Comprender la adopción de ChatGPT entre estudiantes de educación superior en Punjab, India: una aplicación del modelo UTAUT2
DOI:
https://doi.org/10.24310/ijtei.111.2025.20219Palabras clave:
ChatGPT, Aceptación y Uso, UTAUT2, PLS-SEM, Educación SuperiorResumen
Este estudio examina la intención conductual de los estudiantes indios de educación superior al utilizar ChatGPT en su aprendizaje. El modelo de Teoría Unificada de Aceptación y Uso de Tecnología 2 (UTAUT2) se utiliza para investigar el impacto de los ocho factores UTAUT2 en la intención de comportamiento de los estudiantes hacia el uso de ChatGPT. Se realizó un estudio piloto con 100 estudiantes para comprobar la confiabilidad y validez del instrumento basado en el modelo UTAUT2. Utilizando un enfoque de investigación cuantitativa, se recopilaron datos de 362 estudiantes de Punjab (un estado de la región norte), India (los datos de 313 estudiantes se incluyeron en el análisis final) utilizando una técnica de muestreo intencional. Los hallazgos del estudio revelaron que PE (expectativa de desempeño), SI (influencia social), HM (motivación hedónica), Hb (hábito), FC (condiciones facilitadoras) tuvieron una influencia positiva significativa en BI (intención conductual), mientras que EE (expectativa de esfuerzo) tuvo no influyó significativamente en el BI. En el uso de ChatGPT, H y BI tuvieron una influencia positiva, pero FC no influyó significativamente en el uso de ChatGPT. El 67% de los encuestados dio prioridad al aprendizaje de herramientas de IA en la escuela. En términos de implicaciones prácticas, este estudio se suma a la literatura actual sobre ChatGPT o herramientas de IA en la educación superior, siendo útil para los académicos de la educación. Además, este estudio destaca la validación del modelo UTAUT2 para utilizar ChatGPT entre estudiantes de IES en Punjab, India. Los hallazgos de este estudio podrían facilitar los debates entre los educadores que trabajan en políticas relacionadas con el uso de herramientas de inteligencia artificial, específicamente ChatGPT en India.
Descargas
Métricas
Publicación Facts
Perfil de revisores N/D
Información adicional autores
Indexado: {$indexList}
-
Indexado en
- Sociedad Académica/Grupo
- N/D
- Editora:
- Universidad de Málaga
Citas
Abbas, J. (2018). Exploring the relationships among system quality, knowledge quality, and user satisfaction in the success of knowledge management systems: An empirical study. Journal of Information & Knowledge Management, 17(1), 1–21. https://doi.org/10.1142/S0219649218500079
Abu-Taieh, E. M., AlHadid, I., Abu-Tayeh, S., Masa’deh, R., Alkhawaldeh, R. S., Khwaldeh, S., & Alrowwad, A. (2022). Continued intention to use of M-banking in Jordan by integrating UTAUT, TPB, TAM, and service quality with ML. Journal of Open Innovation: Technology, Market, and Complexity, 8(3), Article 120. https://doi.org/10.3390/joitmc8030120
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-t
Aldosari, S. A. (2020). The future of higher education in light of artificial intelligence transformations. International Journal of Higher Education, 9(3), 145. https://doi.org/10.5430/ijhe.v9n3p145
Al-Fraihat, D., Joy, M., Masa'deh, R., & Sinclair, J. (2020). Evaluating E-learning systems success: An empirical study. Computers in Human Behavior, 102, 67-86. https://doi.org/10.1016/j.chb.2019.08.004
Alhwaiti, M. (2023). Acceptance of artificial intelligence application in the post-covid era and its impact on faculty members’ occupational well-being and teaching self efficacy: A path analysis using the UTAUT 2 model. Applied Artificial Intelligence, 37(1), Article 2175110 https://doi.org/10.1080/08839514.2023.2175110
Ali, M., Raza, S. A., Qazi, W., & Puah, C. (2018). Assessing E-learning system in higher education institutes. Interactive Technology and Smart Education, 15(1), 59-78. https://doi.org/10.1108/itse-02-2017-0012
