que o MP (ES=-1,29; n=9; IC=-3,12,0,54), o PP teve resultados semelhantes ao PC (ES=0,16; n=8; IC= -0,29,0,63). ), o PC teve resultados semelhantes ao MP (ES=-0,06; n=3; IC=-1,22,1,09). Na fase de transferência observou-se que o MP foi mais eficaz do que nenhuma prática (ES=1,12; n=5; IC=0,01,1,59), o PP teve resultados semelhantes a nenhuma prática (ES=0,41; n=5; IC= -0,02,0,85), e o PP foi mais eficaz que o MP (ES=0,50; n=6; IC=0,12,0,87). Idade, nível de habilidade, tipo de prática mental, total de sessões e tipo de habilidade foram considerados possíveis variáveis ​​moderadoras. Conclusões: A prática mental não substitui a prática física, porém, em algumas condições, a prática física pode ser complementada pela prática mental.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Referências

Allami, N., Paulignan, Y., Brovelli, A., & Boussaoud, D. (2008). Visuo-motor learning with combination of different rates of motor imagery and physical practice. Experimental Brain Research, 184(1), Article 1. https://doi.org/10.1007/s00221-007-1086-x

Behrendt, F., Zumbrunnen, V., Brem, L., Suica, Z., Gäumann, S., Ziller, C., Gerth, U., & Schuster-Amft, C. (2021). Effect of motor imagery training on motor learning in children and adolescents: A systematic review and meta-Analysis. International Journal of Environmental Research and Public Health, 18(18), 9467. https://doi.org/10.3390/ijerph18189467

Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2009). Introduction to meta-analysis. John Wiley & Sons. https://doi.org/10.1002/9780470743386

Borenstein, M., Higgins, J. P. T., Hedges, L. V., & Rothstein, H. R. (2017). Basics of meta-analysis: I 2 is not an absolute measure of heterogeneity: I 2 is not an absolute measure of heterogeneity. Research Synthesis Methods, 8(1), Article 1. https://doi.org/10.1002/jrsm.1230

Broniec, A. (2016). Analysis of EEG signal by flicker-noise spectroscopy: Identification of right-/left-hand movement imagination. Medical & Biological Engineering & Computing, 54(12), 1935-1947. https://doi.org/10.1007/s11517-016-1491-z

Debarnot, U., Clerget, E., & Olivier, E. (2011). Role of the primary motor cortex in the early boost in performance following mental imagery training. PLoS ONE, 6(10), Article 10. https://doi.org/10.1371/journal.pone.0026717

Di Nota, P. M., Levkov, G., Bar, R., & DeSouza, J. F. X. (2016). Lateral occipitotemporal cortex (LOTC) activity is greatest while viewing dance compared to visualization and movement: Learning and expertise effects. Experimental Brain Research, 234(7), 2007-2023. https://doi.org/10.1007/s00221-016-4607-7

Doussoulin, A., & Rehbein, L. (2011). Motor imagery as a tool for motor skill training in children. Motricidade, 7(3). https://doi.org/10.6063/motricidade.7(3).131

Driskell, J. E., Copper, C., & Moran, A. (1994). Does mental practice enhance performance? Journal of Applied Psychology, 79(4), Article 4. https://doi.org/10.1037/0021-9010.79.4.481

Fairbrother, J. T. (2010). Fundamentals of Motor Behavior. Human Kinetics. https://doi.org/10.5040/9781492597346

Feltz, D. L., & Landers, D. M. (1983). The effects of mental practice on motor skill learning and performance: A meta-analysis. Journal of sport psychology, 5(1), Article 1. https://doi.org/10.1123/jsp.5.1.25

Freitas, E., Saimpont, A., Blache, Y., & Debarnot, U. (2020). Acquisition and consolidation of sequential footstep movements with physical and motor imagery practice. Scandinavian Journal of Medicine & Science in Sports, 30(12), 2477-2484. SPORTDiscus with Full Text.

Gomes, T. V. B., Ugrinowitsch, H., Marinho, N., Shea, J. B., Raisbeck, L. D., & Benda, R. N. (2014). Effects of mental practice in novice learners in a serial positioning skill acquisition. Perceptual and Motor Skills, 119(2), Article 2. https://doi.org/10.2466/23.PMS.119c20z4

Heena, N., Zia, N. U., Sehgal, S., Anwer, S., Alghadir, A., & Li, H. (2021). Effects of task complexity or rate of motor imagery on motor learning in healthy young adults. Brain & Behavior, 11(11), Article 11. https://doi.org/10.1002/brb3.2122

