New model of smart underground transformation center, adapted to smart cities and climate change

Authors

  • Inés Aragüez del Corral Spain
  • Moisés Garrido Martín Spain
  • Montajes Eléctricos Cuerva S.L Spain

DOI:

https://doi.org/10.24310/wps.vi7-8.14293

Keywords:

smart cities, smart grids, electrical distribution grid, urban resilience, climate change, transformer station

Abstract

Smart grids face the challenge of having an intelligent node that allows the
management of distribution network. This one can not be other than transformer
stations, as an energetic node where high voltage grid get to, and where distribution
grid come out in low voltage for consumers, and as a node in the communications
architecture, necessary for the intelligent control of the network.
It should be noted that it is important that these energy and communication nodes
achieve greater reliability, security and a better continuity of supply in case of
catastrophes (floods, fires, earthquakes,...). It can not be forgotten that in these
emergency situations, getting the distribution grid working is essential to be able to supply critical services, such as communications, hospitals, pumping systems, ...
helping to create what is called "resilient cities".
It is also important to consider that the location of new transformer stations in
consolidated urban centres is increasingly difficult. This effect will be accentuated even
more if the incorporation of the electric vehicle as a usual means of urban mobility is
taken into account, since this will mean an increase in the installed power of the
distribution grid.
A new model of underground smart transformer station is proposed, which, with an
innovative design, is capable of solving these problems. The proposed model has a
cylindrical metallic envelope, giving it a greater resistance to external forces while
keeping its watertightness against floods and forces characteristic of seismic
movements. Within the inside, all the switchgear is available, with motorized drives. It
will have protection relays and sensors to control parameters. All the system is
managed by a control unit which is located in a tight and resistant exterior box. From
this control unit, all the elements can be managed, checking the connection status of
each one and knowing the operating parameters of the equipment. Also, the control
unit will enable to store a data history of performed operations and granted accesses
by big data and Cloud Computing technologies. The system will also allow the
possibility of a remote management from a control station or through an APP
(application) system for mobile devices, allowing the incorporation of this equipment in
another intelligent integrated one or smart grids. In addition, it will allow a better
maintenance management and a more efficient operation of the network.
With the purpose of solving the heat evacuation of the transformer tank, the
conventional fin design of the tank is modified by a new design based on installing
exchangers on the outside and by means of collectors in the tank that will allow the
refrigerant oil to circulate with a pump. In order to make the station invisible, this
exchanger will be installed replacing part of the curb on the sidewalk. In this way, the
station is totally sealed and resistant to any type of flood or tsunami. In addition, this
cooling system, more efficient, and an envelope without openings, will increase
durability of components and their useful life.
It is hereby concluded that the use of this innovative transformer station model will
make electrical infrastructures of cities more resistant and operational, enabling them
to face the great challenges of the future brought by the digital revolution, electric
vehicles and climate change.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

ABB (2004). Manual Técnico de Instalaciones Eléctricas. Tomo I: Aparatos de
protección y maniobra. Bergamo: ABB SACE.

ABB (2004). Manual Técnico de Instalaciones Eléctricas. Tomo II: La instalación
Eléctrica. Bergamo: ABB SACE.

Aragüez del Corral, I. (2016). Centro de transformación modular subterráneo resistente
a catástrofes y condiciones adversas. ES 1153658Y.

Aragüez del Corral, I., Aguado Sánchez, J. and Ruiz Aranda, J. (2016). Nuevas
tecnologías constructivas en el diseño de centros de transformación de distribución en
el medio urbano. Ingeniería Industrial. Universidad de Málaga.

Avelino Pérez, P. (1998). Transformadores de distribución: Teoría, cálculo,
construcción y pruebas. México: Reverté.

Capella, R. (2000). Centros de transformación MT/BT. Barcelona: Schneider Electric
España S.A.

Gao, M., Li, G. and Li, J. (2011). The temperature dependence of insulation
characteristics of transformer oil at low temperatures. Power Engineering and
Automation Conference (PEAM), 2011 IEEE.

Real Decreto 223/2008, de 15 de febrero, por el que se aprueban el Reglamento sobre
condiciones técnicas y garantías de seguridad en líneas eléctricas de alta tensión y
sus instrucciones técnicas complementarias ITC-LAT 01 a 09. I. Disposiciones
generales. España.

Real Decreto 337/2014 de 09/05/2014, por el que se aprueban el Reglamento sobre
condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta
tensión y sus Instrucciones Técnicas Complementarias ITC-RAT 01 a 23. I.
Disposiciones generales. España.

Real Decreto 842/2002, de 2 de agosto, por el que se aprueba el Reglamento
Electrotécnico de Baja Tensión e Instrucciones Técnicas Complementarias. I.
Disposiciones generales. España.

RESCCUE (2018). RESilience to cope with Climate Change in Urban arEas – a
multisectorial approach focusing on water. Bristol, Reino Unido: Resccue. Recuperado
de http://www.resccue.eu/resccue-project

REE (2018). Simulador de recarga del vehículo eléctrico. Madrid, España: Red
Eléctrica de España. Recuperado de http://www.ree.es/sites/all/SimuladorVE/

Sacchi, J. and Rifaldi, A. (1989). Cálculo y diseño de máquinas eléctricas. Buenos
Aires: Universidad Nacional de La Plata.
Schneider Electric (2014). El transformador y su entorno, para una protección máxima.
(2014). Barcelona: Schneider Electric España S.A.

UNE-EN 50216-10:2010 Accesorios para transformadores de potencia y reactancias.
Parte 10: Intercambiadores de calor aceite-aire.

UNE-EN 60296:2012. Fluidos para aplicaciones electrotécnicas. Aceites minerales
aislantes nuevos para transformadores y aparamenta de conexión.

UNE-EN 60076-1:2013 Transformadores de potencia. Parte 1: Generalidades.

UNE-EN 60076-2:2013 Transformadores de potencia. Parte 2: Calentamiento de
transformadores sumergidos en líquido.

UNE-EN 60076-7:2012 Transformadores de potencia. Parte 7: Guía de carga para
transformadores de potencia sumergidos en aceite.

UNE-IEC/TS 60076-14:2010. Transformadores de potencia. Parte 14: Diseño y
aplicación de transformadores de potencia sumergidos en líquido aislante utilizando
materiales aislantes de alta temperatura.

Published

2018-12-28

How to Cite

Aragüez del Corral, I., Garrido Martín, M., & Cuerva S.L, M. E. (2018). New model of smart underground transformation center, adapted to smart cities and climate change. WPS Review International on Sustainable Housing and Urban Renewal, (7-8), 76–92. https://doi.org/10.24310/wps.vi7-8.14293

Issue

Section

Propuestas de Actuación