Contenido principal del artículo

Bryan Montero-Herrera
Escuela de Educación Física y Deportes Universidad de Costa Rica
Costa Rica
Vol. 9 Núm. 1 (2020): ., Artículos, Páginas 75-94
DOI: https://doi.org/10.24310/riccafd.2020.v9i1.8303
Derechos de autor Cómo citar

Resumen

Potenciar el aprendizaje y la memoria se ha convertido en una tarea de interés para muchos investigadores. Artículos recientes han podido comprobar es que el ejercicio es una clara herramienta para mejorar capacidades cognitivas de personas y animales gracias a que favorece la liberación de sustancias tales como neurotransmisores y factores neurotróficos. Uno de los factores más importantes es el factor neurotrófico derivado del cerebro (BDNF), que promueve la generación de cambios a nivel neuronal necesarios para la potenciación a largo plazo (fortalecimiento de memorias). Se realizó una búsqueda en las bases de datos de EBSCOhost -en las bases de Academic Search Complete, ERIC, MEDLINE, PsycARTICLES y SPORTDiscus-, Google Scholar, Pubmed y ScienceDirect utilizando una serie de palabras con sus respectivos criterios de inclusión y exclusión. En este trabajo se explican los procesos asociados con la potenciación a largo plazo, abarcando temas como neuroplasticidad, la unión del BDNF con su receptor (receptores de tirosina quinasa B), y además el mecanismo por medio del cual la liberación de la mioquina irisina, como una consecuencia del ejercicio, promueve el aumento de las concentraciones de BDNF en sangre. Basándose en numerosa literatura se describe la relación que existe entre el ejercicio y la generación de cambios neuroplásticos estimulados por proteínas como el BDNF y la consecuente mejoría en la memoria.

Detalles del artículo

Referencias

1. Bird SR, Smith A, James K. Exercise Benefits and Prescription. Nelson Thornes; 1998. 348 p.
2. Berchtold NC, Castello N, Cotman CW. Exercise and time-dependent benefits to learning and memory. Neuroscience. mayo de 2010;167(3):588-97.
3. Fordyce DE, Wehner JM. Physical activity enhances spatial learning performance with an associated alteration in hippocampal protein kinase C activity in C57BL/6 and DBA/2 mice. Brain Res. agosto de 1993;619(1-2):111-9.
4. Hall JM, Savage LM. Exercise leads to the re-emergence of the cholinergic/nestin neuronal phenotype within the medial septum/diagonal band and subsequent rescue of both hippocampal ACh efflux and spatial behavior. Exp Neurol. abril de 2016;278:62-75.
5. Kramer AF, Hahn S, Cohen NJ, Banich MT, McAuley E, Harrison CR, et al. Ageing, fitness and neurocognitive function. Nature. 29 de julio de 1999;400(6743):418-9.
6. Ortega Loubon C, César Franco J. Neurofisiología del aprendizaje y la memoria. Plasticidad Neuronal. Arch Med. 2010;6(7):1-7.
7. Poolton JM, Masters RSW, Maxwell JP. The relationship between initial errorless learning conditions and subsequent performance. Hum Mov Sci. junio de 2005;24(3):362-78.
8. Reber PJ. The neural basis of implicit learning and memory: A review of neuropsychological and neuroimaging research. Neuropsychologia. agosto de 2013;51(10):2026-42.
9. Jeon YK, Ha CH. The effect of exercise intensity on brain derived neurotrophic factor and memory in adolescents. Environ Health Prev Med. diciembre de 2017;22(1):27.
10. Tsai C-L, Chen F-C, Pan C-Y, Wang C-H, Huang T-H, Chen T-C. Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels. Psychoneuroendocrinology. marzo de 2014;41:121-31.
11. Cunha C, Brambilla R, Thomas K. A simple role for BDNF in learning and memory? Front Mol Neurosci. 2010;3:1-14.
12. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 108(7):3017-22.
13. Farmer J, Zhao X, van Praag H, Wodtke K, Gage F., Christie B. Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male sprague–dawley rats in vivo. Neuroscience. enero de 2004;124(1):71-9.
14. Griffin ÉW, Mullally S, Foley C, Warmington SA, O’Mara SM, Kelly ÁM. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol Behav. 24 de octubre de 2011;104(5):934-41.
15. Ballesteros JJ. El papel del sistema BDNF-TrkB en la plasticidad sináptica independiente de receptores tipo NMDA inducida por xantinas [Tesis de doctorado en Neurociencias]. [Departamento de Fisiología]: Universidad Autónoma de Madrid; 2015.
16. Kandel ER. The Molecular Biology of Memory Storage: A Dialogue Between Genes and Synapses. Science. 2 de noviembre de 2001;294(5544):1030-8.
