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B. Melián, F. Glover
1 Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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Con la aparición de este volumen 3 de los Monográficos de Rect@ se consolida
el proyecto que el Consejo Editorial de la revista impulso como complemento de los
números ordinarios de la revista. Esta idea inicial de editar volúmenes espećıficos
sobre materias concretas de investigación, he tenido una buena acogida entre los
miembros de la comunidad cient́ıfica, tanto asociados como no de ASEPUMA,
ya que las ventas de los números anteriores permiten financiar parcialmente la
edición de los nuevos volúmenes.

En esta presentación quisiera agradecer el trabajo de los coordinadores (Enric
Crespo, Rafa Marti y Joaqúın Pacheco) de este volumen (extensiva a los de los
anteriores) por la labor de captación de colaboradores, la revisión de los trabajos,
la composición de los textos, etc.

Este agradecimiento también debe ser extensivo a los miembros del Consejo
de Redacción (Carlos Ivorra y Vicente Liern).

Por último, recordar a todos los miembros que el futuro de estas ediciones y de
la revista reside en la implicación de todos en la colaboración, aportación de ideas
y sugerencias para que este tipo de publicaciones sea una referencia generalmente
aceptada dentro del campo de las aplicaciones cuantitativas a la Economı́a y la
Empresa.

Ramon Sala

Responsable de edición de Rect@.
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Prefacio
Los métodos descritos en este volumen reciben el nombre de algoritmos heuŕıs-

ticos, metaheuŕısticos o sencillamente heuŕısticos. Este término deriva de la pala-
bra griega heuriskein que significa encontrar o descubrir y se usa en el ámbito de
la optimización para describir una clase de algoritmos de resolución de problemas.

En el lenguaje coloquial, optimizar significa poco más que mejorar; sin em-
bargo, en el contexto cient́ıfico la optimización es el proceso de tratar de encontrar
la mejor solución posible para un determinado problema. En un problema de op-
timización existen diferentes soluciones, un criterio para discriminar entre ellas
y el objetivo es encontrar la mejor. De forma más precisa, estos problemas se
pueden expresar como encontrar el valor de unas variables de decisión para los
que una determinada función objetivo alcanza su valor máximo o mı́nimo. El
valor de las variables en ocasiones está sujeto a unas restricciones.

La existencia de una gran cantidad y variedad de problemas dif́ıciles de optimi-
zación que aparecen en la práctica y que necesitan ser resueltos de forma eficiente,
ha impulsado el desarrollo de procedimientos eficientes para encontrar buenas so-
luciones. Estos métodos, en los que la rapidez del proceso es tan importante como
la calidad de la solución obtenida, se denominan heuŕısticos o aproximados.

En los últimos años se ha acuñado el término metaheuŕıstico, introducido por
Fred Glover en 1986 y apoyado por diferentes eventos cient́ıficos de caracter inter-
nacional, como el congreso Metaheuristic International Conference, o la revista
Journal of Heuristics. El término metaheuŕıstico establece una diferencia con-
ceptual entre el conjunto de reglas que permiten diseñar un procedimiento de
resolución heuŕıstico y el propio procedimiento de resolución. En este sentido el
prefijo meta indica un mayor nivel de abstracción, en cuanto que las propias reglas,
denominadas procedimiento metaheuŕıstico, no están ligadas a ningún problema
espećıfico.

Una búsqueda en internet puede darnos una medida del gran desarrollo e
impacto que están teniendo estos métodos. Podemos considerar una de las me-
todoloǵıas más populares, los algoritmos genéticos, para realizar una prueba sen-
cilla. Utilizando el conocido motor de búsqueda Google sobre el literal “genetic
algorithms optimization”, obtenemos más de un millón de páginas relacionadas.
Esta misma búsqueda proporcionaba apenas 120.000 resultados hace cuatro años.
Este simple ejercicio nos muestra el desarrollo extraordinario de los procedimien-
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tos heuŕısticos en estos últimos años.
El desarrollo de los métodos heuŕısticos es tal, incluyendo la aparición de

nuevas metodoloǵıas casi a diario, que excede de las posibilidades de este volumen
el ofrecer una revisión exhaustiva de todos ellos. A modo de catálogo, podemos
enumerar como los más establecidos los que figuran en la siguiente lista con 15
métodos (mantenemos la acepción en inglés y el acrónimo):

• Estimation Distribution Algorithms (EDA)

• Evolutionary Algorithms(EA)

• Fuzzy Adaptive Neighborhood Search (FANS)

• Genetic Algorithms (GA)

• Greedy Randomized Adaptive Search Procedure (GRASP)

• Guided Local Search (GLS)

• Heuristic Concentration (HC)

• Memetic Algorithms (MA)

• Multi-Objective Search (MOS)

• Multi-Start Methods (MSM)

• Path Relinking (PR)

• Scatter Search (SS)

• Simulated Annealing (SA)

• Tabu Search (TS)

• Variable Neighborhood Search (VNS)

En este volumen proponemos una revisión de algunos de los principales proce-
dimientos metaheuŕısticos. Comenzando con una introducción a la optimización
en general y los diferentes enfoques de resolución, pasamos después a revisar la
búsqueda tabú, los métodos GRASP, la programación multiobjetivo, los algorit-
mos meméticos y la búsqueda multiarranque. Finalmente terminamos con algunas
aplicaciones de estas metodoloǵıas.

Esperamos que encontréis esta recopilación interesante y os anime a entrar o
a proseguir en el fascinante mundo de la optimización heuŕıstica.

Valencia, abril de 2007

Enric Crespo, Rafael Mart́ı, Joaqúın Pacheco

Coordinadores
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Introducción a los
metaheuŕısticos∗

M. Lagunaa y C. Delgadob

aUniversity of Colorado, Boulder,
Leeds School of Business

bUniversidad de Burgos,
Departamento de economı́a Aplicada (Métodos Cuantitativos para la Economı́a)

1 Problemas de optimización dif́ıciles

Optimizar es tratar de encontrar la mejor solución posible para un determi-
nado problema. En todo proceso de optimización existen diferentes soluciones y
un criterio para discriminar entre ellas. Tratamos de encontrar el valor de unas
variables denominadas variables de decisión para los que la función objetivo al-
canza su valor óptimo. El valor de dichas variables suele estar sujeto a unas
restricciones.

Podemos encontrar una gran cantidad de problemas de optimización en la
industria, en la empresa, en la economı́a, en la ciencia, . . . Como ejemplos de
problemas t́ıpicos de optimización tenemos los de localización (de servicios o ac-
tividades peligrosas), los de asignación (de personas a lugares de trabajo o simi-
lares), los de confección de calendarios (de horarios, de turnos de trabajo...), los
problemas de circuitos y de distribución en planta, los de partición o cubrimiento
de un conjunto (instalación de agencias de servicios que cubran una zona deter-
minada), l os de rutas de veh́ıculos... y otros más actuales como por ejemplo los
de ingenieŕıa y re-ingeniaŕıa de software.

*Los autores de este trabajo agradecen la ayuda del Ministerio de Educación y Ciencia por
la subvención económica para la realización de este trabajo a través del Plan Nacional de I+D,
(Proyecto SEJ- 2005 08923/ECON), aśı como a la Junta de Castilla y León (“Consejeŕıa de
Educación” – Project BU008A06).
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4 Introducción a los metaheuŕısticos

Algunos de estos problemas son relativamente fáciles de resolver mediante di-
ferentes métodos contrastados. Este es el caso de los problemas lineales para los
que en 1947 Dantzig elaboró un método de resolución denominado método del
simplex. Sin embargo la mayoŕıa de los problemas de optimización que pode-
mos encontrar en la práctica no se resuelven tan fácilmente. Este es el caso de
los problemas de optimización combinatoria, optimización no lineal en variables
continuas, optimización multiobjetivo y optimización de simulaciones, problemas
que se comentan a continuación.

1.1 Optimización Combinatoria y Concepto NP

Dentro de los problemas de optimización son muy frecuentes aquellos en los
que las variables sólo pueden tomar valores discretos, enteros o incluso binarios.
En estos casos diremos que estamos ante problemas de optimización discreta y
que, en general, se pueden formular como problemas de optimización combinato-
ria, expresión en la cual podemos incluir la mayoŕıa de los problemas que tienen
un número finito o numerable de soluciones alternativas.

Mas concretamente, un problema de optimización combinatoria está definido
por un conjunto de soluciones factibles S (habitualmente muy numeroso), y una
función f : S −→ R. Generalmente se representan como:

Minimizar (o maximizar) f(s)
sujeto a: s ∈ S.

La importancia de los modelos de optimización combinatoria, además del gran
número de aplicaciones, estriba en que “contiene los dos elementos que hacen
atractivo un problema a los cient́ıficos: planteamiento sencillo y dificultad de
resolución”, (Garfinkel, (1985)).

Resolver un problema de Optimización Combinatoria, según Papadimitriou
y Steiglitz (1982, p. 2), consiste en “encontrar la ‘mejor’ solución o solución
‘óptima’ entre un conjunto finito o numerable de soluciones alternativas facti-
bles”. Se ha empleado mucho esfuerzo en investigar y desarrollar métodos para
obtener soluciones óptimas o aproximadas en problemas de Optimización Combi-
natoria: unos basados en Programación Entera, Lineal o No Lineal, Programación
Dinámica, etc. En los trabajos de Lawler (1976), Lawler, Lenstra, Rinnooy Kan
and Shmoys (1985) o de Schrijver (1986) se realizan revisiones históricas del des-
arrollo de los diferentes métodos de solución.

A lo largo de los años se ha demostrado que muchos problemas de optimi-
zación combinatoria pertenecen a la clase de Problemas NP-completos, es decir,
la solución óptima se obtiene utilizando algoritmos que emplean un tiempo de
computación que crece de forma superpolinomial (normalmente exponencial) en
el tamaño del problema. Por consiguiente, en muchos casos, la solución óptima
no se puede obtener en un tiempo razonable (una gran variedad de este tipo de
problemas se puede ver en el trabajo de Garey and Johnson (1979)).
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M. Laguna, C. Delgado 5

1.2 Optimización No Lineal en Variables Continuas

Estamos ante problemas de Optimización No Lineal cuando las funciones que
representan la función objetivo y las restricciones no son siempre lineales y los
valores de las variables, valores no negativos, están sujetos a un conjunto de
restricciones de desigualdad; esto es:

Max f(x)
s.a. g(x) ≤ b

x ≥ 0

En el caso de que las funciones F y gi sean continuamente diferenciables
el Teorema de Kuhn-Tucker nos permite obtener las condiciones necesarias de
óptimo. Básicamente, estas condiciones establecen que el gradiente de la función
objetivo en x∗ para que sea solución óptima, debe poderse expresar como una
combinación lineal no negativa de los gradientes de las restricciones saturadas
en dicho punto. Las condiciones de Kuhn-Tucker son condiciones necesarias y
suficientes de óptimo local sólo para programas convexos.

Para generalizar las condiciones de Kuhn-Tucker a Programas No Diferen-
ciables ha sido necesario desarrollar otras condiciones de optimalidad, como las
condiciones de punto de silla lagrangiano. Tales condiciones son necesarias para
casi cualquier programa matemático, y al igual que en el caso anterior son también
suficientes sólo si dicho programa es convexo. Cuando el programa es diferencia-
ble, estas condiciones más generales, como es de esperar, coinciden con las de
Kuhn-Tucker.

1.3 Optimización Multiobjetivo

En la práctica real se da con frecuencia el caso de múltiples objetivos o criterios
que se pretenden optimizar o satisfacer simultáneamente, por lo que usualmente
entran en conflicto; dicho de otra manera, cuando nos aproximamos al óptimo
de un objetivo, nos alejamos del mismo para otro objetivo. El estudio y análisis
de estas situaciones ha dado origen a técnicas que se denominan Programación
Multiobjetivo.

