Genetic editing with CRISPR: from the salt flats of Santa Pola (Alicante) to the fight against the SARS-CoV2 coronavirus through the first genetically edited humans.

Authors

  • Enrique Viguera Mínguez Spain
  • Miguel Ángel López Carrasco Spain

DOI:

https://doi.org/10.24310/enbio.v12i170.17388

Keywords:

CRISPR-Cas genetic editing, Lluís Montoliu, SHERLOCK, CARMEN, DETECTR, REPAIR

Abstract

The CRISPR-Cas genetic editing technique is causing a real scientific revolution. Its use allows to eliminate, add, or replace genetic information both in vitro, ex vivo and in vivo experiments. The list of possibilities and applications in biology, biotechnology and biomedicine is very extensive: Inactivation of a gene, substitution of a DNA sequence by another, correction of a specific change in the DNA responsible for the appearance of a certain disease, design of diagnostic systems with an unthinkable sensitivity to date, possibility of editing not only DNA but also RNA, encoding of hidden messages in the genome of a bacterium… The researcher Lluís Montoliu, a pioneer in the use of these tools in Spain, tells us in his book “Editing genes: cut, paste and color” that “the limit of the applications derived from genetic editing with CRISPR tools is in the imagination of the researchers”. From 2013 to now, almost 18,000 scientific publications have appeared that use the CRISPR system and multiple variants of CRISPR-based genetic editing have emerged, such as SHERLOCK, CARMEN, DETECTR and REPAIR.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Anzalone, A. V., Randolph, P. B., Davis J. R., y otros. Search- and-replace genome editing without double-strand breaks or do- nor DNA. Nature, 576(7785), 149-157, 2019.
Barrangou, R., Fremaux, C., Deveau H., y otros. CRISPR provi- des acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709-1712, 2007.
Bolotin, A., Quinquis, B., Sorokin, A., y Ehrlich, S. D. Cluste- red regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151(8), 2551-2561, 2005.
Brinster, R. L., Braun, R. E., Lo, D., y otros. Targeted correc- tion of a major histocompatibility class II E alpha gene by DNA microinjected into mouse eggs. Proceedings of the National Aca- demy of Sciences, 86(18), 7087-7091, 1989.
Brouns, S. J., Jore, M. M., Lundgren, M. y otros. Small CRISPR RNAs guide antiviral defense in prokaryotes. Scien- ce, 321(5891), 960-964, 2008.
Choulika, A., Perrin, A., Dujon, B., y Nicolas, J. F. The yeast I-Sce I meganuclease induces site-directed chromosomal recom- bination in mammalian cells. Comptes rendus de l’Academie des sciences. Serie III, Sciences de la vie, 317(11), 1013-1019, 1994.
Cong, L., Ran, F. A., Cox, D., y otros. Multiplex genome en- gineering using CRISPR/Cas systems. Science, 339(6121), 819- 823, 2013.
Gaj, T., Gersbach, C. A., y Barbas III, C. F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31(7), 397-405, 2013.
Garneau, J. E., Dupuis, M. È., Villion, M., y otros. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468(7320), 67-71, 2010.
Gasiunas, G., Barrangou, R., Horvath, P., y Siksnys, V. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences, 109(39), E2579-E2586, 2012.
Gaudelli, N. M., Komor, A. C., Rees, H. A., y otros. Program- mable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature, 551(7681), 464-471, 2017.
Hsu, P. D., Lander, E. S., y Zhang, F. Development and appli- cations of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262-1278, 2014.
Ishino, Y., Krupovic, M., y Forterre, P. History of CRISPR- Cas from encounter with a mysterious repeated sequence to genome editing technology. Journal of Bacteriology, 200(7), e00580-17, 20
Jansen, R., Embden, J. D. V., Gaastra, W., y Schouls, L. M. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 43(6), 1565-1575, 2002.
Jinek, M., Chylinski, K., Fonfara, I., y otros. A programma- ble dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821, 2012.
Koonin, E. V., y Makarova, K.S. CRISPR-Cas: Evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biol. 10, 679–686, 2013.
Li, Y., Li, S., Wang, J., y Liu, G. CRISPR/Cas systems towards next-generation biosensing. Trends in Biotechnology, 37(7), 730-743, 2019.
Mali, P., Yang, L., Esvelt, K. M., y otros. RNA-guided hu- man genome engineering via Cas9. Science, 339(6121), 823-826, 2013.
Marraffini, L. A., y Sontheimer, E. J. CRISPR interference li- mits horizontal gene transfer in staphylococci by targeting DNA. Science, 322(5909), 1843-1845, 2008.
Miller, J. C., Holmes, M. C., Wang, J. y otros. An improved zinc-finger nuclease architecture for highly specific genome edi- ting. Nature Biotechnology, 25(7), 778-785, 2007.
Mojica, F. J., Díez-Villaseñor, C., Soria, E., y Juez, G. Bio- logical significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Molecular Microbiology, 36(1), 244-246, 2000.
Mojica, F. J., García-Martínez, J., y Soria, E. Intervening se- quences of regularly spaced prokaryotic repeats derive from fo- reign genetic elements. Journal of Molecular Evolution, 60(2), 174-182, 2005.
Pourcel, C., Salvignol, G., y Vergnaud, G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutio- nary studies. Microbiology, 151(3), 653-663, 2005.
Smithies, O., Gregg, R. G., Boggs, S. S., y otros. Insertion of DNA sequences into the human chromosomal ?-globin locus by homologous recombination. Nature, 317(6034), 230-234, 1985.
Viguera, E., Canceill, D., y Ehrlich, S. D. Replication slippage involves DNA polymerase pausing and dissociation. The EMBO Journal, 20(10), 2587-2595, 2001.

Published

2019-12-21

How to Cite

Viguera Mínguez, E., & López Carrasco , M. Ángel . (2019). Genetic editing with CRISPR: from the salt flats of Santa Pola (Alicante) to the fight against the SARS-CoV2 coronavirus through the first genetically edited humans. Encuentros En La Biología, 12(170), 5–10. https://doi.org/10.24310/enbio.v12i170.17388