Función del ácido lisofosfatídico como regulador lipídico modulador del comportamiento
DOI:
https://doi.org/10.24310/espsiescpsi.v4i3.13321Palabras clave:
Ácido lisofosfatídico, Comportamiento, Aprendizaje, Memoria, EsquizofreniaResumen
El ácido lisofosfatídico (LPA, del inglés lysophosphatidic acid) es un fosfolípido endógeno implicado en numerosos y diferentes procesos celulares a través de receptores acoplados a proteína G específicos (LPA1-6). El descubrimiento de una vía de señalización mediada por LPA en el cerebro en desarrollo y en el adulto permitió la caracterización posterior de sus funciones neurales. Los estudios realizados hasta la fecha por medio de aproximaciones experimentales tales como la deleción génica, que permitiera el desarrollo de animales nulos carentes de los receptores específicos, han representado una herramienta de indudable valía para demostrar la necesidad de, al menos, la expresión del receptor LPA1 para el desarrollo normal de la función cerebral y su función en numerosos procesos que incluyen la proliferación y diferenciación neural, supervivencia celular, sinapsis, neurotransmisión, o el balance neuroquímico, en diferentes áreas cerebrales y, de manera notable, en el hipocampo. Actualmente, son ya numerosos los trabajos que muestran alteraciones que afectarían a los procesos cognitivos y emocionales en correlación con las alteraciones estructurales y neuroquímicas descritas. En este artículo se revisan las funciones del LPA en el comportamiento particularizadas, principalmente, al receptor LPA1, y se mencionan, igualmente, sus implicaciones en patologías psiquiátricas.
Descargas
Métricas
Citas
Abi-Dargham, A., Laruelle, M., Aghajanian, G.K., Charney, D. y Krystal, J. (1997). The role of serotonin in the pathophysiology and treatment of schizophrenia. Journal of Neuropsychiatry and Clinical Neurosciences, 9, 1-17.
Aimone, J.B., Deng, W. y Gage, F.H. (2011). Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron, 70, 589-596. http://dx.doi.org/10.1016/j.neuron.2011.05.010
Akbarian, S., Bunney, W.E., Jr., Potkin, S.G., Wigal, S.B., Hagman, J.O., Sandman, C.A. y Jones, E.G. (1993). Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Archives of General Psychiatry, 50, 169-177.
Allan, C.L., Cardno, A.G. y McGuffin, P. (2008). Schizophrenia: from genes to phenes to disease. Current Psychiatry Reports, 10, 339-343. http://dx.doi.org/10.1007/s11920-008-0054-x
Anliker, B. y Chun, J. (2004). Lysophospholipid G protein-coupled receptors. Journal of Biological Chemistry, 279, 20555-20558. http://dx.doi.org/10.1074/jbc.R400013200
Aoki, J. (2004). Mechanisms of lysophosphatidic acid production. Seminars in Cell & Developmental Biology, 15, 477-489. http://dx.doi.org/10.1016/j.semcdb.2004.05.001
Aoki, J., Inoue, A. y Okudaira, S. (2008). Two pathways for lysophosphatidic acid production. Biochimica et Biophysica Acta, 178, 513-518.
Arguello, P.A. y Gogos, J.A. (2010). Cognition in mouse models of schizophrenia susceptibility genes. Schizophrenia Bulletin, 36, 289-300. http://dx.doi.org/10.1093/schbul/sbp153
Ayhan, Y., Sawa, A., Ross, C.A. y Pletnikov, M.V. (2009). Animal models of gene-environment interactions in schizophrenia. Behavioral Brain Research, 204, 274-281. http://dx.doi.org/10.1016/j.bbr.2009.04.010
Bains, J.S. y Oliet, S.H. (2007). Glia: they make your memories stick! Trends in Neurosciences, 30, 417-424. http://dx.doi.org/10.1016/j.tins.2007.06.007
Belzung, C. y Griebel, G. (2001). Measuring normal and pathological anxiety-like behaviour in mice: a review. Behavioral Brain Research, 125, 141-149. http://dx.doi.org/10.1016/S0166-4328(01)00291-1
Benarroch, E.E. (2007). Rho GTPases: role in dendrite and axonal growth, mental retardation, and axonal regeneration. Neurology, 68, 1315-1318. http://dx.doi.org/10.1212/01.wnl.0000259588.97409.8f
Benes, F.M. y Berretta, S. (2001). GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology, 25, 1-27. http://dx.doi.org/10.1016/S0893-133X(01)00225-1
Benes, F.M., Todtenkopf, M.S. y Kostoulakos, P. (2001). GluR5,6,7 subunit immunoreactivity on apical pyramidal cell dendrites in hippocampus of schizophrenics and manic depressives. Hippocampus, 11, 482-491. http://dx.doi.org/10.1002/hipo.1065
Berger, M., Gray, J.A. y Roth, B.L. (2009). The expanded biology of serotonin. Annual Review of Medicine, 60, 355-336. http://dx.doi.org/10.1146/annurev.med.60.042307.110802
Birgbauer, E. y Chun, J. (2006). New developments in the biological functions of lysophospholipids. Cellular and Molecular Life Sciences, 63, 2695-2701. http://dx.doi.org/10.1007/s00018-006-6155-y
Björklund, A., Dunnet, S.B., Stenevi, U., Lewuis, M.E. e Iversen, S.D. (1980). Reinervation of the denervate striatum by substantia nigra. Brain Research, 199, 307-333.