Todos los autores que tratan estas cuestiones reconocen como primer antece-
dente, desde un punto de vista conceptual, la aportación conocida como óptimo de
Pareto, debida a dicho autor en 1896, como una parte de la Teoŕıa del Bienestar.
Sin embargo, esta idea de óptimo, teńıa un carácter fundamentalmente teórico sin
aplicación práctica en la toma de decisiones. Es con la obra de Charnes y Cooper
(1961), cuando realmente comienza el desarrollo de las técnicas de Programación
Multiobjetivo, en concreto, con el método espiral y el método de programación
por objetivos. A partir de 1972, año en que se celebra la Primera Conferencia
Internacional sobre la toma de Decisiones Multicriterio, Cochrane y Zeleny (Eds.)
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6 Introducción a los metaheuŕısticos

(1973), tanto las reuniones cient́ıficas sobre la materia, como las publicaciones en
revistas especializadas, no han dejado de producirse hasta nuestros d́ıas.

El planteamiento más general del problema es el siguiente:

max
x

Fi(x) i = 1, 2, . . . , k

x ∈ S

donde x es un vector de n componentes que son las variables a las que desig-
naremos con el término instrumentos; S es el conjunto de oportunidades y k es
el número de objetivos que deseamos maximizar y que vienen reflejados en las
funciones F .

En cuanto al proceso de decisión multicriterio, existen varios modelos, quizá el
más conocido sea el de Chakong y Haimes, que distingue una fase de iniciación, la
formulación del problema, modelización, análisis y evaluación, e implementación.
La caracteŕıstica de estos modelos es que tanto en las fases de formulación, como
de evaluación, intervienen frecuentemente elementos subjetivos.

Entre los múltiples criterios que pueden darse a la hora de clasificar las técnicas
multiobjetivo, escogemos la que hace referencia a la relación entre el analista y el
decisor; según sea esa relación se originan distintas técnicas de solución:

1. Técnicas generadoras: Se generan un conjunto de alternativas eficientes
siendo el flujo de información del analista al decisor.

2. Técnicas con información a priori: La dirección de la información es del
decisor al analista; la más conocida es la Programación por Objetivos.

3. Técnicas interactivas: El flujo de información va en ambas direcciones.

Entre los algoritmos de resolución los más sencillos son los basados en la
representación de las metas múltiples mediante una sola función objetivo. En el
método de ponderación, se forma una sola función objetivo como la suma de los
valores asignados de las funciones que representan las metas del problema. En el
método por prioridades se empieza por determinar las prioridades de las metas
en orden de importancia; el modelo es entonces optimizado utilizando una meta a
la vez y de tal manera que el valor óptimo de una meta de prioridad más elevada
no se degrade por una meta de prioridad más baja.
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1.4 Optimización de Simulaciones

La simulación es una técnica que enseña a construir el modelo de una situación
real permitiéndonos a su vez la realización de experimentos con ese modelo.

En concreto “simulación es una técnica numérica para conducir experimentos
en una computadora digital, los cuales requieren ciertos tipos de modelos lógicos
y matemáticos, que describen el comportamiento de un negocio o de otros tipos
de sistemas en periodos extensos de tiempo” (Naylor y otros, 1982).

La utilización de modelos de simulación ha sido una técnica muy empleada
para aproximarnos a problemas muy complicados de tratar anaĺıticamente. En
los modelos de simulación, habitualmente, no se puede obtener la función objetivo
en función de las variables o parámetros de entrada de forma expĺıcita mediante
una fórmula cerrada. La falta de una función objetivo de forma expĺıcita que rela-
cione el objetivo (costes, tiempos) a optimizar con los parámetros de entrada hace
que sea necesario ejecutar la simulación para cada combinación de parámetros;
a poco complejo que sea el problema el número de combinaciones posibles de
los parámetros puede ser elevado y el tiempo de computación excesivo. Además
si, como suele pasar en muchos casos, existen componentes aleatorios en el mo-
delo, entonces se debe replicar varias veces la simulación para obtener una esti-
mación aproximada de la función objetivo, lo que supone un incremento notable
del tiempo de computación.

La optimización de simulaciones es una técnica que trata de buscar los valores
óptimos o cercanos al óptimo de los parámetros de entrada. Esta técnica es
relativamente nueva, y a pesar de los inconvenientes de su implementación, parece
que tendrá un impacto considerable en la práctica de la simulación en el futuro,
particularmente cuando los ordenadores lleguen a ser más rápidos.

2 Enfoques Básicos de Solución

Como ya se ha comentado muchos problemas de Optimización Combinatoria
pertenecen a la clase de Problemas NP-Hard, es decir, para encontrar el óptimo
necesitan un tiempo de computación que crece de forma (al menos) exponencial
en el tamaño del problema. En estos casos debemos decidir entre encontrar la
solución óptima a costa de emplear un tiempo de computación muy elevado o
encontrar una buena solución en un tiempo de computación razonable.

En el primer caso se han de utilizar algoritmos Optimos o Exactos, mientras
que en el segundo se utilizarán algoritmos de Aproximación o Heuŕısticos, como
los de búsqueda local, algoritmos constructivos, búsqueda incompleta, etc.

Por otro lado existen situaciones en las que puede ser conveniente encontrar
una buena solución en lugar de la mejor de ellas. Las más evidentes son las
siguientes:
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• En muchos problemas reales los datos no son exactos sino sólo una buena
aproximación. Es evidente que insistir aqúı en un costoso procedimiento
exacto carece de sentido.

• Existen modelos, muy frecuentemente, en los cuales es imposible incluir
todas las consideraciones que afectan al problema ya que algunas de ellas
son dif́ıcilmente objetivizables y modelizables. En estos casos más que una
solución exacta lo que necesita el decisor son varias buenas soluciones entre
las que optar en función de sus propios criterios.

• Cuando hay que tomar decisiones en tiempo real, caso de autómatas o
programaciones de trabajo sobre la marcha, lo que interesa es una buena
decisión pero inmediata.

Todos estos casos justifican la utilización de métodos aproximados si éstos
roporcionan buenas soluciones en un tiempo razonable. Por lo general los algo-
ritmos heuŕısticos tienen la ventaja añadida de que pueden ser más fácilmente
adaptables para solucionar modelos más complejos. Hay que señalar que los di-
ferentes tipos de algoritmos dependen de cada problema concreto, ya que en su
diseño se intentan aprovechar las caracteŕısticas espećıficas de dichos problemas.

2.1 Métodos Exactos

Como ya se ha comentado permiten encontrar la solución óptima a un pro-
blema. La enumeración expĺıcita de todo el conjunto de soluciones, aunque esté
acotado, suele ser excesiva, ya que este puede ser de gran tamaño incluso en
problemas con pocas variables; por tanto se aplican métodos que abrevian dicha
búsqueda. La mayoŕıa de los algoritmos están basados en procesos de Ramifi-
cación y Acotamiento (Branch & Bound) consistentes en lo siguiente:

• Inicialmente, partir del conjunto de todas las soluciones; dividir dicho con-
junto en dos subconjuntos o ramas; calcular y asignar para cada rama una
cota inferior, si estamos minimizando (superior si estamos maximizando),
del valor de la función objetivo en ese conjunto de soluciones.

• Elegir una de las ramas o subconjuntos según algún criterio y realizar de
nuevo el paso anterior. Repetir este proceso hasta llegar a una única so-
lución.

• Continuar el proceso en las ramas que queden sin explorar si la cota inferior
asociada es menor que el valor de la mejor solución encontrada hasta ese
momento. De esta forma se evita realizar exploraciones innecesarias.

Los criterios de ramificación y elección de la siguiente rama o subconjunto que
se explora, y la forma de determinar las cotas, dependen de la estructura y carac-
teŕısticas propias de cada problema concreto, y son importantes para aumentar la
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eficacia de estos algoritmos. El valor de la solución de la relajación continua del
problema, en el conjunto de soluciones correspondiente, se utiliza habitualmente
como cota inferior. Los conjuntos de soluciones se dividen según los valores de
una determinada variable, y se elige como nueva rama a explorar la de menor
cota inferior.

Menos eficiente es la resolución usando exclusivamente técnicas de Progra-
mación Dinámica, sin embargo éstas pueden ser útiles para hallar cotas que
después sean introducidas en algoritmos de tipo Branch & Bound.

Otros métodos desarrollados son el algoritmo de Plano de Corte de Gomory,
muy aceptado para determinados problemas o el de Descomposición de Benders.
Veamos como funciona el primero de ellos. Al igual que en los procesos de Rami-
ficación y Acotamiento en el algoritmo de Plano de Corte de Gomory se utiliza la
solución continua óptima de PL. En este caso se modifica el espacio de la solución
añadiendo sucesivamente restricciones especialmente construidas llamadas cortes.
En la tabla óptima del simplex del problema relajado se añade el corte generado
a partir de un renglón elegido de forma arbitraria, de entre aquellos cuya variable
no es entera. A partir de dicha tabla se calcula la solución óptima factible, y se
repite el proceso hasta que todas las variables sean enteras.

La idea gráfica del algoritmo de Plano de Corte de Gomory se muestra en las
figuras 1 y 2. Los cortes añadidos no eliminan ninguno de los puntos factibles
pero deben atravesar por lo menos un punto entero factible o no factible.

Max 7x1 + 10x2

s.a    -x1 + 3x2 ≤  6

        7x1 + x2 ≤  35

x1 y x2 ≥ 0 y enteras

(4Õ5, 3Õ5)

Fig. 1 Formulación del problema y solución considerando variables cont́ınuas

(4Õ57, 3)

(4, 3)

Fig. 2 Cortes realizados y solución asociada en cada caso
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En cualquier caso, el tiempo de computación utilizado, suele ser alto. Por
esta razón se da mucha importancia, especialmente en problemas combinatorios,
al diseño y uso de algoritmos heuŕısticos, esto es, algoritmos que no garantizan la
obtención de la solución óptima, pero śı una buena solución en un tiempo mucho
menor.

2.2 Heuŕısticos de Construcción

Existen diferentes tipos de heuŕısticos, según el modo en que buscan y constru-
yen sus soluciones. En los heuŕısticos de construcción se van añadiendo paulatina-
mente componentes individuales a la solución, hasta que se obtiene una solución
factible.

El más popular de estos métodos lo constituyen los algoritmos golosos o de-
voradores (greedy), que construyen la solución seleccionando en cada paso la
mejor opción. Otras versiones escogen de forma totalmente aleatoria en cada
paso el componente que se añadirá a la solución. Las versiones que en general
han demostrado dar mejores resultados son las que introducen sólo cierto grado
de aleatoriedad: primero seleccionan un conjunto de buenas opciones; posterior-
mente escogen el siguiente componente de la solución de forma aleatoria en dicho
conjunto.

2.3 Búsqueda Local

Dentro de los métodos aproximados son de uso muy frecuente en la optimi-
zación combinatoria los métodos de Búsqueda Local. Dichos métodos se basan en
la idea de explorar las soluciones ‘vecinas’ de aquella que tenemos en un momento
dado. Por tanto para diseñar un procedimiento de búsqueda local, es necesario
previamente definir un vencidario o entorno N(s), ∀s ∈ S, es decir:

N(s) = Conjunto de soluciones vecinas de s (a las que se llega por un
pequeño movimiento o cambio en s)

Se trata sencillamente de pasar de una solución a otra vecina que sea mejor.
El proceso se acaba cuando no hay mejora posible en el conjunto de soluciones
vecinas. Estas técnicas pueden ser más sencillas o más sofisticadas dependiendo
de la estructura vecinal que se defina.

El siguiente procedimiento describe este proceso:

Seleccionar una solución inicial s0 ∈ S.
Repetir

Seleccionar s ∈ N(s0) tal que f(s) < f(s0) por un método preestablecido
Reemplazar s0 por s

hasta que f(s) ≥ f(s0), s ∈ N(s0).
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Las formas más usuales de seleccionar la solución vecina son explorar en todo
el vecindario y tomar la mejor solución según el valor de la función objetivo
(mayor descenso), o buscar y seleccionar la primera que mejora la solución actual
(primer descenso).

