Función del ácido lisofosfatídico como regulador lipídico modulador del comportamiento

Autores/as

  • Guillermo Estivill-Torrús Unidad de Microscopía, Fundación IMABIS, Málaga España
  • Luis Javier Santín Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga España
  • Carmen Pedraza Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga España
  • Estela Castilla-Ortega Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga España
  • Fernando Rodríguez de Fonseca Laboratorio de Medicina Regenerativa, Fundación IMABIS, Málaga España

DOI:

https://doi.org/10.24310/espsiescpsi.v4i3.13321

Palabras clave:

Ácido lisofosfatídico, Comportamiento, Aprendizaje, Memoria, Esquizofrenia

Resumen

El ácido lisofosfatídico (LPA, del inglés lysophosphatidic acid) es un fosfolípido endógeno implicado en numerosos y diferentes procesos celulares a través de receptores acoplados a proteína G específicos (LPA1-6). El descubrimiento de una vía de señalización mediada por LPA en el cerebro en desarrollo y en el adulto permitió la caracterización posterior de sus funciones neurales. Los estudios realizados hasta la fecha por medio de aproximaciones experimentales tales como la deleción génica, que permitiera el desarrollo de animales nulos carentes de los receptores específicos, han representado una herramienta de indudable valía para demostrar la necesidad de, al menos, la expresión del receptor LPA1 para el desarrollo normal de la función cerebral y su función en numerosos procesos que incluyen la proliferación y diferenciación neural, supervivencia celular, sinapsis, neurotransmisión, o el balance neuroquímico, en diferentes áreas cerebrales y, de manera notable, en el hipocampo. Actualmente, son ya numerosos los trabajos que muestran alteraciones que afectarían a los procesos cognitivos y emocionales en correlación con las alteraciones estructurales y neuroquímicas descritas. En este artículo se revisan las funciones del LPA en el comportamiento particularizadas, principalmente, al receptor LPA1, y se mencionan, igualmente, sus implicaciones en patologías psiquiátricas.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Abi-Dargham, A., Laruelle, M., Aghajanian, G.K., Charney, D. y Krystal, J. (1997). The role of serotonin in the pathophysiology and treatment of schizophrenia. Journal of Neuropsychiatry and Clinical Neurosciences, 9, 1-17.

Aimone, J.B., Deng, W. y Gage, F.H. (2011). Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron, 70, 589-596. http://dx.doi.org/10.1016/j.neuron.2011.05.010

Akbarian, S., Bunney, W.E., Jr., Potkin, S.G., Wigal, S.B., Hagman, J.O., Sandman, C.A. y Jones, E.G. (1993). Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Archives of General Psychiatry, 50, 169-177.

Allan, C.L., Cardno, A.G. y McGuffin, P. (2008). Schizophrenia: from genes to phenes to disease. Current Psychiatry Reports, 10, 339-343. http://dx.doi.org/10.1007/s11920-008-0054-x

Anliker, B. y Chun, J. (2004). Lysophospholipid G protein-coupled receptors. Journal of Biological Chemistry, 279, 20555-20558. http://dx.doi.org/10.1074/jbc.R400013200

Aoki, J. (2004). Mechanisms of lysophosphatidic acid production. Seminars in Cell & Developmental Biology, 15, 477-489. http://dx.doi.org/10.1016/j.semcdb.2004.05.001

Aoki, J., Inoue, A. y Okudaira, S. (2008). Two pathways for lysophosphatidic acid production. Biochimica et Biophysica Acta, 178, 513-518.

Arguello, P.A. y Gogos, J.A. (2010). Cognition in mouse models of schizophrenia susceptibility genes. Schizophrenia Bulletin, 36, 289-300. http://dx.doi.org/10.1093/schbul/sbp153

Ayhan, Y., Sawa, A., Ross, C.A. y Pletnikov, M.V. (2009). Animal models of gene-environment interactions in schizophrenia. Behavioral Brain Research, 204, 274-281. http://dx.doi.org/10.1016/j.bbr.2009.04.010

Bains, J.S. y Oliet, S.H. (2007). Glia: they make your memories stick! Trends in Neurosciences, 30, 417-424. http://dx.doi.org/10.1016/j.tins.2007.06.007

Belzung, C. y Griebel, G. (2001). Measuring normal and pathological anxiety-like behaviour in mice: a review. Behavioral Brain Research, 125, 141-149. http://dx.doi.org/10.1016/S0166-4328(01)00291-1

Benarroch, E.E. (2007). Rho GTPases: role in dendrite and axonal growth, mental retardation, and axonal regeneration. Neurology, 68, 1315-1318. http://dx.doi.org/10.1212/01.wnl.0000259588.97409.8f

Benes, F.M. y Berretta, S. (2001). GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology, 25, 1-27. http://dx.doi.org/10.1016/S0893-133X(01)00225-1

Benes, F.M., Todtenkopf, M.S. y Kostoulakos, P. (2001). GluR5,6,7 subunit immunoreactivity on apical pyramidal cell dendrites in hippocampus of schizophrenics and manic depressives. Hippocampus, 11, 482-491. http://dx.doi.org/10.1002/hipo.1065

Berger, M., Gray, J.A. y Roth, B.L. (2009). The expanded biology of serotonin. Annual Review of Medicine, 60, 355-336. http://dx.doi.org/10.1146/annurev.med.60.042307.110802

Birgbauer, E. y Chun, J. (2006). New developments in the biological functions of lysophospholipids. Cellular and Molecular Life Sciences, 63, 2695-2701. http://dx.doi.org/10.1007/s00018-006-6155-y

Björklund, A., Dunnet, S.B., Stenevi, U., Lewuis, M.E. e Iversen, S.D. (1980). Reinervation of the denervate striatum by substantia nigra. Brain Research, 199, 307-333.

