Experimental cell therapies for the treatment of myocardial infarction: lessons from cardiac regeneration and repair in non-human vertebrates
DOI:
https://doi.org/10.24310/enbio.v14i177.16701Abstract
Cardiovascular diseases are the mainpal cause of death in the western world (http://www.who.int/classifications/icd). the heart attack of myocardium associated with coronary disease is the most common cardiovascular disease and the one that carries the highest mortality and morbidity
Downloads
Metrics
References
- Jessup M, Brozena S. Heart Failure. N Engl J Med. 2003;348:2007-18
- Hall R, Simpson I. The ESC Textbook of Cardiovascular Medicine: Second edition. Oxford Univ Press. 2009.
- Taylor DO, Edwards LB, Boucek MM, Trulock EP, Aurora P, Christie J, et al. Registry of the International Society for Heart and Lung Transplantation: Twenty-fourth Official Adult Heart Transplant Report-2007. J Hear Lung Transplant. 2007;26:769-81.
- Ruiz-Villalba A, Simón AM, Pogontke C, Castillo MI, Abizanda G, Pelacho B, et al. Interacting resident epicardiumderived fibroblasts and recruited bone marrow cells form myocardial infarction scar. J Am Coll Cardiol. 2015;65:2057-66.
- Sánchez-Alvarado A. Regeneration in the metazoans: Why does it happen? BioEssays. 2000;22:578-90.
- Durán I. Modelos de regeneración. Encuentros en la Biol. 2009;2:13-4
- Jensen JA, Kosek JC, Hunt TK, Goodson WH, Miller DC. Cardiac cryolesions as an experimental model of myocardial wound healing. Ann Surg. 1987;206:798-803.
- Ciulla MM, Paliotti R, Ferrero S, Braidotti P, Esposito A, Gianelli U, et al. Left ventricular remodeling after experimental myocardial cryoinjury in rats. J Surg Res. 2004;116:91-7
- Van den Bos EJ, Mees BME, de Waard MC, de Crom R, Duncker DJ. A novel model of cryoinjury-induced myocardial infarction in the mouse: a comparison with coronary artery ligation. Am J Physiol Heart Circ Physiol. 2005;289:H1291- 300.
- Grivas J, Haag M, Johnson A, Manalo T, Roell J, Das TL, et al. Cardiac repair and regenerative potential in the goldfish (Carassius auratus) heart. Comp Biochem Physiol Part C Toxicol Pharmacol. 2014;163:14-23
- Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science (80- ). 2002;298:2188-90
- Vargas-González A, Prado-Zayago E, León-Olea M, Guarner-Lans V, Cano-Martínez A. Regeneración miocárdica en Ambystoma mexicanum después de lesión quirúrgica. Arch Cardiol Mex. 2005;75:21-9.
- Witman N, Murtuza B, Davis B, Arner A, Morrison JI. Recapitulation of developmental cardiogenesis governs the morphological and functional regeneration of adult newt hearts following injury. Dev Biol. 2011;354:67-76.
- Marshall LN, Vivien CJ, Girardot F, Péricard L, Scerbo P, Palmier K, et al. Stage-dependent cardiac regeneration in Xenopus is regulated by thyroid hormone availability . Proc Natl Acad Sci. 2019;116:3614-23.
- Stockdale WT, Lemieux ME, Killen AC, Zhao J, Hu Z, Riepsaame J, et al. Heart Regeneration in the Mexican Cavefish. Cell Rep. 2018;25:1997-2007.e7
- Maden M, Brant JO, Rubiano A, Sandoval AGW, Simmons C, Mitchell R, et al. Perfect chronic skeletal muscle regeneration in adult spiny mice, Acomys cahirinus. Sci Rep. 2018;8:1-14.
- Shindo K, Peng H, Donahue RR, Ahern BM, Levitan BM, Satin J, et al. Evaluating spiny mice (Acomys) as a model for cardiac research. BiorXiv. 2020
- Koopmans T, van Beijnum H, Roovers EF, Malhotra D, Tomasso A, Boeter J, et al. Ischemic tolerance and cardiac repair in the African spiny mouse. BiorXiv. 2021
- Sallin P, de Preux Charles AS, Duruz V, Pfefferli C, Ja?wi?ska A. A dual epimorphic and compensatory mode of heart regeneration in zebrafish. Dev Biol. 2015;399:27-40.
