Effect of kernel size for BOLD signal smoothing in functional paradigms (fMRI)

Authors

  • Laia Farràs-Permanye Facultad de Psicología. Universitat de Barcelona Spain
  • Joan Guàrdia-Olmos Facultad de Psicología. Departamento de Metodología de las Ciencias del Comportamiento. Universitat de Barcelona. Instituto de Investigación en Cerebro, Cognición y Conducta IR3C Spain
  • Maribel Peró-Cebollero Facultad de Psicología. Departamento de Metodología de las Ciencias del Comportamiento. Universitat de Barcelona. Instituto de Investigación en Cerebro, Cognición y Conducta IR3C Spain

DOI:

https://doi.org/10.24310/espsiescpsi.v8i1.13223

Keywords:

Functional Magnetic Resonance Imaging (fMRI), Filtering, Smoothing

Abstract

Smoothing is a filtering technique that is essential for brain signal analysis and consists in calculating and comparing the average activation of a voxel to that of its neighbours. Several authors have proposed alternatives or modifications to this process; nonetheless, articles that compare the effect of different sizes of smoothing remain scarce. Thus, the aim of this study was to investigate the effect of applying different smoothing sizes and to highlight the importance of choosing the correct smoothing size. Five smoothing criteria were applied to brain images obtained during an easy motor task performed by five adult participants. Significant differences were found between different smoothing sizes, mainly between the non-smoothing application and the smallest smoothing size versus the two largest smoothing sizes. The signals from the most activated brain areas did not disappear with increased smoothing, whereas signals from less active or smaller areas disappeared. Despite the study sample size, the results suggest that smoothing is relevant in functional magnetic resonance image processing and that the optimum smoothing size is 2.5 and 3.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ashburner, J., Barnes, G., Chen, C. C., Daunizean, J., Fladin, G., Friston, K., … y Stephan, K. (2013). SPM8 Manual. London: Insitute of Neurology, UCL.

Bandettini, P. A., Kwong, K. K., Tootell, R. B. H., Wong, E. C., Fox, P. T., Belliveau, J. W. y Rosen, B. R. (1997). Characterization of Cerebral Blood Oxygenation and flow changes during prolonged brain activation. Human Brain Mapping, 5, 93-109. http://dx.doi.org/10.1002/(SICI)1097-0193(1997)5:2<93::AID-HBM3>3.0.CO;2-H

Buxton, R. B. (2002). Introduction to Functional Magnetic Resonance Imaging. Principles y Techniques. New York: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511549854

Christensen, W. F. y Yetkin, F. Z. (2005). Spatio-temporal analysis of auditory cortex activation as detected with silent event related fMRI. Statistics in Medicine, 24, 2539-2556. http://dx.doi.org/10.1002/sim.2111

Darki, F. y Oghabian, M. A. (2013). False positive control of activated voxels in single fMRI analysis using boots-trap resampling in comparison to spatial smoothing. Magnetic Resonance Imaging, 31, 1331-1337. http://dx.doi.org/10.1016/j.mri.2013.03.009

De la Iglesia-Vayá, M., Molina-Mateo, J., Escarti-Fabra, M., Martí-Bonmartí, L., Robles, M., Meneu, T., … y San-juán, J. (2011). Técnicas de análisis de posproceso en resonancia magnética para el estudio de la conectividad cerebral. Radiología, 53, 236-245. http://dx.doi.org/10.1016/j.rx.2010.11.007

De Pasquale, F., Del Gratta, C. y Romani, G. L. (2008) Empirical Markov Chain Monte Carlo Bayesian analy-sis of fMRI data. NeuroImage, 42, 99-111. http://dx.doi.org/10.1016/j.neuroimage.2008.04.235

Friston, K. (2012). Ten ironic rules for non-statistical reviewers. NeuroImage, 61, 1300–1310. http://dx.doi.org/10.1016/j.neuroimage.2012.04.018

Friston, K. J., Ashburner, J., Kiebel, S. J., Nichols, T. E. y Penny, W. D. (2007). Statistical Parametric Mapping: The Analysis of Functional Brain Images. Glasgow: Academic Press.

Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. P., Frith, C. D. y Frackowiak, R. S. J. (1995). Statistical Parametric Maps in Functional Imaging: A General Linear Approach. Human Brain Mapping, 2, 189-210. http://dx.doi.org/10.1002/hbm.460020402

Gispert, J. D., Pascau, J., Reig, S., García-Barreno, P. y Desco, M. (2003). Mapas de estadísticos paramétricos (SPM) en medicina nuclear. Revista Especial de Medicina Nuclear, 22, 43-53. http://dx.doi.org/10.1016/S0212-6982(03)72141-7

Guàrdia, J., Peró, M. y Fauquet, J. (2013). Análisis de datos en neurociencia cognitiva. En D. Redolar (Ed.), Neurocien-cia Cognitiva (pp. 789-796). Madrid: Pirámide.

Guàrdia-Olmos, J., Peró-Cebollero, M., Zarabozo-Hurtado, D., González-Garrido, M. y Gudayol-Ferré, E. (En revisión editorial). Analysis of the visual recognition of words and homophone orthographic errors through magnetic resonance imaging (fMRI). Journal of Neurolinguistics.

Lindquist, M. A. y Wager, T. D. (2008). Spatial Smoothing in fMRI using Prolate Spheroidal Wave Functions. Human Brain Mapping, 29, 1276-1287. http://dx.doi.org/10.1002/hbm.20475

Logan, B. R., Geliazkova, M. P. y Rowe, D. B. (2008). An evaluation of spatial thresholding techniques in fMRI analysis. Human Brain Mapping, 29, 1379-1389. http://dx.doi.org/10.1002/hbm.20471

Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. y Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412, 150-157. http://dx.doi.org/10.1038/35084005

Ogawa, S., Lee, T. M., Kay, A. R. y Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences, USA, 87, 9868-9872. http://dx.doi.org/10.1073/pnas.87.24.9868

Sacchet, M. D. y Knutson, B. (2013). Spatial smoothing systematically biases the localization of reward-related brain activity. NeuroImage, 66, 270-277. http://dx.doi.org/10.1016/j.neuroimage.2012.10.056

Said, S. E. y Dickey, D. A. (1984). Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika, 71, 599-607. http://dx.doi.org/10.1093/biomet/71.3.599

Salafranca, Ll. (1991). Neurociencia cognitiva: problemá-tica del análisis de datos. (Tesis doctoral inèdita). Universitat de Barcelona, Barcelona, Espanya.

Talairach, J. y Tournoux, P. (1993) Referentially Oriented Cerebral MRI Anatomy: An Atlas of Stereotaxic Anatomical Correlations for Gray and White Matter. New York, USA: Thieme Medical Publishers.

Van Gerven, M. A., Cseke, B., de Lange, F. P. y Heskes, T.(2010). Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior. NeuroImage 50, 150-161. http://dx.doi.org/10.1016/j.neuroimage.2009.11.064

Published

2015-05-01

How to Cite

Farràs-Permanye, L., Guàrdia-Olmos, J., & Peró-Cebollero, M. (2015). Effect of kernel size for BOLD signal smoothing in functional paradigms (fMRI). Escritos De Psicología - Psychological Writings, 8(1), 21–29. https://doi.org/10.24310/espsiescpsi.v8i1.13223

Issue

Section

Research Reports