El inconveniente de esta estrategia siempre descendente es que en la mayoŕıa
de los casos se convergen a mı́nimos locales que no son globales, y además suelen
estar muy lejos del óptimo global. Para ilustrar este problema considérese la
siguiente gráfica:

Fig. 3 Ejemplo de estrategia descendente

En esta figura se muestra un sencillo ejemplo de una función en la que para
cada solución se consideran dos soluciones vecinas, representadas por el punto
que tiene a la izquierda y el que tiene a la derecha. Una estrategia descendente
siempre se dirige hacia el fondo del valle que contiene al punto de salida. Por
ejemplo, si la solución inicial es P , siempre se finalizará en el punto Q.

Para evitar este problema, se han sugerido algunas posibles soluciones: repetir
el algoritmo con diferentes puntos de partida, o aumentar el vecindario. Por
desgracia, ninguna de estas variantes ha resultado ser totalmente satisfactoria. En
la figura anterior se observa que para evitar que la búsqueda se quede atrapada en
mı́nimos locales de mala calidad, se debeŕıa permitir algunos movimientos hacia
arriba, de forma controlada, aunque empeoren momentáneamente el valor de la
solución actual. De esta forma se podŕıan visitar óptimos locales de mejor calidad
e incluso el óptimo global.

En definitiva la búsqueda local, como tal, es una búsqueda ciega ya que el
único criterio para aceptar una solución es que reduzca el valor de la función
objetivo. Por tanto no utiliza ninguna información recogida durante la ejecución
del algoritmo y depende de una manera muy estrecha de la solución inicial y del
mecanismo de generación de entornos. Para evitar quedar atrapado en un óptimo
local y poder continuar buscando soluciones mejores en todo el espacio es por lo
que se han creado diversas estrategias incluidas en los metaheuŕısticos.
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3 Metaheuŕısticos

Los metaheuŕısticos son el desarrollo más reciente, entre los métodos apro-
ximados, para resolver complejos problemas de optimización combinatoria que
aparecen en la empresa, la economı́a, la industria, la ingenieŕıa y muchas otras
áreas. Se han desarrollado vertiginosamente desde principios de los 80 para re-
solver una gama muy variada de problemas.

Una definición de Metaheuŕıstico dada por Osman y Kelly (1996) es la si-
guiente:

“Un metaheuŕıstico es un procedimiento iterativo, con una estruc-
tura y una reglas generales de funcionamiento que lo caracterizan,
que gúıa un método (normalmente un heuŕıstico) subordinado combi-
nando inteligentemente diversos conceptos para explorar los espacios
de búsqueda utilizando estrategias aprendidas para conseguir solucio-
nes quasi- óptimas de manera eficiente”.

Según Glover y Laguna (1997):

Metaheuŕıstica se refiere a una estrategia maestra que gúıa y modifica
otras heuŕısticas para producir soluciones más allá de aquellas que
normalmente se generan en una búsqueda de óptimos locales.”

Utilizan conceptos derivados de la inteligencia artificial, la bioloǵıa, las ma-
temáticas... para mejorar su eficacia. En general, tratan de explotar una colección
de ideas sensatas para ir mejorando la calidad de las soluciones.

Son procedimientos iterativos que disponen de mecanismos de parada fijados
por el usuario como pueden ser la cantidad de iteraciones efectuadas, el número
de iteraciones sin mejorar o haberse acercado suficientemente al óptimo (si se
dispone de una cota del mismo), etc. Los criterios de parada son absolutamente
necesarios en este tipo de procedimientos ya que continúan la exploración después
de haber obtenido un óptimo local, y sin ellos el proceso seria interminable.

Aunque es posible encontrar convergencias teóricas al óptimo global para al-
gunos metaheuŕısticos bajo determinadas hipótesis, estas hipótesis no se verifican
en la mayoŕıa de las aplicaciones prácticas. Por tanto, aunque pierden la posi-
bilidad de garantizar soluciones óptimas, los metaheuŕısticos han obtenido éxitos
a la hora de conseguir buenas soluciones en una amplia gama de aplicaciones en
muy diversas áreas.

Además tienen otra gran ventaja. Dada la sencillez de sus elementos básicos y
la importancia de sus aspectos intuitivos pueden ser implementados y utilizados
por personas sin una formación espećıfica en matemáticas de alto nivel. Aunque
hay que tener en cuenta que a mayor conocimiento de técnicas de investigación
operativa, mayor capacidad de recursos para abordar los problemas.
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A la hora de describir un metaheuŕıstico las caracteŕısticas principales que se
han de comentar son las siguientes:

• Algoritmos determińısticos

• Algoritmos aleatorios

• Uso de memoria

• Algoritmos poblacionales

• Uso de movimientos por entornos

• Basados en procesos f́ısicos, biológicos, inteligencia artificial, ..

Tradicionalmente, dos de estas caracteŕısticas se soĺıan utilizar para dividir
los metaheuŕısticos, en general, en dos grandes grupos: metaheuŕısticos basados
en Población o Algoritmos Evolutivos, y metaheuŕısticos basados en Búsqueda
por Entornos. Sin embargo en la actualidad la mayoŕıa de los métodos que se
implementan hoy en d́ıa son h́ıbridos, de forma que los métodos basados en po-
blaciones incluyen búsquedas locales que por definición se realizan por medio de
entornos. En los dos puntos siguientes (3.2 y 3.3) se comenta su funcionamiento
y se explican algunos de estos metaheuŕısticos.

También se puede hablar de métodos que utilizan decisiones sistemáticas (mu-
chas veces basados en memoria) y métodos basados en decisiones aleatorias. Al
igual que en el caso anterior es dif́ıcil encontrar implementaciones “puras” ya que
la mayoŕıa de los procedimientos incluyen ambos tipos de estrategias (sistemáticas
y aleatorias o pseudos aleatorias). En el punto 3.4 se estudia el funcionamiento
básico de tres metaheuŕısticos basados en muestreo aleatorio. En este caso, nos
centramos en metaheuŕısticos que no utilizan memoria. Sus decisiones son to-
das al azar sin tener en cuenta las caracteŕısticas del problema que trata o los
resultados obtenidos con anterioridad.

Recientemente se han desarrollado estrategias heuŕısticas que eligen entre
heuŕısticos para resolver problemas de optimización. Estos métodos se denomi-
nan hiperheuŕısticos y su objetivo principal es el de diseñar estrategias de progra-
mación generales que puedan ser aplicadas a diferentes problemas. Habitualmente
los algoritmos metaheuŕısticos suelen funcionar bien para los problemas para los
que se han diseñado, pero no para todo tipo de problemas. Cuando se preten-
den aplicar a un tipo de problema diferente hay que realizar modificaciones en el
método, a menudo numerosas y costosas. En el caso de los hiperheuŕısticos esto
no seŕıa necesario. Otra caracteŕıstica propia de los hiperheuŕısticos es que mien-
tras un metaheuŕıstico modifica las soluciones directamente, un hiperheuŕıstico lo
hace indirectamente, por medio de un operador (un heuŕıstico de bajo nivel). Por
supuesto los hiperheuŕısticos pueden ser metaheuŕısticos y de hecho normalmente
lo son.
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3.1 Métodos Basados en Búsqueda por Entornos

La Búsqueda por Entornos trata de superar los inconvenientes de la Búsqueda
Local: dependencia de la solución inicial y convergencia a mı́nimos locales que no
son globales. Para salir de esos mı́nimos locales debeŕıan permitirse movimientos
que empeoren momentáneamente la solución actual. Como se verá más adelante,
algunos métodos heuŕısticos, permiten estos movimientos “hacia arriba” de forma
controlada, mejorándose en muchos casos el valor de la solución final. Otros
repiten el algoritmo con diferentes puntos de partida o consideran una estructura
vecinal más compleja (modifican el vecindario).

Tabu Search (TS)

Según Glover F. (1996) la palabra Tabu se refiere a: “. . . un tipo de inhibición
por connotaciones culturales o históricas que puede ser superado en determinadas
condiciones. . . ”.

Tabu Search (Búsqueda Tabú) dada a conocer por Glover F. (1989) y (1990-
a), es un procedimiento metaheuŕıstico utilizado con el fin de guiar un algoritmo
heuŕıstico de búsqueda local para explorar el espacio de soluciones más allá de
la simple optimalidad local y obtener soluciones cercanas al óptimo. Se han
publicado numerosos art́ıculos y libros para difundir el conocimiento teórico del
procedimiento; en Glover F. y Laguna M. (1997) y (2002) pueden encontrarse
amplios tutoriales sobre Búsqueda Tabú que incluyen todo tipo de aplicaciones.

Al igual que la búsqueda local, la búsqueda tabú en su diseño básico, cons-
tituye una forma agresiva de búsqueda del mejor de los movimientos posibles a
cada paso; sin embargo, también permite movimientos hacia soluciones del en-
torno aunque no sean tan buenas como la actual, de forma que se pueda escapar
de óptimos locales y continuar la búsqueda de soluciones aún mejores (ver figura
4).

Fig. 4 Procedimiento de Búsqueda Tabú.
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Simultáneamente para evitar ciclos, los últimos movimientos realizados son
declarados tabú durante un determinado número de iteraciones, utilizando las
denominadas restricciones tabú. Dicha condición tabú puede ser ignorada bajo
determinadas circunstancias dando lugar a los llamados criterios de aspiración.
De esta forma se introduce cierta flexibilidad en la búsqueda.

Variable Neighborhood Search (VNS)

Variable Neighborhood Search (Búsqueda en Entorno Variable) es una técnica
metaheuŕıstica propuesta y descrita en los trabajos de Mladenovic (1995), Mlade-
novic y Hansen (1997) y Hansen y Mladenovic (1998). La idea básica es combinar
la aplicación de un procedimiento de búsqueda local con un cambio sistemático del
entorno de búsqueda. El algoritmo aplica la búsqueda local en alguna solución
del entrono de la mejor solución obtenida hasta el momento (solución actual).
Si no se consigue mejorar esta solución actual se considera un entorno mayor.
Cuando se obtiene una solución mejor se reinicia el proceso. Intenta explotar la
idea de que los mı́nimos locales tienden a concentrarse en unas pocas regiones.
Un tutorial más recientes se encuentran en Hansen y Mladenovic (2003).

3.2 Métodos Basados en Poblaciones

Los Algoritmos Evolutivos o algoritmos basados en poblaciones se inspiran
en los principios básicos de la evolución de los seres vivos, y modifican dichos
principios para obtener sistemas eficientes para la resolución de diferentes pro-
blemas. Un Algoritmo Evolutivo es un proceso estocástico e iterativo que opera
sobre un conjunto P de individuos que constituyen lo que se denomina población;
cada individuo contiene uno o más cromosomas que le permiten representar una
posible solución al problema, la cual se obtiene gracias a un proceso de codifi-
cación/decodificación. La población inicial es generada aleatoriamente o con la
ayuda de algún heuŕıstico de construcción. Cada individuo es evaluado a través
de una función de adecuación (fitness). Estas evaluaciones se usan para predispo-
ner la selección de cromosomas de forma que los superiores (aquellos con mayor
evaluación) se reproduzcan más a menudo que los inferiores.

El algoritmo se estructura en tres fases principales que se repiten de forma
iterativa, lo que constituye el ciclo reproductivo básico o generación. Dichas fases
son: selección, reproducción y reemplazo.

Genetic Algorithms (GA)

A finales de los 60 y principios de los 70 distintos investigadores trataron
de trasladar los principios de la Evolución al campo de la algoritmia, dando
lugar a lo que tradicionalmente se conoćıa como Evolutionary Computation y que
ahora se llama Evolutionary Algorithms. Como resultado de esta investigación
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se originaron diferentes modelos que pueden agruparse en tres grandes familias:
Evolutionary Programming (Programación Evolutiva), Evolutions Strategies (EE,
Estrategias de Evolución) y Genetic Algorithms (GA, Algoritmos Genéticos).

