Trunk muscle dynamics in paralympic throwing: integration of computational simulation and electromyography

Authors

  • Luz Edith Pérez Trejos UNIVERSIDAD DEL VALLE Colombia
  • S Osorio Toro Departamento de Morfología. Facultad de Salud. Universidad del Valle. Santiago de Cali. Valle del Cauca Colombia
  • L Gómes Salazar Departamento de Morfología. Facultad de Salud. Universidad del Valle. Santiago de Cali. Valle del Cauca Colombia https://orcid.org/0000-0003-2338-9410

Keywords:

Electromyography, computational simulation, paralympic sport, muscle activation

Abstract

Muscle analysis traditionally relies on qualitative observation to identify activation and contraction type during a movement. However, in athletes with disabilities, biomechanical adaptations make accurate assessment difficult. This study analysed trunk muscle activation in an elite Paralympic athlete with a transtibial amputation during the chair shot put using surface electromyography and musculoskeletal computational simulation. EMG showed that the dorsal muscles were activated at the beginning and the end of the gesture, while the abdominal muscles reached their maximum activation in the intermediate phase. For the simulation, motion capture with infrared cameras and analysis in AnyBody was used, incorporating anthropometric data of the athlete. The comparison between EMG and simulation allowed a better understanding of muscle activation patterns during the sporting gesture, providing relevant information for training and performance optimisation in athletes with disabilities.

Downloads

Download data is not yet available.

References

Reina R, Vilanova-períz N. Guía sobre clasificación de la discapacidad en deporte paralímpico. In: Limencop S.L., editor. España; 2016. p. 31–7.

Vaillo RR, Périz NV. Bases para una estrategia nacional de clasificación en deporte Paralímpico en España. Revista Española de Discapacidad (REDIS). 2017;5(1):195–216.

Kopřivová DPJ, Beras CsALG. Management of Paralympics Games: Problems and perspectives Bachelor Thesis.

Ruiz S. Deporte paralímpico: una mirada hacia el futuro. Revista UDCA Actualidad & Divulgación Científica. 2012;15:97–104.

Morriën F, Taylor MJD, Hettinga FJ. Biomechanics in Paralympics: implications for performance. Int J Sports Physiol Perform. 2017;12(5):578–89.

Anwer S, Li H, Antwi-Afari MF, Umer W, Mehmood I, Wong AYL. Effects of load carrying techniques on gait parameters, dynamic balance, and physiological parameters during a manual material handling task. Engineering, Construction and Architectural Management. 2022 Nov 24;29(9):3415–38.

Kyriazis TA, Terzis G, Boudolos K, Georgiadis G. Muscular power, neuromuscular activation, and performance in shot put athletes at preseason and at competition period. The Journal of Strength & Conditioning Research. 2009;23(6):1773–9.

Pazmiño Borja LE. Relación de la fuerza muscular y la amplitud articular con las lesiones de hombro en atletas paralímpicos. Quito: Universidad de las Américas, 2016; 2016.

Hidalgo Gomez E. La Electromiografía (EMG) como método de valoración de la Fatiga Muscular. [Internet] [Grado en Enfermería]. Universidad de Valladolid. Escuela Universitaria de Enfermería; 2015 [cited 2023 Feb 12]. Available from: https://uvadoc.uva.es/handle/10324/14822

Fernández JM, Acevedo RC, Tabernig CB. Influencia de la fatiga muscular en la señal electromiográfica de músculos estimulados eléctricamente. Revista EIA. 2007;(7):111–9.

Pérez-Trejos LE, Gómez-Salazar L, Osorio-Toro S, Pivetta-Carpes F, De la Fuente-Cancino CI. Análisis electromiográfico de la actividad muscular de tronco durante el lanzamiento de bala paralímpico. Entramado. 2020;16(2):286–97.

Alfonso R, Carbonell G, Nápoles Padrón E, Calderín Pérez B, Cisneros Hidalgo Y, Landín Sorí M. Carácter interdisciplinario de la modelación computacional en la solución de problemas de salud. Humanidades Médicas. 2014;14(3):646–58.

Beret JA, Muñoz A, Crespo M, Formento PC, Ravera EP, Etse JG, et al. Estudio de la Sensibilidad de los Modelos Musculoesqueléticos ante Variaciones en Parámetros Antropométricos. Mecánica Computacional [Internet]. 2018 Dec 4 [cited 2023 Oct 20];36(39):1703–11. Available from: http://venus.ceride.gov.ar/ojs/index.php/mc/article/view/5696

Seth A, Hicks JL, Uchida TK, Habib A, Dembia CL, Dunne JJ, et al. OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS Comput Biol. 2018;14(7):e1006223.

Tarifa EE. Teoría de Modelos y Simulación.

Lewis AR, Phillips EJ, Robertson WSP, Grimshaw PN, Portus M. Injury Prevention of Elite Wheelchair Racing Athletes Using Simulation Approaches.

Kunze M, Fischer M, Voigt C, Scholz R, Strauss G. Comparison of multi-body simulations and EMG measurements on the M. deltoideus acromialis. 2012; Available from: https://www.researchgate.net/profile/Mario_Kunze/publication/233378727

Ji Z, Wang H, Jiang G, Li L. Analysis of muscle activity utilizing bench presses in the anybody simulation modelling system. Modelling and Simulation in Engineering. 2016;2016.

Lund ME, Rasmussen J, Andersen MS. AnyPyTools: A Python package for reproducible research with the AnyBody Modeling System. J Open Source Softw. 2019;4(33):1108.

Damsgaard M, Rasmussen J, Christensen ST, Surma E, De Zee M. Analysis of musculoskeletal systems in the AnyBody Modeling System. Simul Model Pract Theory. 2006;14(8):1100–11.

Published

2025-12-31

How to Cite

Pérez Trejos, L. E., Osorio Toro, S., & Gómes Salazar, L. (2025). Trunk muscle dynamics in paralympic throwing: integration of computational simulation and electromyography . Revista Iberoamericana De Ciencias De La Actividad Física Y El Deporte, 14(3), 122–134. Retrieved from https://revistas.uma.es/index.php/riccafd/article/view/21368

Issue

Section

Artículos