- Zhao L, Borikova AL, Ben-Yair R, Guner-Ataman B, MacRae CA, Lee RT, et al. Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc Natl Acad Sci. 2014;111:1403-8
-Lepilina A, Coon AN, Kikuchi K, Holdway JE, Roberts RW, Burns CG, et al. A Dynamic Epicardial Injury Response Supports Progenitor Cell Activity during Zebrafish Heart Regeneration. Cell. 2006;127:607-19.
- Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, et al. Transient Regenerative Potential of the Neonatal Mouse Heart. Science (80- ). 2011;331:1078-80.
- Bryant DM, O’Meara CC, Ho NN, Gannon J, Cai L, Lee RT. A systematic analysis of neonatal mouse heart regeneration after apical resection. J Mol Cell Cardiol. 2015;79:315-8.
- Eschenhagen T, Bolli R, Braun T, Field LJ, Fleischmann BK, Frisén J, et al. Cardiomyocyte Regeneration. Circulation. 2017;136:680-6
- Darehzereshki A, Rubin N, Gamba L, Kim J, Fraser J, Huang Y, et al. Differential regenerative capacity of neonatal mouse hearts after cryoinjury. Dev Biol. 2015;399:91-9.
- Borgens RB. Mice regrow the tips of their foretoes. Sci (New York, NY). 1982;217:747-50.
- Sousounis K, Baddour JA, Tsonis PA. Aging and Regeneration in Vertebrates. vol. 108. ed. Elsevier Inc.; 2014.
- Leferovich JM, Bedelbaeva K, Samulewicz S, Zhang XM, Zwas D, Lankford EB, et al. Heart regeneration in adult MRL mice. Proc Natl Acad Sci U S A. 2001;98:9830-5.
- Bettencourt-Dias M, Mittnacht S, Brockes JP. Heterogeneous proliferative potential in regenerative adult newt cardiomyocytes. J Cell Sci. 2003;116:4001-9.
- Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Walsh S, Zupicich J, et al. Evidence for Cardiomyocyte Renewal in Humans. Science (80- ). 2009;324:98-102
- Pasumarthi KBS, Field LJ. Cardiomyocyte cell cycle regulation. Circ Res. 2002;90:1044-54.
- Prabhu SD, Frangogiannis NG. The Biological Basis for Cardiac Repair After Myocardial Infarction. Circ Res. 2016;119:91-112.
- Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol. 2014;11:255-65.
- Haque ZK, Wang DZ. How cardiomyocytes sense pathophysiological stresses for cardiac remodeling. Cell Mol Life Sci. 2017;74:983-1000
- Smits AM, Dronkers E, Goumans M-J. The epicardium as a source of multipotent adult cardiac progenitor cells: Their origin, role and fate. Pharmacol Res. 2018;127:129-40.
- Bianconi V, Sahebkar A, Kovanen P, Bagaglia F, Ricciuti B, Calabrò P, et al. Endothelial and cardiac progenitor cells for cardiovascular repair: A controversial paradigm in cell therapy. Elsevier Inc.; 2017
- Mauretti A, Spaans S, Bax NAM, Sahlgren C, Bouten CVC. Cardiac Progenitor Cells and the Interplay with Their Microenvironment. Stem Cells Int. 2017;2017.
- Milasinovic D, Mohl W. Contemporary perspective on endogenous myocardial regeneration. World J Stem Cells. 2015;7:793-805.
- Rubin N, Harrison MR, Krainock M, Kim R, Lien C-L. Recent advancements in understanding endogenous heart regeneration—insights from adult zebrafish and neonatal mice. Semin Cell Dev Biol. 2016;58:34-40
- Oh H, Ito H, Sano S. Challenges to success in heart failure: Cardiac cell therapies in patients with heart diseases. J Cardiol. 2016;68:361-7.
- Brandão KO, Tabel VA, Atsma DE, Mummery CL, Davis RP. Human pluripotent stem cell models of cardiac disease: from mechanisms to therapies. Dis Model Mech. 2017;10:1039-59.
- Loffredo FS, Steinhauser ML, Gannon J, Lee RT. Bone Marrow-Derived Cell Therapy Stimulates Endogenous Cardiomyocyte Progenitors and Promotes Cardiac Repair. Cell Stem Cell. 2011;8:389-98
- Caplan A. Why are MSCs therapeutic? New data: new insight. J Pathol. 2009;217:318-24.