AlKursheh, T. (2024). Higher tertiary education perspectives: Evaluating the electronic assessment techniques of the blackboard platform for fairness and reliability. Innoeduca. International Journal of Technology and Educational Innovation, 10(1), 144-165. https://doi.org/10.24310/ijtei.101.2024.17813
Al-Saedi, K., Al-Emran, M., Ramayah, T., & Abusham, E. (2020). Developing a general extended UTAUT model for M-payment adoption. Technology in Society, 62, Article 101293. https://doi.org/10.1016/j.techsoc.2020.101293
Althunibat, A. (2015). Determining the factors influencing students’ intention to use M-learning in Jordan higher education. Computers in Human Behavior, 52, 65-71. https://doi.org/10.1016/j.chb.2015.05.046
Andrews, J. E., Ward, H., & Yoon, J. (2021). UTAUT as a model for understanding intention to adopt AI and related technologies among librarians. The Journal of Academic Librarianship, 47(6), 102437. https://doi.org/10.1016/j.acalib.2021.102437
Arain, A. A., Hussain, Z., Rizvi, W. H., & Vighio, M. S. (2019). Extending UTAUT2 toward acceptance of mobile learning in the context of higher education. Universal Access in the Information Society, 18(3), 659-673. https://doi.org/10.1007/s10209-019-00685-8
Azizi, S. M., Roozbahani, N., & Khatony, A. (2020). Factors affecting the acceptance of blended learning in medical education: Application of UTAUT2 model. BMC Medical Education, 20(1). https://doi.org/10.1186/s12909-020-02302-2
Becker, J., Cheah, J., Gholamzade, R., Ringle, C. M., & Sarstedt, M. (2022). PLS-SEM’s most wanted guidance. International Journal of Contemporary Hospitality Management, 35(1), 321-346. https://doi.org/10.1108/ijchm-04-2022-0474
Binyamin, S. S., & Zafar, B. A. (2021). Proposing a mobile apps acceptance model for users in the health area: A systematic literature review and meta-analysis. Health Informatics Journal, 27(1), Article 1460458220976737. https://doi.org/10.1177/1460458220976737
Bozorgkhou, N. (2015). An internet shopping user adoption model using an integrated TTF and UTAUT: Evidence from Iranian consumers. Management Science Letters, 5(2), 199-204. https://doi.org/10.5267/j.msl.2014.12.017
Cabrera-Sánchez, J., Villarejo-Ramos, Á. F., Liébana-Cabanillas, F., & Shaikh, A. A. (2021). Identifying relevant segments of AI applications adopters – Expanding the UTAUT2’s variables. Telematics and Informatics, 58, Article 101529. https://doi.org/10.1016/j.tele.2020.101529
Camilleri, M. A. (2024). Evaluating service quality and performance of higher education institutions: A systematic review and a post-COVID-19 outlook. Journal of Marketing for Higher Education, 34(1), 1–24. https://doi.org/10.1080/08841241.2023.2165965
Chang, L., Wang, Y., Liu, J., Feng, Y., & Zhang, X. (2023). Study on factors influencing college students’ digital academic reading behavior. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.1007247
Chatterjee, S., & Bhattacharjee, K. K. (2020). Adoption of artificial intelligence in higher education: A quantitative analysis using structural equation modelling. Education and Information Technologies, 25(5), 3443-3463. https://doi.org/10.1007/s10639-020-10159-7
Cheah, J., Amaro, S., & Roldán, J. L. (2023). Multigroup analysis of more than two groups in PLS-SEM: A review, illustration, and recommendations. Journal of Business Research, 156, Article 113539. https://doi.org/10.1016/j.jbusres.2022.113539
Choi, J. H., Hickman, K. E., Monahan, A., & Schwarcz, D. (2023). ChatGPT goes to law school. 71 Journal of Legal Education, 387. https://doi.org/10.2139/ssrn.4335905
Dečman, M. (2015). Modeling the acceptance of E-learning in mandatory environments of higher education: The influence of previous education and gender. Computers in Human Behavior, 49, 272-281. https://doi.org/10.1016/j.chb.2015.03.022
Dowling, M., & Lucey, B. (2023). ChatGPT for (finance) research: The banality of evil or the best of both worlds? Finance Research Letters, 51, 103362. https://doi.org/10.1016/j.frl.2023.103362