Bowden, N.A., Weidenhofer, J., Scott, R.J., Schall, U., Todd, J., Michie, P.T. y Tooney, P.A. (2006). Preliminary investigation of gene expression profiles in peripheral blood lymphocytes in schizophrenia. Schizophrenia Research, 82, 175-183. http://dx.doi.org/10.1016/j.schres.2005.11.012
Braff, D.L., Geyer, M.A., y Swerdlow, N.R. (2001). Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology, 156, 234-258. http://dx.doi.org/10.1007/s002130100810
Bressan, R.A y Pilowsky, L.S. (2000). Imaging the glutamatergic system in vivo--relevance to schizophrenia. European Journal of Nuclear Medicine, 27, 1723-1731. http://dx.doi.org/10.1007/s002590000372
Bures, J., Buresova, O. y Huston, J.P. (1983). Techniques and basic experiments for the study of brain and behaviour. Elsevier Science Publishers: Amsterdam.
Cammarota, M., Bevilaqua, L.R., Medina, J.H. e Izquierdo I. (2008). ERK1/2 and CaMKII-mediated events in memory formation: is 5HT regulation involved? Behavioral Brain Research, 195, 120-128. http://dx.doi.org/10.1016/j.bbr.2007.11.029
Cardno, A.G. y Gottesman, I.I. (2000). Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. American Journal of Medicine and Genetics, 97, 12-17. http://dx.doi.org/10.1002/(SICI)1096-8628(200021)97:1<12::AID-AJMG3>3.0.CO;2-U
Castilla-Ortega, E., Sanchez-Lopez, J., Hoyo-Becerra, C., Matas-Rico, E., Zambrana-Infantes, E., Chun, J., De Fonseca, F.R., Pedraza, C., Estivill-Torrús, G. y Santín, L.J. (2010). Exploratory, anxiety and spatial memory impairments are dissociated in mice lacking the LPA1 receptor. Neurobiology of Learning and Memory, 94, 73-82. http://dx.doi.org/10.1016/j.nlm.2010.04.003
Castilla-Ortega, E., Pedraza, C., Estivill-Torrús, G. y Santín, L.J. (2011). When is adult hippocampal neurogenesis necessary for learning? Evidence from animal research. Reviews in Neuroscience, 22, 267-283. http://dx.doi.org/10.1515/RNS.2011.027
Castilla-Ortega, E., Hoyo-Becerra, C., Pedraza, C., Chun, J., Rodríguez de Fonseca, F., Estivill-Torrús, G. y Santín, L.J. (2011). Aggravation of the Pathological Consequences of Chronic Stress on Hippocampal Neurogenesis and Spatial Memory in Mice Lacking the Lysophosphatidic Acid LPA1 Receptor. PLoS ONE 6: e25522. http://dx.doi.org/10.1371/journal.pone.0025522
Chalmers, D.T. y Watson, S.J. (1991). Comparative anatomical distribution of 5-HT1A receptor mRNA and 5-HT1A binding in rat brain - a combined in situ hybridisation/in vitro receptor autoradiographic study. Brain Research, 561, 51-60. http://dx.doi.org/10.1016/0006-8993(91)90748-K
Champagne, D., Dupuy, J.B., Rochford, J. y Poirier, J. (2002). Apolipoprotein E knockout mice display procedural deficits in the morris water maze: analysis of learning strategies in three versions of the task. Neuroscience, 114, 641-654. http://dx.doi.org/10.1016/S0306-4522(02)00313-5
Choi, J.W., Lee, C.W. y Chun, J. (2008). Biological roles of lysophospholipid receptors revealed by genetic null mice: an update. Biochimica et Biophysica Acta, 1781, 531-539. http://dx.doi.org/10.1016/j.bbalip.2008.03.004
Choi, J.W., Herr, D.R., Noguchi, K., Yung, Y.C., Lee, C.W., Mutoh, T., Lin, M.E., Teo, S.T., Park, K.E., Mosley, A.N. y Chun, J. (2010). LPA receptors: subtypes and biological actions. Annual Review of Pharmacology and Toxicology, 50, 157-186. http://dx.doi.org/10.1146/annurev.pharmtox.010909.105753
Chun, J. (2005). Lysophospholipids in the nervous system. Prostaglandins and Other Lipid Mediators, 77, 46-51. http://dx.doi.org/10.1016/j.prostaglandins.2004.09.009
Chun J. (2007). How the lysophospholipid got its receptor. The Scientist, 21, 48-54.