Filosóficamente los tres métodos sólo difieren en el nivel de detalle en que
simulan la evolución. A nivel algoŕıtmico difieren en la forma en que represen-
tan las soluciones y los operadores que usan para modificarlas. La Programación
Evolutiva tiene su origen en el trabajo de Fogel L.J. y otros (1966), y ponen un
especial énfasis en la adaptación de los individuos más que en la evolución del ma-
terial genético de éstos. Las Estrategias de Evolución comenzaron a desarrollarse
en Alemania. Su objetivo inicial era servir de herramienta para la optimización
de parámetros en problemas de ingenieŕıa. Al igual que la Programación Evolu-
tiva con la que se halla estrechamente emparentada, basa su funcionamiento en
el empleo de un operador de reproducción asexual o de mutación, especialmente
diseñado para trabajar con números reales. En cuanto a los Algoritmos Genéticos
son probablemente el representante más conocido de los algoritmos evolutivos, y
aquellos cuyo uso está más extendido. Fueron concebidas originalmente por John
Holland y descritas en el ya clásico Adaptation in Natural and Artificial Systems
(Holland J. (1975)). Funcionan mediante la creación en una computadora, de una
población de individuos representados por los cromosomas, que son en esencia un
conjunto de cadenas de caracteres análogos a los cromosomas de cuatro bases de
nuestro ADN.

Históricamente, el término evolutivo se ha asociado con algoritmos que usa-
ban solamente selección y mutación, mientras que el término genético ha sido
asociado a algoritmos que usan selección, mutación, cruce y una variedad de
otros mecanismos inspirados en la naturaleza (Goldberg D.E. (1994)). La prin-
cipal caracteŕıstica de los GAs es el uso del operador de recombinación o cruce
como mecanismo principal de búsqueda: construye descendientes que poseen ca-
racteŕısticas de los cromosomas que se cruzan. Su utilidad viene dada por la
suposición de que diferentes partes de la solución óptima pueden ser descubiertas
independientemente y luego ser combinadas para formar mejores soluciones. Adi-
cionalmente se emplea un operador de mutación cuyo uso se considera importante
como responsable del mantenimiento de la diversidad.

La premisa que gúıa los GAs es que pueden resolverse problemas complejos
simulando la evolución en un algoritmo programado por ordenador. La con-
cepción de John Holland es que esto ocurre mediante algoritmos que manipulan
strings binarios llamados cromosomas. Como en la evolución biológica, la evo-
lución simulada tiene el objetivo de encontrar buenos cromosomas mediante una
manipulación ciega de sus contenidos. El término ciego se refiere al hecho de que
el proceso no tiene información sobre el problema que intenta resolver.

Los primeros diseños de Holland fueron simples, pero probaron ser efectivos
para solucionar problemas considerados dif́ıciles en aquel tiempo. El campo de
los GAs se ha desarrollado desde entonces, principalmente como resultado de las

Rect@ Monográfico 3 (2007)



M. Laguna, C. Delgado 17

innovaciones en 1980 al incorporar más diseños elaborados con el propósito de
resolver problemas en un amplio rango de escenarios prácticos.

Los componentes que han de considerarse a la hora de implementar un GA
son los siguientes:

• Una representación, en términos de “cromosomas”, de las configuraciones
de cada problema: método de codificación del espacio de soluciones en cro-
mosomas.

• Una manera de crear las configuraciones de la población inicial.

• Una función de evaluación que permita ordenar los cromosomas de acuerdo
con la función objetivo: medida de la bondad o función fitness.

• Operadores genéticos que permitan alterar la composición de los nuevos
cromosomas generados por los padres durante la reproducción.

• Valores de los parámetros que el algoritmo genético usa (tamaño de la
población, probabilidades asociadas con la aplicación de los operadores
genéticos).

Scatter Search (SS)

Scatter Search (Búsqueda Dispersa) se caracteriza por el uso de un conjunto
de soluciones, denominado Conjunto de Referencia, que es actualizado durante
el proceso. El modo en el que combina soluciones y actualiza el conjunto de so-
luciones de referencia usadas para combinar conjuntos, aparta esta metodoloǵıa
de otros enfoques basados en población. Quizás el método más cercano a SS
dentro del área de Evolutionary Algorithms es Evolution Strategies ya que di-
chos métodos utilizan un esquema determinista de selección y una representación
de soluciones que es natural al problema en lugar de la representación genética
para cada individuo. Estas estrategias, en contraste con los GA’s, no simulan la
evolución al nivel genético.

Como se comenta en los trabajos de Glover F. (1998) y Campos V. y otros
(2001) el enfoque de combinación de soluciones para crear nuevas soluciones se
originó en los 60. La estrategia combinatoria se diseñó con la confianza de que la
información seŕıa explotada más efectivamente de forma integrada que tratándola
aisladamente (Crowston W.B. y otros (1963); Fisher H. y Thompson G.L. (1963)).

Scatter Search opera en un conjunto de referencia (reference set, RS) combi-
nando soluciones para crear unas nuevas. El conjunto de referencia puede evolu-
cionar como se ilustra en la figura 5, cuando se crean nuevas soluciones de una
combinación lineal de otras dos o más soluciones. Esta figura asume que el con-
junto de referencia original de soluciones consta de los ćırculos etiquetados como
A, B y C. Después, una combinación no convexa de las soluciones de referencia
A y B crea la solución 1. En concreto se crean un número de soluciones en el
segmento definido por A y B; sin embargo sólo la solución 1 se introduce en el
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conjunto de referencia. De modo similar, las combinaciones convexas y no conve-
xas del conjunto de referencia original y la solución recién creada, crea los puntos
2, 3 y 4. El conjunto de referencia completo mostrado en dicha figura consta de
7 soluciones.

C

1

2

A

B

3

4

Fig. 5 Conjunto de Referencia (tomado de Laguna M. (2002)).

El conjunto de referencia de soluciones en búsqueda dispersa tiende a ser pe-
queño, a diferencia de la población de los algoritmos genéticos. En algoritmos
genéticos se eligen aleatoriamente dos individuos de la población y se aplica un
mecanismo de cruce o combinación para generar uno o más hijos. Un tamaño
de población t́ıpico en algoritmos genéticos consta de 100 elementos, que son
probados aleatoriamente para crear combinaciones. En contraste, SS elige dos o
más elementos del conjunto de referencia de forma sistemática con el propósito
de crear nuevas soluciones. Ya que el proceso de combinación considera al menos
todos los pares de soluciones del conjunto de referencia, en la práctica se necesita
trabajar con conjuntos de pocos elementos. Normalmente el conjunto de referen-
cia en búsqueda dispersa tiene 20 soluciones o menos. En general, si el conjunto
de referencia consta de b soluciones, el procedimiento examina aproximadamente
(3b− 7)b/2 combinaciones de cuatro tipos diferentes (Glover F. (1998)). El tipo
básico consta de combinaciones de dos soluciones; el siguiente tipo combina tres
soluciones y aśı seguimos con cuatro o más soluciones dependiendo del problema.
La limitación del campo de búsqueda a un grupo selectivo de tipos de combi-
nación puede usarse como un mecanismo de control del número de combinaciones
posibles en un conjunto de referencia dado.

Las soluciones en SS no solo se pueden combinar utilizando combinaciones
lineales. Aśı una extensión natural del método es utilizar Path Relinking (Re-
encadenamiento de Trayectorias) para combinar soluciones. El Re-encadenamiento
de Trayectorias se basa en el hecho de que entre dos soluciones se puede trazar
un camino que las una, de modo que las soluciones en dicho camino contengan
atributos de las iniciales. Para generar los caminos es necesario seleccionar movi-
mientos que cumplan los siguientes objetivos: empezando por una solución inicial
x′, los movimientos deben introducir progresivamente los atributos de la solución
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gúıa x′′ (o reducir la distancia entre los atributos de estas soluciones). Los pape-
les de ambas soluciones son intercambiables; además cada solución puede moverse
hacia la otra como una manera de generar combinaciones.

XÕ XÕÕ

Fig. 6 Trayectoria Path Relinking (- - -) con solución mejor

Utilizando PR se genera por lo tanto un camino que une dos soluciones selec-
cionadas x′ y x′′ produciendo una secuencia de soluciones

x′ = x(1), x(2), . . . , x(r) = x′′.

En este camino es posible por ejemplo encontrar soluciones mejores que las solu-
ciones inicial y gúıa (figura 6) y además estos caminos son habitualmente “más
directos” que los encontrados por otras estrategias para unir dichas soluciones
(figura 7).

XÕ XÕÕ

Fig. 7 Trayectoria Path Relinking (- - -) con camino más corto

Particle Swarm Optimization (PSO)

PSO originalmente fue concebido para simular de un sistema social simplifi-
cado; sin embargo se vio que el modelo pod́ıa ser usado como optimizador. PSO
es una técnica de optimización estocástica poblacional desarrollada por Kennedy
J. y Eberhart R. (1995), e inspirada en el comportamiento de organismos tales
como las bandadas de pájaros. Comparte algunas similitudes con Algoritmos
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Evolutivos tales como los Algoritmos Genéticos. Comienza con un conjunto de
soluciones aleatorias y busca la solución óptima actualizando generaciones. Sin
embargo a diferencia de los GA, PSO no utiliza operadores evolutivos como el
cruce o la mutación.

PSO imita el comportamiento de una bandada de pájaros en busca de ali-
mentos. Un grupo de pájaros busca comida en un determinado área. Se supone
que sólo hay una pieza de comida en el área de búsqueda. Los pájaros no saben
dónde se encuentra la comida, pero si saben en cada iteración a qué distancia
está. La estrategia será seguir al pájaro que más cerca se encuentre de la comida.
De esta forma, las posibles soluciones de PSO (los pájaros) llamadas part́ıculas
“vuelan” a través del espacio de soluciones cambiando su posición y velocidad en
función de su propia experiencia y de la experiencia de las vecinas. La “veloci-
dad” de cada part́ıcula se ve modificada por una fórmula muy sencilla que tiene
dos elementos: uno que impulsa a la part́ıcula hacia la mejor posición (solución
al problema) en la que esa part́ıcula ha estado durante la búsqueda y otro que
impulsa a la part́ıcula hacia la mejor posición encontrada por todas las part́ıculas
en la búsqueda. La implementación es muy sencilla ya que cada part́ıcula sólo
tiene que recordar cuál es la mejor posición en la que ha estado y cuál es la mejor
posición encontrada por todas las part́ıculas.

PSO y Path Relinking son muy parecidos en el aspecto de que las soluciones
gúıas en PR juegan el mismo papel que las posiciones hacia las cuales las part́ıculas
son impulsadas en cada paso del PSO. Si lo comparamos con los GA, POS es más
fácil de implementar y hay pocos parámetros que ajustar.

Ant Colony Optimization (ACO)

Este método propuesto por Dorigo M. y otros (1996) es un ejemplo, como
el Temple Simulado, Redes Neuronales y otros, del afortunado uso de metáforas
naturales para diseñar un algoritmo de optimización. En este caso se aprecia con
claridad como las soluciones generadas previamente afectan a las soluciones que
se generan en el futuro.

Las hormigas reales son capaces de encontrar el camino más corto desde una
fuente de comida al hormiguero sin usar señales visuales. También son capaces de
adaptarse a cambios del entorno, por ejemplo, encontrando un nuevo camino más
corto cuando el anterior ya no es factible debido a un obstáculo interpuesto. Las
hormigas se mueven en ĺınea recta que conecta la fuente de comida con su hormi-
guero. El medio básico que tienen para formar y mantener la ĺınea es un reguero de
pheromone; al caminar depositan determinada cantidad de esta sustancia y cada
hormiga prefiere (probabiĺısticamente) seguir una dirección rica en pheromone.
Cuando aparece de forma imprevista un obstáculo no esperado que interrumpe el
camino inicial, aquellas hormigas que están justo en frente del obstáculo no pue-
den continuar siguiendo el reguero de pheromone: tienen que elegir entre girar
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a la izquierda o a la derecha. En esta situación podemos esperar que la mitad
de las hormigas elijan una cosa y la otra mitad otra. Una situación muy simi-
lar puede encontrarse en el otro lado del obstáculo. Es interesante destacar que
aquellas hormigas que eligen por casualidad el camino corto, reconstruyen más
rápidamente el reguero de pheromone interrumpido, en comparación con aquellas
que eligen el camino largo. Aśı que el camino corto recibirá más cantidad de
pheromone por unidad de tiempo y en cada turno un mayor número de hormigas
elegirá el camino corto. Debido a este proceso retroalimentado positivo, todas las
hormigas elegirán rápidamente el camino más corto.

