Effect of kernel size for BOLD signal smoothing in functional paradigms (fMRI)
DOI:
https://doi.org/10.24310/espsiescpsi.v8i1.13223Keywords:
Functional Magnetic Resonance Imaging (fMRI), Filtering, SmoothingAbstract
Smoothing is a filtering technique that is essential for brain signal analysis and consists in calculating and comparing the average activation of a voxel to that of its neighbours. Several authors have proposed alternatives or modifications to this process; nonetheless, articles that compare the effect of different sizes of smoothing remain scarce. Thus, the aim of this study was to investigate the effect of applying different smoothing sizes and to highlight the importance of choosing the correct smoothing size. Five smoothing criteria were applied to brain images obtained during an easy motor task performed by five adult participants. Significant differences were found between different smoothing sizes, mainly between the non-smoothing application and the smallest smoothing size versus the two largest smoothing sizes. The signals from the most activated brain areas did not disappear with increased smoothing, whereas signals from less active or smaller areas disappeared. Despite the study sample size, the results suggest that smoothing is relevant in functional magnetic resonance image processing and that the optimum smoothing size is 2.5 and 3.
Downloads
Metrics
References
Ashburner, J., Barnes, G., Chen, C. C., Daunizean, J., Fladin, G., Friston, K., … y Stephan, K. (2013). SPM8 Manual. London: Insitute of Neurology, UCL.
Bandettini, P. A., Kwong, K. K., Tootell, R. B. H., Wong, E. C., Fox, P. T., Belliveau, J. W. y Rosen, B. R. (1997). Characterization of Cerebral Blood Oxygenation and flow changes during prolonged brain activation. Human Brain Mapping, 5, 93-109. http://dx.doi.org/10.1002/(SICI)1097-0193(1997)5:2<93::AID-HBM3>3.0.CO;2-H
Buxton, R. B. (2002). Introduction to Functional Magnetic Resonance Imaging. Principles y Techniques. New York: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511549854
Christensen, W. F. y Yetkin, F. Z. (2005). Spatio-temporal analysis of auditory cortex activation as detected with silent event related fMRI. Statistics in Medicine, 24, 2539-2556. http://dx.doi.org/10.1002/sim.2111
Darki, F. y Oghabian, M. A. (2013). False positive control of activated voxels in single fMRI analysis using boots-trap resampling in comparison to spatial smoothing. Magnetic Resonance Imaging, 31, 1331-1337. http://dx.doi.org/10.1016/j.mri.2013.03.009
De la Iglesia-Vayá, M., Molina-Mateo, J., Escarti-Fabra, M., Martí-Bonmartí, L., Robles, M., Meneu, T., … y San-juán, J. (2011). Técnicas de análisis de posproceso en resonancia magnética para el estudio de la conectividad cerebral. Radiología, 53, 236-245. http://dx.doi.org/10.1016/j.rx.2010.11.007
De Pasquale, F., Del Gratta, C. y Romani, G. L. (2008) Empirical Markov Chain Monte Carlo Bayesian analy-sis of fMRI data. NeuroImage, 42, 99-111. http://dx.doi.org/10.1016/j.neuroimage.2008.04.235
Friston, K. (2012). Ten ironic rules for non-statistical reviewers. NeuroImage, 61, 1300–1310. http://dx.doi.org/10.1016/j.neuroimage.2012.04.018
Friston, K. J., Ashburner, J., Kiebel, S. J., Nichols, T. E. y Penny, W. D. (2007). Statistical Parametric Mapping: The Analysis of Functional Brain Images. Glasgow: Academic Press.
Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. P., Frith, C. D. y Frackowiak, R. S. J. (1995). Statistical Parametric Maps in Functional Imaging: A General Linear Approach. Human Brain Mapping, 2, 189-210. http://dx.doi.org/10.1002/hbm.460020402
Gispert, J. D., Pascau, J., Reig, S., García-Barreno, P. y Desco, M. (2003). Mapas de estadísticos paramétricos (SPM) en medicina nuclear. Revista Especial de Medicina Nuclear, 22, 43-53. http://dx.doi.org/10.1016/S0212-6982(03)72141-7
Guàrdia, J., Peró, M. y Fauquet, J. (2013). Análisis de datos en neurociencia cognitiva. En D. Redolar (Ed.), Neurocien-cia Cognitiva (pp. 789-796). Madrid: Pirámide.
Guàrdia-Olmos, J., Peró-Cebollero, M., Zarabozo-Hurtado, D., González-Garrido, M. y Gudayol-Ferré, E. (En revisión editorial). Analysis of the visual recognition of words and homophone orthographic errors through magnetic resonance imaging (fMRI). Journal of Neurolinguistics.
Lindquist, M. A. y Wager, T. D. (2008). Spatial Smoothing in fMRI using Prolate Spheroidal Wave Functions. Human Brain Mapping, 29, 1276-1287. http://dx.doi.org/10.1002/hbm.20475
Logan, B. R., Geliazkova, M. P. y Rowe, D. B. (2008). An evaluation of spatial thresholding techniques in fMRI analysis. Human Brain Mapping, 29, 1379-1389. http://dx.doi.org/10.1002/hbm.20471
Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. y Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412, 150-157. http://dx.doi.org/10.1038/35084005
Ogawa, S., Lee, T. M., Kay, A. R. y Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences, USA, 87, 9868-9872. http://dx.doi.org/10.1073/pnas.87.24.9868
Sacchet, M. D. y Knutson, B. (2013). Spatial smoothing systematically biases the localization of reward-related brain activity. NeuroImage, 66, 270-277. http://dx.doi.org/10.1016/j.neuroimage.2012.10.056
Said, S. E. y Dickey, D. A. (1984). Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika, 71, 599-607. http://dx.doi.org/10.1093/biomet/71.3.599
Salafranca, Ll. (1991). Neurociencia cognitiva: problemá-tica del análisis de datos. (Tesis doctoral inèdita). Universitat de Barcelona, Barcelona, Espanya.
Talairach, J. y Tournoux, P. (1993) Referentially Oriented Cerebral MRI Anatomy: An Atlas of Stereotaxic Anatomical Correlations for Gray and White Matter. New York, USA: Thieme Medical Publishers.
Van Gerven, M. A., Cseke, B., de Lange, F. P. y Heskes, T.(2010). Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior. NeuroImage 50, 150-161. http://dx.doi.org/10.1016/j.neuroimage.2009.11.064
Downloads
Published
How to Cite
Issue
Section
License
All contents published in Escritos de Psicología are protected under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license. All about this license is available in the following link: <http://creativecommons.org/licenses/by-nc-sa/4.0>
Users can copy, use, redistribute, share and exhibit publicly as long as:
- The original source and authorship of the material are cited (Journal, Publisher and URL of the work).
- It is not used for comercial purposes.
- The existence of the license and its especifications are mentioned.
There are two sets of authors’ rights: moral and property rights. Moral rights are perpetual prerogatives, unrenounceable, not-transferable, unalienable, imprescriptible and inembargable. According to authors’ rights legislation, Escritos de Psicología recognizes and respects authors moral rights, as well as the ownership of property rights. The property rights are referred to the benefits that are gained by the use or the dissemination of works. Escritos de Psicología is published in an open access form and it is exclusively licenced by any means for doing or authorising distribution, dissemination, reproduction, , adaptation, translation or arrangement of works.
Authors are responsable for obtaining the necessary permission to use copyrighted images.