Chun, J., Weiner, J.A., Fukushima, N., Contos, J.J., Zhang, G., Kimura, Y., Dubin, A., Ishii, I., Hecht, J.H., Akita, C., Kaushal, D. (2000). Neurobiology of receptor-mediated lysophospholipid signaling. From the first lysophospholipid receptor to roles in nervous system function and development. Annals of the New York Academy of Sciences, 905, 110-117. http://dx.doi.org/10.1111/j.1749-6632.2000.tb06543.x
Chun, J., Hla, T., Lynch, K.R., Spiegel, S. y Moolenaar, W.H. (2010). International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid receptor nomenclature. Pharmacological Reviews, 62, 579-587. http://dx.doi.org/10.1124/pr.110.003111
Contos, J.J., Fukushima, N., Weiner, J.A., Kaushal, D. y Chun, J. (2000). Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proceedings of the National Academy of Sciences USA, 97, 13384-13389. http://dx.doi.org/10.1073/pnas.97.24.13384
Cools, R., Nakamura, K. y Daw, N.D. (2011). Serotonin and dopamine: unifying affective, activational, and decision functions. Neuropsychopharmacology, 36, 98-113. http://dx.doi.org/10.1038/npp.2010.121
Coras, R., Siebzehnrubl, F.A., Pauli, E., Huttner, H.B., Njunting, M., Kobow, K., et al. (2010). Low proliferation and differentiation capacities of adult hippocampal stem cells correlate with memory dysfunction in humans. Brain, 133, 3359-3372. http://dx.doi.org/10.1093/brain/awq215
Cosoff, S.J. y Hafner, R.J. (1998). The prevalence of comorbid anxiety in schizophrenia, schizoaffective disorder and bipolar disorder. Australian and New Zealand Journal of Psychiatry, 32, 67-72. http://dx.doi.org/10.3109/00048679809062708
Cunningham, M.O., Hunt, J., Middleton, S., LeBeau, F.E., Gillies, M.J., Davies, C.H. y Maycox, P.R., Whittington M.A., Racca C. (2006). Region-specific reduction in entorhinal gamma oscillations and parvalbumin-immunoreactive neurons in animal models of psychiatric illness. Journal of Neuroscience, 26, 2767-2776. http://dx.doi.org/10.1523/JNEUROSCI.5054-05.2006
Dash, P.K., Orsi, S.A., Moody, M. y Moore, A.N. (2004). A role for hippocampal Rho-ROCK pathway in long-term spatial memory. Biochemical and Biophysical Research Communications, 322, 893-898. http://dx.doi.org/10.1016/j.bbrc.2004.08.004
Deng, W., Aimone, J.B. y Gage, F.H. (2010). New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nature Reviews in Neuroscience, 11, 339-350. http://dx.doi.org/10.1038/nrn2822
Derkinderen, P., Siciliano, J., Toutant, M. y Girault, J.A. (1998). Differential regulation of FAK+ and PYK2/Cakbeta, two related tyrosine kinases, in rat hippocampal slices: effects of LPA, carbachol, depolarization and hyperosmolarity. European Journal of Neuroscience, 10, 1667-1675. http://dx.doi.org/10.1046/j.1460-9568.1998.00174.x
Desbonnet, L., Waddington, J.L. y Tuathaigh, C.M. (2009). Mice mutant for genes associated with schizo phrenia: common phenotype or distinct endophenotypes? Behavioral Brain Research, 204, 258-273. http://dx.doi.org/10.1016/j.bbr.2009.04.001
Dockstader, C.L. y van der Kooy, D. (2001). Mouse strain differences in opiate reward learning are explained by differences in anxiety, not reward or learning. Journal of Neuroscience, 21, 9077-9081.
Emamghoreishi, M., Schlichter, L., Li, P.P., Parikh, S., Sen, J., Kamble, A. y Warsh, J.J. (1997). High intracellular calcium concentrations in transformed lymphoblasts from subjects with bipolar I disorder. American Journal of Psychiatry, 154, 976-982.
Estivill-Torrús, G., Llebrez-Zayas, P., Matas-Rico, E., Santín, L., Pedraza, C., De Diego, I., Del Arco, I., Fernández-Llebrez, P., Chun, J. y De Fonseca, F.R. (2008). Absence of LPA1 signaling results in defective cortical development. Cerebral Cortex, 18, 938-950.
