Biomolecular Condensates: Organizers of Life

Authors

  • María Heredia Torrejón Spain
  • Alfonso María Lechuga Sancho Spain
  • Raúl Montañez Martínez Spain

DOI:

https://doi.org/10.24310/enbio.v16i186.17161

Keywords:

Biomolecular condensates, liquid-liquid phase separation, self-organization, structural biology, human health

Abstract

Life never fails to surprise us. Today, it does so with membrane-less organelles known as biomolecular condensates. These structures arise from a phenomenon of biomolecular self-organization capable of generating localized microenvironments with defined functions within the cell. In recent years, the significance of condensates in various aspects of cellular biology has been  unveiled, including the regulation  of gene expression, protein synthesis, cellular signaling control, cytoskeletal protein polymerization, and the formation of aggregates associated with neurodegenerative diseases, among many others yet to be discovered. These findings are revolutionizing our current understanding of cellular processes and providing new insights into cell process regulation. Condensates unveil previously unknown cellular mechanisms, more stochastic, that are shifting away from the dominance of genetic mechanisms in favor of cellular self-organization processes. The advancement in comprehending biomolecular condensates paves the way for exciting avenues of research in cellular and molecular biology, enabling the reinterpretation of processes that relate the genotype to the phenotype. Offering, in this way, the potential to better understand diseases and develop more effective therapeutic approaches in the future.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Fare, C. M., Villani, A., Drake, L. E. & Shorter, J. Higher- order organization of biomolecular condensates. Open Biol. 11, 210137 (2021).
Poudyal, R. R., Pir Cakmak, F., Keating, C. D. & Bevilac- qua, P. C. Physical Principles and Extant Biology Reveal Roles for RNA-Containing Membraneless Compartments in Origins of Life Chemistry. Biochemistry 57, 2509–2519 (2018).
Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Bio- molecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).
Liu, X. et al. Mitotic Implantation of the Transcription Fac- tor Prospero via Phase Separation Drives Terminal Neuronal Differentiation. Dev. Cell 52, 277–293.e8 (2020).
Case, L. B. Membranes regulate biomolecular condensates. Nature cell biology vol. 24 404–405 (2022).
Espinosa, J. R. et al. Liquid network connectivity regulates the stability and composition of biomolecular condensates with many components. Proc. Natl. Acad. Sci. U. S. A. 117, 13238–13247 (2020).
Falahati, H. & Haji-Akbari, A. Thermodynamically driven assemblies and liquid-liquid phase separations in biology. Soft Matter 15, 1135–1154 (2019).
Walter, H. & Brooks, D. E. Phase separation in cytoplasm, due to macromolecular crowding, is the basis for microcom- partmentation. FEBS Lett. 361, 135–139 (1995).
Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).
Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).
Lyon, A. S., Peeples, W. B. & Rosen, M. K. A framework for understanding the functions of biomolecular condensates across scales. Nat. Rev. Mol. Cell Biol. 22, 215–235 (2021).
Zhang, H. et al. A subcellular map of the human kinome.Elife 10, (2021).
Schuster, B. S. et al. Biomolecular Condensates: Sequence Determinants of Phase Separation, Microstructural Orga- nization, Enzymatic Activity, and Material Properties. J. Phys. Chem. B 125, 3441–3451 (2021).
Tsang, B., Pritišanac, I., Scherer, S. W., Moses, A. M. & Forman-Kay, J. D. Phase Separation as a Missing Mechanism for Interpretation of Disease Mutations. Cell 183, 1742–1756 (2020).
Dias, C. S., Araújo, N. A. M. & Telo da Gama, M. M. Dy- namics of network fluids. Adv. Colloid Interface Sci. 247, 258–263 (2017).
Choi, J.-M., Holehouse, A. S. & Pappu, R. V. Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions. Annu. Rev. Biophys. 49, 107–133 (2020).
Patel, A. et al. A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation. Cell 162, 1066–1077 (2015).
Zeng, M. et al. Reconstituted Postsynaptic Density as a Molecular Platform for Understanding Synapse Formation and Plasticity. Cell 174, 1172–1187.e16 (2018).
Nedelsky, N. B. & Taylor, J. P. Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative disease. Nat. Rev. Neurol. 15, 272–286 (2019).
Tulpule, A. et al. Kinase-mediated RAS signaling via membraneless cytoplasmic protein granules. Cell 184, 2649–2664.e18 (2021).
Wang, L. et al. Rett syndrome-causing mutations compromi- se MeCP2-mediated liquid-liquid phase separation of chro- matin. Cell Res. 30, 393–407 (2020).
Alberti, S. & Hyman, A. A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 22, 196–213 (2021).
Mitrea, D. M., Mittasch, M., Gomes, B. F., Klein, I. A. & Murcko, M. A. Modulating biomolecular condensates: a novel approach to drug discovery. Nat. Rev. Drug Discov. 21, 841–862 (2022).
Banani, S. F. et al. Genetic variation associated with con- densate dysregulation in disease. Dev. Cell 57, 1776–1788.e8 (2022).
Agius, L. Channelling in Intermediary Metabolism. (Ashgate Publishing, 1997).
Wu, X., Cai, Q., Feng, Z. & Zhang, M. Liquid-Liquid Phase Separation in Neuronal Development and Synaptic Signaling. Dev. Cell 55, 18–29 (2020).
Park, J.-E. et al. Phase separation of Polo-like kinase 4 by autoactivation and clustering drives centriole biogenesis. Nat. Commun. 10, 4959 (2019).
Zhu, G. et al. Phase Separation of Disease-Associated SHP2 Mutants Underlies MAPK Hyperactivation. Cell 183, 490–502.e18 (2020).
Boulay, G. et al. Cancer-Specific Retargeting of BAF Com- plexes by a Prion-like Domain. Cell 171, 163–178.e19 (2017).
Basu, S. et al. Unblending of Transcriptional Condensates in Human Repeat Expansion Disease. Cell 181, 1062–1079.e30 (2020).
Goodwin, B. Las Manchas Del Leopardo: La Evolución de la Complejidad. (Tusquets Editores, 1998).

Published

2023-07-03

How to Cite

Heredia Torrejón, M. ., Lechuga Sancho , A. M. ., & Montañez Martínez, R. . (2023). Biomolecular Condensates: Organizers of Life. Encuentros En La Biología, 16(186), 6–10. https://doi.org/10.24310/enbio.v16i186.17161

Issue

Section

Artículos