Genomic stability in Chondrichthyes, implications for its evolution

Authors

  • José Carlos Báez Spain

DOI:

https://doi.org/10.24310/enbio.v13i174.17281

Keywords:

macroevolution, chimeras, shark

Abstract

Currently, new molecular sequencing techniques have allowed the total genetic sequencing of five Chon- drichthyes species: elephant shark (Callorhinchus milii), whale shark (Rhincodon typus), brown banded bamboo shark (Chiloscyllium punctatum), cat shark (Scyliorhinus torazame) and white shark (Carcharhodon carcharias). These studies have shown that Chondrichthyes, in general have high genomic stability, and therefore have low molecular evolutionary rates. This high genomic stability contrasts significantly with the high variety of biological, morphological, ecological and ecophysiological cycles of the group. Current paper discusses the role of genomic stability in the evolution of the Chondrichthyes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Cunha DB y otros. A Review of the Mitogenomic Phylogeny of the Chondrichthyes. En: Chondrichthyes Multidisciplinary Ap- proach Rodrigues-Filho (LF y de Luna Sales JB). Ed. Intech, pp 114-126, 2017.
Johri S y otros. Taking Advantage of the Genomics Revolu- tion for Monitoring and Conservation of Chondrichthyan Po- pulations. Diversity 11:49, 2019. https://doi.org/10.3390/ d11040049
Pimiento C y otros. Evolutionary pathways toward gigantism in sharks and rays. Evolution 73(3):588–599, 2019.
Renz AJ y otros. Revealing Less Derived Nature of Carti- laginous Fish Genomes with Their Evolutionary Time Scale Inferred with Nuclear Genes. PLoS ONE 8(6):e66400, 2013. http://dx.doi.org/10.1371/journal.pone.0066400
Venkatesh B y otros. Elephant shark genome provides unique insights into gnathostome evolution. Nature 505:174–179, 2014.
Read TD y otros. Draft sequencing and assembly of the ge- nome of the world’s largest fish, the whale shark: Rhinco- don typus Smith 1828. BMC Genomics 18:532, 2017. https://doi.org/10.1186/s12864-017-3926-9
Hara Y y otros. Shark genomes provide insights in- to elasmobranch evolution and the origin of vertebrates. Nat Ecol Evol 2:1761–1771, 2018. https://doi.org/10.1038/ s41559-018-0673-5
Marra NJ y otros. White shark genome reveals ancient elas- mobranch adaptations associated with wound healing and the maintenance of genome stability. Proc Natl Acad Sci USA 116(10):4446-4455, 2019. https://doi.org/10.1073/pnas.1819778116
Veríssimo A y otros. World without borders—genetic popu- lation structure of a highly migratory marine predator, the blue shark (Prionace glauca). Ecol Evol. 7: 4768–4781, 2017. https://doi.org/10.1002/ece3.2987
Bailleul D y otros. Large-scale genetic panmixia in the blue shark (Prionace glauca): A single worldwide population, or a ge- netic lag-time effect of the «grey zone» of differentiation? Evol Appl. 11:614–630, 2018. https://doi.org/10.1111/eva.12591
Camhi MD y otros. Sharks of the Open Ocean: Biology, Fishe- ries and Conservation. Ed. Wiley-Blackwell, 2008.
Bester-van der Merwe AE y otros. Population genetics of Southern Hemisphere tope shark (Galeorhinus galeus): Inter- continental divergence and constrained gene flow at different geographical scales. PLoS ONE 12(9): e0184481, 2017. https://doi.org/10.1371/journal.pone.0184481
Tubbs A y Nussenzweig A. Endogenous DNA Damage as a Source of Genomic Instability in Cancer. Cell. 168(4): 644-656, 2017. https://doi.org/10.1016/j.cell.2017.01.002
Chin A y otros. Blacktip reef sharks (Carcharhinus melanop- terus) show high capacity for wound healing and recovery fo- llowing injury. Conserv Physiol 3, 2015. https://doi.org/10. 1093/conphys/cov062
Ostrander GK y otros. Shark cartilage, cancer and the growing threat of pseudoscience. Cancer Res 64, 8485–8491, 2004.
Perry CT y otros. Comparing length-measurement methods and estimating growth parameters of free-swimming wha- le sharks (Rhincodon typus) near the South Ari Atoll, Maldives. Mar Freshwater Res 69(10):1487-1495, 2018. https://doi.org/10.1071/MF17393
Carmona R. y otros. Envejecimiento animal. Encuentros de la Biología 160: 152-156.
Pasquesi GLM y otros. Squamate reptiles challenge paradigms of genomic repeat element evolution set by birds and mammals. Nat Commun 9: 2774, 2018. https://doi.org/10.1038/s41467- 018-05279-1.
Suna YB y otros. Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes. Proc Natl Acad Sci USA 112(11):E1257-E1262, 2015. https://doi.org/10.1073/pnas.1501764112

Published

2020-09-21

How to Cite

Báez, J. C. (2020). Genomic stability in Chondrichthyes, implications for its evolution. Encuentros En La Biología, 13(174), 28–30. https://doi.org/10.24310/enbio.v13i174.17281

Issue

Section

Artículos