Fallon, J.H., Opole, I.O. y Potkin, S.G. (2003). The neuroanatomy of schizophrenia: circuitry and neurotransmitter systems. Clinical Neuroscience Research, 3, 77-107. http://dx.doi.org/10.1016/S1566-2772(03)00022-7
Fujiwara, Y., Sebok, A., Meakin, S., Kobayashi, T., Murakami- Murofushi, K. y Tigyi, G. (2003). Cyclic phosphatidic acid elicits neurotrophin-like actions in embryonic hippocampal neurons. Journal of Neurochemistry, 87, 1272-1283. http://dx.doi.org/10.1046/j.1471-4159.2003.02106.x
Fukushima, N., Ishii, I., Habara, Y., Allen, C.B. y Chun, J. (2002). Dual regulation of actin rearrangement through lysophosphatidic acid receptor in neuroblast cell lines: actin depolymerization by Ca(2+)-alpha-actinin and polymerization by rho. Molecular Biology of the Cell, 13, 2692-2705. http://dx.doi.org/10.1091/mbc.01-09-0465
Fukushima, N., Ye, X. y Chun, J. (2002). Neurobiology of lysophosphatidic acid signaling. Neuroscientist, 8, 540-550. http://dx.doi.org/10.1177/1073858402238513
Geyer, M.A., Krebs-Thomson, K., Braff, D.L. y Swerdlow, N.R. (2001). Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology, 156, 117-154. http://dx.doi.org/10.1007/s002130100811
Gogos, J.A. y Gerber, D.J. (2006). Schizophrenia susceptibility genes: emergence of positional candidates and future directions. Trends in Pharmacological Sciences, 27, 226-233. http://dx.doi.org/10.1016/j.tips.2006.02.005
Goldshmit, Y., Munro, K., Yuen Leong, S., Pébay, A. y Turnley, A.M. (2010). LPA receptor expression in the central nervous system in health and following injury. Cell and Tissue Research, 341, 23-32. http://dx.doi.org/10.1007/s00441-010-0977-5
Goodman, T., Trouche, S., Massou, I., Verret, L., Zerwas, M., Roullet, P. y Rampon, C. (2010). Young hippocampal neurons are critical for recent and remote spatial memory in adult mice. Neuroscience, 171, 769-778. http://dx.doi.org/10.1016/j.neuroscience.2010.09.047
Gould, E. y Tanapat, P. (1999). Stress and hippocampal neurogenesis. Biological Psychiatry, 46, 1472-1479. http://dx.doi.org/10.1016/S0006-3223(99)00247-4
Harrison, S.M., Reavill, C., Brown, G., Brown, J.T., Cluderay, J.E., Crook, B., Davies, C.H., Dawson, L.A., Grau, E., Heidbreder, C., Hemmati, P., Hervieu, G., Howarth, A., Hughes, Z.A., Hunter, A.J., Latcham, J., Pickering, S., Pugh, P., Rogers, D.C., Shilliam, C.S. y Maycox, P.R. (2003). LPA1 receptor-deficient mice have phenotypic changes observed in psychiatric disease. Molecular and Cellular Neuroscience, 24, 1170-1179. http://dx.doi.org/10.1016/j.mcn.2003.09.001
Hecht, J.H., Weiner, J.A., Post, S.R. y Chun, J. (1996). Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. Journal of Cell Biology, 135, 1071-1083. http://dx.doi.org/10.1083/jcb.135.4.1071
Henckens, M.J., Hermans, E.J., Pu, Z., Joëls, M. y Fernández, G. (2009). Stressed memories: how acute stress affects memory formation in humans. Journal of Neuroscience, 29, 10111-10119. http://dx.doi.org/10.1523/JNEUROSCI.1184-09.2009
Hennessy, R.J., Baldwin, P.A., Browne, D.J., Kinsella, A. y Waddington, J.L. (2007). Three-dimensional laser surface imaging and geometric morphometrics resolve frontonasal dysmorphology in schizophrenia. Biological Psychiatry, 61, 1187-1194. http://dx.doi.org/10.1016/j.biopsych.2006.08.045
Hoffman, H.S. e Ison, J.R. (1980). Reflex modification in the domain of startle: I. Some empirical findings and their implications for how the nervous system processes sensory input. Psychological Reviews, 87, 175-189. http://dx.doi.org/10.1037/0033-295X.87.2.175
Honer, W.G., Falkai, P., Bayer, T.A., Xie, J., Hu, L., Li, H.Y., Arango, V., Mann, J.J., Dwork, A.J. y Trimble, W.S. (2002). Abnormalities of SNARE mechanism proteins in anterior frontal cortex in severe mental illness. Cerebral Cortex, 12, 349-356. http://dx.doi.org/10.1093/cercor/12.4.349
Inta. D., Monyer, H., Sprengel, R., Meyer-Lindenberg, A. y Gass, P. (2010). Mice with genetically altered glutamate receptors as models of schizophrenia: A comprehensive review. Neuroscience & Biobehavioral Reviews, 34, 285-294. http://dx.doi.org/10.1016/j.neubiorev.2009.07.010
Ishii, I., Fukushima, N., Ye, X. y Chun, J. (2004). Lysophospholipid receptors: signaling and biology. Annual Reviews of Biochemistry, 73, 321-354. http://dx.doi.org/10.1146/annurev.biochem.73.011303.073731
Jacobs, B.L. y Azmitia, E.C. (1992). Structure and function of the brain serotonin system. Physiological Reviews, 72, 165-229.
Jin Rhee, H., Nam, J.S., Sun, Y., Kim, M.J., Choi, H.K., Han, D.H., Kim, N.H. y Huh, S.O. (2006). Lysophosphatidic acid stimulates cAMP accumulation and cAMP response element-binding protein phosphorylation in immortalized hippocampal progenitor cells. Neuroreport, 17, 523-526. http://dx.doi.org/10.1097/01.wnr.0000209011.16718.68
Joca, S.R., Ferreira, F.R. y Guimaraes, F.S. (2007). Modulation of stress consequences by hippocampal monoaminergic, glutamatergic and nitrergic neurotransmitter systems. Stress, 10, 227-249. http://dx.doi.org/10.1080/10253890701223130
Joels, M., Karst, H., Krugers, H.J. y Lucassen, P.J. (2007). Chronic stress: implications for neuronal morphology, function and neurogenesis. Frontiers in Neuroendocrinology, 28, 72-96. http://dx.doi.org/10.1016/j.yfrne.2007.04.001
Joëls, M. y Baram, T.Z. (2009) The neuro-symphony of stress. Nature Reviews in Neuroscience, 10, 459-466.
