Inteligencia artificial en el diagnóstico y en el tratamiento de lesiones musculares

Autores/as

DOI:

https://doi.org/10.24310/riccafd.13.3.2024.20429

Palabras clave:

Detección, Diagnóstico, Fisioterapia, Inteligencia Artificial, Lesiones musculoesqueléticas
Agencias: Fundación Universitaria del Áreandina Andina

Resumen

Las lesiones musculoesqueléticas son una carga significativa para los sistemas de salud, lo que subraya la importancia de un diagnóstico y tratamiento precisos. Sin embargo, los métodos tradicionales pueden ser limitados en términos de precisión y eficacia. En este contexto, la inteligencia artificial (IA) se ha destacado como una herramienta prometedora, capaz de analizar grandes volúmenes de datos clínicos y radiológicos, mejorando tanto el diagnóstico como la personalización de las intervenciones terapéuticas.

Este artículo tiene como objetivo evaluar la eficacia de la IA en el diagnóstico y tratamiento de lesiones musculoesqueléticas, buscando determinar su capacidad para mejorar la precisión diagnóstica y la efectividad terapéutica. Se realizó una revisión exploratoria basada en el marco metodológico PRISMA, en la que se identificaron y analizaron estudios relevantes mediante una búsqueda exhaustiva en bases de datos científicas.

Los resultados indican que la IA mejora significativamente la precisión del diagnóstico temprano de lesiones musculoesqueléticas, superando las limitaciones de los métodos tradicionales al identificar y analizar patologías complejas con mayor rapidez y exactitud. Además, se observa un papel crucial de la IA en la personalización de los tratamientos, adaptando las recomendaciones terapéuticas a las características individuales de los pacientes, lo que potencialmente mejora los resultados clínicos.

No obstante, la implementación de la IA en la práctica clínica no está exenta de desafíos. La aceptación por parte de los profesionales de la salud y de los pacientes, así como las preocupaciones éticas sobre la seguridad y la privacidad de los datos médicos, representan barreras significativas. Es crucial que la implementación de estas tecnologías considere rigurosamente estos aspectos para garantizar una integración efectiva y ética en la práctica clínica.

Este estudio sugiere que, si bien la IA tiene un gran potencial para transformar el manejo de las lesiones musculoesqueléticas, es necesario continuar con la investigación para abordar los desafíos éticos y prácticos, asegurando así una aplicación segura y eficaz en la medicina clínica.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Soriano JB, Rojas-Rueda D, Alonso J, Antó JM, Cardona PJ, Fernández E, et al. La carga de enfermedad en España: resultados del Estudio de la Carga Global de las Enfermedades 2016. Med Clin (Barc) [Internet]. 14 de septiembre de 2018 [citado 20 de agosto de 2024];151(5):171–90. Disponible en: https://www.sciencedirect.com/science/article/pii/S0025775318303312

Ahmed Z, Mohamed K, Zeeshan S, Dong XQ. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine [Internet]. Vol. 2020, Database. Oxford University Press; 2020 [citado 21 de agosto de 2024]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078068/

Saqib M, Iftikhar M, Neha F, Karishma F, Mumtaz H. Artificial intelligence in critical illness and its impact on patient care: a comprehensive review [Internet]. Vol. 10, Frontiers in Medicine. Frontiers Media SA; 2023 [citado 21 de agosto de 2024]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10158493/

Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and prospects. Science (1979) [Internet]. 17 de julio de 2015;349(6245):255–60. Disponible en: https://doi.org/10.1126/science.aaa8415

Gyftopoulos S, Lin D, Knoll F, Doshi AM, Rodrigues TC, Recht MP. Artificial intelligence in musculoskeletal imaging: Current status and future directions [Internet]. Vol. 213, American Journal of Roentgenology. American Roentgen Ray Society; 2019 [citado 21 de agosto de 2024]. p. 506–13. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6706287/

