Sequencing methods: third generation

Authors

  • José Miguel Valderrama Martín Spain
  • Francisco Ortigosa Spain
  • Rafael A. Cañas Spain

DOI:

https://doi.org/10.24310/enbio.v13i175.17271

Keywords:

sequencing, third generation, SMRT, PacBio, Oxford Nanopore, MinION

Abstract

The first techniques for massive sequencing of nucleic acids (2nd generation) have allowed an extraordi- nary development of Genomics and its «democratization». However, they present a series of weaknesses, mainly their inability to generate readings greater than 1 kb and the need for prior amplification of the samples. In recent years, so-called third-generation sequencing techniques have appeared, alleviating some of the shortcomings of previous technologies. On the one hand, they average read size reaches 30 kb, with maximums of 2.3 Mb in a read On the other hand, they do not need prior amplification of the nucleic acid samples, so the epigenetic marks that they may present are not lost. In addition, these third generation sequencing techniques can also perform direct sequencing of RNA, which is not possible with the preceding techniques. Thus, they point to a new path in nucleic acid sequencing, setting a new precedent in genomic science development unknown until now.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

NIH, Coste de la secuenciación de un genoma humano. https://www.genome.gov.
De la Torre y otros. Insights into Conifer Giga-Genomes. Plant Physiology 166: 1724-1732, 2014.
Valderrama Martín y otros. Métodos de secuenciación de ácidos nucleicos: Segunda generación. Encuentros en la Biología 174: vol 13, verano 2020.
Wenger y otros. Accurate circular consensus long-read sequen- cing improves variant detection and assembly of a human geno- me. Nature Biotechnology 37: 1155-1162, 2019.
Jain y otros. Nanopore sequencing and assembly of a human ge- nome with ultra-long reads. Nature Biotechnology 36: 338-345, 2018.
Sohn y Nam. The present and future of de novo whole-genome assembly. Brief Bioinformatics 19: 23-40, 2018.
GenomeWeb. https://www.genomeweb.com.
Ermert y otros. Phosphate-Modified Nucleotides for Monitoring Enzyme Activity. Topics in Current Chemistry (Cham) 375: 28, 2017.
Rhoads y Au. PacBio Sequencing and Its Applications. Geno- mics Proteomics Bioinformatics. 13: 278-289, 2015.
Amarasinghe y otros. Opportunities and challenges in long- read sequencing data analysis. Genome Biology 21: 30, 2020.
Vilfan y otros. Analysis of RNA base modification and struc- tural rearrangement by single-molecule real-time detection of reverse transcription. Journal of Nanobiotechnology 11: 8, 2013.
Wreczycka y otros. Strategies for analyzing bisulfite sequencing data. Journal of Biotechnology 261: 105-115, 2017.
Flusberg y otros. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nature Methods 7: 461, 2010.
Oxford Nanopore history. https://nanoporetech.com.
Clarke J y otros. Continuous base identification for single- molecule nanopore DNA sequencing. Nature Nanotech. 4: 265- 270, 2009.
Feng y otros. Nanopore-based fourth-generation DNA sequen- cing technology. Genomics, Proteomics and Bioinformatics, 13: 4-16, 2015.
Oxford Nanopore. Nanopore sensing - how it Works. https://nanoporetech.com/how-it-works.
Byrne y otros. Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of indivi- dual B cells. Nature Communications 8: 16027, 2017.
Garalde DR y otros. Highly parallel direct RNA sequencing on an array of nanopores. Nature Methods, 15: 201, 2018.
Altschul, S.F. y otros. Basic local alignment search tool. J. Mol. Biol. 215:403-410, 1990.
Málaga Nanopore, noticia. https://www.aulamagna.com.es.
Zhou y otros. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579: 270-273, 2020.
Barré-Sinoussi y otros. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220: 868-871, 1983.
Ratner y otros. Complete nucleotide sequence of the AIDS vi- rus, HTLV-III. Nature 313: 277-284, 1985.
Mojtabavi y otros. Single-Molecule Sensing Using Nanopores in Two-Dimensional Transition Metal Carbide (MXene) Mem- branes. ACS Nano 13: 3042-3053, 2019.
Oxford Nanopore Protein Analysis. https://nanoporetech.com/applications.
Nanopore-based 5D fingerprinting of single pro- teins in real-time (London Calling Presentation). https://nanoporetech.com.

Published

2020-12-21

How to Cite

Valderrama Martín , J. M., Ortigosa, F., & Cañas, R. A. . (2020). Sequencing methods: third generation. Encuentros En La Biología, 13(175), 15–21. https://doi.org/10.24310/enbio.v13i175.17271

Issue

Section

Artículos