Joëls, M., Fernandez, G. y Roozendaal, B. (2011). Stress and emotional memory: a matter of timing. Trends in Cognitive Sciences, 15, 280-288. http://dx.doi.org/10.1016/j.tics.2011.04.004
Jonnakuty, C. y Gragnoli, C. (2008). What do we know about serotonin? Journal of Cellular Physioly, 217, 301-306. http://dx.doi.org/10.1002/jcp.21533
Kameda, S.R., Frussa-Filho, R., Carvalho, R.C., Takatsu-Coleman, A.L., Ricardo, V.P., Patti, C.L., et al. (2007). Dissociation of the effects of ethanol on memory, anxiety, and motor behavior in mice tested in the plus-maze discriminative avoidance task. Psychopharmacology, 192, 39-48. http://dx.doi.org/10.1007/s00213-006-0684-9
Karoutzou, G., Emrich, H.M. y Dietrich, D.E. (2008). The myelin-pathogenesis puzzle in schizophrenia: a literature review. Molecular Psychiatry, 13, 245-260.http://dx.doi.org/10.1038/sj.mp.4002096
Kempermann, G., Krebs, J. y Fabel, K. (2008). The contribution of failing adult hippocampal neurogenesis to psychiatric disorders. Current Opinion in Psychiatry, 21, 290-295. http://dx.doi.org/10.1097/YCO.0b013e3282fad375
Kim, J.S., Kornhuber, H.H., Schmid-Burgk, W. y Holzmuller, B. (1980). Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosciences Letter, 20, 379-382. http://dx.doi.org/10.1016/0304-3940(80)90178-0
Kingsbury, M.A., Rehen, S.K., Contos, J.J., Higgins, C.M. y Chun, J. (2003). Nonproliferative effects of lysophosphatidic acid enhance cortical growth and folding. Nature Neuroscience, 6, 1292-1299. http://dx.doi.org/10.1038/nn1157
Koehl, M. y Abrous, D.N. (2011). A new chapter in the field of memory: adult hippocampal neurogenesis. European Journal of Neuroscience, 33, 1101-1114.http://dx.doi.org/10.1111/j.1460-9568.2011.07609.x
Lam, D.D., Przydzial, M.J., Ridley, S.H., Yeo, G.S., Rochford, J.J., O’Rahilly, S. y Heisler, L.K. (1997). Serotonin 5-HT2C receptor agonist promotes hypophagia via downstream activation of melanocortin 4 receptors. Endocrinology, 149, 1323-1328.http://dx.doi.org/10.1210/en.2007-1321
e Strat, Y., Ramoz, N. y Gorwood, P. (2009). The Role of Genes Involved in Neuroplasticity and Neurogenesis in the Observation of a Gene-Environment Interaction (GxE) in Schizophrenia. Current Molecular Medicine, 9, 506-518. http://dx.doi.org/10.2174/156652409788167104
Leuner, B., Gould, E. y Shors, T.J. (2006). Is there a link between adult neurogenesis and learning? Hippocampus, 16, 216-224. http://dx.doi.org/10.1002/hipo.20153
Lin, M.E., Herr, D.R. y Chun, J. (2010). Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance. Prostaglandins and Other Lipid Mediators, 91,130-138.http://dx.doi.org/10.1016/j.prostaglandins.2009.02.002
Lisman, J.E., Schulman, H. y Cline, H. (2002). The molecular basis of CaMKII function in synaptic and behavioural memory. Nature Reviews in Neuroscience, 3, 175-190.http://dx.doi.org/10.1038/nrn753
López, J.F., Liberzon, I., Vázquez, D.M., Young, E.A. y Watson, S.J. 1999. Serotonin 1A receptor messenger RNA regulation in the hippocampus after acute stress. Biological Psychiatry, 45, 934-937. http://dx.doi.org/10.1016/S0006-3223(98)00224-8
Lu, W.Y., Xiong, Z.G., Lei, S., Orser, B.A., Dudek, E., Browning, M.D. y MacDonald, J.F. (1999). G-protein-coupled receptors act via protein kinase C and Src to regulate NMDA receptors. Nature Neuroscience, 2, 331-338. http://dx.doi.org/10.1038/7243
Macklis, J.D. (2001). Neurobiology: new memories from new neurons. Nature, 410, 314-315. http://dx.doi.org/10.1038/35066661
Malleret, G., Hen, R., Guillou, J.L., Segu, L. y Buhot, M.C. (1999). 5-HT1B receptor knock-out mice exhibit increased exploratory activity and enhanced spatial memory performance in the Morris water maze. Journal of Neuroscience, 19, 6157-6168.