Incio Flores FA, Capuñay Sanchez DL, Estela Urbina RO, Valles Coral MÁ, Vergara Medrano EE, Elera Gonzales DG. Inteligencia artificial en educación: una revisión de la literatura en revistas científicas internacionales. Apuntes Universitarios [Internet]. 6 de diciembre de 2021 [citado 21 de agosto de 2024];12(1). Disponible en: https://apuntesuniversitarios.upeu.edu.pe/index.php/revapuntes/article/view/974

Jung J, Maeda M, Chang A, Bhandari M, Ashapure A, Landivar-Bowles J. The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Curr Opin Biotechnol [Internet]. agosto de 2021 [citado 21 de agosto de 2024];70:15–22. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33038780/

Cuestas E. El razonamiento clínico y la inteligencia artificial. Rev Fac Cienc Med Cordoba [Internet]. 26 de diciembre de 2023 [citado 21 de agosto de 2024];80(4):306–10. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851391/

Cox AM. Exploring the impact of Artificial Intelligence and robots on higher education through literature-based design fictions. International Journal of Educational Technology in Higher Education [Internet]. 2021;18(1):3. Disponible en: https://doi.org/10.1186/s41239-020-00237-8

Aguirre F, Carballo L, González X, Gigirey V. INTELIGENCIA ARTIFICIAL APLICADA A LA IMAGEN MÉDICA. Tema de Revisión. Revista Imagenología [Internet]. julio de 2021 [citado 20 de agosto de 2024];27(2):47–58. Disponible en: https://sriuy.org.uy/ojs/index.php/Rdi/article/view/94/102

Blanchar Martinez TM, De la Hoz Restrepo FP. Inteligencia artificial en medicina y procedimientos quirúrgicos: impacto en la toma de decisiones y la salud. Rev Cub Salud Publica [Internet]. diciembre de 2022 [citado 21 de agosto de 2024];48(4). Disponible en: http://scielo.sld.cu/scielo.php?pid=S0864-34662022000400012&script=sci_arttext&tlng=en

Anan T, Kajiki S, Oka H, Fujii T, Kawamata K, Mori K, et al. Effects of an Artificial Intelligence–Assisted Health Program on Workers With Neck/Shoulder Pain/Stiffness and Low Back Pain: Randomized Controlled Trial. JMIR Mhealth Uhealth [Internet]. 2021;9(9):e27535. Disponible en: https://mhealth.jmir.org/2021/9/e27535

Román-Belmonte JM, De la Corte-Rodríguez H, Rodríguez-Merchán EC. Artificial intelligence in musculoskeletal conditions. Front Biosci (Landmark Ed) [Internet]. 30 de noviembre de 2021 [citado 21 de agosto de 2024];26(11):1340–8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34856771/

Ajmera P, Kharat A, Botchu R, Gupta H, Kulkarni V. Real-world analysis of artificial intelligence in musculoskeletal trauma [Internet]. Vol. 22, Journal of Clinical Orthopaedics and Trauma. Elsevier B.V.; 2021 [citado 21 de agosto de 2024]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34527511/

Ramesh AN, Kambhampati C, Monson JRT, Drew PJ. Artificial intelligence in medicine [Internet]. Vol. 86, Annals of the Royal College of Surgeons of England. 2004 [citado 21 de agosto de 2024]. p. 334–8. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1964229/

Fritz B, Fritz J. Artificial intelligence for MRI diagnosis of joints: a scoping review of the current state-of-the-art of deep learning-based approaches [Internet]. Vol. 51, Skeletal Radiology. Springer Science and Business Media Deutschland GmbH; 2022 [citado 21 de agosto de 2024]. p. 315–29. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34467424/

Itoh N, Mishima H, Yoshida Y, Yoshida M, Oka H, Matsudaira K. Evaluation of the Effect of Patient Education and Strengthening Exercise Therapy Using a Mobile Messaging App on Work Productivity in Japanese Patients With Chronic Low Back Pain: Open-Label, Randomized, Parallel-Group Trial. JMIR Mhealth Uhealth [Internet]. 16 de mayo de 2022 [citado 21 de agosto de 2024];10(5):e35867. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35576560/

Chen HK, Chen FH, Lin SF. An ai-based exercise prescription recommendation system. Applied Sciences (Switzerland) [Internet]. 2 de marzo de 2021 [citado 21 de agosto de 2024];11(6). Disponible en: https://www.mdpi.com/2076-3417/11/6/2661