17. Martin SJ, Grimwood PD, Morris RGM. Synaptic Plasticity and Memory: An Evaluation of the Hypothesis. Annu Rev Neurosci. marzo de 2000;23(1):649-711.
18. Gruart A. Involvement of the CA3-CA1 Synapse in the Acquisition of Associative Learning in Behaving Mice. J Neurosci. 25 de enero de 2006;26(4):1077-87.
19. Gruart A, Sciarretta C, Valenzuela-Harrington M, Delgado-Garcia JM, Minichiello L. Mutation at the TrkB PLC -docking site affects hippocampal LTP and associative learning in conscious mice. Learn Mem. 3 de enero de 2007;14(1-2):54-62.
20. Nabavi S, Fox R, Proulx CD, Lin JY, Tsien RY, Malinow R. Engineering a memory with LTD and LTP. Nature. julio de 2014;511(7509):348-52.
21. Dietrich MO, Mantese CE, Porciuncula LO, Ghisleni G, Vinade L, Souza DO, et al. Exercise affects glutamate receptors in postsynaptic densities from cortical mice brain. Brain Res. diciembre de 2005; 1065(1-2):20-5.
22. Shimizu E. NMDA Receptor-Dependent Synaptic Reinforcement as a Crucial Process for Memory Consolidation. Science. 10 de noviembre de 2000; 290(5494):1170-4.
23. Yu Q, Li X, Wang J, Li Y. Effect of exercise training on long-term potentiation and NMDA receptor channels in rats with cerebral infarction. Exp Ther Med. diciembre de 2013;6(6):1431-6.
24. Aguilar F. Plasticidad cerebral. Parte 1. Rev Med IMSS. 2003;4(1):55-60.
25. Bliss TVP, Cooke SF. Long-term potentiation and long-term depression: a clinical perspective. Clinics. 2011;66:3-17.
26. Huang EP. Synaptic plasticity: going through phases with LTP. Curr Biol CB. 7 de mayo de 1998;8(10):R350-352.
27. Soderling TR, Derkach VA. Postsynaptic protein phosphorylation and LTP. Trends Neurosci. febrero de 2000;23(2):75-80.
28. Leff P, Romo H, Matus M, Hernández A, Calva JC, Acevedo R, et al. Understanding the neurobiological mechanisms of learning and memory: memory systems of the brain, long term potentiation and synaptic plasticity part III. Salud Ment. 2002;25(4):78-94.
29. Nicoll R. A Brief History of Long-Term Potentiation. Neuron. 2017; 93(2): 281-290.
30. López Rojas J, Almaguer Melián W, Bergado Rosado JA. La ‘marca sináptica’ y la huella de la memoria. Rev Neurol. 2007;45(10):607-14.
31. Frey S, Bergado-Rosado J, Seidenbecher T, Pape H-C, Frey JU. Reinforcement of Early Long-Term Potentiation (Early-LTP) in Dentate Gyrus by Stimulation of the Basolateral Amygdala: Heterosynaptic Induction Mechanisms of Late-LTP. J Neurosci. 15 de mayo de 2001; 21(10):3697-703.
32. Maureira F. Plasticidad sináptica, bdnf y ejercicio físico. Rev Digit Educ Física. 2016; 7(40):51-63.
33. Adams JP, Dudek SM. Late-phase long-term potentiation: getting to the nucleus. Nat Rev Neurosci. septiembre de 2005;6(9):737-43.
34. Alvarado B. Participación del óxido nítrico y la horma arginina vasopresina en el aprendizaje y la memoria [Tesis de maestría en Ciencias Fisiológicas]. [Colombia]: Universidad de Colima; 2006.
35. Piepmeier AT, Etnier JL. Brain-derived neurotrophic factor (BDNF) as a potential mechanism of the effects of acute exercise on cognitive performance. Journal of Sport and Health Science. marzo de 2015; 4(1): 14–23.
36. Levi-Montalcini R, Hamburger V. Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J Exp Zool. marzo de 1951;116(2):321-61.
37. Barde YA, Edgar D, Thoenen H. Purification of a new neurotrophic factor from mammalian brain. EMBO J. mayo de 1982;1(5):549-53.
38. Karege F, Schwald M, Cisse M. Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett. agosto de 2002;328(3):261-4.
39. Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S. Distribution of Brain-Derived Neurotrophic Factor (BDNF) Protein and mRNA in the Normal Adult Rat CNS: Evidence for Anterograde Axonal Transport. J Neurosci. 1 de abril de 1997;17(7):2295-313.
40. Cotman C. Exercise: a behavioral intervention to enhance brain health and plasticity. Junio de 2002. Trends in Neurosciences; 25(6): 295–301.
41. Vanevski F, Xu B. Molecular and neural bases underlying roles of BDNF in the control of body weight. Front Neurosci. 2013;7.
