¿Previene la actividad física y mental el deterioro cognitivo? Evidencia de la investigación animal
DOI:
https://doi.org/10.24310/espsiescpsi.v6i3.13284Palabras clave:
Enriquecimiento Ambiental, Ejercicio Aeróbico, Envejecimiento, Enfermedades Neurodegenerativas, Modelo AnimalResumen
En las últimas décadas se han desarrollado varias estrategias farmacológicas para prevenir el declive cognitivo en el envejecimiento, sin embargo la inefectividad de la mayoría de ellas ha hecho que las intervenciones conductuales estén recibiendo cada vez más atención. La estimulación cognitiva y la actividad física han mostrado importantes beneficios al reducir las alteraciones cognitivas relacionadas con la edad y la demencia. Gracias a los modelos animales cada vez se sabe más acerca de los mecanismos neurobiológicos que subyacen a la reserva cognitiva y cerebral que promueven estas intervenciones. En esta revisión presentaremos varias investigaciones en roedores viejos en las que se muestran los efectos positivos del enriquecimiento ambiental y ejercicio aeróbico sobre la función cerebral y cognitiva de estos animales. La implicación de estas investigaciones para el envejecimiento humano será también discutida.
Descargas
Métricas
Citas
Adlard, P.A., Perreau, V.M., Pop, V. y Cotman, C.W. (2005). Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. The Journal of Neuroscience, 25, 4217-4221. http://dx.doi.org/10.1523/JNEUROSCI.0496-05.2005
Alomari, M.A., Khabour, O.F., Alzoubi, K.H., Alzubi, M.A. (2013). Forced and voluntary exercises equally improve spatial learning and memory and hippocampal BDNF levels. Behavioral Brain Research, 247, 34-39. http://dx.doi.org/10.1016/j.bbr.2013.03.007
Ambrée, O., Leimer, U., Herring, A., Gortz, N., Sachser, N., Heneka, M.T., Paulus, W. y Keyvani, K. (2006). Reduction of amyloid angiopathy and Abeta plaque burden after enriched housing in TgCRND8 mice: involvement of multiple pathways. The American Journal of Pathology 169, 544-552. http://dx.doi.org/10.2353/ajpath.2006.051107
Arendash, G.W., García, M.F., Costa, D.A., Cracchiolo, J.R., Wefes, I.M. y Potter, H. (2004). Environmental enrichment improves cognition in aged Alzheimer’s transgenic mice despite stable beta-amyloid deposition. Neuroreport, 15, 1751-1754. http://dx.doi.org/10.1097/01.wnr.0000137183.68847.4e
Belarbi, K., Burnouf, S., Fernández-Gómez, F.J., Laurent, C., Lestavel, S., Figeac, M., Sultan, A., Troquier, L., Leboucher, A., Caillierez, R., Grosjean, M.E., Demeyer, D., Obriot, H., Brion, I., Barbot, B., Galas, M.C., Staels, B., Humez, S., Sergeant, N., Schraen-Maschke, S., Muhr-Tailleux, A., Hamdane, M., Buee, L. y Blum, D. (2011). Beneficial effects of exercise in a transgenic mouse model of Alzheimer’s disease-like Tau pathology. Neurobiology of Disease, 43, 486-494. http://dx.doi.org/10.1016/j.nbd.2011.04.022
Bennett, D.A., Wilson, R.S., Schneider, J.A., Evans, D.A., Mendes de León, C.F., Arnold, S.E., Barnes, L.L. y Bienias, J.L. (2003). Education modifies the relation of AD pathology to level of cognitive function in older persons. Neurology, 60, 1909-1915. http://dx.doi.org/10.1212/01.WNL.0000069923.64550.9F
Bennett, J.C., McRae, P.A., Levy, L.J. y Frick, K.M. (2006). Long-term continuous, but not daily, environmental enrichment reduces spatial memory decline in aged male mice. Neurobiology of Learning and Memory, 85, 139-152. http://dx.doi.org/10.1016/j.nlm.2005.09.003
Berardi, N., Braschi, C., Capsoni, S., Cattaneo, A. y Maffei, L. (2007). Environmental enrichment delays the onset of memory deficits and reduces neuropathological hallmarks in a mouse model of Alzheimer-like neurodegeneration. Journal of Alzheimer´s Disease, 11, 359-370.