Duong, D., Nguyen, T., & Nguyen, A. (2023). The impact of ChatGPT on education: A study on the use of AI tools in academic settings. Journal of Educational Technology Development and Exchange, 16(2), 1-15. https://doi.org/10.18785/jetde.1602.01
Eke, D. O. (2023). ChatGPT and the rise of AI in creative writing: Implications for authors and publishers. Publishing Research Quarterly, 39(2), 203-217. https://doi.org/10.1007/s12109-023-09912-3
Fadzil, F. (2018). A study on factors affecting the behavioral intention to use mobile apps in Malaysia. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3090753
Farooq, M. S., Salam, M., Jaafar, N., Fayolle, A., Ayupp, K., Radovic-Markovic, M., & Sajid, A. (2017). Acceptance and use of lecture capture system (LCS) in executive business studies. Interactive Technology and Smart Education, 14(4), 329-348. https://doi.org/10.1108/itse-06-2016-0015
Fornell, C., & Larcker, D.F. (1981), “Evaluating structural equation models with unobservable variables and measurement error”, Journal of Marketing Research, 18(1), 39-50.
Foroughi, B., Senali, M. G., Iranmanesh, M., Khanfar, A., Ghobakhloo, M., Annamalai, N., & Naghmeh-Abbaspour, B. (2023). Determinants of intention to use ChatGPT for educational purposes: Findings from PLS-SEM and fsQCA. International Journal of Human–Computer Interaction, 40(17), 4501–4520. https://doi.org/10.1080/10447318.2023.2226495
Gansser, O. A., & Reich, C. S. (2021). A new acceptance model for artificial intelligence with extensions to UTAUT2: An empirical study in three segments of application. Technology in Society, 65, Article 101535. https://doi.org/10.1016/j.techsoc.2021.101535
Guggemos, J., & Seufert, S. (2021). Teaching with and teaching about technology- Evidence for professional development of in-service teachers. Computers in Human Behavior, 115, Article 106613. https://doi.org/10.1016/j.chb.2020.106613
Guggemos, J., Seufert, S., & Sonderegger, S. (2020). Humanoid robots in higher education: Evaluating the acceptance of Pepper in the context of an academic writing course using the UTAUT. British Journal of Educational Technology, 51(5), 1864-1883. https://doi.org/10.1111/bjet.13006
Habibi, A., Muhaimin, M., Danibao, B. K., Wibowo, Y. G., Wahyuni, S., & Octavia, A. (2023). ChatGPT in higher education learning: Acceptance and use. Computers and Education: Artificial Intelligence, 5, Article 100190. https://doi.org/10.1016/j.caeai.2023.100190
Habibi, A., Yaakob, M. F., & Sofwan, M. (2022). Student use of digital libraries during COVID-19: Structural equation modelling in Indonesian and Malaysian contexts. The Electronic Library, 40(4), 472-485. https://doi.org/10.1108/el-12-2021-0212
Hair, J. F., Hult, G. T., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). An introduction to structural equation modeling. In Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R. Classroom Companion: Business (pp. 1-29). Springer. https://doi.org/10.1007/978-3-030-80519-7_1
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. https://doi.org/10.1108/ebr-11-2018-0203
Henseler, J., Ringle, C. M., & Sarstedt, M. (2014). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135. https://doi.org/10.1007/s11747-014-0403-8
Hoi, V. N. (2020). Understanding higher education learners' acceptance and use of mobile devices for language learning: A Rasch-based path modeling approach. Computers & Education, 146, 103761. https://doi.org/10.1016/j.compedu.2019.103761
Huang, K. (2023). Artificial intelligence in education: A review of current developments and future prospects. Educational Technology & Society, 26(1), 105-117. https://doi.org/10.1007/s11423-023-10012-8
Im, I., Hong, S., & Kang, M. S. (2011). An international comparison of technology adoption: Testing the UTAUT model. Information & Management, 48(1), 1–8. https://doi.org/10.1016/j.im.2010.09.001