42. Ji Y, Pang PT, Feng L, Lu B. Cyclic AMP controls BDNF-induced TrkB phosphorylation and dendritic spine formation in mature hippocampal neurons. Nat Neurosci. febrero de 2005;8(2):164-72.
43. Kwon M, Fernandez JR, Zegarek GF, Lo SB, Firestein BL. BDNF-Promoted Increases in Proximal Dendrites Occur via CREB-Dependent Transcriptional Regulation of Cypin. J Neurosci. 29 de junio de 2011;31(26):9735-45.
44. Liu PZ, Nusslock R. Exercise-Mediated Neurogenesis in the Hippocampus via BDNF. Front Neurosci. 7 de febrero de 2018;12:52.
45. Ramírez-Rodríguez G, Ocaña-Fernández MA, Vega-Rivera NM, Torres-Pérez OM, Gómez-Sánchez A, Estrada-Camarena E, et al. Environmental enrichment induces neuroplastic changes in middle age female BalbC mice and increases the hippocampal levels of BDNF, p-Akt and p-MAPK1/2. Neuroscience. febrero de 2014;260:158-70.
46. Sheikhzadeh F, Etemad A, Khoshghadam S, Asl NA, Zare P. Hippocampal BDNF content in response to short- and long-term exercise. Neurol Sci. julio de 2015;36(7):1163-6.
47. Lu Y, Christian K, Lu B. BDNF: A key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem. marzo de 2008;89(3):312-23.
48. Panja D, Bramham CR. BDNF mechanisms in late LTP formation: A synthesis and breakdown. Neuropharmacology. enero de 2014;76:664-76.
49. Galeano HP. El papel del ejercicio físico en la inducción de BDNF y sus vías de señalización en el sistema nervioso central. Aplicación neurobiológica en modelos sanos y terapéutica en la enfermedad de Alzheimer. [Tesis de doctorado en Fisiología]. [Departamento de Fisiología]: Universidad de Valencia; 2014.
50. Lessmann V, Gottmann K, Malcangio M. Neurotrophin secretion: current facts and future prospects. Prog Neurobiol. abril de 2003;69(5):341-74.
51. Adachi N. New insight in expression, transport, and secretion of brain-derived neurotrophic factor: Implications in brain-related diseases. World J Biol Chem. 2014; 5(4):409.
52. Hökfelt T, Broberger C, Xu Z-QD, Sergeyev V, Ubink R, Diez M. Neuropeptides — an overview. Neuropharmacology. julio de 2000;39(8):1337-56.
53. Koshimizu H, Kiyosue K, Hara T, Hazama S, Suzuki S, Uegaki K, et al. Multiple functions of precursor BDNF to CNS neurons: negative regulation of neurite growth, spine formation and cell survival. Mol Brain. 2009; 2(1):27.
54. Lee R. Regulation of Cell Survival by Secreted Proneurotrophins. Science. 30 de noviembre de 2001;294(5548):1945-8.
55. Lu B, Chang JH. Regulation of neurogenesis by neurotrophins: implications in hippocampus-dependent memory. Neuron Glia Biol. 20 de julio de 2005;1(04):377.
56. Jovanovic JN, Czernik AJ, Fienberg AA, Greengard P, Sihra TS. Synapsins as mediators of BDNF-enhanced neurotransmitter release. Nat Neurosci. abril de 2000; 3(4):323-9.
57. Tyler WJ, Pozzo-Miller LD. BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses. J Neurosci Off J Soc Neurosci. 15 de junio de 2001; 21(12):4249-58.
58. Ding Q, Vaynman S, Akhavan M, Ying Z, Gomez-Pinilla F. Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience. enero de 2006;140(3):823-33.
59. Itami C, Kimura F, Kohno T, Matsuoka M, Ichikawa M, Tsumoto T, et al. Brain-derived neurotrophic factor-dependent unmasking of «silent» synapses in the developing mouse barrel cortex. Proc Natl Acad Sci. 28 de octubre de 2003; 100(22):13069-74.
60. Narisawa-Saito M, Iwakura Y, Kawamura M, Araki K, Kozaki S, Takei N, et al. Brain-derived Neurotrophic Factor Regulates Surface Expression of α-Amino-3-hydroxy-5-methyl-4-isoxazoleproprionic Acid Receptors by Enhancing the N -Ethylmaleimide-sensitive Factor/GluR2 Interaction in Developing Neocortical Neurons. J Biol Chem. 25 de octubre de 2002; 277(43):40901-10.
61. Haapasalo A, Sipola I, Larsson K, Åkerman KEO, Stoilov P, Stamm S, et al. Regulation of TRKB Surface Expression by Brain-derived Neurotrophic Factor and Truncated TRKB Isoforms. J Biol Chem. 8 de noviembre de 2002; 277(45):43160-7.