Dorigo M. y Gambardella L.M. (1997) han aplicado esta técnica al TSP
basándose en las ideas que se comentan a continuación. Una hormiga artificial es
un agente que se mueve de una ciudad a otra en un grafo de TSP. Elige la ciudad a
la que moverse (o arco que añade a su ruta) con una probabilidad proporcional al
reguero acumulado y la distancia del arco que se añade. Las hormigas artificiales
prefieren probabiĺısticamente ciudades que están conectadas por arcos con mucho
reguero de pheromone y que están próximas. Inicialmente, m hormigas artificiales
se colocan en ciudades seleccionadas aleatoriamente. En cada iteración se mue-
ven a nuevas ciudades y modifican el reguero de pheromone de los arcos usados -
esto se denomina actualización de reguero local. Cuando todas las hormigas han
completado una ruta, la hormiga que hace la ruta más corta modifica los arcos
pertenecientes a su ruta - se denomina actualización de reguero global- añadiendo
una cantidad de reguero de pheromone que es inversamente proporcional a la
longitud de la ruta.

Hay tres ideas de la conducta de las hormigas que se transfieren a la colonia
de hormigas artificiales:

1. la preferencia por caminos con alto nivel de pheromone,

2. el alto ratio de crecimiento de la cantidad de pheromone en los caminos
cortos, y

3. el reguero mediador de comunicación entre las hormigas.

Se ha dado a las hormigas artificiales algunas capacidades que no tienen sus
colegas naturales pero que se ha observado que son aptas para su aplicación al
TSP: las hormigas artificiales pueden determinar la distancia a la que están las
ciudades y están dotadas con una memoria de trabajo Mk usada para memorizar
las ciudades ya visitadas (la memoria de trabajo está vaćıa al comienzo de cada
nueva ruta y se actualiza después de cada paso de tiempo añadiendo las nuevas
ciudades visitadas).

Con el fin de evitar que un arco muy atractivo sea elegido por todas las
hormigas se realiza la actualización local del reguero: cada vez que un arco es
elegido por una hormiga su cantidad de pheromone se cambia aplicando la fórmula
de actualización local. La evaporación del reguero de pheromone en el mundo de
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las hormigas reales se traslada a la colonia de hormigas artificiales en forma de
actualización local del reguero.

3.3 Métodos basados en muestreo aleatorio

Simulated Annealing (SA)

Kirkpatrick S. y otros (1983), e independientemente Cerny V. (1985), propo-
nen un procedimiento para obtener soluciones aproximadas llamado Simulated
Annealing (Temple Simulado o Recocido Simulado). Se pueden considerar como
una variante de los métodos de búsqueda local, en la que se permite empeora-
mientos en la solución actual aunque de forma controlada.

Los autores mencionados introdujeron el concepto de templado en optimización
combinatoria. Este concepto está basado en una estrecha analoǵıa entre el proceso
f́ısico de templado y los problemas combinatorios. La idea original que dio lugar
a esta metaheuŕıstica es el denominado “algoritmo de Metrópolis”, Metrópolis y
otros (1953), bien conocido en el mundo de la Qúımica-F́ısica. Para estudiar las
propiedades de equilibrio, Metrópolis utilizó el “método de Montecarlo”, que es el
más usado en Mecánica Estad́ıstica para estudiar el comportamiento microscópico
de los cuerpos.

Las moléculas de una sustancia pueden tener distintos niveles de enerǵıa. El
menor de estos niveles es el llamado “estado fundamental”, γ0. A una temperatura
de 0o

¯ K todas las moléculas están en su estado fundamental, pero se sabe que un
trozo de sustancia a alta temperatura probablemente posea un estado de enerǵıa
más alto que otro idéntico a temperatura menor.

Cada una de las maneras en que las moléculas pueden estar distribuidas entre
los distintos niveles de enerǵıa recibe el nombre de microestado. Se denomina
Ω al conjunto de todos los posibles microestados y número de ocupación, ni, al
número de part́ıculas en el nivel de enerǵıa i. El número de moléculas en los
estados superiores decrece para una temperatura T fija.

Para reducir la enerǵıa de la sustancia al menor valor posible, bajar simple-
mente la temperatura al cero absoluto no asegura necesariamente que la sustancia
alcance su configuración energética más baja posible. En f́ısica termodinámica, se
conoce como templado a un proceso termal para obtener los estados de más baja
enerǵıa de un sólido en un recipiente. Para ello hay que elevar la temperatura del
recipiente, al menos hasta conseguir que el sólido se funda y posteriormente bajar
la temperatura del recipiente muy suavemente hasta que las part́ıculas se estabi-
licen, es decir, hasta llegar al estado sólido; entonces se dice que se ha producido
la congelación.

Simulación Termodinámica Optimización Combinatoria Estados del material
Soluciones factibles S Enerǵıa Función f Estados surgidos por mecanismo de per-
turbación Soluciones vecinas Estados metaestables Mı́nimo local Estado de con-
gelación Solución final
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Simulación
Termodinámica

Optimización
Combinatoria

Estados del material Soluciones factibles S

Energía Función f

Estados surgidos por
mecanismo de perturbación

Soluciones vecinas

Estados metaestables Mínimo local

Estado de congelación Solución final

Fig. 8 Correspondencia entre los elementos de simulación termodinámica y
optimización combinatoria.

Durante la fase ĺıquida, todas las part́ıculas del material se mueven de forma
aleatoria. Cuando se llega al estado sólido, las part́ıculas están ordenadas en una
estructura enrejada con enerǵıa mı́nima. Esta estructura se consigue solamente si
la temperatura inicial es suficientemente alta, y el enfriamiento se hace de forma
suficientemente lenta; de lo contrario, el material alcanza una estructura meta-
estable con mayor valor energético. La correspondencia entre los elementos de
simulación termodinámica y la optimización combinatoria es la que aparece en la
figura 8.

GRASP

GRASP son las iniciales en inglés de Greedy Randomize Adaptive Search
Procedures (Procedimientos de Búsqueda basados en funciones Avidas, Aleatorias
y Adaptativas); se dieron a conocer a finales de los ochenta en el trabajo de Feo
T.A. y Resende M.G.C. (1989), pero han tenido un desarrollo más reciente que los
otros metaheuŕısticos. Una amplia descripción se puede encontrar en un trabajo
posterior de los mismos autores Feo T.A. y Resende M.G.C. (1995).

GRASP es una técnica simple aleatoria e iterativa, en la que cada iteración
provee una solución al problema que se esté tratando. La mejor solución de todas
las iteraciones GRASP se guarda como resultado final. Hay dos fases en cada
iteración GRASP: la primera construye secuencial e inteligentemente una solución
inicial por medio de una función ávida, aleatoria y adaptativa; en la segunda se
fase aplica un procedimiento de búsqueda local a la solución construida, con la
esperanza de encontrar una mejora.

En la fase de construcción se va añadiendo en cada paso un elemento, hasta
obtener la solución completa. En cada iteración, la elección del próximo elemento
para ser añadido a la solución parcial, viene determinado por una función ávida
(greedy). Esta función mide el beneficio, según la función objetivo, de añadir cada
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uno de los elementos y elige la mejor opción. Esta medida es miope, en el sentido
de que no tiene en cuenta qué ocurrirá en iteraciones sucesivas al realizar una
elección, sino únicamente lo que pasa en esa iteración.

El heuŕıstico es adaptativo, ya que los beneficios asociados con cada elemento
se actualizan en cada iteración de la fase de construcción, para reflejar los cambios
producidos por la selección de elementos previos.

GRASP es aleatorizado porque no selecciona el mejor candidato según la
función ávida adaptada. Con los mejores elementos a añadir se construye una
lista denominada Lista Restringida de Candidatos (RCL en inglés), y se elige de
forma aleatoria uno de los mejores candidatos de dicha lista, que no será nece-
sariamente el mejor. La aleatoriedad sirve como mecanismo de diversificación en
GRASP.

No se garantiza que la solución generada por la fase de construcción de GRASP
sea un óptimo local respecto a una definición simple de vecindario. Por ello se
aplica búsqueda local para mejorar cada solución construida. La fase de búsqueda
local finaliza cuando no se encuentra una solución mejor en el vecindario de la
solución actual. GRASP se basa en realizar múltiples iteraciones y quedarse con
la mejor, por lo que no es especialmente beneficioso para el método el detenerse
demasiado en mejorar una solución dada. El éxito de esta segunda fase viene
determinado por la acertada elección de la estructura del vecindario, técnicas
eficientes de búsqueda en vecindarios, y la solución inicial.

GRASP, al igual que otros metaheuŕısticos, se ha combinado también con
Path Relinking, estrategia comentada en el punto 3.3.2. La idea es encadenar las
soluciones que se obtienen al final de la segunda fase, utilizando una para iniciar
la búsqueda y otra como gúıa.

Cross-Entropy

Los precedentes de CE los encontramos en Rubinstein R. (1997). CE es un
método para resolver problemas de optimización combinatoria, optimización con-
tinua con múltiples extremos y simulación de eventos poco frecuentes. Se basa en
la idea de transformar el problema de optimización determinista original en un
problema estocástico asociado y afrontar dicho problema asociado utilizando un
algoritmo adaptativo. Se construye una serie aleatoria de soluciones que conver-
gen probabiĺısticamente al óptimo o cerca del óptimo. Tras definir el problema
estocástico asociado CE emplea dos fases: 1. Generación de un conjunto de datos
aleatorios (trayectorias, vectores,..) según un mecanismo aleatorio espećıfico. 2.
Actualización de los parámetros del mecanismo aleatorio, en base a los datos para
producir una mejor muestra en la siguiente iteración.

La importancia de este método es que define una meticulosa estructura ma-
temática para obtener rápidamente normas de aprendizaje y actualización en
cierta forma “óptimas” basadas en teoŕıa de simulación avanzada. Hay que re-
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saltar que CE puede ser aplicado satisfactoriamente tanto a problemas deter-
mińısticos como aleatorios.
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1 Introducción

El término Búsqueda Tabú (Tabu Search - TS) fue introducido en 1986 por
Fred Glover en el mismo art́ıculo que introdujo el término metaheuŕıstica [5].
Los principios fundamentales de la búsqueda fueron elaborados en una serie de
art́ıculos de finales de los años 80 y principios de los 90, que fueron luego unificados
en el libro “Tabu Search” en 1997 [8]. El destacado éxito de la búsqueda tabú
para resolver problemas de optimización duros, especialmente aquellos que surgen
en aplicaciones del mundo real, ha causado una explosión de nuevas aplicaciones
durante los últimos años, que aparecen resumidas en [9].

La búsqueda tabú es una metaheuŕıstica que gúıa un procedimiento heuŕıstico
de búsqueda local en la búsqueda de optimalidad global. Su filosof́ıa se basa en
derivar y explotar una colección de estrategias inteligentes para la resolución de
problemas, basadas en procedimientos impĺıcitos y expĺıcitos de aprendizaje. El
marco de memoria adaptativa de la búsqueda tabú no sólo explota la historia
del proceso de resolución del problema, sino que también exige la creación de

*Este trabajo ha sido parcialmente financiado por el Ministerio de Ciencia y Tecnoloǵıa
(proyecto TIN2005-08404-C04-03 (70% son fondos FEDER)) y por el Gobierno de Canarias
(proyecto PI042004/088). La actividad desarrollada se enmarca dentro de los objetivos de la
red RedHeur (proyectoTIN2004-20061-E).
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estructuras para hacer posible tal explotación. De esta forma, los elementos
prohibidos en la búsqueda tabú reciben este estatus por la confianza en una
memoria evolutiva, que permite alterar este estado en función del tiempo y las
circunstancias. En este sentido es posible asumir que la búsqueda tabú está
basada en determinados conceptos que unen los campos de inteligencia artificial
y optimización.