Bezard, E., Dovero, S., Belin, D., Duconger, S., Jackson-Lewis, V., Przedborski, S., Piazza, P.V., Gross, C.E. y Jaber, M. (2003). Enriched environment confers resistance to 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine and cocaine: involvement of dopamine transporter and trophic factors. The Journal of Neuroscience, 23, 10999-11007.
Castilla-Ortega, E., Pedraza, C., Estivill-Torrús, G. y Santín, L.J. (2011). When is adult hippocampal neurogenesis necessary for learning? Evidence from animal research. Reviews in the Neuroscience, 22, 267-283. http://dx.doi.org/10.1515/rns.2011.027
Chorpita, B.F. y Barlow, D.H. (1998). The development of anxiety: the role of control in the early environment. Psychological Bulletin, 124, 3-21. http://dx.doi.org/10.1037/0033-2909.124.1.3
Costa, D.A., Cracchiolo, J.R., Bachstetter, A.D., Hughes, T.F., Bales, K.R., Paul, S.M., Mervis, R.F., Arendash, G.W. y Potter, H. (2007). Enrichment improves cognition in AD mice by amyloid-related and unrelated mechanisms. Neurobiology of Aging, 28, 831-844. http://dx.doi.org/10.1016/j.neurobiolaging.2006.04.009
Cotman, C.W. y Berchtold, N.C. (2002). Exercise: a behavioral intervention to enhance brain health and plasticity. Trends in Neuroscience, 25, 295-301. http://dx.doi.org/10.1016/S0166-2236(02)02143-4
Daffner, K.R. (2010) Promoting successful cognitive aging: a comprehensive review. Journal of Alzheimer´s Disease, 19, 1101-1122.
De Bartolo, P., Leggio, M.G., Mandolesi, L., Foti, F., Gelfo, F., Ferlazzo, F. y Petrosini, L. (2008). Environmental enrichment mitigates the effects of basal forebrain lesions on cognitive flexibility. Neuroscience, 154, 444-453. http://dx.doi.org/10.1016/j.neuroscience.2008.03.069
Diniz, D.G., Foro, C.A., Rego, C.M., Gloria, D.A., de Oliveira, F.R., Paes, J.M., de Sousa, A.A., Tokuhashi, T.P., Trindade, L.S., Turiel, M.C., Vasconcelos, E.G., Torres, J.B., Cunnigham, C., Perry, V.H., Vasconcelos, P.F. y Diniz, C.W. (2010). Environmental impoverishment and aging alter object recognition, spatial learning, and dentate gyrus astrocytes. The European Journal of Neuroscience, 32, 509-519. http://dx.doi.org/10.1111/j.1460-9568.2010.07296.x
Elliott, E., Atlas, R., Lange, A. y Ginzburg, I., 2005. Brain-derived neurotrophic factor induces a rapid dephosphorylation of tau protein through a PI-3 kinase signaling mechanism. The European Journal of Neuroscience, 22, 1081-1089. http://dx.doi.org/10.1111/j.1460-9568.2005.04290.x
Erickson, K.I. y Kramer, A.F. (2009). Aerobic exercise effects on cognitive and neural plasticity in older adults. British Journal of Sports Medicine, 43, 22-24. http://dx.doi.org/10.1136/bjsm.2008.052498
Faherty, C.J., Shepherd, K.R., Herasimtschuk, A. y Smeyne, R.J. (2005). Environmental enrichment in adulthood eliminates neuronal death in experimental Parkinsonism, Brain Research, Molecular Brain Research, 134, 170-179. http://dx.doi.org/10.1016/j.molbrainres.2004.08.008
Harati, H., Majchrzak, M., Cosquer, B., Galani, R., Kelche, C., Cassel, J.C. y Barbelivien, A. (2011). Attention and memory in aged rats: impact of lifelong environmental enrichment. Neurobiology of Aging, 32, 718-736. http://dx.doi.org/10.1016/j.neurobiolaging.2009.03.012
Harburger, L.L., Lambert, T.J. y Frick, K.M. (2007). Age-dependent effects of environmental enrichment on spatial reference memory in male mice. Behavioural Brain Research, 185, 43-48. http://dx.doi.org/10.1016/j.bbr.2007.07.009
Hebb, D.O. (1947). The effects of early experience on problem solving at maturity. American Psychologist, 2, 306-307.
