Práctica física, mental o ambas: una revisión sistemática con meta-análisis

Autores/as

  • Judith Jiménez-Díaz Escuela de Educación Física y Deportes Centro de Investigación en Ciencias del Movimiento Humano Universidad de Costa Rica Costa Rica http://orcid.org/0000-0001-8663-7413
  • Karla Chaves-Castro 1Escuela de Educación Física y Deportes, Universidad de Costa Rica, Costa Rica. 2Centro de Investigación en Ciencias del Movimiento Humano, Universidad de Costa Rica, Costa Rica Costa Rica
  • María Morera-Castro 3Escuela de Ciencias del Movimiento Humano y Calidad de Vida Universidad Nacional, Heredia, Costa Rica. Costa Rica
  • Priscilla Portuguez-Molina Costa Rica
  • Gabriela Morales-Scholz Costa Rica

DOI:

https://doi.org/10.24310/jpehm.5.2.2023.17875

Palabras clave:

imaginería mental, ejecución motriz, aprendizaje motor, destreza motriz, desempeño motor

Resumen

Introducción. Investigaciones anteriores han llegado a conclusiones positivas respecto a los efectos de la práctica mental sobre el rendimiento y el aprendizaje de una destreza motriz. El propósito de este estudio fue utilizar el enfoque meta-analítico de datos agregados para evaluar el impacto de la práctica física (PP), la práctica mental (MP) y la combinación de ambas en las pruebas de adquisición, retención y transferencia en el rendimiento de habilidades motoras. Metodología: Se incluyeron 27 estudios publicados hasta 2022 mediante la búsqueda en seis bases de datos. Se utilizó un modelo de efectos aleatorios utilizando el tamaño del efecto de la diferencia de medias estandarizada (ES) para agrupar los resultados. Resultados: Se calculó un total de 42 ES y se separaron en comparaciones por pares para la fase de adquisición, retención y transferencia. En la fase de adquisición, se observó que MP era más eficaz que no practicar (ES=0,508; n=25; CI=0,29,0,72), PP era más eficaz que no practicar (ES=1.78; n=15; CI=0.97,2.60), CP era más eficaz que no practicar (ES=1.16; n=12; CI=0.57,1.75), PP fue más eficaz que MP (ES=-1.16; n=23; CI=-1.88,-0.45), PP obtuvo resultados similares a CP (ES=-0.01; n=16; CI=-0.31,0.28), y CP fue más eficaz que MP (ES=0.61; n=12; CI=0.17,1.04). En la fase de retención, se observó que MP era más eficaz que no practicar (ES=1.11; n=5; CI=0.44,1.79), PP era más eficaz que no practicar (ES=1.03; n=4; CI=0.08, 1.99), la PP fue más eficaz que la MP (ES=-1.29; n=9; CI=-3.12,0.54), la PP tuvo resultados similares a la PC (ES=0.16; n=8; CI=-0.29,0.63), la PC tuvo resultados similares a la MP (ES=-0.06; n=3; CI=-1.22,1.09). En la fase de transferencia, se observó que la MP era más eficaz que la ausencia de práctica (ES=1.12; n=5; CI=0.01,1.59), la PP tenía resultados similares a la ausencia de práctica (ES=0.41; n=5; CI=-0.02,0.85), y la PP era más eficaz que la MP (ES=0.50; n=6; CI=0.12,0.87). La edad, el nivel de habilidad, el tipo de práctica mental, el total de sesiones y el tipo de habilidad se consideraron posibles variables moderadoras. Conclusiones: La práctica mental no sustituye a la práctica física, sin embargo, en algunas condiciones, la práctica física puede complementarse con la práctica mental.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Allami, N., Paulignan, Y., Brovelli, A., & Boussaoud, D. (2008). Visuo-motor learning with combination of different rates of motor imagery and physical practice. Experimental Brain Research, 184(1), Article 1. https://doi.org/10.1007/s00221-007-1086-x

Behrendt, F., Zumbrunnen, V., Brem, L., Suica, Z., Gäumann, S., Ziller, C., Gerth, U., & Schuster-Amft, C. (2021). Effect of motor imagery training on motor learning in children and adolescents: A systematic review and meta-Analysis. International Journal of Environmental Research and Public Health, 18(18), 9467. https://doi.org/10.3390/ijerph18189467

Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2009). Introduction to meta-analysis. John Wiley & Sons. https://doi.org/10.1002/9780470743386

Borenstein, M., Higgins, J. P. T., Hedges, L. V., & Rothstein, H. R. (2017). Basics of meta-analysis: I 2 is not an absolute measure of heterogeneity: I 2 is not an absolute measure of heterogeneity. Research Synthesis Methods, 8(1), Article 1. https://doi.org/10.1002/jrsm.1230

Broniec, A. (2016). Analysis of EEG signal by flicker-noise spectroscopy: Identification of right-/left-hand movement imagination. Medical & Biological Engineering & Computing, 54(12), 1935-1947. https://doi.org/10.1007/s11517-016-1491-z

Debarnot, U., Clerget, E., & Olivier, E. (2011). Role of the primary motor cortex in the early boost in performance following mental imagery training. PLoS ONE, 6(10), Article 10. https://doi.org/10.1371/journal.pone.0026717

Di Nota, P. M., Levkov, G., Bar, R., & DeSouza, J. F. X. (2016). Lateral occipitotemporal cortex (LOTC) activity is greatest while viewing dance compared to visualization and movement: Learning and expertise effects. Experimental Brain Research, 234(7), 2007-2023. https://doi.org/10.1007/s00221-016-4607-7

Doussoulin, A., & Rehbein, L. (2011). Motor imagery as a tool for motor skill training in children. Motricidade, 7(3). https://doi.org/10.6063/motricidade.7(3).131

Driskell, J. E., Copper, C., & Moran, A. (1994). Does mental practice enhance performance? Journal of Applied Psychology, 79(4), Article 4. https://doi.org/10.1037/0021-9010.79.4.481

Fairbrother, J. T. (2010). Fundamentals of Motor Behavior. Human Kinetics. https://doi.org/10.5040/9781492597346

Feltz, D. L., & Landers, D. M. (1983). The effects of mental practice on motor skill learning and performance: A meta-analysis. Journal of sport psychology, 5(1), Article 1. https://doi.org/10.1123/jsp.5.1.25

Freitas, E., Saimpont, A., Blache, Y., & Debarnot, U. (2020). Acquisition and consolidation of sequential footstep movements with physical and motor imagery practice. Scandinavian Journal of Medicine & Science in Sports, 30(12), 2477-2484. SPORTDiscus with Full Text.

Gomes, T. V. B., Ugrinowitsch, H., Marinho, N., Shea, J. B., Raisbeck, L. D., & Benda, R. N. (2014). Effects of mental practice in novice learners in a serial positioning skill acquisition. Perceptual and Motor Skills, 119(2), Article 2. https://doi.org/10.2466/23.PMS.119c20z4

Heena, N., Zia, N. U., Sehgal, S., Anwer, S., Alghadir, A., & Li, H. (2021). Effects of task complexity or rate of motor imagery on motor learning in healthy young adults. Brain & Behavior, 11(11), Article 11. https://doi.org/10.1002/brb3.2122

Hinshaw, K. E. (1991). The effects of mental practice on motor skill performance: Critical evaluation and meta-analysis. Imagintation, cognition and personality, 11(1). https://doi.org/doi.org/10.2190/X9BA-KJ68-07AN-QMJ8

Hird, J. S., Landers, D. M., Thomas, J. R., & Horan, J. J. (1991). Physical practice is superior to mental practice in enhancing cognitive and motor task performance. Journal of Sport and Exercise Psychology, 13(3), Article 3. https://doi.org/10.1123/jsep.13.3.281

Ingram, T. G. J., Kraeutner, S. N., Solomon, J. P., Westwood, D. A., & Boe, S. G. (2016). Skill acquisition via motor imagery relies on both motor and perceptual learning. Behavioral Neuroscience, 130(2), 252-260. https://doi.org/10.1037/bne0000126

Jackson, P. L., Lafleur, M. F., Malouin, F., Richards, C. L., & Doyon, J. (2003). Functional cerebral reorganization following motor sequence learning through mental practice with motor imagery. Neuroimage, 20(2), Article 2. https://doi.org/10.1016/S1053-8119(03)00369-0