Marshall, F. y Titelbaum, P. 1974. Further analysis of sensory inattention flowing lateral hypothalamic damage in rats. Journal of Comparative and Physiological Psychology, 86, 375-395. http://dx.doi.org/10.1037/h0035941
Matas-Rico, E., García-Diaz, B., Llebrez-Zayas, P., López-Barroso, D., Santín, L., Pedraza, C., Smith-Fernández, A., Fernández-Llebrez, P., Tellez, T., Redondo, M., Chun, J., De Fonseca, F.R. y Estivill-Torrús, G. (2008). Deletion of lysophosphatidic acid receptor LPA1 reduces neurogenesis in the mouse dentate gyrus. Molecular and Cellular Neuroscience, 39, 342-355. http://dx.doi.org/10.1016/j.mcn.2008.07.014
McEwen, B.S. (2000). Effects of adverse experiences for brain structure and function. Biological Psychiatry, 48, 721-731. http://dx.doi.org/10.1016/S0006-3223(00)00964-1
Mizuno, M., Yamada, K., He, J., Nakajima, A. y Nabeshima, T. (2003). Involvement of BDNF receptor TrkB in spatial memory formation. Learning and Memory, 10, 108-115.http://dx.doi.org/10.1101/lm.56003
Moolenar, W.H., van Meeteren, L.A. y Giepmans, B.N.G. (2004). The ins and outs of lysophosphatidic acid signaling. BioEssays, 26, 870-881.http://dx.doi.org/10.1002/bies.20081
Mueller, N.K. y Beck, S.G. (2000). Corticosteroids alter the 5-HT(1A) receptor-mediated response in CA1 hippocampal pyramidal cells. Neuropsychopharmacology, 23, 419-427.http://dx.doi.org/10.1016/S0893-133X(00)00134-2
Murph, M.M., Nguyen, G.H., Radhakrishna, H. y Mills, G.B. (2008). Sharpening the edges of understanding the structure/function of the LPA1 receptor: expression in cancer and mechanisms of regulation. Biochimica et Biophysica Acta, 1781, 547-557.http://dx.doi.org/10.1016/j.bbalip.2008.04.007
Musazzi, L., Di Daniel, E., Maycox, P., Racagni, G. y Popoli, M. (2010). Abnormalities in ?/?-CaMKII and related mechanisms suggest synaptic dysfunction in hippocampus of LPA1 receptor knockout mice. International Journal of Neuropsychopharmacology, 14, 1-13.
Nishikawa, T., Tomori, Y., Yamashita, S. y Shimizu, S. (1989). Inhibition of Na+,K+-ATPase activity by phospholipase A2 and several lysophospholipids: possible role of phospholipase A2 in noradrenaline release from cerebral cortical synaptosomes. Journal of Pharmacy and Pharmacology, 41, 450-458. http://dx.doi.org/10.1111/j.2042-7158.1989.tb06499.x
Noguchi, K., Herr, D., Mutoh, T. y Chun, J. (2009). Lysophosphatidic acid (LPA) and its receptors. Current Opinion in Pharmacology, 9, 15-23. http://dx.doi.org/10.1016/j.coph.2008.11.010
Noorbala, A.A., Akhondzadeh, S., Davari-Ashtiani, R. y Amini-Nooshabedi, H. (1999). Piracetam in the treatment of schizophrenia: implications for the glutamate hypothesis of schizophrenia. Journal of Clinical Pharmacy and Therapeutics, 24, 369-374. http://dx.doi.org/10.1046/j.1365-2710.1999.00238.x
Norman, R.M. y Malla, A.K. (1993). Stressful life events and schizophrenia. I: A review of the research. British Journal of Psychiatry, 162, 161-166. http://dx.doi.org/10.1192/bjp.162.2.161
Norton, N., Williams, H.J. y Owen, M.J. (2006). An update on the genetics of schizophrenia. Current Opinion in Psychiatry, 19, 158-164. http://dx.doi.org/10.1097/01.yco.0000214341.52249.59
Oades, R.D. (1981). Type of memory or attention? Impairments after lesions of the hippocampus and limbic ventral tegmentum. Brain Research Bulletin, 7, 221-226. http://dx.doi.org/10.1016/0361-9230(81)90086-1
Ohl, F., Roedel, A., Storch, C., Holsboer, F. y Landgraf, R. (2002). Cognitive performance in rats differing in their inborn anxiety. Behavioral Neuroscience, 116, 464-471. http://dx.doi.org/10.1037/0735-7044.116.3.464
Ohnuma, T., Augood, S.J., Arai, H., McKenna, P.J. y Emson, P.C. (1999). Measurement of GABAergic parameters in the prefrontal cortex in schizophrenia: focus on GABA content, GABA(A) receptor alpha-1 subunit messenger RNA and human GABA transporter-1 (HGAT-1) messenger RNA expression. Neuroscience, 93, 441-448. http://dx.doi.org/10.1016/S0306-4522(99)00189-X
Parks, C.L., Robinson, P.S., Sibille, E., Shenk, T. y Toth, M. (1998). Increased anxiety of mice lacking the serotonin1A receptor. Proceedings of the National Academy of Sciences USA, 95, 10734-10739. http://dx.doi.org/10.1073/pnas.95.18.10734
Perova, T., Wasserman, M.J., Li, P.P. y Warsh, J.J. (2008). Hyperactive intracellular calcium dynamics in B lymphoblasts from patients with bipolar I disorder. International Journal of Neuropsychopharmacoly, 11, 185-196. http://dx.doi.org/10.1017/S1461145707007973
Perova, T., Kwan, M., Li, P.P. y Warsh, J.J. (2010). Differential modulation of intracellular Ca2+ responses in B lymphoblasts by mood stabilizers. International Journal of Neuropsychopharmacology, 13, 693-702. http://dx.doi.org/10.1017/S1461145709000261
