Analysis of the characteristics and physical-motor achievements of the classes based on physical activity: a systematic review

Authors

  • Jorge Agustín Zapatero Ayuso Universidad Complutense de Madrid Spain

DOI:

https://doi.org/10.24310/riccafd.2020.v9i2.6552

Keywords:

physical activity, Mediterranean diet, school children, physical exercise, health

Abstract

The aims of this study were to know in depth the characteristics of the programs with classes based on physical activity (PA) in the school and its influence on the levels of PA and physical-motor development of the students. To investigate these objectives, a systematic review was developed. The search was conducted in “ISI Web of Knowledge” and “PubMed”, using terms such as "physical activity" and "school". Inclusion criteria were established and 21 papers were selected. The documents were analyzed qualitatively using Atlas.ti and Excel. The results collected five types of programs based classes AF. Ten of the studies had a positive impact on AF levels, and four studies improved the fitness levels of the students in the intervention group. However, it is necessary to deepen the problem, because these classes can be a tool for health promotion in schoolchildren.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Mavilidi MF, Okely AD, Chandler P, Paas F. Effects of Integrating Physical Activities Into a Science Lesson on Preschool Children’s Learning and Enjoyment. Applied Cognitive Psychology. 2017;31(3):281–90. https://doi.org/10.1002/acp.3325

Organización Mundial de la Salud (OMS). Global recommendations on physical activity for health. Geneva: World Health Organization; 2010

Fundación para la Investigación Nutricional. Informe 2016: Actividad física en niños y adolescentes en España; 2016. Recuperado de: https://www.activehealthykids.org/wp-content/uploads/2016/11/spain-report-card-long-form-2016.pdf

Ardoy DN, Fernández-Rodríguez JM, Jiménez-Pavón D, Castillo R, Ruiz JR, Ortega FB. A Physical Education trial improves adolescents’ cognitive performance and academic achievement: The EDUFIT study. Scandinavian Journal of Medicine and Science in Sports. 2014;24(1):52–61. https://doi.org/10.1111/sms.12093

Vetter M, O’Connor H, O’Dwyer N, Orr R. Learning “Math on the Move”: Effectiveness of a Combined Numeracy and Physical Activity Program for Primary School Children. Journal of Physical Activity and Health. 2018;15(7):492–498. https://doi.org/10.1123/jpah.2017-0234

Donnelly JE, Hillman CH, Greene JL, Hansen DM, Gibson CA et al. Physical activity and academic achievement across the curriculum: Results from a 3-year cluster-randomized trial. Preventive Medicine. 2017:99:140-145. http://dx.doi.org/10.1016/j.ypmed.2017.02.006

Martin R, Murtagh EM. Preliminary findings of Active Classrooms: An intervention to increase physical activity levels of primary school children during class time. Teaching and Teacher Education. 2015;52:113–27. https://doi.org/10.1016/j.tate.2015.09.007

Ma J, Le M, Gurd B. Classroom-based high-intensity interval activity improves off-task behaviour in primary school students. Applied Physiology, Nutrition, and Metabolism. 2014;39(12):1332–1337.. https://doi.org/10.1139/apnm-2014-0125

van den Berg V, Saliasi E, de Groot RHM, Jolles J, Chinapaw MJM, Singh AS. Physical Activity in the School Setting: Cognitive Performance Is Not Affected by Three Different Types of Acute Exercise. Frontiers in Psychology. 2016;7:1–9. https://doi.org/10.3389/fpsyg.2016.00723

Greeff JW, Hartman E, Mullender-Wijnsma MJ, Bosker RJ, Doolaard S, Visscher C. Long-term effects of physically active academic lessons on physical fitness and executive functions in primary school children. Health Educ Res. 2016;31(2):185–94. https://doi.org/10.1093/her/cyv102

Beck MM, Lind RR, Geertsen SS, Ritz C, Lundbye-Jensen J, Wienecke J. Motor-Enriched Learning Activities Can Improve Mathematical Performance in Preadolescent Children. Frontiers in Human Neuroscience. 2016;10:1–14. https://doi.org/10.3389/fnhum.2016.00645

Aadland KN, Aadland E, Andersen JR, Lervåg A, Moe VF, Resaland GK, et al. Executive function, behavioral self-regulation, and school related well-being did not mediate the effect of school-based physical activity on academic performance in numeracy in 10-year-old children. The Active Smarter Kids (ASK) study. Frontiers in Psychology. 2018;9:1–12. https://doi.org/10.3389/fpsyg.2018.00245

León-Díaz O, Martínez-Muñoz LF, Fernando L., Santos-Pastor ML Gamificación en Educación Física: una análisis sistemático de fuentes documentales. Revista Iberoamericana de Ciencias de la Actividad Física y el Deporte.2019:8(1):110-124. http://dx.doi.org/10.24310/riccafd.2019.v8i1.5791

Aadland KN, Ommundsen Y, Aadland E, Brønnick KS, Lervåg A, Resaland GK, et al. Executive functions do not mediate prospective relations between indices of physical activity and academic performance: The Active Smarter Kids (ASK) study. Frontiers in Psychology. 2017:8:1–12. https://doi.org/10.3389/fpsyg.2017.01088