Kawasaki, T., Kono, M., & Tozawa, R. (2019). Efficacy of verbally describing one’s own body movement in motor skill acquisition. Brain Sciences, 9(12), Article 12. https://doi.org/10.3390/brainsci9120356

Kraeutner, S. N., Gionfriddo, A., Bardouille, T., & Boe, S. (2014). Motor imagery-based brain activity parallels that of motor execution: Evidence from magnetic source imaging of cortical oscillations. Brain Research, 1588, 81-91. https://doi.org/10.1016/j.brainres.2014.09.001

Kraeutner, S. N., MacKenzie, L. A., Westwood, D. A., & Boe, S. G. (2016). Characterizing skill acquisition through motor imagery with no prior physical practice. Journal of Experimental Psychology: Human Perception and Performance, 42(2), Article 2. https://doi.org/10.1037/xhp0000148

Lee, W. H., Kim, E., Seo, H. G., Oh, B.-M., Nam, H. S., Kim, Y. J., Lee, H. H., Kang, M.-G., Kim, S., & Bang, M. S. (2019). Target-oriented motor imagery for grasping action: Different characteristics of brain activation between kinesthetic and visual imagery. Scientific Reports, 9(1), 12770. https://doi.org/10.1038/s41598-019-49254-2

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. British Medical Journal, 339, b2700. https://doi.org/10.1136/bmj.b2700

Lindsay, R. S., Larkin, P., Kittel, A., & Spittle, M. (2021). Mental imagery training programs for developing sport-specific motor skills: A systematic review and meta-analysis. Physical Education and Sport Pedagogy, 28(4), 444-465. https://doi.org/10.1080/17408989.2021.1991297

Macuga, K. L., & Frey, S. H. (2012). Neural representations involved in observed, imagined, and imitated actions are dissociable and hierarchically organized. NeuroImage, 59(3), 2798-2807. https://doi.org/10.1016/j.neuroimage.2011.09.083

Matsuo, M., Iso, N., Fujiwara, K., Moriuchi, T., Matsuda, D., Mitsunaga, W., Nakashima, A., & Higashi, T. (2020). Comparison of cerebral activation between motor execution and motor imagery of self-feeding activity. Neural Regeneration Research, 16(4), 778. https://doi.org/10.4103/1673-5374.295333

Mulder, T., Zijlstra, S., Zijlstra, W., & Hochstenbach, J. (2004). The role of motor imagery in learning a totally novel movement. Experimental Brain Research, 154(2), Article 2. https://doi.org/10.1007/s00221-003-1647-6

Munzert, J., Lorey, B., & Zentgraf, K. (2009). Cognitive motor processes: The role of motor imagery in the study of motor representations. Brain Research Reviews, 60(2), Article 2. https://doi.org/10.1016/j.brainresrev.2008.12.024

Nakano, H. (2012). Brain activity during the observation, imagery, and execution of tool use: An fNIRS/EEG study. Journal of Novel Physiotherapies, 01(S1). https://doi.org/10.4172/2165-7025.S1-009

Neuper, C., Scherer, R., Reiner, M., & Pfurtscheller, G. (2005). Imagery of motor actions: Differential effects of kinesthetic and visual–motor mode of imagery in single-trial EEG. Cognitive Brain Research, 25(3), 668-677. https://doi.org/10.1016/j.cogbrainres.2005.08.014

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., & Moher, D. (2021). Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. Journal of Clinical Epidemiology, 134, 103-112. https://doi.org/10.1016/j.jclinepi.2021.02.003

Ruffino, C., Papaxanthis, C., & Lebon, F. (2017). Neural plasticity during motor learning with motor imagery practice: Review and perspectives. Neuroscience, 341, 61-78. https://doi.org/10.1016/j.neuroscience.2016.11.023

Ruffino, C., Truong, C., Dupont, W., Bouguila, F., Michel, C., Lebon, F., & Papaxanthis, C. (2021). Acquisition and consolidation processes following motor imagery practice. Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/s41598-021-81994-y