Bowden, N.A., Weidenhofer, J., Scott, R.J., Schall, U., Todd, J., Michie, P.T. y Tooney, P.A. (2006). Preliminary investigation of gene expression profiles in peripheral blood lymphocytes in schizophrenia. Schizophrenia Research, 82, 175-183. http://dx.doi.org/10.1016/j.schres.2005.11.012

Braff, D.L., Geyer, M.A., y Swerdlow, N.R. (2001). Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology, 156, 234-258. http://dx.doi.org/10.1007/s002130100810

Bressan, R.A y Pilowsky, L.S. (2000). Imaging the glutamatergic system in vivo--relevance to schizophrenia. European Journal of Nuclear Medicine, 27, 1723-1731. http://dx.doi.org/10.1007/s002590000372

Bures, J., Buresova, O. y Huston, J.P. (1983). Techniques and basic experiments for the study of brain and behaviour. Elsevier Science Publishers: Amsterdam.

Cammarota, M., Bevilaqua, L.R., Medina, J.H. e Izquierdo I. (2008). ERK1/2 and CaMKII-mediated events in memory formation: is 5HT regulation involved? Behavioral Brain Research, 195, 120-128. http://dx.doi.org/10.1016/j.bbr.2007.11.029

Cardno, A.G. y Gottesman, I.I. (2000). Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. American Journal of Medicine and Genetics, 97, 12-17. http://dx.doi.org/10.1002/(SICI)1096-8628(200021)97:1<12::AID-AJMG3>3.0.CO;2-U

Castilla-Ortega, E., Sanchez-Lopez, J., Hoyo-Becerra, C., Matas-Rico, E., Zambrana-Infantes, E., Chun, J., De Fonseca, F.R., Pedraza, C., Estivill-Torrús, G. y Santín, L.J. (2010). Exploratory, anxiety and spatial memory impairments are dissociated in mice lacking the LPA1 receptor. Neurobiology of Learning and Memory, 94, 73-82. http://dx.doi.org/10.1016/j.nlm.2010.04.003

Castilla-Ortega, E., Pedraza, C., Estivill-Torrús, G. y Santín, L.J. (2011). When is adult hippocampal neurogenesis necessary for learning? Evidence from animal research. Reviews in Neuroscience, 22, 267-283. http://dx.doi.org/10.1515/RNS.2011.027

Castilla-Ortega, E., Hoyo-Becerra, C., Pedraza, C., Chun, J., Rodríguez de Fonseca, F., Estivill-Torrús, G. y Santín, L.J. (2011). Aggravation of the Pathological Consequences of Chronic Stress on Hippocampal Neurogenesis and Spatial Memory in Mice Lacking the Lysophosphatidic Acid LPA1 Receptor. PLoS ONE 6: e25522. http://dx.doi.org/10.1371/journal.pone.0025522

Chalmers, D.T. y Watson, S.J. (1991). Comparative anatomical distribution of 5-HT1A receptor mRNA and 5-HT1A binding in rat brain - a combined in situ hybridisation/in vitro receptor autoradiographic study. Brain Research, 561, 51-60. http://dx.doi.org/10.1016/0006-8993(91)90748-K

Champagne, D., Dupuy, J.B., Rochford, J. y Poirier, J. (2002). Apolipoprotein E knockout mice display procedural deficits in the morris water maze: analysis of learning strategies in three versions of the task. Neuroscience, 114, 641-654. http://dx.doi.org/10.1016/S0306-4522(02)00313-5

Choi, J.W., Lee, C.W. y Chun, J. (2008). Biological roles of lysophospholipid receptors revealed by genetic null mice: an update. Biochimica et Biophysica Acta, 1781, 531-539. http://dx.doi.org/10.1016/j.bbalip.2008.03.004

Choi, J.W., Herr, D.R., Noguchi, K., Yung, Y.C., Lee, C.W., Mutoh, T., Lin, M.E., Teo, S.T., Park, K.E., Mosley, A.N. y Chun, J. (2010). LPA receptors: subtypes and biological actions. Annual Review of Pharmacology and Toxicology, 50, 157-186. http://dx.doi.org/10.1146/annurev.pharmtox.010909.105753

Chun, J. (2005). Lysophospholipids in the nervous system. Prostaglandins and Other Lipid Mediators, 77, 46-51. http://dx.doi.org/10.1016/j.prostaglandins.2004.09.009

Chun J. (2007). How the lysophospholipid got its receptor. The Scientist, 21, 48-54.