62. Huang EJ, Reichardt LF. Neurotrophins: Roles in Neuronal Development and Function. Annu Rev Neurosci. marzo de 2001;24(1):677-736.
63. Arany Z, Foo S-Y, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α. Nature. febrero de 2008;451(7181):1008-12.
64. Garcia C, Chen M., Garza A., Cotman C., Russo-Neustadt A. The influence of specific noradrenergic and serotonergic lesions on the expression of hippocampal brain-derived neurotrophic factor transcripts following voluntary physical activity. Neuroscience. julio de 2003;119(3):721-32.
65. West AE, Greenberg ME. Neuronal Activity-Regulated Gene Transcription in Synapse Development and Cognitive Function. Cold Spring HarbPerspect Biol. 1 de junio de 2011; 3(6):a005744-a005744.
66. Erickson HP. Irisin and FNDC5 in retrospect: An exercise hormone or a transmembrane receptor? Adipocyte. 22 de octubre de 2013; 2(4):289-93.
67. Islam MR, Young MF, Wrann CD. The Role of FNDC5/Irisin in the Nervous System and as a Mediator for Beneficial Effects of Exercise on the Brain. En: Spiegelman B, editor. Hormones, Metabolism and the Benefits of Exercise [Internet]. Cham: Springer International Publishing; 2017 [citado 7 de abril de 2019]. p. 93-102. (Research and Perspectives in Endocrine Interactions).
68. Panati K, Suneetha Y, Narala VR. Irisin/FNDC5--An updated review. Eur Rev Med Pharmacol Sci. 2016;20(4):689-97.
69. Papp C, Pak K, Erdei T, Juhasz B, Seres I, Szentpéteri A, et al. Alteration of the irisin–brain-derived neurotrophic factor axis contributes to disturbance of mood in COPD patients. Int J Chron Obstruct Pulmon Dis. 7 de julio de 2017;12:2023-33.
70. Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 11 de enero de 2012;481(7382):463-8.
71. Jin Y, Sumsuzzman DM, Choi J, Kang H, Lee S-R, Hong Y. Molecular and Functional Interaction of the Myokine Irisin with Physical Exercise and Alzheimer’s Disease. Molecules [Internet]. 7 de diciembre de 2018 [citado 7 de abril de 2019];23(12).
72. Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D, et al. Exercise Induces Hippocampal BDNF through a PGC-1α/FNDC5 Pathway. Cell Metab. noviembre de 2013;18(5):649-59.
73. Xu B. BDNF (I)rising from Exercise. Cell Metab. noviembre de 2013;18(5):612-4.
74. Zhorne R, Dudley-Javoroski S, Shields R. Skeletal muscle activity and CNS neuroplasticity. Neural Regen Res. 2016;11(1):69.
75. Mattson MP. Evolutionary aspects of human exercise—Born to run purposefully. Ageing Res Rev. julio de 2012;11(3):347-52.
76. Vaynman S, Ying Z, Gomez-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci. noviembre de 2004;20(10):2580-90.
77. Parrini M, Ghezzi D, Deidda G, Medrihan L, Castroflorio E, Alberti M, et al. Aerobic exercise and a BDNF-mimetic therapy rescue learning and memory in a mouse model of Down syndrome. Sci Rep. diciembre de 2017;7(1):16825.
78. EtnierJL, Wideman L, Labban JD, Piepmeier AT, Pendleton DM, Dvorak KK, Becofsky K. The effects of acute exercise on memory and brain-derived neurotrophic factor (BDNF). Journal of Sport and Exercise Psychology. junio 8 de 2016; 38(4): 331-340.
79. Rasmussen P, Brassard P, Adser H, Pedersen MV, Leick L, Hart E, et al. Evidence for a release of brain‐derived neurotrophic factor from the brain during exercise. Experimental physiology. octubre de 2009; 94(10): 1062-1069.
80. SeifertT, Brassard P, Wissenberg M, RasmussenP, NordbyP, Stallknecht B., et al. Endurance training enhances BDNF release from the human brain. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. noviembre 18 de 2009; 298(2):R372-7.
81. Walsh JJ, Tschakovsky, ME. Exercise and circulating BDNF: mechanisms of release and implications for the design of exercise interventions. Applied Physiology, Nutrition, and Metabolism. noviembre de 2018; 43(11): 1095-1104.
82. Benedini S, Dozio E, Invernizzi PL, Vianello E, Banfi G, Terruzzi I, et al. Irisin: a potential link between physical exercise and metabolism—an observational study in differently trained subjects, from elite athletes to sedentary people. Journal of Diabetes Research. 2017; 1-7.
83.Murawska-Cialowicz E, Wojna J, Zuwala-Jagiello J. Crossfit training changes brain-derived neurotrophic factor and irisin levels at rest, after wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women. J Physiol Pharmacol. diciembre de 2015; 66(6): 811-821.