Dinámica de la estructura de precios en Uruguay

Authors

  • Emiliano Álvarez Universidad de la República Uruguay
  • Juan Gabriel Brida Universidad de la República Uruguay
  • Pablo Mones Universidad de la República Uruguay

DOI:

https://doi.org/10.24310/recta.22.1.2021.19870

Keywords:

Análisis de redes, índice de precios, inflación, análisis de comunidades

Abstract

Understanding and predicting the inflationary phenomenon is a central problem for economists and decision-makers. Traditionally, time series econometric techniques have been used to study this phenomenon; but can complexity economics provide a complementary vision to previous studies? This work seeks to study the dynamics of the price structure of the Uruguayan economy from the perspective of complexity economics, using network analysis techniques that allow studying the relationship between the goods and services that constitute the CPI.

In this work, clusters of goods and services are studied based on the dynamic behavior of prices, in turn detecting relevant price variations in this network. The results show that the relevant prices are not associated with the CPI goods divisions and that clusters are consistent with previous studies for Uruguay.

Downloads

Download data is not yet available.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
4%
33%
Days to publication 
1056
145

Indexed in

Editor & editorial board
profiles
Academic society 
N/A
Publisher 
UMA Editorial. Universidad de Málaga

References

Arthur, W. B. (1999). Complexity and the economy. Science, 284(5411), 107-109.

https://doi.org/10.1126/science.284.5411.107

Balassa, B. (1964). The purchasing-power parity doctrine: a reappraisal. Journal of Political Economy, 72(6), 584-596.

https://doi.org/10.1086/258965

Bergara, M., Dominioni, D., & Licandro, J. A. (1995). Un modelo para comprender la "enfermedad uruguaya". Revista de Economía, 2(2), 39-76.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008, P10008.

https://doi.org/10.1088/1742-5468/2008/10/P10008

Box, G. E. & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. Holden-Day, San Francisco.

Brum, C., Cuitiño, F., Mourelle, J., & Vicente, L. (2012). Modelos multivariados para predecir la inflación en Uruguay. Banco Central del Uruguay.

Cancelo, J. R., Fernández, A., Grosskoff, R., Selves, R., & Villamonte, G. (1994). Precios de transables y no transables: Un enfoque ARIMA-IA. IX Jornadas de Economía del Banco Central del Uruguay, Montevideo, Uruguay.

Cuitiño, F., Ganón, E., Tiscordio, I., & Vicente, L. (2010). Modelos univariados de series de tiempo para predecir la inflación de corto plazo. XXV Jornadas de Economía del Banco Central del Uruguay.

De Gregorio, J., Giovannini, A., & Wolf, H. C. (1994). International evidence on tradables and nontradables inflation. European Economic Review, 38(6), 1225-1244.

https://doi.org/10.1016/0014-2921(94)90070-1

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of

https://doi.org/10.2307/1912773

United Kingdom inflation. Econometrica: Journal of the Econometric Society, 50(4), 987-1007.

Gao, X., An, H., & Zhong, W. (2013). Features of the correlation structure of price indices. PLoS One, 8(4), 1-9.

https://doi.org/10.1371/journal.pone.0061091

Garda, P., Lanzilotta, B., & Lorenzo, F. (2004). Descripción y evaluación de un esquema metodológico para el diagnóstico y predicción de la inflación en Uruguay. XIX Jornadas de Economía del Banco Central del Uruguay.

Heymann, D. & Leijonhufvud, A. (1995). High Inflation: The Arne Ryde Memorial Lectures. OUP Catalogue.

https://doi.org/10.1093/oso/9780198288442.001.0001

Jackson, M. O. (2010). Social and economic networks. Princeton University Press.

https://doi.org/10.2307/j.ctvcm4gh1

Nasir, M. A. & Vo, X. V. (2020). A quarter century of inflation targeting & structural change in exchange rate pass-through: Evidence from the first three movers. Structural Change and Economic Dynamics.

https://doi.org/10.1016/j.strueco.2020.03.010

Newman, M. (2010). Networks: an introduction. Oxford University Press.

https://doi.org/10.1093/acprof:oso/9780199206650.003.0001

Samuelson, P. A. (1964). Theoretical notes on trade problems. The Review of Economics and Statistics, 46(2), 145-154.

https://doi.org/10.2307/1928178

Sarantitis, G. A., Papadimitriou, T., & Gogas, P. (2018). A network analysis of the United Kingdom's Consumer Price Index. Computational Economics, 51(2), 173-193.

https://doi.org/10.1007/s10614-016-9625-9

Sims, C. A. (1980). Macroeconomics and reality. Econometrica: Journal of the Econometric Society, 48(1), 1-48.

https://doi.org/10.2307/1912017

Sun, Q., Gao, X., Wen, S., Chen, Z., & Hao, X. (2018). The transmission of fluctuation among price indices based on Granger causality network. Physica A: Statistical Mechanics and its Applications, 506, 36-49.

https://doi.org/10.1016/j.physa.2018.04.055

Watts, D. J. & Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks. Nature, 393(6684), 440-442.

https://doi.org/10.1038/30918

Published

2021-06-30

How to Cite

Álvarez, E., Brida, J. G., & Mones, P. (2021). Dinámica de la estructura de precios en Uruguay. Revista Electrónica De Comunicaciones Y Trabajos De ASEPUMA, 22(1), 1–19. https://doi.org/10.24310/recta.22.1.2021.19870