Chun, J., Weiner, J.A., Fukushima, N., Contos, J.J., Zhang, G., Kimura, Y., Dubin, A., Ishii, I., Hecht, J.H., Akita, C., Kaushal, D. (2000). Neurobiology of receptor-mediated lysophospholipid signaling. From the first lysophospholipid receptor to roles in nervous system function and development. Annals of the New York Academy of Sciences, 905, 110-117. http://dx.doi.org/10.1111/j.1749-6632.2000.tb06543.x

Chun, J., Hla, T., Lynch, K.R., Spiegel, S. y Moolenaar, W.H. (2010). International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid receptor nomenclature. Pharmacological Reviews, 62, 579-587. http://dx.doi.org/10.1124/pr.110.003111

Contos, J.J., Fukushima, N., Weiner, J.A., Kaushal, D. y Chun, J. (2000). Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proceedings of the National Academy of Sciences USA, 97, 13384-13389. http://dx.doi.org/10.1073/pnas.97.24.13384

Cools, R., Nakamura, K. y Daw, N.D. (2011). Serotonin and dopamine: unifying affective, activational, and decision functions. Neuropsychopharmacology, 36, 98-113. http://dx.doi.org/10.1038/npp.2010.121

Coras, R., Siebzehnrubl, F.A., Pauli, E., Huttner, H.B., Njunting, M., Kobow, K., et al. (2010). Low proliferation and differentiation capacities of adult hippocampal stem cells correlate with memory dysfunction in humans. Brain, 133, 3359-3372. http://dx.doi.org/10.1093/brain/awq215

Cosoff, S.J. y Hafner, R.J. (1998). The prevalence of comorbid anxiety in schizophrenia, schizoaffective disorder and bipolar disorder. Australian and New Zealand Journal of Psychiatry, 32, 67-72. http://dx.doi.org/10.3109/00048679809062708

Cunningham, M.O., Hunt, J., Middleton, S., LeBeau, F.E., Gillies, M.J., Davies, C.H. y Maycox, P.R., Whittington M.A., Racca C. (2006). Region-specific reduction in entorhinal gamma oscillations and parvalbumin-immunoreactive neurons in animal models of psychiatric illness. Journal of Neuroscience, 26, 2767-2776. http://dx.doi.org/10.1523/JNEUROSCI.5054-05.2006

Dash, P.K., Orsi, S.A., Moody, M. y Moore, A.N. (2004). A role for hippocampal Rho-ROCK pathway in long-term spatial memory. Biochemical and Biophysical Research Communications, 322, 893-898. http://dx.doi.org/10.1016/j.bbrc.2004.08.004

Deng, W., Aimone, J.B. y Gage, F.H. (2010). New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nature Reviews in Neuroscience, 11, 339-350. http://dx.doi.org/10.1038/nrn2822

Derkinderen, P., Siciliano, J., Toutant, M. y Girault, J.A. (1998). Differential regulation of FAK+ and PYK2/Cakbeta, two related tyrosine kinases, in rat hippocampal slices: effects of LPA, carbachol, depolarization and hyperosmolarity. European Journal of Neuroscience, 10, 1667-1675. http://dx.doi.org/10.1046/j.1460-9568.1998.00174.x

Desbonnet, L., Waddington, J.L. y Tuathaigh, C.M. (2009). Mice mutant for genes associated with schizo phrenia: common phenotype or distinct endophenotypes? Behavioral Brain Research, 204, 258-273. http://dx.doi.org/10.1016/j.bbr.2009.04.001

Dockstader, C.L. y van der Kooy, D. (2001). Mouse strain differences in opiate reward learning are explained by differences in anxiety, not reward or learning. Journal of Neuroscience, 21, 9077-9081.

Emamghoreishi, M., Schlichter, L., Li, P.P., Parikh, S., Sen, J., Kamble, A. y Warsh, J.J. (1997). High intracellular calcium concentrations in transformed lymphoblasts from subjects with bipolar I disorder. American Journal of Psychiatry, 154, 976-982.

Estivill-Torrús, G., Llebrez-Zayas, P., Matas-Rico, E., Santín, L., Pedraza, C., De Diego, I., Del Arco, I., Fernández-Llebrez, P., Chun, J. y De Fonseca, F.R. (2008). Absence of LPA1 signaling results in defective cortical development. Cerebral Cortex, 18, 938-950.

Fallon, J.H., Opole, I.O. y Potkin, S.G. (2003). The neuroanatomy of schizophrenia: circuitry and neurotransmitter systems. Clinical Neuroscience Research, 3, 77-107. http://dx.doi.org/10.1016/S1566-2772(03)00022-7

Fujiwara, Y., Sebok, A., Meakin, S., Kobayashi, T., Murakami- Murofushi, K. y Tigyi, G. (2003). Cyclic phosphatidic acid elicits neurotrophin-like actions in embryonic hippocampal neurons. Journal of Neurochemistry, 87, 1272-1283. http://dx.doi.org/10.1046/j.1471-4159.2003.02106.x

Fukushima, N., Ishii, I., Habara, Y., Allen, C.B. y Chun, J. (2002). Dual regulation of actin rearrangement through lysophosphatidic acid receptor in neuroblast cell lines: actin depolymerization by Ca(2+)-alpha-actinin and polymerization by rho. Molecular Biology of the Cell, 13, 2692-2705. http://dx.doi.org/10.1091/mbc.01-09-0465

