Simultaneous Detection of Different Types of Shocks in Normal Matrix Linear Dynamic Models

Authors

  • Pilar Gargallo Valero Spain
  • Manuel Salvador Figueras Spain

Keywords:

Linear Dynamic Normal Matrix Models, Bayesian Factor, Monitoring and Intervention, Model Comparison

Abstract

In this work, the process of detecting various types of shocks in a Matrix Linear Dynamic Normal Model (MLDNM) is framed as a problem of Bayesian model comparison. This approach allows for analyzing the existence of a wide range of atypical behaviors in the evolution of multivariate time series (such as isolated outliers, level changes, slope changes, seasonal pattern shifts, etc.) both simultaneously and sequentially. Based on the detected shock type, interventions can be made. The proposed framework extends the algorithm for automatic monitoring and intervention introduced by Gargallo and Salvador (2002c) for univariate time series analysis. As an illustration, the procedure is applied to the analysis of the evolution of mortgages and deposits in the banking system in Aragon

Downloads

Download data is not yet available.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
4%
33%
Days to publication 
7785
145

Indexed in

Editor & editorial board
profiles
Academic society 
N/A
Publisher 
UMA Editorial. Universidad de Málaga

Published

2003-01-01

How to Cite

Gargallo Valero , P., & Salvador Figueras, M. (2003). Simultaneous Detection of Different Types of Shocks in Normal Matrix Linear Dynamic Models. Revista Electrónica De Comunicaciones Y Trabajos De ASEPUMA, 4(1), 63–101. Retrieved from https://revistas.uma.es/index.php/recta/article/view/19764