Joison AN, Barcudi RJ, Majul EA, Ruffino SA, De Mateo Rey JJ, Joison AM, et al. La inteligencia artificial en la educación médica y la predicción en salud. Methodo Investigación Aplicada a las Ciencias Biológicas [Internet]. 4 de enero de 2021 [citado 21 de agosto de 2024];6(1). Disponible en: https://methodo.ucc.edu.ar/files/vol6/num1/Methodo%20V6%20N%c2%b01/ART%20N7%20REVISI%c3%93N%20JOISON.pdf

Pankhania M. Artificial Intelligence in Musculoskeletal Radiology: Past, Present, and Future. Indian Journal of Musculoskeletal Radiology [Internet]. 22 de diciembre de 2020;2(2):86–9. Disponible en: https://doi.org/10.25259/IJMSR_62_2020

Jiménez Insuasti AR, Silva Bermudez RK, Nieto Manrique PA, Cotrino Palma HDA, Bohorquez de la Hoz B. La era de la inteligencia artificial radiológica. Scientific and Educational Medical Journal [Internet]. 5 de mayo de 2022;5(2):85–16. Disponible en: https://www.medicaljournal.com.co/index.php/mj/article/view/87

Tack C. Artificial intelligence and machine learning | applications in musculoskeletal physiotherapy. Musculoskelet Sci Pract [Internet]. febrero de 2019 [citado 21 de agosto de 2024];39:164–9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30502096/

Laur O, Wang B. Musculoskeletal trauma and artificial intelligence: current trends and projections [Internet]. Vol. 51, Skeletal Radiology. Springer Science and Business Media Deutschland GmbH; 2022 [citado 21 de agosto de 2024]. p. 257–69. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34089338/

Seow D, Graham I, Massey A. Prediction models for musculoskeletal injuries in professional sporting activities: A systematic review. Transl Sports Med [Internet]. 1 de noviembre de 2020;3(6):505–17. Disponible en: https://doi.org/10.1002/tsm2.181

Pelle T, Bevers K, van der Palen J, van den Hoogen FHJ, van den Ende CHM. Effect of the dr. Bart application on healthcare use and clinical outcomes in people with osteoarthritis of the knee and/or hip in the Netherlands; a randomized controlled trial. Osteoarthritis Cartilage [Internet]. abril de 2020 [citado 21 de agosto de 2024];28(4):418–27. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32119972/

Christopoulou E, Elisaf M, Filippatos T. Effects of Angiopoietin-Like 3 on Triglyceride Regulation, Glucose Homeostasis, and Diabetes. Dis Markers [Internet]. 1 de enero de 2019;2019(1):6578327. Disponible en: https://doi.org/10.1155/2019/6578327

Ávila-Tomás JF, Mayer-Pujadas MA, Quesada-Varela VJ. La inteligencia artificial y sus aplicaciones en medicina II: importancia actual y aplicaciones prácticas. Aten Primaria [Internet]. 2021;53(1):81–8. Disponible en: https://www.sciencedirect.com/science/article/pii/S0212656720301463

Calivà F, Namiri NK, Dubreuil M, Pedoia V, Ozhinsky E, Majumdar S. Studying osteoarthritis with artificial intelligence applied to magnetic resonance imaging. Nat Rev Rheumatol [Internet]. 30 de febrero de 2022 [citado 21 de agosto de 2024];18(2):112–21. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34848883/

Descargas

Publicado

2024-12-30

Cómo citar

Gallego Londoño, C., Afanador Restrepo, D., Dávila Castañeda, M. C., Bastidas Ortega, C., Jurado Carmona, R., Martínez Rodríguez, C., & Ramírez Gómez, S. (2024). Inteligencia artificial en el diagnóstico y en el tratamiento de lesiones musculares. Revista Iberoamericana De Ciencias De La Actividad Física Y El Deporte, 13(3), 252–273. https://doi.org/10.24310/riccafd.13.3.2024.20429

Número

Sección

Artículos