Fukushima, N., Ye, X. y Chun, J. (2002). Neurobiology of lysophosphatidic acid signaling. Neuroscientist, 8, 540-550. http://dx.doi.org/10.1177/1073858402238513

Geyer, M.A., Krebs-Thomson, K., Braff, D.L. y Swerdlow, N.R. (2001). Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology, 156, 117-154. http://dx.doi.org/10.1007/s002130100811

Gogos, J.A. y Gerber, D.J. (2006). Schizophrenia susceptibility genes: emergence of positional candidates and future directions. Trends in Pharmacological Sciences, 27, 226-233. http://dx.doi.org/10.1016/j.tips.2006.02.005

Goldshmit, Y., Munro, K., Yuen Leong, S., Pébay, A. y Turnley, A.M. (2010). LPA receptor expression in the central nervous system in health and following injury. Cell and Tissue Research, 341, 23-32. http://dx.doi.org/10.1007/s00441-010-0977-5

Goodman, T., Trouche, S., Massou, I., Verret, L., Zerwas, M., Roullet, P. y Rampon, C. (2010). Young hippocampal neurons are critical for recent and remote spatial memory in adult mice. Neuroscience, 171, 769-778. http://dx.doi.org/10.1016/j.neuroscience.2010.09.047

Gould, E. y Tanapat, P. (1999). Stress and hippocampal neurogenesis. Biological Psychiatry, 46, 1472-1479. http://dx.doi.org/10.1016/S0006-3223(99)00247-4

Harrison, S.M., Reavill, C., Brown, G., Brown, J.T., Cluderay, J.E., Crook, B., Davies, C.H., Dawson, L.A., Grau, E., Heidbreder, C., Hemmati, P., Hervieu, G., Howarth, A., Hughes, Z.A., Hunter, A.J., Latcham, J., Pickering, S., Pugh, P., Rogers, D.C., Shilliam, C.S. y Maycox, P.R. (2003). LPA1 receptor-deficient mice have phenotypic changes observed in psychiatric disease. Molecular and Cellular Neuroscience, 24, 1170-1179. http://dx.doi.org/10.1016/j.mcn.2003.09.001

Hecht, J.H., Weiner, J.A., Post, S.R. y Chun, J. (1996). Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. Journal of Cell Biology, 135, 1071-1083. http://dx.doi.org/10.1083/jcb.135.4.1071

Henckens, M.J., Hermans, E.J., Pu, Z., Joëls, M. y Fernández, G. (2009). Stressed memories: how acute stress affects memory formation in humans. Journal of Neuroscience, 29, 10111-10119. http://dx.doi.org/10.1523/JNEUROSCI.1184-09.2009

Hennessy, R.J., Baldwin, P.A., Browne, D.J., Kinsella, A. y Waddington, J.L. (2007). Three-dimensional laser surface imaging and geometric morphometrics resolve frontonasal dysmorphology in schizophrenia. Biological Psychiatry, 61, 1187-1194. http://dx.doi.org/10.1016/j.biopsych.2006.08.045

Hoffman, H.S. e Ison, J.R. (1980). Reflex modification in the domain of startle: I. Some empirical findings and their implications for how the nervous system processes sensory input. Psychological Reviews, 87, 175-189. http://dx.doi.org/10.1037/0033-295X.87.2.175

Honer, W.G., Falkai, P., Bayer, T.A., Xie, J., Hu, L., Li, H.Y., Arango, V., Mann, J.J., Dwork, A.J. y Trimble, W.S. (2002). Abnormalities of SNARE mechanism proteins in anterior frontal cortex in severe mental illness. Cerebral Cortex, 12, 349-356. http://dx.doi.org/10.1093/cercor/12.4.349

Inta. D., Monyer, H., Sprengel, R., Meyer-Lindenberg, A. y Gass, P. (2010). Mice with genetically altered glutamate receptors as models of schizophrenia: A comprehensive review. Neuroscience & Biobehavioral Reviews, 34, 285-294. http://dx.doi.org/10.1016/j.neubiorev.2009.07.010

Ishii, I., Fukushima, N., Ye, X. y Chun, J. (2004). Lysophospholipid receptors: signaling and biology. Annual Reviews of Biochemistry, 73, 321-354. http://dx.doi.org/10.1146/annurev.biochem.73.011303.073731

Jacobs, B.L. y Azmitia, E.C. (1992). Structure and function of the brain serotonin system. Physiological Reviews, 72, 165-229.

Jin Rhee, H., Nam, J.S., Sun, Y., Kim, M.J., Choi, H.K., Han, D.H., Kim, N.H. y Huh, S.O. (2006). Lysophosphatidic acid stimulates cAMP accumulation and cAMP response element-binding protein phosphorylation in immortalized hippocampal progenitor cells. Neuroreport, 17, 523-526. http://dx.doi.org/10.1097/01.wnr.0000209011.16718.68

Joca, S.R., Ferreira, F.R. y Guimaraes, F.S. (2007). Modulation of stress consequences by hippocampal monoaminergic, glutamatergic and nitrergic neurotransmitter systems. Stress, 10, 227-249. http://dx.doi.org/10.1080/10253890701223130

Joels, M., Karst, H., Krugers, H.J. y Lucassen, P.J. (2007). Chronic stress: implications for neuronal morphology, function and neurogenesis. Frontiers in Neuroendocrinology, 28, 72-96. http://dx.doi.org/10.1016/j.yfrne.2007.04.001

Joëls, M. y Baram, T.Z. (2009) The neuro-symphony of stress. Nature Reviews in Neuroscience, 10, 459-466.