Herring, A., Ambrée, O., Tomm, M., Habermann, H., Sachser, N., Paulus, W. y Keyvani, K. (2009). Environmental enrichment enhances cellular plasticity in transgenic mice with Alzheimer-like pathology. Experimental Neurology, 216,184-192. http://dx.doi.org/10.1016/j.expneurol.2008.11.027
Herring, A., Yasin, H., Ambrée, O., Sachser, N., Paulus, W. y Keyvani, K. (2008). Environmental enrichment counteracts Alzheimer’s neurovascular dysfunction in TgCRND8 mice. Brain Pathology, 18, 32-39. http://dx.doi.org/10.1111/j.1750-3639.2007.00094.x
Hu, Y.S., Xu, P., Pigino, G., Brady, S.T., Larson, J. y Lazarov, O. (2010). Complex environment experience rescues impaired neurogenesis, enhances synaptic plasticity, and attenuates neuropathology in familial Alzheimer’s disease-linked APPswe/PS1DeltaE9 mice. FASEB Journal 24, 1667-1681. http://dx.doi.org/10.1096/fj.09-136945
Huang, C.X., Qiu, X., Wang, S., Wu, H., Xia, L., Li, C., Gao, Y., Zhang, L., Xiu, Y., Chao, F. y Tang, Y. (2013). Exercise-induced changes of the capillaries in the cortex of middle-aged rats. Neuroscience, 233, 139-145. http://dx.doi.org/10.1016/j.neuroscience.2012.12.046
Jankowsky, J.L., Melnikova, T., Fadale, D.J., Xu, G.M., Slunt, H.H., Gonzáles, V., Youkin, L.H., Youkin, S.G., Borchelt, D.R. y Savonenko, A.V. (2005). Environmental enrichment mitigates cognitive deficits in a mouse model of Alzheimer’s disease. The Journal of Neuroscience, 25, 5217-5224. http://dx.doi.org/10.1523/JNEUROSCI.5080-04.2005
Katzman, R. (1993). Education and the prevalence of dementia and Alzheimer’s disease. Neurology, 43, 13-20. http://dx.doi.org/10.1212/WNL.43.1_Part_1.13
Katzman, R., Terry, R., DeTeresa, R., Brown, T., Davies, P., Fuld, P., Renbing, X. y Peck, A. (1988). Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Annals of Neurology, 23, 138-144. http://dx.doi.org/10.1002/ana.410230206
Kempermann, G. (2008). The neurogenic reserve hypothesis: what is adult hippocampal neurogenesis good for? Trends in Neuroscience, 31,163-169. http://dx.doi.org/10.1016/j.tins.2008.01.002
Kempermann, G., Gast, D. y Gage, F.H. (2002). Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Annals of Neurology, 52, 135-143. http://dx.doi.org/10.1002/ana.10262
Kemppainen, N.M., Aalto, S., Karrasch, M., Någren, K., Savisto, N., Oikonen, V., Viitanen, M., Parkkola, R. y Rinne, J.O. (2008). Cognitive reserve hypothesis: Pittsburgh compound B and fluorodeoxyglucose positron emission tomography in relation to education in mild Alzheimer’s disease. Annals of Neurology, 63, 112-118. http://dx.doi.org/10.1002/ana.21212
Kleim, J.A., Jones, T.A. y Schallert, T. (2003). Motor enrichment and the induction of plasticity before or after brain injury. Neurochemical Research, 28, 1757-1769. http://dx.doi.org/10.1023/A:1026025408742
Kobayashi, S., Ohashi, Y. y Ando, S. (2002). Effects of enriched environments with different durations and starting times on learning capacity during aging in rats assessed by a refined procedure of the Hebb–Williams maze task. The Journal of Neuroscience Research, 70, 340-346. http://dx.doi.org/10.1002/jnr.10442