Pilpel, Y. y Segal, M. (2006). The role of LPA1 in formation of synapses among cultured hippocampal neurons. Journal of Neurochemistry, 97, 1379-1392. http://dx.doi.org/10.1111/j.1471-4159.2006.03825.x
Pittenger, C. y Duman, R.S. (2008). Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology, 33, 88-109. http://dx.doi.org/10.1038/sj.npp.1301574
Pyka, M., Busse, C., Seidenbecher, C., Gundelfinger, E.D. y Faissner, A. (2011). Astrocytes are crucial for survival and maturation of embryonic hippocampal neurons in a neuron-glia cell-insert coculture assay. Synapse, 65, 41-53. http://dx.doi.org/10.1002/syn.20816
Quincozes-Santos, A., Abib, R.T., Leite, M.C., Bobermin, D., Bambini-Junior, V., Gonçalves, C.A., Riesgo, R. y Gottfried, C. (2008). Effect of the atypical neuroleptic risperidone on morphology and S100B secretion in C6 astroglial lineage cells. Molecular and Cellular Biochemistry, 314, 59-63. http://dx.doi.org/10.1007/s11010-008-9765-x
Ramos, A. y Mormede, P. (1998). Stress and emotionality: A multidimensional and genetic approach. Neuroscience & Biobehavioral Reviews, 22, 33-57. http://dx.doi.org/10.1016/S0149-7634(97)00001-8
Reif, A., Fritzen, S., Finger, M., Strobel, A., Lauer, M., Schmitt, A. y Lesch, K.P. (2006). Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Molecular Psychiatry, 11, 514-522. http://dx.doi.org/10.1038/sj.mp.4001791
Rivera, R. y Chun, J. (2008). Biological effects of lysophospholipids. Reviews of Physiology,Biochemistry & Pharmacology, 160, 25-46. http://dx.doi.org/10.1007/112_0507
Roberts, C., Winter, P., Shilliam, C.S., Hughes, Z.A., Langmead, C., Maycox, P.R. y Dawson, L.A. (2005). Neurochemical changes in LPA1 receptor deficient mice--a putative model of schizophrenia. Neurochemical Research, 30, 371-377. http://dx.doi.org/10.1007/s11064-005-2611-6
Ross, R.G., Stevens, K.E., Proctor, W.R., Leonard, S., Kisley, M.A., Hunter, S.K., Freedman, R. y Adams, C.E. (2010). Research review: Cholinergic mechanisms, early brain development, and risk for schizophrenia. Journal of Child Psychology and Psychiatry, 51, 535-549. http://dx.doi.org/10.1111/j.1469-7610.2009.02187.x
Santín, L.J., Bilbao, A., Pedraza, C., Matas-Rico, E., Lopez-Barroso, D., Castilla-Ortega, E., Sánchez-López, J., Riquelme, R., Varela-Nieto, I., de la Villa, P., Suardíaz, M., Chun, J., De Fonseca, F.R. y Estivill-Torrús, G. (2009). Behavioral phenotype of maLPA1-null mice: increased anxiety-like behavior and spatial memory deficits. Genes Brain & Behavior, 8, 772-784. http://dx.doi.org/10.1111/j.1601-183X.2009.00524.x
Savitz, J., Lucki, I. y Drevets, W.C. (2009). 5-HT(1A) receptor function in major depressive disorder. Progress in Neurobiology, 88, 17-31. http://dx.doi.org/10.1016/j.pneurobio.2009.01.009
Saxe, M.D., Malleret, G., Vronskaya, S., Mendez, I., Garcia, A.D., Sofroniew, M.V., et al. (2007). Paradoxical influence of hippocampal neurogenesis on working memory. Proceedings of the National Academy of Sciences USA, 104, 4642-4646. http://dx.doi.org/10.1073/pnas.0611718104
Schwabe, L., Joëls, M., Roozendaal, B., Wolf, O.T. y Oitzl, M.S. (2011). Stress effects on memory: An update and integration. Neuroscience & Biobehavioral Reviews, (2011). http://dx.doi.org/10.1016/j.neubiorev.2011.07.002
Selemon, L.D. y Goldman-Rakic, P.S. (1999). The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biological Psychiatry, 45, 17-25. http://dx.doi.org/10.1016/S0006-3223(98)00281-9
Shors, T.J. (2004). Memory traces of trace memories: neurogenesis, synaptogenesis and awareness. Trends in Neurosciences, 27, 250-256. http://dx.doi.org/10.1016/j.tins.2004.03.007
Shors, T.J., Miesegaes, G., Beylin, A., Zhao, M., Rydel, T. y Gould, E. (2001). Neurogenesis in the adult is involved in the formation of trace memories. Nature, 410, 372-376. http://dx.doi.org/10.1038/35066584
Tabuchi, S., Kume, K., Aihara, M. y Shimizu, T. (2000). Expression of lysophosphatidic acid receptor in rat astrocytes: mitogenic effect and expression of neurotrophic genes. Neurochemical Research, 25, 573-582. http://dx.doi.org/10.1023/A:1007542532395
Tamminga, C.A. y Holcomb, H.H. (2005). Phenotype of schizophrenia: a review and formulation. Molecular Psychiatry, 10, 27-39. http://dx.doi.org/10.1038/sj.mp.4001563
Tecott, L.H. (2007). Serotonin and the orchestration of energy balance. Cell Metabolism, 6, 352–361. http://dx.doi.org/10.1016/j.cmet.2007.09.012
Tigyi, G., Fischer, D.J., Sebok, A., Yang, C., Dyer, D.L. y Miledi, R. (1996). Lysophosphatidic acid-induced neurite retraction in PC12 cells: control by phosphoinositide-Ca2+ signaling and Rho. Journal of. Neurochemistry, 66, 537-548. http://dx.doi.org/10.1046/j.1471-4159.1996.66020537.x