Joëls, M., Fernandez, G. y Roozendaal, B. (2011). Stress and emotional memory: a matter of timing. Trends in Cognitive Sciences, 15, 280-288. http://dx.doi.org/10.1016/j.tics.2011.04.004

Jonnakuty, C. y Gragnoli, C. (2008). What do we know about serotonin? Journal of Cellular Physioly, 217, 301-306. http://dx.doi.org/10.1002/jcp.21533

Kameda, S.R., Frussa-Filho, R., Carvalho, R.C., Takatsu-Coleman, A.L., Ricardo, V.P., Patti, C.L., et al. (2007). Dissociation of the effects of ethanol on memory, anxiety, and motor behavior in mice tested in the plus-maze discriminative avoidance task. Psychopharmacology, 192, 39-48. http://dx.doi.org/10.1007/s00213-006-0684-9

Karoutzou, G., Emrich, H.M. y Dietrich, D.E. (2008). The myelin-pathogenesis puzzle in schizophrenia: a literature review. Molecular Psychiatry, 13, 245-260.http://dx.doi.org/10.1038/sj.mp.4002096

Kempermann, G., Krebs, J. y Fabel, K. (2008). The contribution of failing adult hippocampal neurogenesis to psychiatric disorders. Current Opinion in Psychiatry, 21, 290-295. http://dx.doi.org/10.1097/YCO.0b013e3282fad375

Kim, J.S., Kornhuber, H.H., Schmid-Burgk, W. y Holzmuller, B. (1980). Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosciences Letter, 20, 379-382. http://dx.doi.org/10.1016/0304-3940(80)90178-0

Kingsbury, M.A., Rehen, S.K., Contos, J.J., Higgins, C.M. y Chun, J. (2003). Nonproliferative effects of lysophosphatidic acid enhance cortical growth and folding. Nature Neuroscience, 6, 1292-1299. http://dx.doi.org/10.1038/nn1157

Koehl, M. y Abrous, D.N. (2011). A new chapter in the field of memory: adult hippocampal neurogenesis. European Journal of Neuroscience, 33, 1101-1114.http://dx.doi.org/10.1111/j.1460-9568.2011.07609.x

Lam, D.D., Przydzial, M.J., Ridley, S.H., Yeo, G.S., Rochford, J.J., O’Rahilly, S. y Heisler, L.K. (1997). Serotonin 5-HT2C receptor agonist promotes hypophagia via downstream activation of melanocortin 4 receptors. Endocrinology, 149, 1323-1328.http://dx.doi.org/10.1210/en.2007-1321

e Strat, Y., Ramoz, N. y Gorwood, P. (2009). The Role of Genes Involved in Neuroplasticity and Neurogenesis in the Observation of a Gene-Environment Interaction (GxE) in Schizophrenia. Current Molecular Medicine, 9, 506-518. http://dx.doi.org/10.2174/156652409788167104

Leuner, B., Gould, E. y Shors, T.J. (2006). Is there a link between adult neurogenesis and learning? Hippocampus, 16, 216-224. http://dx.doi.org/10.1002/hipo.20153

Lin, M.E., Herr, D.R. y Chun, J. (2010). Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance. Prostaglandins and Other Lipid Mediators, 91,130-138.http://dx.doi.org/10.1016/j.prostaglandins.2009.02.002

Lisman, J.E., Schulman, H. y Cline, H. (2002). The molecular basis of CaMKII function in synaptic and behavioural memory. Nature Reviews in Neuroscience, 3, 175-190.http://dx.doi.org/10.1038/nrn753

López, J.F., Liberzon, I., Vázquez, D.M., Young, E.A. y Watson, S.J. 1999. Serotonin 1A receptor messenger RNA regulation in the hippocampus after acute stress. Biological Psychiatry, 45, 934-937. http://dx.doi.org/10.1016/S0006-3223(98)00224-8

Lu, W.Y., Xiong, Z.G., Lei, S., Orser, B.A., Dudek, E., Browning, M.D. y MacDonald, J.F. (1999). G-protein-coupled receptors act via protein kinase C and Src to regulate NMDA receptors. Nature Neuroscience, 2, 331-338. http://dx.doi.org/10.1038/7243

Macklis, J.D. (2001). Neurobiology: new memories from new neurons. Nature, 410, 314-315. http://dx.doi.org/10.1038/35066661

Malleret, G., Hen, R., Guillou, J.L., Segu, L. y Buhot, M.C. (1999). 5-HT1B receptor knock-out mice exhibit increased exploratory activity and enhanced spatial memory performance in the Morris water maze. Journal of Neuroscience, 19, 6157-6168.

