Relationship between CMJ and change of direction in collective sports

Authors

  • JL Schneider Tirado Universidad de Málaga Spain
  • JF Fenoll Universidad de Málaga Spain

DOI:

https://doi.org/10.24310/riccafd.2013.v2i3.6194

Keywords:

CMJ, pliometry, changes of direction

Abstract

When executing a race at full speed with change-of-direction force components are highly involved. These components are being specifically trained through plyometric exercises, among others. Few studies evaluate on one side explosive and reactive strength (1,2) and their correlation with short change-of-direction sprints. Once analyzed the evidences showed in some studies reviewed (3,4,5,6,7), our purpose is to determine the relationship between both explosive and reactive strength measures and short change-of-direction sprints in order to find whether the countermovement jump (CMJ) force manifestation helps predicting the performance level during change-of-direction 90º acceleration sprints.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Callaway C, Chumlea W, Bouchard C, Himes J, Lohman T, Martin A. (1988). Anthropometric standarization reference manual. Human Kinetics , 39-54.

De Rose, E.H., Guimaraes, A.G.S. (1980). A model for optimization of somatotype in young athletes. En M. Ostyn, G. Beunen, J. Simons (Eds), Kinanthropometry II (pp. 77-80). Baltimore: University Park Press.

Houtkooper L, Going S, Lohman T, Roche A, Van Loan M. (1992). Bioelectrical impedance estimation of fat free body mass in children and youth. A cross validation study. J Appl Physiol , 72:366-73.

Lukaski, H.C. (1996). Estimation of Muscle Mass. En M.S. Roche, S.B. Heymsfield, T.G. Lohman (Eds.), Human Body Composition (pp. 109-128). Champaign, Illinois: Human Kinetics.

Lukaski H, Bolonchuck W, Hall C, Siders W. (1986). Validation of tetrapolar bioelectrical impedance method to assess human body composition. J Appl Physiol , 60: 1327-32.

Mujika I, Padilla S. (2001b). Cardiorespiratory and metabolic charasteristics of detraining in humans. Med Sci Sports Exerc , (33), 1297-1303.

Mujika I, Padilla S. (2000b). Detraining: loss of training-induced phyisiological and performance adaptions. Part II. Long term insufficient training stimulus. Sports Med , 30 (3), 145-154.

Mujika I, Padilla S. (2000a). Detraining: loss of training-induced physiological and performance adaptions. Part I. Short term insufficient trainning stimulus. Sports Med , 30 (2), 79-87.

Norton K y Colds T. (2000). Antropometrica. Rosario Argentina: Biosystem.

Poortmans J, Boisseau N, Moraine J, Moreno-Reyes R, Goldman S. (2005). Estimation of total-body skeletal muscle mass in children and adolescents. Med Sci Sports Exerc , 37: 316-22.

Ramos Alvarez JJ, Lara Hernandez M.T., Del Castillo Campos M.J., Martinez Rodriguez R. (2000). Caracteristicas antropometricas del futbolista adolescente de elite. Archivos de medicina del deporte , (75) 25-30.

Ronconi M, Alvero Cruz JR. (2008). Cambios fisiologicos debidos al desentrenamiento. Apunts, Medicina de l´Esport; , 190:190-6.

Slaughter M, Lohman T, Boileau R, Horswill C, Stillman R, Van Loan M, et al. (1988). Skinfold equation for stimation of body fatness in children and youth. hum Biol , 60: 709-23.

Published

2013-12-15

How to Cite

Schneider Tirado, J., & Fenoll, J. (2013). Relationship between CMJ and change of direction in collective sports. Revista Iberoamericana De Ciencias De La Actividad Física Y El Deporte, 2(3), 1–9. https://doi.org/10.24310/riccafd.2013.v2i3.6194

Issue

Section

Artículos