Tkachev, D., Mimmack, M.L., Ryan, M.M., Wayland, M., Freeman, T., Jones, P.B., Starkey, M., Webster, M.J., Yolken, R.H. y Bahn, S. (2003). Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet, 362, 798-804. http://dx.doi.org/10.1016/S0140-6736(03)14289-4
Tyler, W.J., Alonso, M., Bramham, C.R. y Pozzo-Miller, L.D. (2002). From acquisition to consolidation: On the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learning and Memory, 9, 224-237. http://dx.doi.org/10.1101/lm.51202
Van den Buuse, M. (2010). Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophrenia Bulletin, 36, 246-270. http://dx.doi.org/10.1093/schbul/sbp132
Van Haren, N.E., Hulshoff Pol, H.E., Schnack, H.G., Cahn, W., Brans, R., Carati, I., Rais, M. y Kahn, R.S. (2008). Progressive brain volume loss in schizophrenia over the course of the illness: evidence of maturational abnormalities in early adulthood. Biological Psychiatry, 63, 106-113.http://dx.doi.org/10.1016/j.biopsych.2007.01.004
Van Meeteren, L.A. y Moolenaar, W.H. (2007). Regulation and biological activities of the autotaxin-LPA axis. Progress in Lipid Research, 46, 145-160. http://dx.doi.org/10.1016/j.plipres.2007.02.001
Van Praag, H., Schinder, A.F., Christie, B.R., Toni, N., Palmer, T.D. y Gage, F.H. (2002). Functional neurogenesis in the adult hippocampus. Nature, 415, 1030-1034. http://dx.doi.org/10.1038/4151030a
Warner-Schmidt, J.L. y Duman, R.S. (2006). Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus, 16, 239-249. http://dx.doi.org/10.1002/hipo.20156
Weiger, W.A. (1997). Serotonergic modulation of behaviour: a phylogenetic overview. Biological Reviews, 72, 61-95 http://dx.doi.org/10.1017/S0006323196004975
Weinberger, D.R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry, 44, 660-669.
Whishaw, I.Q. (1995). Rats with fimbria-fornix lesions display a place response in a swimming pool: a dissociation between getting there and knowing where. Journal of Neuroscience, 15, 5779-5788.
Whitford, T.J., Kubicki, M., Schneiderman, J.S., O’Donnell, L.J., King, R., Alvarado, J.L., Khan, U., Markant, D., Nestor, P.G., Niznikiewicz, M., McCarley, R.W., Westin, C.F. y Shenton, M.E. (2010). Corpus callosum abnormalities and their association with psychotic symptoms in patients with schizophrenia. Biological Psychiatry, 68, 70-77. http://dx.doi.org/10.1016/j.biopsych.2010.03.025
Wolff, A.L. y O’Driscoll, G.A. (1999). Motor deficits and schizophrenia: the evidence from neuroleptic-naive patients and populations at risk. Journal of Psychiatry & Neuroscience, 24, 304-314.
Wright, I.C., Rabe-Hesketh, S., Woodruff, P.W., David, A.S., Murray, R.M. y Bullmore, E.T. (2000). Meta-analysis of regional brain volumes in schizophrenia. American Journal of Psychiatry, 157, 16-25.
Yoon, T., Okada, J., Jung, M.W. y Kim, J.J. (2008). Prefrontal cortex and hippocampus subserve different components of working memory in rats. Learning and Memory, 15, 97-105. http://dx.doi.org/10.1101/lm.850808
Zhang, X.F., Schaefer, A.W., Burnette, D.T., Schoonderwoert, V.T. y Forscher, P. (2003). Rho-dependent contractile responses in the neuronal growth cone are independent of classical peripheral retrograde actin flow. Neuron, 40, 931-944.http://dx.doi.org/10.1016/S0896-6273(03)00754-2
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Todos los contenidos publicados en Escritos de Psicología están sujetos a la licencia Creative Commons Reconocimento-NoComercia-Compartirigual 4.0 cuyo texto completo puede consultar en <http://creativecommons.org/licenses/by-nc-sa/4.0>
Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que:
- Se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra).
- No se usen para fines comerciales.
- Se mencione la existencia y especificaciones de esta licencia de uso.
Los derechos de autor son de dos clases: morales y patrimoniales. Los derechos morales son prerrogativas perpetuas, irrenunciables, intransferibles, inalienables, inembargables e imprescriptibles. De acuerdo con la legislación de derechos de autor, Escritos de Psicología reconoce y respeta el derecho moral de los autores/as, así como la titularidad del derecho patrimonial. Los derechos patrimoniales, se refieren a los beneficios que se obtienen por el uso o divulgación de las obras. Escritos de Psicología se publica en open access y queda autorizada en exclusiva para realizar u autorizar por cualquier medio el uso, distribución, divulgación, reproducción, adaptación, traducción o transformación de la obra.
Es responsabilidad de los autores/as obtener los permisos necesarios de las imágenes que están sujetas a derechos de autor.