CAN MICROALGAE BE SUBSTITUTES FOR FISH OIL AND FISH MEAL IN AQUACULTURE DIETS?

Authors

  • Español Español Español Spain
  • Español Español Español Spain
  • Español Español España Spain
  • Español Español Español Spain
  • Español Español España Spain

DOI:

https://doi.org/10.24310/enbio.17.189.2025.17951

Keywords:

aquaculture, microalgae, physiology, sustainability

Abstract

Diet formulations used in aquaculture include high amounts of fish oil and fish meal, excellent ingredients from a nutritional point of view, but environmentally unsustainable because they require the capture of small pelagic fish for their production. For this reason, the scientific community looks for alternative ingredients that allow aquaculture sustainable development and guarantee food security for the world's population, without harming performance productive and welfare of farmed animals. In this sense, microalgae are postulated as promising ingredients, due to their good nutritional qualities and their sustainability, thus helping to conserve the environment.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Publication Facts

Metric
This article
Other articles
Peer reviewers 
1
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
3%
33%
Days to publication 
490
145

Indexed in

Editor & editorial board
profiles
Academic society 
N/A
Publisher 
Uma Editorial. Universidad de Málaga

References

Ahmad, A. y otros. (2022) An overview of microalgae biomass as a sustainable aquaculture feed ingredient: food security and circular economy. Bioengineered, 13(4), 9521–9547.

https://doi.org/10.1080/21655979.2022.2061148

APROMAR. (2021). Memoria de sostenibilidad 2021.

https://apromar.es/wp-content/uploads/2021/12/MEMORIA-DE-SOSTENIBILIDAD-2021-de-Acuicultura-de-Espan%CC%83a.pdf

Arun, J. y otros. (2020). A conceptual review on microalgae biorefinery through thermochemical and biological pathways: bio-circular approach on carbon capture and wastewater treatment. Bioresource Technology Reports, 11, 100477.

https://doi.org/10.1016/j.biteb.2020.100477

Barg, U. (2018). Aquaculture, the 2030 agenda for sustainable development and FAO’s common vision for sustainable food and agriculture. FAO Aquaculture Newsletter, 58, 47–48.

https://www.proquest.com/openview/08651391108fc2cca8872fb044c97ffe/1?pq-origsite=gscholar&cbl=237326

Barros, A. I. y otros. (2015). Harvesting techniques applied to microalgae: a review. Renewable and Sustainable Energy Reviews, 41, 1489–1500.

https://doi.org/10.1016/j.rser.2014.09.037

Boissy, J. y otros. (2011). Environmental impacts of plant-based salmonid diets at feed and farm scales. Aquaculture, 321(1-2), 61–70

https://doi.org/10.1016/j.aquaculture.2011.08.033

Boyd, C. E. y otros. (2020). Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. Journal of the World Aquaculture Society, 51(3), 578-633.

https://doi.org/10.1111/jwas.12714

Brugère, C. y otros. (2019). The ecosystem approach to aquaculture 10 years on – a critical review and consideration of its future role in blue growth. Reviews in Aquaculture, 11(3), 493-514.

https://doi.org/10.1111/raq.12242

Calder, P. C. (2014). Very long chain omega-3 (n-3) fatty acids and human health. European Journal of Lipid Science and Technology, 116(10), 1280–1300.

https://doi.org/10.1002/ejlt.201400025

Carvalho, M. y otros. (2020). Effective complete replacement of fish oil by combining poultry and microalgae oils in practical diets for gilthead sea bream (Sparus aurata) fingerlings. Aquaculture, 529, 735696.

https://doi.org/10.1016/j.aquaculture.2020.735696

Cashion, T. y otros. (2017). Most fish destined for fishmeal production are food‐grade fish. Fish and Fisheries, 18(5), 837-844.

https://doi.org/10.1111/faf.12209

Chen, W. y otros. (2019). Two filamentous microalgae as feed ingredients improved flesh quality and enhanced antioxidant capacity and immunity of the gibel carp (Carassius auratus gibelio). Aquaculture Nutrition, 25(5), 1145–1155.

https://doi.org/10.1111/anu.12930

Falaise, C. y otros. (2016). Antimicrobial compounds from eukaryotic microalgae against human pathogens and diseases in aquaculture. Marine Drugs, 14(9), 159.

https://doi.org/10.3390/md14090159

FAO. (2022). El estado mundial de la pesca y la acuicultura 2022.

https://www.fao.org/documents/card/en?details=CC0461ES

FAO. (2022b). El estado de la seguridad alimentaria y la nutrición en el mundo 2022.

https://www.fao.org/documents/card/es/c/cc0639es

Hardy, R. W. (2010). Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquaculture Research, 41(5), 770–776.

https://doi.org/10.1111/j.1365-2109.2009.02349.x

Hodar, A. R. y otros. (2020). Fish meal and fish oil replacement for aqua feed formulation by using alternative sources: a review. Journal of Experimental Zoology India, 23(1), 13–21.

https://www.cabidigitallibrary.org/doi/full/10.5555/20203130877

Hua, K. y otros. (2019). The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth, 1(3), 316-329.

https://doi.org/10.1016/j.oneear.2019.10.018

Klinger, D. y Naylor, R. (2012). Searching for solutions in aquaculture: charting a sustainable course. Annual Review of Environment and Resources, 37, 247–276.

https://doi.org/10.1146/annurev-environ-021111-161531

Kusmayadi, A. y otros. (2021). Microalgae as sustainable food and feed sources for animals and humans – Biotechnological and environmental aspects. Chemosphere, 271, 129800.

https://doi.org/10.1016/j.chemosphere.2021.129800

Li, K. y otros. (2019). Microalgae-based wastewater treatment for nutrients recovery: a review. Bioresource Technology, 291, 121934.

https://doi.org/10.1016/j.biortech.2019.121934

Li, P. y otros. (2009). New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino Acids, 37, 43–53.

https://doi.org/10.1007/s00726-008-0171-1

Lu, Q. y otros. (2021). A state-of-the-art review on the synthetic mechanisms, production technologies, and practical application of polyunsaturated fatty acids from microalgae. Algal Research, 55, 102281.

https://doi.org/10.1016/j.algal.2021.102281

Molina-Roque, L. y otros. (2022). Biotechnological treatment of microalgae enhances growth performance, hepatic carbohydrate metabolism and intestinal physiology in gilthead seabream (Sparus aurata) juveniles close to commercial size. Aquaculture Reports, 25, 101248.

https://doi.org/10.1016/j.aqrep.2022.101248

Nagappan, S. y otros. (2021). Potential of microalgae as a sustainable feed ingredient for aquaculture. Journal of Biotechnology, 341, 1-20.

https://doi.org/10.1016/j.jbiotec.2021.09.003

ONU. (2020). Informe de los objetivos de desarrollo sostenible.

https://unstats.un.org/sdgs/report/2020/The-Sustainable-Development-Goals-Report-2020_Spanish.pdf

ONU. (2022). World Population Prospects 2022: Summary of Results.

https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf

Puszkarski, J. y Śniadach, O. (2022). Instruments to implement sustainable aquaculture in the European Union. Marine Policy, 144, 105215.

https://doi.org/10.1016/j.marpol.2022.105215

Published

2025-03-31

How to Cite

Español, E., Español, E., Español, E., Español, E., & Español, E. (2025). CAN MICROALGAE BE SUBSTITUTES FOR FISH OIL AND FISH MEAL IN AQUACULTURE DIETS?. Encuentros En La Biología, 17(189). https://doi.org/10.24310/enbio.17.189.2025.17951