Marshall, F. y Titelbaum, P. 1974. Further analysis of sensory inattention flowing lateral hypothalamic damage in rats. Journal of Comparative and Physiological Psychology, 86, 375-395. http://dx.doi.org/10.1037/h0035941

Matas-Rico, E., García-Diaz, B., Llebrez-Zayas, P., López-Barroso, D., Santín, L., Pedraza, C., Smith-Fernández, A., Fernández-Llebrez, P., Tellez, T., Redondo, M., Chun, J., De Fonseca, F.R. y Estivill-Torrús, G. (2008). Deletion of lysophosphatidic acid receptor LPA1 reduces neurogenesis in the mouse dentate gyrus. Molecular and Cellular Neuroscience, 39, 342-355. http://dx.doi.org/10.1016/j.mcn.2008.07.014

McEwen, B.S. (2000). Effects of adverse experiences for brain structure and function. Biological Psychiatry, 48, 721-731. http://dx.doi.org/10.1016/S0006-3223(00)00964-1

Mizuno, M., Yamada, K., He, J., Nakajima, A. y Nabeshima, T. (2003). Involvement of BDNF receptor TrkB in spatial memory formation. Learning and Memory, 10, 108-115.http://dx.doi.org/10.1101/lm.56003

Moolenar, W.H., van Meeteren, L.A. y Giepmans, B.N.G. (2004). The ins and outs of lysophosphatidic acid signaling. BioEssays, 26, 870-881.http://dx.doi.org/10.1002/bies.20081

Mueller, N.K. y Beck, S.G. (2000). Corticosteroids alter the 5-HT(1A) receptor-mediated response in CA1 hippocampal pyramidal cells. Neuropsychopharmacology, 23, 419-427.http://dx.doi.org/10.1016/S0893-133X(00)00134-2

Murph, M.M., Nguyen, G.H., Radhakrishna, H. y Mills, G.B. (2008). Sharpening the edges of understanding the structure/function of the LPA1 receptor: expression in cancer and mechanisms of regulation. Biochimica et Biophysica Acta, 1781, 547-557.http://dx.doi.org/10.1016/j.bbalip.2008.04.007

Musazzi, L., Di Daniel, E., Maycox, P., Racagni, G. y Popoli, M. (2010). Abnormalities in ?/?-CaMKII and related mechanisms suggest synaptic dysfunction in hippocampus of LPA1 receptor knockout mice. International Journal of Neuropsychopharmacology, 14, 1-13.

Nishikawa, T., Tomori, Y., Yamashita, S. y Shimizu, S. (1989). Inhibition of Na+,K+-ATPase activity by phospholipase A2 and several lysophospholipids: possible role of phospholipase A2 in noradrenaline release from cerebral cortical synaptosomes. Journal of Pharmacy and Pharmacology, 41, 450-458. http://dx.doi.org/10.1111/j.2042-7158.1989.tb06499.x

Noguchi, K., Herr, D., Mutoh, T. y Chun, J. (2009). Lysophosphatidic acid (LPA) and its receptors. Current Opinion in Pharmacology, 9, 15-23. http://dx.doi.org/10.1016/j.coph.2008.11.010

Noorbala, A.A., Akhondzadeh, S., Davari-Ashtiani, R. y Amini-Nooshabedi, H. (1999). Piracetam in the treatment of schizophrenia: implications for the glutamate hypothesis of schizophrenia. Journal of Clinical Pharmacy and Therapeutics, 24, 369-374. http://dx.doi.org/10.1046/j.1365-2710.1999.00238.x

Norman, R.M. y Malla, A.K. (1993). Stressful life events and schizophrenia. I: A review of the research. British Journal of Psychiatry, 162, 161-166. http://dx.doi.org/10.1192/bjp.162.2.161

Norton, N., Williams, H.J. y Owen, M.J. (2006). An update on the genetics of schizophrenia. Current Opinion in Psychiatry, 19, 158-164. http://dx.doi.org/10.1097/01.yco.0000214341.52249.59

Oades, R.D. (1981). Type of memory or attention? Impairments after lesions of the hippocampus and limbic ventral tegmentum. Brain Research Bulletin, 7, 221-226. http://dx.doi.org/10.1016/0361-9230(81)90086-1

Ohl, F., Roedel, A., Storch, C., Holsboer, F. y Landgraf, R. (2002). Cognitive performance in rats differing in their inborn anxiety. Behavioral Neuroscience, 116, 464-471. http://dx.doi.org/10.1037/0735-7044.116.3.464

Ohnuma, T., Augood, S.J., Arai, H., McKenna, P.J. y Emson, P.C. (1999). Measurement of GABAergic parameters in the prefrontal cortex in schizophrenia: focus on GABA content, GABA(A) receptor alpha-1 subunit messenger RNA and human GABA transporter-1 (HGAT-1) messenger RNA expression. Neuroscience, 93, 441-448. http://dx.doi.org/10.1016/S0306-4522(99)00189-X

Parks, C.L., Robinson, P.S., Sibille, E., Shenk, T. y Toth, M. (1998). Increased anxiety of mice lacking the serotonin1A receptor. Proceedings of the National Academy of Sciences USA, 95, 10734-10739. http://dx.doi.org/10.1073/pnas.95.18.10734

Perova, T., Wasserman, M.J., Li, P.P. y Warsh, J.J. (2008). Hyperactive intracellular calcium dynamics in B lymphoblasts from patients with bipolar I disorder. International Journal of Neuropsychopharmacoly, 11, 185-196. http://dx.doi.org/10.1017/S1461145707007973