Kono, S., & Sato, M. (2022). The potentials of partial least squares structural equation modeling (PLS-SEM) in leisure research. Journal of Leisure Research, 54(3), 309-329. https://doi.org/10.1080/00222216.2022.2066492
Kumar, J. A., & Bervell, B. (2019). Google Classroom for mobile learning in higher education: Modelling the initial perceptions of students. Education and Information Technologies, 24(2), 1793-1817. https://doi.org/10.1007/s10639-018-09858-z
Kwateng, K. O., Atiemo, K. A., & Appiah, C. (2018). Acceptance and use of mobile banking: An application of UTAUT2. Journal of Enterprise Information Management, 32(1), 118–151. https://doi.org/10.1108/JEIM-03-2018-005
Lim, W. M., Kumar, S., & Ali, F. (2022). Understanding Generation Z: A review and future research agenda. Journal of Business Research, 142, 1-16. https://doi.org/10.1016/j.jbusres.2021.12.038
Lim, W. M., Kumar, S., & Ali, F. (2023). Exploring the potential of ChatGPT in higher education: A preliminary study. Education and Information Technologies, 28(3), 2501-2520. https://doi.org/10.1007/s10639-023-11021-2
Lin, H. C., Ho, C. F., & Yang, H. (2022). Understanding adoption of artificial intelligence-enabled language e-learning system: An empirical study of UTAUT model. International Journal of Mobile Learning and Organisation, 16(1), 74. https://doi.org/10.1504/ijmlo.2022.119966
Lund, B. D., & Wang, T. (2023). ChatGPT in academia: Opportunities and challenges. Journal of Academic Librarianship, 49(1), Article 102123. https://doi.org/10.1016/j.acalib.2022.102123
Magno, F., Cassia, F., & Ringle, C. M. (2024). A brief review of partial least squares structural equation modeling (PLS-SEM) use in quality management studies. The TQM Journal, 36(5), 1242-1251 https://doi.org/10.1108/tqm-06-2022-0197
Marto, A., Gonçalves, A., Martins, J., & Bessa, M. (2019). Applying UTAUT model for an acceptance study alluding the use of augmented reality in archaeological sites. In A. Tremeau, G. M. Farinella, & J. Braz (Eds.). Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (pp. 111-120). https://doi.org/10.5220/0007364101110120
Mogavi, O., Smith, J., & Lee, A. (2024). Balancing AI assistance and cognitive development in education. Computers & Education, 182, Article 104484. https://doi.org/10.1016/j.compedu.2022.104484
Mohd Rahim, N. I., A. Iahad, N., Yusof, A. F., & A. Al-Sharafi, M. (2022). AI-based chatbots adoption model for higher-education institutions: A hybrid PLS-SEM-Neural network modelling approach. Sustainability, 14(19), Article 12726. https://doi.org/10.3390/su141912726
Moorthy, K., Chun T'ing, L., Ming, K. S., Ping, C. C., Ping, L. Y., Joe, L. Q., & Jie, W. Y. (2018). Behavioral intention to adopt digital library by the undergraduates. International Information & Library Review, 51(2), 128-144. https://doi.org/10.1080/10572317.2018.1463049
Motaghian, H., Hassanzadeh, A., & Moghadam, D. K. (2013). Factors affecting university instructors' adoption of web-based learning systems: Case study of Iran. Computers & Education, 61, 158-167. https://doi.org/10.1016/j.compedu.2012.09.016
Mustafa, S., Zhang, W., Shehzad, M. U., Anwar, A., & Rubakula, G. (2022). Does Health Consciousness Matter to Adopt New Technology? An integrated model of UTAUT2 with SEM-fsQCA approach. Frontiers in Psychology, 13, Article 836194. https://doi.org/10.3389/fpsyg.2022.836194
Narayan, J., & Naidu, S. (2024). A new contextual and comprehensive application of the UTAUT2 model post-COVID-19 pandemic in higher education. Higher Education Quarterly, 78(1), 47–77. https://doi.org/10.1111/hequ.12441
Niloy, M. I., Rahman, M. M., & Islam, M. S. (2024). Factors influencing students' adoption of AI-based educational tools: A structural equation modeling approach. Computers & Education, 182, Article 104484. https://doi.org/10.1016/j.compedu.2022.104484
