Estudios longitudinales. Modelos de diseño y análisis

Autores/as

  • Jaume Arnau Facultad de Psicología. Universidad de Barcelona. España
  • Roser Bono Facultad de Psicología. Universidad de Barcelona. España

DOI:

https://doi.org/10.24310/espsiescpsi.v2i1.13356

Palabras clave:

Diseños de medidas repetidas, datos longitudinales, ANOVA de medidas repetidas, MANOVA, GMANOVA, modelo lineal mixto

Resumen

Los modelos que tradicionalmente se han utilizado en el análisis de datos de medidas repetidas son de carácter lineal y siguen el enfoque basado en el análisis de la variancia. Su principal desventaja es que debe disponerse de datos balanceados lo que, en contextos aplicados, es difícil de conseguir. Por esto, se han desarrollado modelos alternativos como el estudio de curvas de crecimiento, del que se han derivado gran cantidad de métodos. Todos estos métodos, además de modelar la variancia entre e intra individuos, no requieren datos balanceados. En la actualidad, se aplican los modelos lineales mixtos como una alternativa global de análisis. Los modelos mixtos estiman tanto los valores esperados de las observaciones (efectos fijos) como las variancias y covariancias de las observaciones (efectos aleatorios). Lo que distingue, por tanto, al modelo lineal mixto del modelo lineal general, es el cálculo de los parámetros de covariancia que permiten analizar datos de carácter longitudinal (correlacionados, incompletos y con intervalos entre observaciones no constantes).

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Albert, P. S. (1999). Longitudinal data analysis (repeated measures) in clinical trials. Statistics in Medicine, 18, 1707-1732.

Baltes, P. B. y Nesselroade, J. R. (1979). History and rationale of longitudinal research. En J. R. Nesselroade y P. B. Baltes (Eds.), Longitudinal research in the study of behaviour and development. New York: Academic Press.

Bock, R. D. (1975). Multivariate statistical methods in behavioural research. New York: McGraw-Hill.

Bock, R. D. (1979). Univariate and multivariate analysis of variance of time-structured data. En J. R. Nesselroade y P. B. Baltes (Eds.), Longitudinal research in the study of behavior and development. New York: Academic Press.

Bono, R., Arnau, J. y Vallejo, G. (2008). Técnicas de análisis aplicadas a datos longitudinales en Psicología y Ciencias de la Salud: Período 1985-2005. Papeles del Psicólogo, 29, 136-146.

Bryk, A. S. y Raudenbush S. W. (1992). Hierarchical linear models. Newbury Park, CA: Sage.

Cnaan, A., Laird, N. M. y Slasor, P. (1997). Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal dada. Statistics in Medicine, 16, 2349-2380.

Davis, C. S. (1998). The analysis of longitudinal studies having non-normal responses. En B. S. Everitt y G. Dunn (Eds.), Statistical analysis of medical data. New developments. London: Arnold.

Diggle, P. J., Liang, K. Y. y Zeger, S. L. (1994). Analysis of longitudinal data. New York: Oxford University Press.

Edgington, E. (1974). A new tabulation of statistical procedures used in APA journals. American Psychologists, 29, 25-26.

Edwards, L. J. (2000). Modern statistical techniques for the analysis of longitudinal data in biomedical research. Pediatric Pulmony, 30, 330-344.

Elston, R. C. y Grizzle, J. F. (1962). Estimation of time response curves and their confidence bands. Biometrics,18, 148-159.

Finn, J. D. (1969). Multivariate analysis of repeated measures data. Multivariate Behavioral Research, 4, 391-413.

Fitzmaurice, G. M. (1998). Regression models for discrete longitudinal data. En B. S. Everitt y G. Dunn (Eds.), Statistical analysis of medical data. New developments. London: Arnold.

Gill, P. S. (2000). A robust mixed linear model analysis for longitudinal data. Statistics in Medicine, 19, 975- 987.

Goldstein, H. (1987). Multilevel models in educational and social research. London: Oxford University Press.

Gregoire, T. G., Brillinger, D. R. y Diggle, P. J. E. (Eds.) (1997). Modelling longitudinal and spatially correlated data. New York: Springer Verlag.

Grizzle, J. E. y Allen, D. M. (1969). Analysis of growth and dose response curves. Biometrics, 25, 357-381.

Hand, D. y Crowder, M. (1996). Practical longitudinal data analysis. London: Chapman & Hall.

Helms, R. W. (1992). Intentionally incomplete longitudinal designs: I. Methodology and comparison of some full span designs. Statistics in Medicine, 11, 1889-1993.

Hyunh, H. (1978). Some approximate tests for repeated measurement designs. Psychometrika, 43, 383- 386.

Keselman, H. J., Algina, J., Kowalchuk, R. K. y Wolfinger, R. D. (1999). A comparison of recent approaches to the analysis of repeated measurements. British Journal of Mathematical and Statistical Psychology, 52, 63-78.

Keselman, H. J. y Keselman, J. C. (1988). Comparing repeated measures means in factorial designs. Psychophysiology, 25, 612-618.

Kowalchuk, R. K., Keselman, H. J., Algina, J. y Wolfinger, R. D. (2004). The analysis of repeated measurements with mixed-model adjusted F tests. Educational and Psychological Measurement, 64, 224-242.