Sedgwick, P., & Marston, L. (2015). How to read a funnel plot in a meta-analysis. British Medical Journal (Clinical research ed.), 351, h4718. https://doi.org/10.1136/bmj.h4718

Sharif, M. R., Hemayattalab, R., Sayyah, M., Hemayattalab, A., & Bazazan, S. (2015). Effects of physical and mental practice on motor learning in individuals with cerebral palsy. Journal of Developmental and Physical Disabilities, 27(4), Article 4. https://doi.org/10.1007/s10882-015-9432-6

Siddaway, A. P., Wood, A. M., & Hedges, L. V. (2019). How to do a systematic review: A best practice guide for conducting and reporting narrative reviews, meta-analyses, and meta-syntheses. Annual Review of Psychology, 70(1), 747-770. https://doi.org/10.1146/annurev-psych-010418-102803

Simonsmeier, B. A., Andronie, M., Buecker, S., & Frank, C. (2021). The effects of imagery interventions in sports: A meta-analysis. International Review of Sport and Exercise Psychology, 14(1), 186-207. https://doi.org/10.1080/1750984X.2020.1780627

Sterne, J. A. C., Savović, J., Page, M. J., Elbers, R. G., Blencowe, N. S., Boutron, I., Cates, C. J., Cheng, H.-Y., Corbett, M. S., Eldridge, S. M., Emberson, J. R., Hernán, M. A., Hopewell, S., Hróbjartsson, A., Junqueira, D. R., Jüni, P., Kirkham, J. J., Lasserson, T., Li, T., … Higgins, J. P. T. (2019). RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ, l4898. https://doi.org/10.1136/bmj.l4898

Stumbrys, T., Erlacher, D., & Schredl, M. (2016). Effectiveness of motor practice in lucid dreams: A comparison with physical and mental practice. Journal of Sports Sciences, 34(1), Article 1. https://doi.org/10.1080/02640414.2015.1030342

Taktek, K., Zinsser, N., & St-John, B. (2008). Visual versus kinesthetic mental imagery: Efficacy for the retention and transfer of a closed motor skill in young children. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 62(3), Article 3. https://doi.org/10.1037/1196-1961.62.3.174

Truong, C., Hilt, P. M., Bouguila, F., Bove, M., Lebon, F., Papaxanthis, C., & Ruffino, C. (2022). Time-of-day effects on skill acquisition and consolidation after physical and mental practices. Scientific Reports, 12(1), 1-9. Academic Search Ultimate.

Vasilyev, A. N., Nuzhdin, Y. O., & Kaplan, A. Y. (2021). Does Real-Time Feedback Affect Sensorimotor EEG Patterns in Routine Motor Imagery Practice? Brain Sciences, 11(9), 1234. https://doi.org/10.3390/brainsci11091234

Wang, X., Casadio, M., Weber, K. A., Mussa-Ivaldi, F. A., & Parrish, T. B. (2014). White matter microstructure changes induced by motor skill learning utilizing a body machine interface. NeuroImage, 88, 32-40. Scopus. https://doi.org/10.1016/j.neuroimage.2013.10.066

Wriessnegger, S., Kurzmann, J., & Neuper, C. (2008). Spatio-temporal differences in brain oxygenation between movement execution and imagery: A multichannel near-infrared spectroscopy study. International Journal of Psychophysiology, 67(1), 54-63. https://doi.org/10.1016/j.ijpsycho.2007.10.004

Zich, C., Debener, S., Thoene, A.-K., Chen, L.-C., & Kranczioch, C. (2017). Simultaneous EEG-fNIRS reveals how age and feedback affect motor imagery signatures. Neurobiology of Aging, 49, 183-197. https://doi.org/10.1016/j.neurobiolaging.2016.10.011

Descargas

Publicado

2024-01-03

Cómo citar

Jiménez-Díaz, J., Chaves-Castro, K., Morera-Castro, M., Portuguez-Molina, P., & Morales-Scholz, G. (2024). Práctica física, mental o ambas: una revisión sistemática con meta-análisis. Journal of Physical Education and Human Movement, 5(2), 1–14. https://doi.org/10.24310/jpehm.5.2.2023.17875

Número

Sección

Artículos