Perova, T., Kwan, M., Li, P.P. y Warsh, J.J. (2010). Differential modulation of intracellular Ca2+ responses in B lymphoblasts by mood stabilizers. International Journal of Neuropsychopharmacology, 13, 693-702. http://dx.doi.org/10.1017/S1461145709000261

Pilpel, Y. y Segal, M. (2006). The role of LPA1 in formation of synapses among cultured hippocampal neurons. Journal of Neurochemistry, 97, 1379-1392. http://dx.doi.org/10.1111/j.1471-4159.2006.03825.x

Pittenger, C. y Duman, R.S. (2008). Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology, 33, 88-109. http://dx.doi.org/10.1038/sj.npp.1301574

Pyka, M., Busse, C., Seidenbecher, C., Gundelfinger, E.D. y Faissner, A. (2011). Astrocytes are crucial for survival and maturation of embryonic hippocampal neurons in a neuron-glia cell-insert coculture assay. Synapse, 65, 41-53. http://dx.doi.org/10.1002/syn.20816

Quincozes-Santos, A., Abib, R.T., Leite, M.C., Bobermin, D., Bambini-Junior, V., Gonçalves, C.A., Riesgo, R. y Gottfried, C. (2008). Effect of the atypical neuroleptic risperidone on morphology and S100B secretion in C6 astroglial lineage cells. Molecular and Cellular Biochemistry, 314, 59-63. http://dx.doi.org/10.1007/s11010-008-9765-x

Ramos, A. y Mormede, P. (1998). Stress and emotionality: A multidimensional and genetic approach. Neuroscience & Biobehavioral Reviews, 22, 33-57. http://dx.doi.org/10.1016/S0149-7634(97)00001-8

Reif, A., Fritzen, S., Finger, M., Strobel, A., Lauer, M., Schmitt, A. y Lesch, K.P. (2006). Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Molecular Psychiatry, 11, 514-522. http://dx.doi.org/10.1038/sj.mp.4001791

Rivera, R. y Chun, J. (2008). Biological effects of lysophospholipids. Reviews of Physiology,Biochemistry & Pharmacology, 160, 25-46. http://dx.doi.org/10.1007/112_0507

Roberts, C., Winter, P., Shilliam, C.S., Hughes, Z.A., Langmead, C., Maycox, P.R. y Dawson, L.A. (2005). Neurochemical changes in LPA1 receptor deficient mice--a putative model of schizophrenia. Neurochemical Research, 30, 371-377. http://dx.doi.org/10.1007/s11064-005-2611-6

Ross, R.G., Stevens, K.E., Proctor, W.R., Leonard, S., Kisley, M.A., Hunter, S.K., Freedman, R. y Adams, C.E. (2010). Research review: Cholinergic mechanisms, early brain development, and risk for schizophrenia. Journal of Child Psychology and Psychiatry, 51, 535-549. http://dx.doi.org/10.1111/j.1469-7610.2009.02187.x

Santín, L.J., Bilbao, A., Pedraza, C., Matas-Rico, E., Lopez-Barroso, D., Castilla-Ortega, E., Sánchez-López, J., Riquelme, R., Varela-Nieto, I., de la Villa, P., Suardíaz, M., Chun, J., De Fonseca, F.R. y Estivill-Torrús, G. (2009). Behavioral phenotype of maLPA1-null mice: increased anxiety-like behavior and spatial memory deficits. Genes Brain & Behavior, 8, 772-784. http://dx.doi.org/10.1111/j.1601-183X.2009.00524.x

Savitz, J., Lucki, I. y Drevets, W.C. (2009). 5-HT(1A) receptor function in major depressive disorder. Progress in Neurobiology, 88, 17-31. http://dx.doi.org/10.1016/j.pneurobio.2009.01.009

Saxe, M.D., Malleret, G., Vronskaya, S., Mendez, I., Garcia, A.D., Sofroniew, M.V., et al. (2007). Paradoxical influence of hippocampal neurogenesis on working memory. Proceedings of the National Academy of Sciences USA, 104, 4642-4646. http://dx.doi.org/10.1073/pnas.0611718104

Schwabe, L., Joëls, M., Roozendaal, B., Wolf, O.T. y Oitzl, M.S. (2011). Stress effects on memory: An update and integration. Neuroscience & Biobehavioral Reviews, (2011). http://dx.doi.org/10.1016/j.neubiorev.2011.07.002

Selemon, L.D. y Goldman-Rakic, P.S. (1999). The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biological Psychiatry, 45, 17-25. http://dx.doi.org/10.1016/S0006-3223(98)00281-9

Shors, T.J. (2004). Memory traces of trace memories: neurogenesis, synaptogenesis and awareness. Trends in Neurosciences, 27, 250-256. http://dx.doi.org/10.1016/j.tins.2004.03.007

Shors, T.J., Miesegaes, G., Beylin, A., Zhao, M., Rydel, T. y Gould, E. (2001). Neurogenesis in the adult is involved in the formation of trace memories. Nature, 410, 372-376. http://dx.doi.org/10.1038/35066584