Más particularmente, la búsqueda tabú está basada en la premisa de que para
clasificar un procedimiento de resolución como inteligente, es necesario que éste
incorpore memoria adaptativa y exploración responsiva. La memoria adaptativa
en búsqueda tabú permite la implementación de procedimientos capaces de rea-
lizar la búsqueda en el espacio de soluciones eficaz y eficientemente. Dado que
las decisiones locales están por tanto guiadas por información obtenida a lo largo
del proceso de búsqueda, la búsqueda tabú contrasta con diseños que por contra
conf́ıan en procesos semialeatorios, que implementan una forma de muestreo. La
memoria adaptativa también contrasta con los t́ıpicos diseños de memoria ŕıgidos
tales como las estrategias de ramificación y acotación.

El énfasis en la exploración responsiva considerada en la búsqueda tabú deriva
de la suposición de que una mala elección estratégica puede proporcionar más
información que una buena elección realizada al azar, dado que una elección
estratégica mala puede proporcionar pistas útiles sobre cómo guiar la búsqueda
hacia zonas prometedoras. Por lo tanto, la exploración responsiva integra los
principios básicos de la búsqueda inteligente; explota las caracteŕısticas de las
soluciones buenas a la vez que explora nuevas regiones prometedoras.

2 La estructura de la Búsqueda Tabú

2.1 Uso de memoria

Las estructuras de memoria de la búsqueda tabú funcionan mediante referencia
a cuatro dimensiones principales, consistentes en la propiedad de ser reciente, en
frecuencia, en calidad, y en influencia. Las memorias basadas en lo reciente
y en frecuencia se complementan la una a la otra para lograr el balance entre
intensificación y diversificación que todo proceso de búsqueda heuŕıstica debe
poseer. Discutiremos con más detalle los aspectos referentes a estas dos primeras
dimensiones de memoria a lo largo de este caṕıtulo. La dimensión de calidad hace
referencia a la habilidad para diferenciar la bondad de las soluciones visitadas a lo
largo del proceso de búsqueda. De esta forma, la memoria puede ser utilizada para
la identificación de elementos comunes a soluciones buenas o a ciertos caminos
que conducen a ellas. La calidad constituye un fundamento para el aprendizaje
basado en incentivos, donde se refuerzan las acciones que conducen a buenas
soluciones y se penalizan aquellas que, por contra, conducen a soluciones pobres.
La flexibilidad de las estructuras de memoria mencionadas hasta el momento

Rect@ Monográfico 3 (2007)
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permiten guiar la búsqueda en un entorno multi-objetivo, dado que se determina
la bondad de una dirección de búsqueda particular mediante más de una función.
Por último, la cuarta dimensión de memoria, referida a la influencia, considera
el impacto de las decisiones tomadas durante la búsqueda, no sólo en lo referente
a la calidad de las soluciones, sino también en lo referente a la estructura de
las mismas. Este último uso de memoria es una caracteŕıstica importante de la
búsqueda tabú que con frecuencia se olvida, pero que debeŕıa ser considerada
incluso en los diseños más simples como veremos a lo largo de este caṕıtulo.

El uso de memoria en la búsqueda tabú es tanto expĺıcita como impĺıcita.
En el primer caso, se almacenan en memoria soluciones completas, generalmente
soluciones élite visitadas durante la búsqueda, mientras que en el segundo caso, se
almacena información sobre determinados atributos de las soluciones que cambian
al pasar de una solución a otra. Aunque, en algunos casos, la memoria expĺıcita
es usada para evitar visitar soluciones más de una vez, esta aplicación es limitada
dado que es necesario la implementación de estructuras de memoria muy eficientes
para evitar requerimientos de memoria excesivos. De cualquier manera, estos dos
tipos de memoria son complementarios, puesto que la memoria expĺıcita permite
expandir los entornos de búsqueda usados durante un proceso de búsqueda local
mediante la inclusión de soluciones élite, mientras que la memoria basada en
atributos los reduce prohibiendo determinados movimientos.

2.2 Intensificación y Diversificación

Las estrategias de intensificación y diversificación constituyen dos elementos
altamente importantes en un proceso de búsqueda tabú. Las estrategias de in-
tensificación se basan en la modificación de reglas de selección para favorecer la
elección de buenas combinaciones de movimientos y carateŕısticas de soluciones
encontradas. Esto implica que es necesario identificar un conjunto de soluciones
élite cuyos buenos atributos puedan ser incorporados a nuevas soluciones crea-
das. La pertenencia al conjunto de soluciones élite se determina generalmente
atendiendo a los valores de la función objetivo comparados con la mejor solución
obtenida hasta el momento.

Por otro lado, las estrategias de diversificación tratan de conducir la búsqueda
a zonas del espacio de soluciones no visitadas anteriormente y generar nuevas
soluciones que difieran significativamente de las ya evaluadas.

2.3 Un ejemplo ilustrativo

Los problemas de permutaciones son una clase importante de problemas en
optimización, y ofrecen un modo muy útil para demostrar algunas de las con-
sideraciones que deben ser tratadas en el dominio combinatorio. Las instancias
clásicas de problemas de permutaciones incluyen los problemas del viajante de
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comercio, asignación cuadrática, secuenciación de la producción, y una variedad
de problemas de diseño. Como base para la ilustración, consideremos el problema
de secuenciación de tareas en una única máquina. El objetivo de este problema es
encontrar un orden para secuenciar las tareas en la máquina de tal forma que se
minimice el retraso total en la ejecución de las tareas. Cada tarea j, j = 1, 2, ..., n,
tiene asignados un tiempo de procesamiento pj y un d́ıa de finalización dj . De
forma adicional, se podŕıa considerar un valor de penalización por retardo en la
finalización de las tareas que dependeŕıa de la tarea considerada, wj . Por tanto,
la función a minimizar se expresa como

F =

n
∑

j=1

wj [Cj − dj ]
+,

donde Cj es el tiempo de finalización de la tarea j y [Cj−dj ]
+ = max{0, Cj−dj}.

El tiempo de finalización de una tarea j, Cj , es igual al tiempo de procesamiento
de la tarea j más la suma de los tiempos de procesamiento de todas las tareas
que se realizan antes que j.

El problema consiste en determinar el orden de secuenciación de las tareas
que minimiza el valor de la función objetivo F . Una secuenciación de las tareas,
que constituye una permutación, define completamente a una solución.

Nos centramos, por tanto, en el problema de secuenciación de tareas en
una única máquina para introducir e ilustrar los componentes básicos de la
búsqueda tabú. Supongamos que se consideran 6 tareas para su secuenciación
en la máquina. A modo de ilustración, supongamos que este problema de 6
tareas tiene tiempos de procesamiento dados por (5, 8, 2, 6, 10, 3), d́ıas de termi-
nación especificados por (9, 10, 16, 7, 20, 23), y penalizaciones por retraso wj = 1
para j = 1, 2, ..., 6. Deseamos diseñar un método capaz de encontrar una solución
óptima o cercana a la óptima explorando sólo un pequeño subconjunto de todas
las permutaciones posibles.

Primero asumimos que puede construirse una solución inicial para este pro-
blema de alguna manera inteligente, es decir, tomando ventaja de la estructura
espećıfica del problema. Supongamos que la solución inicial de nuestro problema
es la que aparece en la Figura 1.

Tareas

	 R
1 2 3 4 5 6

Figura 1: Permutación inicial

La ordenación de la Figura 1 especifica que la tarea 1 se realiza en primer
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Tareas
i j F valor del movimiento abs(di − dj)
1 2 40 1 9
1 3 42 3 7
1 4 38 -1 2
1 5 64 25 11
1 6 47 8 14
2 3 41 2 6
2 4 37 -2 3
2 5 49 10 10
2 6 39 0 13
3 4 42 3 9
3 5 54 15 4
3 6 48 9 7
4 5 43 4 13
4 6 38 -1 16
5 6 32 -7 3

Tabla 1: Entorno de Intercambios

lugar, seguida por la tarea 2, etc. El valor de la función objetivo para esta
solución es 39. Los métodos TS operan bajo el supuesto de que se puede construir
un entorno para identificar “soluciones adyacentes” que puedan ser alcanzadas
desde la solución actual. Los intercambios por pares son frecuentemente usados
para definir entornos en problemas de permutaciones, identificando movimientos
que conducen una solución a la siguiente. En nuestro problema, un intercambio
cambia la posición de dos tareas como se ilustra en la Figura 2. Por tanto, el
entorno completo de una solución en nuestro ejemplo ilustrativo está formado por
15 soluciones adyacentes que pueden ser obtenidas a partir de estos intercambios
tal como muestra el Cuadro 1.

	 R
6 2 3 4 5 1

Figura 2: Intercambio de las tareas 1 y 6

Tal como observamos en el Cuadro 1, asociado a cada intercambio hay un
valor de movimiento, que representa el cambio sobre el valor de la función ob-
jetivo como resultado del intercambio realizado. Los valores de los movimientos
generalmente proporcionan una base fundamental para evaluar la calidad de los
mismos, aunque también pueden ser importantes otros criterios. Un mecanismo
principal para explotar la memoria en la búsqueda tabú es clasificar un subcon-
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junto de movimientos en un entorno como prohibidos (o tabú). La clasificación
depende de la historia de la búsqueda, determinada mediante lo reciente o fre-
cuente que ciertos movimientos o componentes de soluciones, llamados atributos,
han participado en la generación de soluciones pasadas. Por ejemplo, un atributo
de un movimiento es la identidad del par de elementos que cambian posiciones
(en este caso, las dos tareas intercambiadas). Como base para evitar la búsqueda
desde combinaciones de intercambio repetidas usadas en el pasado reciente, in-
virtiendo potencialmente los efectos de movimientos anteriores por intercambios
que podŕıan devolver a posiciones previas, clasificaremos como tabú todos los
intercambios compuestos por cualquiera de los pares de tareas más recientes; en
este caso, para propósitos ilustrativos, las tres más recientes. Esto significa que
un par de tareas será tabú durante un peŕıodo de 3 iteraciones. Dado que inter-
cambiar las tareas 2 y 5 es lo mismo que intercambiar las tareas 5 y 2, ambos
intercambios pueden ser representados por el par (2, 5). Por lo tanto, se puede
usar una estructura de datos como la usada en la Figura 3.

2 3 4 5 6

1

2

3

4

5

�

Peŕıodo tabú res-
tante para el par
de tareas (2, 5)

Figura 3: Estructura de Datos Tabú

Cada celda de la estructura de la Figura 3 contiene el número de iteraciones
restantes hasta que las capas correspondientes puedan nuevamente intercambiar
posiciones. Por tanto, si la celda (2, 5) tuviera un valor de cero, entonces las
tareas 2 y 5 estaŕıan disponibles para intercambiar posiciones. Por otro lado, si la
celda tuviera un valor de 2, entonces las tareas no podŕıan intercambiar posiciones
durante las dos iteraciones siguientes (es decir, un intercambio que cambia estas
tareas es clasificado como tabú).