- Guadix JA, Zugaza JL, Gálvez-Martín P. Characteristics, applications and prospects of mesenchymal stem cells in cell therapy. Med Clin. 2017;148:408-14.
- Abdel-latif A, Bolli R, Tleyjeh IM, Montori VM, Perin EC, Hornung CA, et al. Adult Bone Marrow–Derived Cells for Cardiac Repair. Arch Intern Med. 2007;167:989-97.
- Posfai E, Tam OH, Rossant J. Mechanisms of Pluripotency In Vivo and In Vitro. Curr. Top. Dev. Biol., vol. 107. ed., Elsevier Inc.; 2014, p. 1-37.
- Fong C-Y, Gauthaman K, Bongso A. Teratomas from pluripotent stem cells: A clinical hurdle. J Cell Biochem. 2010;111:769-81.
- Romano G, Morales F, Marino IR, Giordano A. A Commentary on iPS Cells: Potential Applications in Autologous Transplantation, Study of Illnesses and Drug Screening. J Cell Physiol. 2014;229:148-52.
- Birket MJ, Mummery CL. Pluripotent stem cell derived cardiovascular progenitors - A developmental perspective. Dev Biol. 2015;400:169-79
- Van Rooij E, Olson EN. MicroRNA therapeutics for cardio-vascular disease: opportunities and obstacles. Nat Rev Drug Discov. 2012;11:860-72
- Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci. 2013;110:187-92.
- Drenckhahn JD, Schwarz QP, Gray S, Laskowski A, Kiriazis H, Ming Z, et al. Compensatory Growth of Healthy Cardiac Cells in the Presence of Diseased Cells Restores Tissue Homeostasis during Heart Development. Dev Cell. 2008;15:521-33.
- Sturzu AC, Rajarajan K, Passer D, Plonowska K, Riley A, Tan TC, et al. Fetal Mammalian Heart Generates a Robust Compensatory Response to Cell Loss. Circulation. 2015;132:109-21
- Hassink RJ, Pasumarthi KB, Nakajima H, Rubart M, Soonpaa MH, de la Riviere AB, et al. Cardiomyocyte cell cycle activation improves cardiac function after myocardial infarction. Cardiovasc Res. 2008;78:18-25.
- Palmquist-Gomes P, Guadix JA, Pérez-Pomares JM. A chick embryo cryoinjury model for the study of embryonic organ development and repair. Differentiation. 2016;91:72-7.
Downloads
Published
How to Cite
Issue
Section
License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.
Esta revista provee acceso libre inmediato a su contenido bajo el principio de hacer disponible gratuitamente la investigación al público. Todos los contenidos publicados en Encuentros en la Bilogía están sujetos a la licencia Creative Commons Reconocimento-NoComercia-Compartirigual 4.0 cuyo texto completo puede consultar en <http://creativecommons.org/licenses/by-nc-sa/4.0>
Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que:
Se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra).
No se usen para fines comerciales.
Se mencione la existencia y especificaciones de esta licencia de uso
Los derechos de autor son de dos clases: morales y patrimoniales. Los derechos morales son prerrogativas perpetuas, irrenunciables, intransferibles, inalienables, inembargables e imprescriptibles. De acuerdo con la legislación de derechos de autor, Encuentros en la Biología reconoce y respeta el derecho moral de los autores/as, así como la titularidad del derecho patrimonial, el cual será cedido a la Universidad de Málaga para su difusión en acceso abierto. Los derechos patrimoniales, se refieren a los beneficios que se obtienen por el uso o divulgación de las obras. Encuentros en la Biología se publica en open access y queda autorizada en exclusiva para realizar o autorizar por cualquier medio el uso, distribución, divulgación, reproducción, adaptación, traducción o transformación de la obra.
Es responsabilidad de los autores/as obtener los permisos necesarios de las imágenes que están sujetas a derechos de autor.
Los autores/as cuyas contribuciones sean aceptadas para su publicación en esta revista conservarán el derecho no exclusivo de utilizar sus contribuciones con fines académicos, de investigación y educativos, incluyendo el auto-archivo o depósito en repositorios de acceso abierto de cualquier tipo.
La edición electrónica de esta revista esta editada por la Editorial de la Universidad de Málaga (UmaEditorial), siendo necesario citar la procedencia en cualquier reproducción parcial o total.