Hinshaw, K. E. (1991). The effects of mental practice on motor skill performance: Critical evaluation and meta-analysis. Imagintation, cognition and personality, 11(1). https://doi.org/doi.org/10.2190/X9BA-KJ68-07AN-QMJ8

Hird, J. S., Landers, D. M., Thomas, J. R., & Horan, J. J. (1991). Physical practice is superior to mental practice in enhancing cognitive and motor task performance. Journal of Sport and Exercise Psychology, 13(3), Article 3. https://doi.org/10.1123/jsep.13.3.281

Ingram, T. G. J., Kraeutner, S. N., Solomon, J. P., Westwood, D. A., & Boe, S. G. (2016). Skill acquisition via motor imagery relies on both motor and perceptual learning. Behavioral Neuroscience, 130(2), 252-260. https://doi.org/10.1037/bne0000126

Jackson, P. L., Lafleur, M. F., Malouin, F., Richards, C. L., & Doyon, J. (2003). Functional cerebral reorganization following motor sequence learning through mental practice with motor imagery. Neuroimage, 20(2), Article 2. https://doi.org/10.1016/S1053-8119(03)00369-0

Kawasaki, T., Kono, M., & Tozawa, R. (2019). Efficacy of verbally describing one’s own body movement in motor skill acquisition. Brain Sciences, 9(12), Article 12. https://doi.org/10.3390/brainsci9120356

Kraeutner, S. N., Gionfriddo, A., Bardouille, T., & Boe, S. (2014). Motor imagery-based brain activity parallels that of motor execution: Evidence from magnetic source imaging of cortical oscillations. Brain Research, 1588, 81-91. https://doi.org/10.1016/j.brainres.2014.09.001

Kraeutner, S. N., MacKenzie, L. A., Westwood, D. A., & Boe, S. G. (2016). Characterizing skill acquisition through motor imagery with no prior physical practice. Journal of Experimental Psychology: Human Perception and Performance, 42(2), Article 2. https://doi.org/10.1037/xhp0000148

Lee, W. H., Kim, E., Seo, H. G., Oh, B.-M., Nam, H. S., Kim, Y. J., Lee, H. H., Kang, M.-G., Kim, S., & Bang, M. S. (2019). Target-oriented motor imagery for grasping action: Different characteristics of brain activation between kinesthetic and visual imagery. Scientific Reports, 9(1), 12770. https://doi.org/10.1038/s41598-019-49254-2

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. British Medical Journal, 339, b2700. https://doi.org/10.1136/bmj.b2700

Lindsay, R. S., Larkin, P., Kittel, A., & Spittle, M. (2021). Mental imagery training programs for developing sport-specific motor skills: A systematic review and meta-analysis. Physical Education and Sport Pedagogy, 28(4), 444-465. https://doi.org/10.1080/17408989.2021.1991297

Macuga, K. L., & Frey, S. H. (2012). Neural representations involved in observed, imagined, and imitated actions are dissociable and hierarchically organized. NeuroImage, 59(3), 2798-2807. https://doi.org/10.1016/j.neuroimage.2011.09.083

Matsuo, M., Iso, N., Fujiwara, K., Moriuchi, T., Matsuda, D., Mitsunaga, W., Nakashima, A., & Higashi, T. (2020). Comparison of cerebral activation between motor execution and motor imagery of self-feeding activity. Neural Regeneration Research, 16(4), 778. https://doi.org/10.4103/1673-5374.295333

Mulder, T., Zijlstra, S., Zijlstra, W., & Hochstenbach, J. (2004). The role of motor imagery in learning a totally novel movement. Experimental Brain Research, 154(2), Article 2. https://doi.org/10.1007/s00221-003-1647-6

Munzert, J., Lorey, B., & Zentgraf, K. (2009). Cognitive motor processes: The role of motor imagery in the study of motor representations. Brain Research Reviews, 60(2), Article 2. https://doi.org/10.1016/j.brainresrev.2008.12.024

Nakano, H. (2012). Brain activity during the observation, imagery, and execution of tool use: An fNIRS/EEG study. Journal of Novel Physiotherapies, 01(S1). https://doi.org/10.4172/2165-7025.S1-009

Neuper, C., Scherer, R., Reiner, M., & Pfurtscheller, G. (2005). Imagery of motor actions: Differential effects of kinesthetic and visual–motor mode of imagery in single-trial EEG. Cognitive Brain Research, 25(3), 668-677. https://doi.org/10.1016/j.cogbrainres.2005.08.014

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., & Moher, D. (2021). Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. Journal of Clinical Epidemiology, 134, 103-112. https://doi.org/10.1016/j.jclinepi.2021.02.003