Para implementar restricciones tabú, debe tenerse en cuenta una excepción
importante: las restricciones tabú no son inviolables bajo cualquier circunstan-
cia. Cuando un movimiento tabú resultara en una solución mejor que cualquiera
visitada hasta ese momento, su clasificación tabú podŕıa ser reemplazada. Una
condición que permite que ocurra tal reemplazo se llama criterio de aspiración.
A continuación se muestran 7 iteraciones del procedimiento de búsqueda tabú
básico, que usa la restricción tabú de tareas emparejadas.
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Solución
actual

1

2

3

4

5

6
F = 39

Estructura
tabú

2 3 4 5 6

1

2

3

4

5

Primeros 5
candidatos

Valor de
movimiento

∗5, 6 −7

2, 4 −2

1, 4 −1

4, 6 −1

2, 6 0

Figura 4: Iteración 0

La solución de partida de la Figura 4 tiene un valor de la función objetivo
F = 39, y la estructura de los datos tabú está inicialmente vaćıa, es decir, está
llena de ceros, indicando que ningún movimiento está clasificado como tabú al
comienzo de la búsqueda. Después de evaluar los movimientos de intercambio
de candidatos, se muestran en la tabla para la iteración 0 los cinco primeros
movimientos (en términos de valores de movimiento). Para minimizar localmente
el retraso total en la ejecución de las tareas, intercambiamos las posiciones de las
tareas 5 y 6, como se indica a través del asterisco en la Figura 4. El decremento
total de este movimiento es igual a 7 unidades, con lo que el valor de la función
objetivo pasa a ser F = 32.

Solución
tabú

1

2

3

4

6

5
F = 32

Estructura
tabú

3

2 3 4 5 6

1

2

3

4

5

Primeros 5
candidatos

Valor de
movimiento

∗2, 4 −2

1, 4 −1

1, 2 1

2, 3 2

4, 6 2

Figura 5: Iteración 1

La nueva solución actual tiene un valor de función objetivo F = 32 (es decir,
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el retraso total anterior más el valor del movimiento seleccionado). La estructura
tabú de la Figura 5 ahora muestra que el intercambio de las posiciones de las
tareas 5 y 6 se proh́ıbe durante 3 iteraciones. El movimiento que proporciona la
mayor mejora en este paso es el intercambio de las tareas 2 y 4 con un decremento
de 2 unidades.

Solución
actual

1

4

3

2

6

5
F = 30

Estructura
tabú

2

3

2 3 4 5 6

1

2

3

4

5

Primeros 5
candidatos

Valor de
movimiento

∗1, 4 −2

1, 3 1

3, 4 2

T2, 4 2

2, 6 2

Figura 6: Iteración 2

La nueva solución actual tiene un retraso en la ejecución de las tareas de 30. En
esta iteración se clasifican como tabú dos intercambios como se indica mediante
las entradas distintas de cero en la estructura tabú de la Figura 6. Note que la
entrada (5, 6) ha disminuido de 3 a 2, indicando que su peŕıodo tabú original de 3
ahora tiene 2 iteraciones restantes. En este momento, el intercambio de las tareas
1 y 4 conduce a una nueva mejora en el valor de la función objetivo, disminuyendo
en dos unidades. La Figura 7 muestra ahora 3 movimientos clasificados como
tabú.

En este momento, ninguno de los candidatos tiene un valor de movimiento
negativo. Por lo tanto, se realiza un movimiento de no mejora. Dado que el primer
movimiento de no mejora es el inverso del movimiento ejecutado en la iteración
anterior, que está clasificado como tabú (indicado por T ), este movimiento no se
selecciona. Entonces se elige el intercambio de las tareas 1 y 3, como se indica en
la Figura 7.

Siguiendo el mismo procedimiento indicado hasta este momento, se realizaŕıan
las siguientes iteraciones mostradas en las Figuras 8 a 11. En estas últimas
iteraciones observamos que se realizan movimientos de no mejora para escapar de
la solución con valor objetivo F = 28, que parece ser un óptimo local.

Si durante el proceso explicado hubiera habido algún movimiento clasificado
como tabú que condujera a una solución con un retraso en la finalización de las
tareas menor que el de la mejor solución encontrada hasta el momento, se podŕıa
haber usado un criterio de aspiración. En este caso, hubiéramos usado el criterio

Rect@ Monográfico 3 (2007)
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Solución
actual

4

1

3

2

6

5
F = 28

Estructura
tabú

1

2

3

2 3 4 5 6

1

2

3

4

5

Primeros 5
candidatos

Valor de
movimiento

T1, 4 2

∗1, 3 2

2, 6 2

1, 2 3

2, 3 3

Figura 7: Iteración 3

Solución
actual

4

3

1

2

6

5
F = 30

Estructura
tabú

1

23

2 3 4 5 6

1

2

3

4

5

Primeros 5
candidatos

Valor de
movimiento

T1, 3 −2

∗3, 4 1

T1, 4 2

2, 6 2

1, 2 3

Figura 8: Iteración 4

de aspiración por objetivo, que selecciona como solución actual la que tenga un
menor valor objetivo, independientemente de que los movimientos requeridos para
alcanzarla sean tabú.

En algunas situaciones, puede ser deseable incrementar el porcentaje de mo-
vimientos disponibles que reciben una clasificación tabú. Además, a pesar del
tipo de restricción seleccionado, a menudo se obtienen mejores resultados por los
plazos tabú que vaŕıan dinámicamente, como se describe con posterioridad en este
caṕıtulo.

Valores de Movimiento y Estrategia de Lista de Candidatos. Dado que la
búsqueda tabú selecciona agresivamente los mejores movimientos admisibles (donde
el significado de mejor es afectado por la clasificación tabú y otros elementos a
ser indicados), debe examinar y comparar un número de opciones de movimiento.
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Solución
actual

3

4

1

2

6

5
F = 31

Estructura
tabú

12

3

2 3 4 5 6

1

2

3

4

5

Primeros 5
candidatos

Valor de
movimiento

T3, 4 −1

T1, 3 −1

T1, 4 1

∗2, 6 2

1, 2 3

Figura 9: Iteración 5

Solución
actual

3

4

1

6

2

5
F = 33

Estructura
tabú

1

2

3

2 3 4 5 6

1

2

3

4

5

Primeros 5
candidatos

Valor de
movimiento

T2, 6 −2

T3, 4 −1

T1, 3 −1

∗1, 4 1

3, 6 2

Figura 10: Iteración 6

Para muchos problemas, sólo una porción de los valores de movimiento cambia
de una iteración a otra, y a menudo estos valores cambiados pueden ser separa-
dos y actualizados muy rápidamente. Este elemento de mantener actualizaciones
eficientes es muy importante y en ocasiones ignorado. Por ejemplo, en la presente
ilustración puede ser útil almacenar una tabla valor movimiento(j,k), que alma-
cena el actual valor del movimiento para intercambiar las tareas j y k. Entonces
cuando se ejecuta un movimiento, una parte relativamente pequeña de esta ta-
bla (formada por los valores que cambian) puede ser modificada rápidamente,
y la tabla actualizada puede ser consultada para identificar movimientos que se
convierten en los nuevos candidatos superiores.

Si atendemos al Cuadro 1, observamos claramente que hay una variación muy
grande en la calidad de cada intercambio en el entorno definido para una solución.
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Solución
actual

3

1

4

6

2

5
F = 34

Estructura
tabú

1

2

3

2 3 4 5 6

1

2

3

4

5

Primeros 5
candidatos

Valor de
movimiento

T3, 4 −4

T2, 6 −2

T1, 4 −1

∗1, 3 0

3, 6 1

Figura 11: Iteración 7

Por lo tanto, parece útil eliminar algunas soluciones de calidad baja antes de
evaluar su valor de movimiento mediante un filtro. En nuestro ejemplo ilustrativo
de secuenciación de tareas en una máquina, podemos implementar una regla que
elimine aquellos movimientos para los que el valor absoluto de la diferencia de
los d́ıas de terminación sea mayor que 3. De esta forma, en los datos del Cuadro
1, evaluaŕıamos tan sólo 3 movimientos en vez de 15, generando aśı una lista de
candidatos.

Estructuras de Memoria Tabú Complementarias.

El complemento de memoria basada en lo reciente a la memoria basada en
frecuencia añade una componente que t́ıpicamente opera sobre un horizonte más
largo. En nuestro ejemplo ilustrativo, si continuamos con la traza anterior uti-
lizando únicamente información basada en las 3 iteraciones más recientes, ob-
servamos que se produce un ciclado de las soluciones. Para ilustrar una de las
aplicaciones útiles de largo peŕıodo de memoria basada en frecuencia, suponemos
que han sido ejecutadas 14 iteraciones TS, y que el número de veces que cada
par de tareas ha sido intercambiado se guarda en una estructura de datos tabú
expandida (Figura 12). La diagonal inferior de esta estructura ahora contiene los
contadores de frecuencia.

En la iteración actual (iteración 15), la memoria basada en lo reciente in-
dica que los últimos tres pares de tareas intercambiados fueron (1, 4), (2, 6), y
(3, 4). Los contadores de frecuencia muestran la distribución de movimientos a
través de las 14 primeras iteraciones. Usamos estos contadores para diversificar
la búsqueda, conduciéndola a nuevas regiones y rompiendo el ciclado. Nuestro
uso de información de frecuencia penalizará movimientos de no mejora mediante
la asignación de una penalización mayor a intercambios de pares de tareas con
mayores contadores de frecuencia. (Tı́picamente, estos contadores seŕıan norma-
lizados, por ejemplo mediante la división por el número total de iteraciones o su
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Solución
actual

3

1

4

6

2

5

F = 34 (Frecuente)

Estructura
tabú

(Reciente)

1

2

3

1

13

3

3

3

1 2 3 4 5 6

1

2

3

4

5

6

Primeros 5
candidatos

Valor

Valor
Penalizado

T3, 4−4 −
T2, 6−2 −
T1, 4−1 −

1, 3 0 3

∗3, 6 1 1

Figura 12: Iteración 15

máximo valor). Esto se ilustra en el ejemplo presente simplemente sumando el
valor de frecuencia al valor del movimiento asociado.

La lista de candidatos superiores para la iteración 15 muestra que el movi-
miento de máxima mejora es el intercambio (3, 4), pero dado que este par tiene
un peŕıodo tabú residual, es clasificado tabú. Lo mismo sucede con los movi-
mientos (2, 6) y (1, 4). El movimiento (1, 3) tiene un valor de 0, y pudiera ser
en otro caso el siguiente preferido, excepto si sus tareas asociadas han sido in-
tercambiadas frecuentemente durante la historia de la búsqueda (de hecho, más
frecuentemente que cualquier otro par de tareas). Por lo tanto, el movimiento es
penalizado fuertemente y pierde su atractivo. El intercambio de las tareas 3 y 6
es, por tanto, seleccionado como el mejor movimiento en la iteración actual.

La estrategia de imponer penalizaciones bajo condiciones particulares se usa
para preservar la agresividad de la búsqueda. Las funciones de penalización en
general se diseñan para justificar no sólo frecuencias sino también valores de
movimientos y ciertas medidas de influencia.

Además, las frecuencias definidas sobre diferentes subconjuntos de soluciones
anteriores, particularmente subconjuntos de soluciones élite formados por óptimos
locales de alta calidad, dan lugar a estrategias complementarias llamadas estra-
tegias de intensificación. Las estrategias de intensificación y diversificación inte-
ractúan para proporcionar puntos de apoyo fundamentales de memoria de largo
plazo en búsqueda tabú. El modo en el que tales elementos son capaces de crear
métodos realzados de la búsqueda, extendiendo el enfoque simplificado del ejem-
plo precedente, se elabora en las siguientes secciones.
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3 Fundamentos de la Búsqueda Tabú: Memoria
a Corto Plazo

Antes de comenzar a detallar los fundamentos de la búsqueda tabú, es ne-
cesario disponer de algunas definiciones y convenciones básicas. Expresemos un
problema de optimización matemática de la siguiente forma:

min c(x)
Sujeto a x ∈ X

La función objetivo c(x) puede ser lineal o no lineal, y la condición x ∈ X
resume las restricciones impuestas sobre el vector x. Estas restricciones pueden
incluir desigualdades lineales o no lineales, y pueden forzar a algunas o a todas
las componentes de x a tomar valores discretos.

En muchas aplicaciones de optimización combinatoria, el problema de interés
no es expĺıcitamente formulado como lo hemos mostrado. En estos casos, esta
formulación puede ser concebida como un código para otra formulación. El re-
querimiento x ∈ X , por ejemplo, puede especificar condiciones lógicas o inter-
conexiones que seŕıa dif́ıcil formular matemáticamente, y que es mejor dejarlas
como estipulaciones verbales (por ejemplo, en forma de reglas). En ocasiones, en
estas instancias, las variables son simplemente códigos para condiciones o asigna-
ciones que reciben un valor de uno para codificar la asignación de un elemento u
a una posición v, y que recibe un valor de cero para indicar que no se produce tal
asignación.