Gao Z, Hannan P, Xiang P, Stodden DF, Valdez VE. Video game-based exercise, Latino children’s physical health, and academic achievement. Am Journal of Preventive Medicine. 2013;44(3):S240–S246. https://doi.org/10.1016/j.amepre.2012.11.023

Lind RR, Geertsen SS, Ørntoft C, Madsen M, Larsen MN, Dvorak J, et al. Improved cognitive performance in preadolescent Danish children after the school-based physical activity programme “FIFA 11 for Health” for Europe–A cluster-randomised controlled trial. European Journal of Sport Science. 2018:18(1):130–139. https://doi.org/10.1080/17461391.2017.1394369

Mullender-Wijnsma MJ, Hartman E, de Greeff JW, Bosker RJ, Doolaard S. Improving academic performance of school-age children by physical activity in the classroom: 1-year program evaluation. The Journal of School Health. 2015:85(6):365–371. Recuperado de: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed18b&NEWS=N&AN=612766831

Norris E, Shelton N, Dunsmuir S, Duke-Williams O, Stamatakis E. Virtual field trips as physically active lessons for children: A pilot study. BMC Public Health. 2015:15(1):1–9. https://doi.org/10.1186/s12889-015-1706-5

Resaland GK, Aadland E, Moe VF, Aadland KN, Skrede T, Stavnsbo M, et al. Effects of physical activity on schoolchildren’s academic performance: The Active Smarter Kids (ASK) cluster-randomized controlled trial. Preventive Medicine. 2016:91:322–328. https://doi.org/10.1016/j.ypmed.2016.09.005

Resaland GK, Moe VF, Bartholomew JB, Andersen LB, McKay HA, Anderssen SA, et al. Gender-specific effects of physical activity on children’s academic performance: The Active Smarter Kids cluster randomized controlled trial. Preventive Medicine. 2018:106:171–176. https://doi.org/10.1016/j.ypmed.2017.10.034

Riley N, Lubans DR, Morgan PJ, Young M. Outcomes and process evaluation of a programme integrating physical activity into the primary school mathematics curriculum: The EASY Minds pilot randomised controlled trial. Journal of Science and Medicine in Sport. 2015:18(6):656–661. https://doi.org/10.1016/j.jsams.2014.09.005

Mavilidi MF, Okely AD, Chandler P, Cliff DP, Paas F. Effects of integrated physical exercises and gestures on preschool children’s foreign language vocabulary learning. Educational Psychology Review. 2015:27(3):413–426. https://doi.org/10.1007/s10648-015-9337-z

Mavilidi MF, Okely A, Chandler P, Domazet SL, Paas F. Immediate and delayed effects of integrating physical activity into preschool children’s learning of numeracy skills. Journal of Experimental Child Psychology. 2018:166:502–519. https://doi.org/10.1016/j.jecp.2017.09.009

Shoval E, Sharir T, Arnon M, Tenenbaum G. The Effect of Integrating Movement into the Learning Environment of Kindergarten Children on their Academic Achievements. Early Childhood Education Journal. 2018:46(3):355–364. https://doi.org/10.1007/s10643-017-0870-x

Tarp J, Domazet SL, Froberg K, Hillman CH, Andersen LB, Bugge A. Effectiveness of a school-based physical activity intervention on cognitive performance in Danish adolescents: LCoMotion-learning, cognition and motion - A cluster randomized controlled trial. PLoS ONE. 2016:11(6):1–19. https://doi.org/10.1371/journal.pone.0158087

Watson A, Timperio A, Brown H, Best K, Hesketh KD. Effect of classroom-based physical activity interventions on academic and physical activity outcomes: a systematic review and meta-analysis. International Journal of Behavioral Nutrition and Physical Activity. 2017:14(1):114-138. http://dx.doi.org/10.1186/s12966-017-0569-9

Dinkel D. Schaffer C, Snyder K, Lee JM. They just need to move: Teachers’ perception of classroom physical activity breaks. Teaching and Teacher Education. 2017:63:186–195. https://doi.org/10.1016/j.tate.2016.12.020

Hall-López JA, Ochoa-Martínez PY, Meza F, Sánchez R., Sáenz-López P. Comparación de la actividad física por género y grasa corporal en escolares mexicanos. Revista Iberoamericana de Ciencias de la Actividad Física y el Deporte. 2019:8(1):1-14. http://dx.doi.org/10.24310/riccafd.2019.v8i1.5763

Mullender-Wijnsma M, Hartman E, Greeff J, Doolaard S, Bosker RJ, Visscher C. Physically Active Math and Language Lessons Improve Academic Achievement: A Cluster Randomized Controlled Trial. Pediatrics, 2018:137(3). https://doi.org/10.1542/peds.2015-274

Additional Files

Published

2020-06-27

How to Cite

Zapatero Ayuso, J. A. (2020). Analysis of the characteristics and physical-motor achievements of the classes based on physical activity: a systematic review. Revista Iberoamericana De Ciencias De La Actividad Física Y El Deporte, 9(2), 1–15. https://doi.org/10.24310/riccafd.2020.v9i2.6552

Issue

Section

Artículos