Dinámica de la estructura de precios en Uruguay
DOI:
https://doi.org/10.24310/recta.22.1.2021.19870Keywords:
Análisis de redes, índice de precios, inflación, análisis de comunidadesAbstract
Understanding and predicting the inflationary phenomenon is a central problem for economists and decision-makers. Traditionally, time series econometric techniques have been used to study this phenomenon; but can complexity economics provide a complementary vision to previous studies? This work seeks to study the dynamics of the price structure of the Uruguayan economy from the perspective of complexity economics, using network analysis techniques that allow studying the relationship between the goods and services that constitute the CPI.
In this work, clusters of goods and services are studied based on the dynamic behavior of prices, in turn detecting relevant price variations in this network. The results show that the relevant prices are not associated with the CPI goods divisions and that clusters are consistent with previous studies for Uruguay.
Downloads
Publication Facts
Reviewer profiles N/A
Author statements
Indexed in
-
—
- Academic society
- N/A
- Publisher
- UMA Editorial. Universidad de Málaga
References
Arthur, W. B. (1999). Complexity and the economy. Science, 284(5411), 107-109.
https://doi.org/10.1126/science.284.5411.107
Balassa, B. (1964). The purchasing-power parity doctrine: a reappraisal. Journal of Political Economy, 72(6), 584-596.
https://doi.org/10.1086/258965
Bergara, M., Dominioni, D., & Licandro, J. A. (1995). Un modelo para comprender la "enfermedad uruguaya". Revista de Economía, 2(2), 39-76.
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008, P10008.
https://doi.org/10.1088/1742-5468/2008/10/P10008
Box, G. E. & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. Holden-Day, San Francisco.
Brum, C., Cuitiño, F., Mourelle, J., & Vicente, L. (2012). Modelos multivariados para predecir la inflación en Uruguay. Banco Central del Uruguay.
Cancelo, J. R., Fernández, A., Grosskoff, R., Selves, R., & Villamonte, G. (1994). Precios de transables y no transables: Un enfoque ARIMA-IA. IX Jornadas de Economía del Banco Central del Uruguay, Montevideo, Uruguay.
Cuitiño, F., Ganón, E., Tiscordio, I., & Vicente, L. (2010). Modelos univariados de series de tiempo para predecir la inflación de corto plazo. XXV Jornadas de Economía del Banco Central del Uruguay.
De Gregorio, J., Giovannini, A., & Wolf, H. C. (1994). International evidence on tradables and nontradables inflation. European Economic Review, 38(6), 1225-1244.
https://doi.org/10.1016/0014-2921(94)90070-1
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of
https://doi.org/10.2307/1912773
United Kingdom inflation. Econometrica: Journal of the Econometric Society, 50(4), 987-1007.
Gao, X., An, H., & Zhong, W. (2013). Features of the correlation structure of price indices. PLoS One, 8(4), 1-9.
https://doi.org/10.1371/journal.pone.0061091
Garda, P., Lanzilotta, B., & Lorenzo, F. (2004). Descripción y evaluación de un esquema metodológico para el diagnóstico y predicción de la inflación en Uruguay. XIX Jornadas de Economía del Banco Central del Uruguay.
Heymann, D. & Leijonhufvud, A. (1995). High Inflation: The Arne Ryde Memorial Lectures. OUP Catalogue.
https://doi.org/10.1093/oso/9780198288442.001.0001
Jackson, M. O. (2010). Social and economic networks. Princeton University Press.
https://doi.org/10.2307/j.ctvcm4gh1
Nasir, M. A. & Vo, X. V. (2020). A quarter century of inflation targeting & structural change in exchange rate pass-through: Evidence from the first three movers. Structural Change and Economic Dynamics.
https://doi.org/10.1016/j.strueco.2020.03.010
Newman, M. (2010). Networks: an introduction. Oxford University Press.
https://doi.org/10.1093/acprof:oso/9780199206650.003.0001
Samuelson, P. A. (1964). Theoretical notes on trade problems. The Review of Economics and Statistics, 46(2), 145-154.
https://doi.org/10.2307/1928178
Sarantitis, G. A., Papadimitriou, T., & Gogas, P. (2018). A network analysis of the United Kingdom's Consumer Price Index. Computational Economics, 51(2), 173-193.
https://doi.org/10.1007/s10614-016-9625-9
Sims, C. A. (1980). Macroeconomics and reality. Econometrica: Journal of the Econometric Society, 48(1), 1-48.
https://doi.org/10.2307/1912017
Sun, Q., Gao, X., Wen, S., Chen, Z., & Hao, X. (2018). The transmission of fluctuation among price indices based on Granger causality network. Physica A: Statistical Mechanics and its Applications, 506, 36-49.
https://doi.org/10.1016/j.physa.2018.04.055
Watts, D. J. & Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks. Nature, 393(6684), 440-442.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.