Laird, N. M. y Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963- 974.

Liang, K. Y. y Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13-22.

Lindquist, E. F. (1953). Design and analysis of experiments in psychology and education. Boston, MA: Houghton Mifflin.

Littell, R. C., Henry, P. R y Ammerman, C. B. (1998). Statistical analysis of repeated measures data using SAS procedures. Journal of Animal Science, 76, 1216- 1231.

Littell, R. C., Milliken, G. A., Stroup, W. W. y Wolfinger, R. D. (1996). SAS system for mixed models. Cary, NC: SAS Institute.

Mauchley, J. W. (1940). Significance test of sphericity of a normal n-variate distribution. Annals of Mathematical Statistics, 11, 204-209.

Menard, S. (1991). Longitudinal research. Newbury Park, CA: Sage.

Morrison, D. F. (1976). Multivariate statistical methods. New York: McGraw Hill.

Nesselroade, J. R. y Baltes, P. B. (Eds.) (1979). Longitudinal research in the study of behaviour and development. New York: Academic Press.

Potthoff, R. F. y Roy, S. N. (1964). A generalized multivariate analysis of variance model useful especially for growth curve problems. Biometrika, 51, 313-326.

Rao, C. R. (1958). Some statistical methods for the comparison of growth. Biometrics, 4, 1-17.

Rao, C. R. (1959). Some problems involving linearhypothesis in multivariate analysis. Biometrika, 46, 49-58.

Rao, C. R. (1965). The theory of least squares when the parameters are stochastic and its application to the analysis of growth curves. Biometrika, 52, 447-458.

Raudenbush, S.W. (2001). Comparing personal trajectories and drawing causal inferences from longitudinal data. Annual Review of Psychology, 52, 501-525.

Rogan, J. C., Keselman, H. J. y Mendoza, J. L. (1979). Analysis of repeated measurements. British Journal of Mathematical and Statistical Psychology, 32, 269-286.

Singer, J. D. y Willett, J. B. (2005). Longitudinal research: Current status and future prospects. Consulta 12 de septiembre de 2007 de la World Wide Web: http://www.gseweb.harvard.edu/~faculty/singer/Presentations /Longitudinal%20research.ppt

Stevens, J. (1996). Applied multivariate statistics for the social sciences. Hillsdale, NJ: Lawrence Erlbaum.

Sullivan, L. M., Dukes, K. A. y Losina, E. (1999). An introduction to hierarchical linear modelling. Statistics in Medicine, 18, 855-888.

Tatsuoka, M. M. (1988). Multivariate analysis: Techniques for educational and psychological research (2ª ed.). New York: John Wiley

Timm, N. H. (1975). Multivariate analysis with application in education and psychology. Monterey: Brooks/Kole.

Timm, N. H. (1980). Multivariate analysis of variance of repeated measurements. En P. R. Krishnaiah (Ed.), Handbook of statistics (vol. I). Amsterdam: North- Holland.

Timm, N. H. y Mieczkowski, T. A. (1997). Univariate and multivariate general linear models: theory and applications using SAS® software. Cary, NC: SAS Institute Inc.

Van der Leeden, R. (1998). Multilevel analysis of repeated measures data. Quality & Quantity, 32, 15- 29.

Van der Leeden, R., Vrijburg, K. y De Leeuw, J. (1996). A review of two different approaches for the analysis of growth data using longitudinal mixed linear models: comparing hierarchical linear regression (ML3, HLM) and repeated measures design with structures covariance matrices (BMDP5V). Computational Statistics and Data Analysis, 21, 581-605.

Verbeke, G. y Molenberghs, G. (1997). Linear mixedmodels in practice. New York: Springer-Verlag.

Visser, R. A. (1985). Analysis of longitudinal data in behavioural and social research. Leiden: DSWO Press.

Wall, W. D. y Williams, H. L. (1970). Longitudinal studies and the social sciences. London: Heinemann.

Ware, J. H. y Liang, K. Y. (1996). The design and analysis of longitudinal studies: a historical perspective. En P. Armitage y H. A. David (Eds.), Advances in biometry. New York: John Wiley. Wolfinger, R. D. (1996). Heterogeneous variancecovariance structures for repeated measurements. Journal of Agricultural, Biological, and Enviromental Statistics, 1, 205-230.

Wu, Y. B., Clopper, R. y Wooldridge, P. J. (1999). A comparison of traditional approaches to hierarchical lineal modeling when analyzing longitudinal data. Research in Nursing & Healt, 22, 421-432.

Zeger S. L. y Liang, K. Y. (1992). An overview of methods for the analysis of longitudinal dada. Statistics in Medicine, 11, 1825-1839.

Zhang, D. (2004). Generalized linear mixed models with varying coefficients for longitudinal data. Biometrics, 60, 8-15.

Descargas

Publicado

2008-12-31

Cómo citar

Arnau, J., & Bono, R. (2008). Estudios longitudinales. Modelos de diseño y análisis. Escritos De Psicología - Psychological Writings, 2(1), 32–41. https://doi.org/10.24310/espsiescpsi.v2i1.13356

Número

Sección

Artículos