Pavlik, J. V. (2023). Collaborating with ChatGPT: Considering the implications of generative artificial intelligence for journalism and media education. Journalism & Mass Communication Educator, 78(1), 84-93. https://doi.org/10.1177/10776958221149577
Raffaghelli, J. E., Rodríguez, M. E., Guerrero-Roldán, A., & Bañeres, D. (2022). Applying the UTAUT model to explain the students' acceptance of an early warning system in higher education. Computers & Education, 182, Article 104468. https://doi.org/10.1016/j.compedu.2022.104468
Ragheb, M. A., Tantawi, P., Farouk, N., & Hatata, A. (2022). Investigating the acceptance of applying chat-bot (Artificial intelligence) technology among higher education students in Egypt. International Journal of Higher Education Management, 8(2), 1-13. https://doi.org/10.24052/ijhem/v08n02/art-1
Ramayah, T. J. F. H., Cheah, J., Chuah, F., Ting, H., & Memon, M. A. (2018). Partial least squares structural equation modeling (PLS-SEM) using smart PLS 3.0: An updated guide and practical guide to statistical analysis (2nd edition). Pearson
Ramu, P., Osman, M., Abdul Mutalib, N. A., Aljaberi, M. A., Lee, K., Lin, C., & Hamat, R. A. (2023). Validity and reliability of a questionnaire on the knowledge, attitudes, perceptions, and practices toward food poisoning among Malaysian secondary school students: A pilot study. Healthcare, 11(6), Article 853. https://doi.org/10.3390/healthcare11060853
Raza, S. A., Qazi, W., Khan, K. A., & Salam, J. (2020a). Social isolation and acceptance of the learning management system (LMS) in the time of COVID-19 pandemic: An expansion of the UTAUT model. Journal of Educational Computing Research, 59(2), 183-208. https://doi.org/10.1177/0735633120960421
Raza, S. A., Qazi, W., Umer, B., & Khan, K. A. (2020b). Influence of social networking sites on life satisfaction among university students: A mediating role of social benefit and social overload. Health Education, 120(2), 141-164. https://doi.org/10.1108/he-07-2019-0034
Raza, S. A., Qazi, Z., Qazi, W., & Ahmed, M. (2021). E-learning in higher education during COVID-19: Evidence from blackboard learning system. Journal of Applied Research in Higher Education, 14(4), 1603-1622. https://doi.org/10.1108/jarhe-02-2021-0054
Ringle, C. M., Sarstedt, M., Mitchell, R., & Gudergan, S. P. (2018). Partial least squares structural equation modeling in HRM research. The International Journal of Human Resource Management, 31(12), 1617-1643. https://doi.org/10.1080/09585192.2017.1416655
Salifu, I., Arthur, F., Arkorful, V., Abam Nortey, S., & Solomon Osei-Yaw, R. (2024). Economics students’ behavioural intention and usage of ChatGPT in higher education: A hybrid structural equation modelling-artificial neural network approach. Cogent Social Sciences, 10(1), Article 2300177. https://doi.org/10.1080/23311886.2023.2300177
Shivdas, A., Menon, D. G., & Nair, C. S. (2020). Antecedents of acceptance and use of a digital library system. The Electronic Library, 38(1), 170-185. https://doi.org/10.1108/el-03-2019-0074
Şimşek, A. S., & Ateş, H. (2022). The extended technology acceptance model for Web 2.0 technologies in teaching. Innoeduca. International Journal of Technology and Educational Innovation, 8(2), 165-183. https://doi.org/10.24310/innoeduca.2022.v8i2.15413
Soni, N., Kumar, S., & Singh, P. (2022). Generative AI: Transforming industries and society. AI & Society, 37(4), 1231-1245. https://doi.org/10.1007/s00146-021-01234-5
Strzelecki, A., & ElArabawy, S. (2024). Investigation of the moderation effect of gender and study level on the acceptance and use of generative AI by higher education students: Comparative evidence from Poland and Egypt. British Journal of Educational Technology, 55(3), 1209-1230. https://doi.org/10.1111/bjet.13425