Tabuchi, S., Kume, K., Aihara, M. y Shimizu, T. (2000). Expression of lysophosphatidic acid receptor in rat astrocytes: mitogenic effect and expression of neurotrophic genes. Neurochemical Research, 25, 573-582. http://dx.doi.org/10.1023/A:1007542532395

Tamminga, C.A. y Holcomb, H.H. (2005). Phenotype of schizophrenia: a review and formulation. Molecular Psychiatry, 10, 27-39. http://dx.doi.org/10.1038/sj.mp.4001563

Tecott, L.H. (2007). Serotonin and the orchestration of energy balance. Cell Metabolism, 6, 352–361. http://dx.doi.org/10.1016/j.cmet.2007.09.012

Tigyi, G., Fischer, D.J., Sebok, A., Yang, C., Dyer, D.L. y Miledi, R. (1996). Lysophosphatidic acid-induced neurite retraction in PC12 cells: control by phosphoinositide-Ca2+ signaling and Rho. Journal of. Neurochemistry, 66, 537-548. http://dx.doi.org/10.1046/j.1471-4159.1996.66020537.x

Tkachev, D., Mimmack, M.L., Ryan, M.M., Wayland, M., Freeman, T., Jones, P.B., Starkey, M., Webster, M.J., Yolken, R.H. y Bahn, S. (2003). Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet, 362, 798-804. http://dx.doi.org/10.1016/S0140-6736(03)14289-4

Tyler, W.J., Alonso, M., Bramham, C.R. y Pozzo-Miller, L.D. (2002). From acquisition to consolidation: On the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learning and Memory, 9, 224-237. http://dx.doi.org/10.1101/lm.51202

Van den Buuse, M. (2010). Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophrenia Bulletin, 36, 246-270. http://dx.doi.org/10.1093/schbul/sbp132

Van Haren, N.E., Hulshoff Pol, H.E., Schnack, H.G., Cahn, W., Brans, R., Carati, I., Rais, M. y Kahn, R.S. (2008). Progressive brain volume loss in schizophrenia over the course of the illness: evidence of maturational abnormalities in early adulthood. Biological Psychiatry, 63, 106-113.http://dx.doi.org/10.1016/j.biopsych.2007.01.004

Van Meeteren, L.A. y Moolenaar, W.H. (2007). Regulation and biological activities of the autotaxin-LPA axis. Progress in Lipid Research, 46, 145-160. http://dx.doi.org/10.1016/j.plipres.2007.02.001

Van Praag, H., Schinder, A.F., Christie, B.R., Toni, N., Palmer, T.D. y Gage, F.H. (2002). Functional neurogenesis in the adult hippocampus. Nature, 415, 1030-1034. http://dx.doi.org/10.1038/4151030a

Warner-Schmidt, J.L. y Duman, R.S. (2006). Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus, 16, 239-249. http://dx.doi.org/10.1002/hipo.20156

Weiger, W.A. (1997). Serotonergic modulation of behaviour: a phylogenetic overview. Biological Reviews, 72, 61-95 http://dx.doi.org/10.1017/S0006323196004975

Weinberger, D.R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry, 44, 660-669.

Whishaw, I.Q. (1995). Rats with fimbria-fornix lesions display a place response in a swimming pool: a dissociation between getting there and knowing where. Journal of Neuroscience, 15, 5779-5788.

Whitford, T.J., Kubicki, M., Schneiderman, J.S., O’Donnell, L.J., King, R., Alvarado, J.L., Khan, U., Markant, D., Nestor, P.G., Niznikiewicz, M., McCarley, R.W., Westin, C.F. y Shenton, M.E. (2010). Corpus callosum abnormalities and their association with psychotic symptoms in patients with schizophrenia. Biological Psychiatry, 68, 70-77. http://dx.doi.org/10.1016/j.biopsych.2010.03.025

Wolff, A.L. y O’Driscoll, G.A. (1999). Motor deficits and schizophrenia: the evidence from neuroleptic-naive patients and populations at risk. Journal of Psychiatry & Neuroscience, 24, 304-314.

Wright, I.C., Rabe-Hesketh, S., Woodruff, P.W., David, A.S., Murray, R.M. y Bullmore, E.T. (2000). Meta-analysis of regional brain volumes in schizophrenia. American Journal of Psychiatry, 157, 16-25.

Yoon, T., Okada, J., Jung, M.W. y Kim, J.J. (2008). Prefrontal cortex and hippocampus subserve different components of working memory in rats. Learning and Memory, 15, 97-105. http://dx.doi.org/10.1101/lm.850808

Zhang, X.F., Schaefer, A.W., Burnette, D.T., Schoonderwoert, V.T. y Forscher, P. (2003). Rho-dependent contractile responses in the neuronal growth cone are independent of classical peripheral retrograde actin flow. Neuron, 40, 931-944.http://dx.doi.org/10.1016/S0896-6273(03)00754-2

Descargas

Publicado

2011-12-31

Cómo citar

Estivill-Torrús, G., Santín, L. J., Pedraza, C., Castilla-Ortega, E., & Rodríguez de Fonseca, F. (2011). Función del ácido lisofosfatídico como regulador lipídico modulador del comportamiento. Escritos De Psicología - Psychological Writings, 4(3), 1–14. https://doi.org/10.24310/espsiescpsi.v4i3.13321

Número

Sección

Revisión teórica