Ruffino, C., Papaxanthis, C., & Lebon, F. (2017). Neural plasticity during motor learning with motor imagery practice: Review and perspectives. Neuroscience, 341, 61-78. https://doi.org/10.1016/j.neuroscience.2016.11.023

Ruffino, C., Truong, C., Dupont, W., Bouguila, F., Michel, C., Lebon, F., & Papaxanthis, C. (2021). Acquisition and consolidation processes following motor imagery practice. Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/s41598-021-81994-y

Sedgwick, P., & Marston, L. (2015). How to read a funnel plot in a meta-analysis. British Medical Journal (Clinical research ed.), 351, h4718. https://doi.org/10.1136/bmj.h4718

Sharif, M. R., Hemayattalab, R., Sayyah, M., Hemayattalab, A., & Bazazan, S. (2015). Effects of physical and mental practice on motor learning in individuals with cerebral palsy. Journal of Developmental and Physical Disabilities, 27(4), Article 4. https://doi.org/10.1007/s10882-015-9432-6

Siddaway, A. P., Wood, A. M., & Hedges, L. V. (2019). How to do a systematic review: A best practice guide for conducting and reporting narrative reviews, meta-analyses, and meta-syntheses. Annual Review of Psychology, 70(1), 747-770. https://doi.org/10.1146/annurev-psych-010418-102803

Simonsmeier, B. A., Andronie, M., Buecker, S., & Frank, C. (2021). The effects of imagery interventions in sports: A meta-analysis. International Review of Sport and Exercise Psychology, 14(1), 186-207. https://doi.org/10.1080/1750984X.2020.1780627

Sterne, J. A. C., Savović, J., Page, M. J., Elbers, R. G., Blencowe, N. S., Boutron, I., Cates, C. J., Cheng, H.-Y., Corbett, M. S., Eldridge, S. M., Emberson, J. R., Hernán, M. A., Hopewell, S., Hróbjartsson, A., Junqueira, D. R., Jüni, P., Kirkham, J. J., Lasserson, T., Li, T., … Higgins, J. P. T. (2019). RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ, l4898. https://doi.org/10.1136/bmj.l4898

Stumbrys, T., Erlacher, D., & Schredl, M. (2016). Effectiveness of motor practice in lucid dreams: A comparison with physical and mental practice. Journal of Sports Sciences, 34(1), Article 1. https://doi.org/10.1080/02640414.2015.1030342

Taktek, K., Zinsser, N., & St-John, B. (2008). Visual versus kinesthetic mental imagery: Efficacy for the retention and transfer of a closed motor skill in young children. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 62(3), Article 3. https://doi.org/10.1037/1196-1961.62.3.174

Truong, C., Hilt, P. M., Bouguila, F., Bove, M., Lebon, F., Papaxanthis, C., & Ruffino, C. (2022). Time-of-day effects on skill acquisition and consolidation after physical and mental practices. Scientific Reports, 12(1), 1-9. Academic Search Ultimate.

Vasilyev, A. N., Nuzhdin, Y. O., & Kaplan, A. Y. (2021). Does Real-Time Feedback Affect Sensorimotor EEG Patterns in Routine Motor Imagery Practice? Brain Sciences, 11(9), 1234. https://doi.org/10.3390/brainsci11091234

Wang, X., Casadio, M., Weber, K. A., Mussa-Ivaldi, F. A., & Parrish, T. B. (2014). White matter microstructure changes induced by motor skill learning utilizing a body machine interface. NeuroImage, 88, 32-40. Scopus. https://doi.org/10.1016/j.neuroimage.2013.10.066

Wriessnegger, S., Kurzmann, J., & Neuper, C. (2008). Spatio-temporal differences in brain oxygenation between movement execution and imagery: A multichannel near-infrared spectroscopy study. International Journal of Psychophysiology, 67(1), 54-63. https://doi.org/10.1016/j.ijpsycho.2007.10.004

Zich, C., Debener, S., Thoene, A.-K., Chen, L.-C., & Kranczioch, C. (2017). Simultaneous EEG-fNIRS reveals how age and feedback affect motor imagery signatures. Neurobiology of Aging, 49, 183-197. https://doi.org/10.1016/j.neurobiolaging.2016.10.011

Downloads

Publicado

2024-01-03

Como Citar

Jiménez-Díaz, J., Chaves-Castro, K., Morera-Castro, M., Portuguez-Molina, P., & Morales-Scholz, G. (2024). Prática física ou mental ou ambas: uma revisão sistemática com meta-análise. Journal of Physical Education and Human Movement, 5(2), 1–14. https://doi.org/10.24310/jpehm.5.2.2023.17875

Edição

Seção

Artículos