Talan, T., Doğan, Y., & Kalinkara, Y. (2024). Digital natives' mobile learning adoption in terms of UTAUT-2 model: A structural equation model. Innoeduca. International Journal of Technology and Educational Innovation, 10(1), 100-123. https://doi.org/10.24310/ijtei.101.2024.17440
Tamilmani, K., Rana, N. P., Prakasam, N., & Dwivedi, Y. K. (2019, June 1). The battle of Brain vs. Heart: A literature review and meta-analysis of “hedonic motivation” use in UTAUT2. International Journal of Information Management, 46, 222-235. https://doi.org/10.1016/j.ijinfomgt.2019.01.008
Thongsri, N., Shen, L., Bao, Y., & Alharbi, I. M. (2018). Integrating UTAUT and UGT to explain behavioural intention to use M-learning. Journal of Systems and Information Technology, 20(3), 278-297. https://doi.org/10.1108/jsit-11-2017-0107
Tseng, T. H., Lin, S., Wang, Y., & Liu, H. (2019). Investigating teachers’ adoption of MOOCs: The perspective of UTAUT2. Interactive Learning Environments, 30(4), 635-650. https://doi.org/10.1080/10494820.2019.1674888
Vaishya, R., Javaid, M., Khan, I. H., & Haleem, A. (2023). Artificial intelligence (AI) applications for COVID-19 pandemic. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 337-339. https://doi.org/10.1016/j.dsx.2020.04.012
Venkatesh, V., Morris, M. G., Davis, G. B. & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425. https://doi.org/10.2307/30036540
Venkatesh, V., Thong, J. Y. & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178. https://doi.org/10.2307/41410412
Venkatesh, V. (2021). Adoption and use of AI tools: A research agenda grounded in UTAUT. Annals of Operations Research, 308(1-2), 641-652. https://doi.org/10.1007/s10479-020-03918-9
Vishwanath, A., & Goldhaber, G. M. (2003). An examination of the factors contributing to adoption decisions among late-diffused technology products. New Media & Society, 5(4), 547-572. https://doi.org/10.1177/146144480354005
Wang, W., & Wang, C. (2009). An empirical study of instructor adoption of web-based learning systems. Computers & Education, 53(3), 761-774. https://doi.org/10.1016/j.compedu.2009.02.021
Wijaya, T., Cao, Y., Weinhandl, R., Yusron, E., & Lavicza, Z. (2022). Applying the UTAUT model to understand factors affecting micro-lecture usage by mathematics teachers in China. Mathematics, 10(7), Article 1008. https://doi.org/10.3390/math10071008
Yeop, M. A., Wong, K. T., & Noh, N. M. (2016). Blended learning in selected journals: A content analysis using the complex adaptive blended learning systems. International Journal of Instructional Technology and Distance Learning, 13(10), 47–58.
Zacharis, G., & Nikolopoulou, K. (2022). Factors predicting University students’ behavioral intention to use eLearning platforms in the post-pandemic normal: An UTAUT2 approach with ‘Learning value’. Education and Information Technologies, 27(9), 12065-12082. https://doi.org/10.1007/s10639-022-11116-2
Zwain, A. A. (2019). Technological innovativeness and information quality as neoteric predictors of users’ acceptance of learning management system. Interactive Technology and Smart Education, 16(3), 239-254. https://doi.org/10.1108/itse-09-2018-0065
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Innoeduca. International Journal of Technology and Educational Innovation

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Todos los contenidos publicados por Innoeduca. International Journal of Technology and Educational Innovation están sujetos a la licencia de Creative Commons Reconocimiento-No comercial- SinObraDerivada 4.0 Internacional, cuyo texto completo se puede consultar en https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode. Por lo tanto, la copia, distribución, comunicación pública, obras derivadas y el uso comercial de los contenidos están permitidas siempre que la fuente y el autor del texto se citen.
Es responsabilidad de los autores obtener los permisos necesarios de las imágenes que están sujetas a derechos de autor.

Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.






241.png)