Lazarov, O., Robinson, J., Tang, Y.P., Hairston, I.S., Korade-Mirnics, Z., Lee, V.M., Hersh, L.B., Sapolsky, R.M., Mirnics, K. y Sisodia, S.S. (2005). Environmental enrichment reduces Abeta levels and amyloid deposi tion in transgenic mice. Cell 120, 701-713. http://dx.doi.org/10.1016/j.cell.2005.01.015
Leclerc, N., Beesley, P.W., Brown, I., Colonnier, M., Gurd, J.W., Paladino, T. y Hawkes, R. (1989). Synaptophysin expression during synaptogenesis in the rat cerebellar cortex. The Journal of Comparative Neurology, 280, 197-212. http://dx.doi.org/10.1002/cne.902800204
Leggio, M.G., Mandolesi, L., Federico, F., Spirito, F., Ricci, B., Gelfo, F. y Petrosini, L. (2005). Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat. Behavioural Brain Research, 163, 78-90. http://dx.doi.org/10.1016/j.bbr.2005.04.009
Li, C., Niu, W., Jiang, CH. y Hu, Y. (2007). Effects of enriched environment on gene expression and signal pathways in cortex of hippocampal CA1 specific NMDAR1 knockout mice. Brain Research Bulletin, 71, 568-577. http://dx.doi.org/10.1016/j.brainresbull.2006.11.011
Lista, I. y Sorrentino, G. (2010). Biological mechanisms of physical activity in preventing cognitive decline. Cellular and Molecular Neurobiology, 30, 493e-503. http://dx.doi.org/10.1007/s10571-009-9488-x
Mandolesi, L., De Bartolo, P., Foti, F., Gelfo, F., Federico, F., Leggio, M.G. y Petrosini, L. (2008). Environmental enrichment provides a cognitive reserve to be spent in the case of brain lesion. Journal of Alzheimer´s Disease, 15, 11-28.
McAuley, E., Szabo, A.N., Mailey, E.L., Erickson, K.I., Voss, M., White, S.M., Wójcicki, T.R., Gothe, N., Olson, E.A., Mullen, S.P. y Kramer, A.F. (2011). Non-exercise estimated cardiorespiratory fitness: associations with brain structure, cognition, and memory complaints in older adults. Mental Health and Physical Activity, 4, 5-11. http://dx.doi.org/10.1016/j.mhpa.2011.01.001
McOmish, C.E. y Hannan, A.J. (2007). Enviromimetics: exploring gene environment interactions to identify therapeutic targets for brain disorders. Expert Opinion in Therapeutic Targets, 11, 899-913. http://dx.doi.org/10.1517/14728222.11.7.899
Mohammed, A.H., Zhu, S.W., Darmopil, S., Hjerling-Leffler, J., Ernfors, P., Winblad, B., Diamond, M.C., Eriksson, P.S. y Bogdanovic, N. (2002). Environmental enrichment and the brain. Progress in Brain Research, 138, 109-133. http://dx.doi.org/10.1016/S0079-6123(02)38074-9
Mora, F., Segovia, G. y del Arco, A. (2007). Aging, plastcity and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain. Brain Research Reviews, 55, 78-88. http://dx.doi.org/10.1016/j.brainresrev.2007.03.011
Navarro González, E., Calero García, M.D., Pérez-Díaz, A. y Gómez Ceballos, A.L. (2008). Nivel de independencia en la vida diaria y plasticidad cognitiva en la vejez. Escritos de Psicología, 2, 74-84.
Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS) (2001). Pathological correlates of late-onset dementia in a multicentre community-based population in England and Wales. Lancet, 357, 169-175. http://dx.doi.org/10.1016/S0140-6736(00)03589-3
Nithianantharajah, J. y Hannan, A.J. (2006). Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nature Reviews. Neuroscience, 7, 697-709. http://dx.doi.org/10.1038/nrn1970
Petrik, D., Lagace, D.C. y Eisch, A.J. (2012). The neurogenesis hypothesis of affective and anxiety disorders: are we mistaking the scaffolding for the building? Neuropharmacology, 62, 21-34. http://dx.doi.org/10.1016/j.neuropharm.2011.09.003
Petrosini, L., De Bartolo, P., Foti, F., Gelfo, F., Cutuli, D., Leggio, MG y Mandolesi, L. (2009). On wheter the environmental enrichment may provide cognitive and brain reserves. Brain Research Reviews, 61, 221-239. http://dx.doi.org/10.1016/j.brainresrev.2009.07.002
Pietrelli, A., López-Costa, R., Goñi, R., Brusco, A. y Basso, A. (2012). Aerobic exercise prevents cognitive decline and reduces anxiety-related behaviours in middle-aged and old rats. Neuroscience, 202, 252-266. http://dx.doi.org/10.1016/j.neuroscience.2011.11.054
Richards, M. y Deary, I.J. (2005). A life course approach to cognitive reserve: a model for cognitive aging and development? Annals of Neurology, 58, 617-622. http://dx.doi.org/10.1002/ana.20637
Rodríguez, J.J., Noristani, H.N., Olabarria, M., Fletcher, J., Somerville, T.D., Yeh, C.Y. y Verkhratsky, A. (2011). Voluntary running and environmental enrichment restores impaired hippocampal neurogenesis in a triple transgenic mouse model of Alzheimer’s disease. Current Alzheimer Research, 8, 707-717. http://dx.doi.org/10.2174/156720511797633214
Rosenzweig, M.R., Krech, D., Bennett, E.L. y Zolman, J.F. (1962). Variation in environmental complexity and brain measures. Journal of Comparative & Physiological Psychology, 55, 1092-1095. http://dx.doi.org/10.1037/h0042758
Sale, A., Berardi, N. y Maffei, L. (2009). Enrich the environment to empower the brain. Trends in Neuroscience, 32, 233-239. http://dx.doi.org/10.1016/j.tins.2008.12.004
Sampedro-Piquero, P., Zancada-Menéndez, C., Begega A., Méndez, M. y Arias, J.L. (2013). Effects of forced exercise on spatial memory and cytochrome c oxidase activity in aged rats. Brain Research, 1502, 20-29. http://dx.doi.org/10.1016/j.brainres.2012.12.036
Sampedro-Piquero, P., Zancada-Menéndez, C., Begega A., Rubio, S. y Arias, J.L. (2013). Effects of environmental enrichment on anxiety responses, spatial memory and cytochrome c oxidase activity in adult rats. Brain Research Bulletin, http://dx.doi.org/10.1016/j.brainresbull.2013.06.006
Sasco, A.J., Paffenbarger Jr., R.S., Gendre, I. y Wing, A.L., 1992. The role of physical exercise in the occurrence of Parkinson’s disease. Archives of Neurology, 49, 360e-365. http://dx.doi.org/10.1001/archneur.1992.00530280040020
Scarmeas, N. y Stern, Y. (2003). Cognitive reserve and lifestyle. Journal of Clinical and Experimental Neuropsychology, 25, 625-633. http://dx.doi.org/10.1076/jcen.25.5.625.14576
Schofield, P.W., Logroscino, G., Andrews, H., Albert, S. y Stern, Y. (1997). An association between head circumference and Alzheimer’s disease in a population-based study of aging. Neurology, 49, 30-37. http://dx.doi.org/10.1212/WNL.49.1.30
Sisti, H.M., Glass, A.L. y Shors, T.J. (2007). Neurogenesis and the spacing effect, learning over time enhances memory and the survival of new neurons. Learning and memory, 14, 368-375. http://dx.doi.org/10.1101/lm.488707
Snowdon, D.A., Kemper, S.J., Mortimer, J.A., Greiner, L.H., Wekstein, D.R. y Markesbery, W.R. (1996). Linguistic ability in early life and cognitive function and Alzheimer’s disease in later life. Findings from the Nun Study. JAMA: the journal of the American Medical Association, 275, 528-532. http://dx.doi.org/10.1001/jama.1996.03530310034029
Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8, 448-460. http://dx.doi.org/10.1017/S1355617702813248
Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47, 2015-2028. http://dx.doi.org/10.1016/j.neuropsychologia.2009.03.004
Stern, Y., Alexander, G.E., Prohovnik, I. y Mayeux, R. (1992). Inverse relationship between education and parietotemporal perfusion deficit in Alzheimer’s disease. Annals of Neurology, 32, 371-375. http://dx.doi.org/10.1002/ana.410320311
Thacker, E.L., Chen, H., Patel, A.V., McCullough, M.L., Calle, E.E., Thun, M.J., Schwarzschild, M.A. y Ascherio, A. (2008). Recreational physical activity and risk of Parkinson’s disease. Movement Disorders, 23, 69-74. http://dx.doi.org/10.1002/mds.21772
Valenzuela, M.J. y Sachdev, P. (2006). Brain reserve and dementia: A systematic review. Psychological Medicine, 36, 441-454. http://dx.doi.org/10.1017/S0033291705006264
Valenzuela, M. y Sachdev, P. (2009). Can cognitive exercise prevent the onset of dementia? Systematic review of randomized clinical trials with longitudinal follow-up. The American Journal of Geriatric Psychiatry, 17, 179-187. http://dx.doi.org/10.1097/JGP.0b013e3181953b57
Van Praag, H., Kempermann, G. y Gage, F.H. (2000). Neural consequences of environmental enrichment. Nature Reviews. Neuroscience, 1, 191-198. http://dx.doi.org/10.1038/35044558
Williamson, L.L., Chao, A. y Bilbo, S.D. (2012). Environmental enrichment alters glial antigen expression and neuroimmune function in adult rat hippocampus. Brain Behavior and Immunity, 26, 500-510. http://dx.doi.org/10.1016/j.bbi.2012.01.003
Wolf, S.A., Kronenberg, G., Lehmann, K., Blankenship, A., Overall, R., Staufenbiel, M. y Kempermann, G. (2006). Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s disease. Biological Psychiatry, 60, 1314-1323. http://dx.doi.org/10.1016/j.biopsych.2006.04.004
Woodard, J.L., Sugarman, M.A., Nielson, K.A., Smith, J.C., Seidenberg, M., Durgerian, S., Butts, A., Hantke, N., Lancaster, M., Matthews, M.A. y Rao, S.M. (2012). Lifestyle and genetic contributions to cognitive decline and hippocampal structure and function in healthy aging. Current Alzheimer Research, 9, 436-446. http://dx.doi.org/10.2174/156720512800492477
Zhu, J., Apparsundaram, S., Bardo, M.T. y Dwoskin, L.P. (2005). Environmental enrichment decreases cell surface expression of the dopamine transporter in rat medial prefrontal cortex. Journal of Neurochemistry, 93, 1434-1443. http://dx.doi.org/10.1111/j.1471-4159.2005.03130.x
Zimmermann, A., Stauffacher, M., Langhans, W. y Wurbel, H. (2001). Enrichment-dependent differences in novelty exploration in rats can be explained by habituation. Behavioural Brain Research, 121, 11-20. http://dx.doi.org/10.1016/S0166-4328(00)00377-6
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Todos los contenidos publicados en Escritos de Psicología están sujetos a la licencia Creative Commons Reconocimento-NoComercia-Compartirigual 4.0 cuyo texto completo puede consultar en <http://creativecommons.org/licenses/by-nc-sa/4.0>
Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que:
- Se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra).
- No se usen para fines comerciales.
- Se mencione la existencia y especificaciones de esta licencia de uso.
Los derechos de autor son de dos clases: morales y patrimoniales. Los derechos morales son prerrogativas perpetuas, irrenunciables, intransferibles, inalienables, inembargables e imprescriptibles. De acuerdo con la legislación de derechos de autor, Escritos de Psicología reconoce y respeta el derecho moral de los autores/as, así como la titularidad del derecho patrimonial. Los derechos patrimoniales, se refieren a los beneficios que se obtienen por el uso o divulgación de las obras. Escritos de Psicología se publica en open access y queda autorizada en exclusiva para realizar u autorizar por cualquier medio el uso, distribución, divulgación, reproducción, adaptación, traducción o transformación de la obra.
Es responsabilidad de los autores/as obtener los permisos necesarios de las imágenes que están sujetas a derechos de autor.