3.1 Búsqueda por entorno

La búsqueda tabú puede ser caracterizada mediante referencia a la búsqueda
por entornos, aunque es importante destacar que la búsqueda en el entorno tiene
un significado más amplio en búsqueda tabú que en algunas otras estrategias de
la literatura de las metaheuŕısticas. Una representación de búsqueda por entorno
identifica, para cada solución x ∈ X , un conjunto asociado de vecinos, N(x) ⊂ X ,
llamado entorno de x. En búsqueda tabú, los entornos normalmente se asumen
simétricos, es decir, x′ es un vecino de x si y sólo si x es un vecino de x′. Los
pasos en la búsqueda por entorno se muestran en la Figura 13.

3.2 Memoria y Clasificaciones Tabú

La idea de explotar ciertas formas de memoria adaptativa para controlar el
proceso de la búsqueda es el tema central subyacente en la búsqueda tabú. Una
diferencia importante que surge en búsqueda tabú es la distinción entre memoria
a corto plazo y memoria a largo plazo. Cada uno de estos tipos de memoria va
acompañado de sus propias estrategias especiales. Sin embargo, el efecto de ambos
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Método de Búsqueda en el Entorno:

Paso 1 (Inicialización).

(A) Seleccionar una solución de arranque xActual ∈ X .

(B) Almacenar la mejor solución actual conocida haciendo xMejor =
xActual y definiendo MejorCoste = c(xMejor).

Paso 2 (Elección y finalización).

Elegir una solución xSiguiente ∈ N(xActual). Si los criterios de elección
empleados no pueden ser satisfechos por ningún miembro de N(xActual),
o si se aplican otros criterios de parada, entonces el método para.

Paso 3 (Actualización).

Rehacer xActual = xSiguiente, y si c(xActual) < MejorCoste, ejecutar el
paso 1(B). Volver al paso 2.

Figura 13: Método de Búsqueda en el Entorno.

tipos de memoria puede verse como la modificación de la estructura de entorno
de la solución actual. El efecto de tal memoria puede ser previsto estipulando que
la búsqueda tabú mantiene una historia selectiva H de los estados encontrados
durante la búsqueda, y reemplaza N(xActual) por un entorno modificado que
puede ser denotado como N(H,xActual). La historia determina, por tanto, qué
soluciones pueden ser alcanzadas por un movimiento desde la solución actual,
seleccionando xSiguiente de N(H,xActual).

En las estrategias TS basadas en consideraciones de peŕıodo corto o memoria
a corto plazo, N(H,xActual) es generalmente un subconjunto de N(xActual), y
la clasificación tabú sirve para identificar elementos de N(xActual) excluidos de
N(H,xActual). En las estrategias de peŕıodo intermedio y largo, N(H,xActual)
puede contener soluciones que no estén en N(xActual), generalmente solucio-
nes élite seleccionadas (óptimos locales de alta calidad), encontradas durante el
proceso de búsqueda. Estas soluciones élite se identifican t́ıpicamente como ele-
mentos de un grupo local en estrategias de intensificación de peŕıodo intermedio,
y como elementos de diferentes grupos en estrategias de diversificación de peŕıodo
largo o largo plazo. Además, las componentes de las soluciones élite, en contraste
con las soluciones en śı mismas, se incluyen entre los elementos que pueden ser
conservados e integrados para proporcionar entradas al proceso de búsqueda.

Un proceso de búsqueda local basado únicamente en estrategias a corto plazo
puede permitir que una solución sea visitada más de una vez, pero es probable
que el entorno reducido sea diferente en cada una de las exploraciones. Cuando
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la memoria a corto plazo va acompañada de memoria a largo plazo, se reduce en
gran medida la probabilidad de tomar decisiones que visiten repetidamente sólo
un subconjunto limitado del espacio de soluciones.

La búsqueda tabú también usa historia para generar una función de evaluación
modificada de las soluciones accesibles. Formalmente, podemos expresarlo di-
ciendo que TS reemplaza la función objetivo c(x) por una función c(H,x), que
tiene el propósito de evaluar la calidad relativa de las soluciones accesibles actual-
mente, en función de la historia del proceso. Esta función modificada es relevante
porque TS usa criterios de decisión agresivos que buscan un mejor xSiguiente, es
decir, que proporcionan un mejor valor de c(H,xSiguiente), sobre un conjunto
candidato de N(H,xAhora).

Para problemas grandes, donde N(H,xActual) puede tener muchos elemen-
tos, o para problemas donde estos elementos pueden ser costosos de examinar, la
orientación de elección agresiva de TS hace altamente importante aislar un sub-
conjunto candidato del entorno, y examinar este subconjunto en vez del entorno
completo. Esto puede realizarse en etapas, permitiendo que el subconjunto can-
didato se extienda si no se encuentran alternativas que satisfagan los niveles de
aspiración. Debido a la importancia del papel del subconjunto candidato, nos refe-
rimos a este subconjunto expĺıcitamente por la notación Candidato N(xActual).
Entonces, el procedimiento de búsqueda tabú puede ser expresado como se mues-
tra en la Figura 14.

Método de Búsqueda Tabú:

Paso 1 (Inicialización).
Comenzar con la misma inicialización usada para la Búsqueda por
Entorno, y empezar con el expediente de la historia H vaćıo.

Paso 2 (Elección y finalización).

Determinar Candidato N(xActual) como un subconjunto de
N(H,xActual). Seleccionar xSiguiente de Candidato N(xActual)
para minimizar c(H,x) sobre este conjunto (xSiguiente es llamado
elemento de evaluación mayor de Candidato N(xActual) ). Terminar
mediante un criterio de parada seleccionado.

Paso 3 (Actualización).

Ejecutar la actualización por el Método de Búsqueda en el Entorno, y ac-
tualizar el expediente de la historia H .

Figura 14: Método de Búsqueda Tabú.

La esencia del método de búsqueda tabú depende de cómo se defina y uti-
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lice la historia almacenada H , y de cómo se determinen el entorno candidato
Candidato N(xActual) y la función evaluación c(H,x). En los casos más simples,
que suponen gran parte de las implementaciones que aparecen en la literatura,
podemos considerar que Candidato N(xActual) constituye todo N(H,xActual),
y que c(H,x) = c(x), ignorando enfoques de investigación del entorno y la me-
moria a largo plazo que introduce soluciones élite en la determinación de los
movimientos. Sin embargo, las estrategias de listas de candidatos que reducen
el espacio de movimientos considerados son enormemente importantes para una
implementación efectiva [8].

Las funciones de memoria a corto plazo constituyen uno de los elementos más
importantes de la metodoloǵıa de búsqueda tabú. Estas funciones aportan a la
búsqueda la oportunidad de continuar más allá de la optimalidad local permi-
tiendo la ejecución de movimientos de no mejora ligados a la modificación de
la estructura de entorno de las siguientes soluciones. Sin embargo, en vez de
almacenar soluciones completas, como en el enfoque de memoria expĺıcita, es-
tas estructuras de memoria generalmente están basadas en el almacenamiento de
atributos (memoria atributiva). Además, la memoria a corto plazo suele estar
basada en la historia reciente de la trayectoria de búsqueda.

Memoria Atributiva

Un atributo de un movimiento de xActual a xSiguiente, o de un movimiento
ensayo de xActual a una solución tentativa xEnsayo, puede abarcar cualquier
aspecto que cambie como resultado del movimiento. Algunos tipos naturales de
atributos aparecen en la Figura 15.

Atributos de Movimiento Ilustrativos

para un Movimiento xActual a xEnsayo:

(A1) Cambio de una variable seleccionada xj de 0 a 1.

(A2) Cambio de una variable seleccionada xk de 1 a 0.

(A3) El cambio combinado de (A1) y (A2) tomados juntos.

(A4) Cambio de una función g(xActual) a g(xEnsayo) (donde g puede repre-
sentar una función que ocurre naturalmente en la formulación del problema
o una función que es creada estratégicamente).

Figura 15: Atributos de Movimiento Ilustrativos.

Un movimiento simple evidentemente puede dar lugar a atributos múltiples.
Por ejemplo, un movimiento que cambia los valores de dos variables simultáneamente
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puede dar lugar a cada uno de los tres atributos (A1), (A2), y (A3), además de
otros atributos de la forma indicada.

Cuando nos referimos a asignar valores alternativos a una variable seleccio-
nada xj de x, y particularmente a asignar valores 0 y 1 a una variable binaria,
entenderemos que esto puede referirse a una variedad de operaciones tales como
añadir o eliminar aristas de un grafo, asignar o eliminar un servicio de una locali-
zación particular, cambiar la posición de procesamiento de un trabajo sobre una
máquina, y aśı sucesivamente.

Los atributos de movimientos almacenados son a menudo usados en búsqueda
tabú para imponer restricciones, que evitan que sean elegidos ciertos movimientos
que invertiŕıan los cambios representados por estos atributos. Más precisamente,
cuando se ejecuta un movimiento de xActual a xSiguiente que contiene un atri-
buto e, se mantiene un registro para el atributo inverso que denotamos por ē,
para prevenir que ocurra un movimiento que contenga algún subconjunto de tales
atributos inversos. En la Figura 16 se muestran algunos tipos de restricciones
tabú empleadas frecuentemente.

Restricciones Tabú Ilustrativas.

Un movimiento es tabú si:

(R1) xj cambia de 1 a 0 (donde xj cambió previamente de 0 a 1).

(R2) xk cambia de 0 a 1 (donde xk cambió previamente de 1 a 0).

(R3) Ocurre al menos una de las restricciones (R1) y (R2). (Esta condición es
más restrictiva que (R1) o (R2) separadamente, es decir, hace más movi-
mientos tabú).

(R4) Ocurren (R1) y (R2). (Esta condición es menos restrictiva que (R1) o (R2)
por separado, es decir, hace menos movimientos tabú).

Figura 16: Restricciones Tabú Ilustrativas.

3.3 Memoria basada en lo Reciente

La memoria a corto plazo más utilizada generalmente en la literatura almacena
los atributos de las soluciones que han cambiado en el pasado reciente. Este tipo
de memoria a corto plazo se denomina memoria basada en lo reciente. La forma
más habitual de explotar este tipo de memoria es etiquetando los atributos selec-
cionados de soluciones visitadas recientemente como tabú-activos. Se considera
que un atributo es tabú-activo cuando su atributo inverso asociado ha ocurrido

Rect@ Monográfico 3 (2007)



46 Introducción a la Búsqueda Tabú

dentro de un intervalo estipulado de lo reciente. Un atributo que no es tabú-
activo se llama tabú-inactivo. De este forma, aquellas soluciones que contengan
atributos tabú-activos, o combinaciones particulares de los mismos, se convierten
en soluciones tabú o prohibidas. Tal como hemos mencionado anteriormente, esto
impide que se visiten soluciones ya evaluadas en el pasado reciente.

La condición de ser tabú-activo o tabú-inactivo se llama el estado tabú de
un atributo. En algunas ocasiones un atributo se llama tabú o no tabú para
indicar que es tabú-activo o tabú-inactivo. Es importante tener en cuenta que un
movimiento puede contener atributos tabú-activos, pero no ser tabú en śı mismo
si estos atributos no son del número o clase correctas para activar una restricción
tabú.

Aunque las restricciones tabú más comunes, cuyos atributos son los inversos
de aquellos que definen las restricciones, tienen generalmente el objetivo de pre-
venir el ciclado, es necesario precisar que el objetivo final de la búsqueda tabú no
es evitar ciclos. Es importante tener en cuenta que en algunas instancias, un buen
camino de búsqueda resultará en volver a visitar una solución encontrada ante-
riormente. El objetivo más general es continuar estimulando el descubrimiento
de nuevas soluciones de alta calidad.

3.4 Peŕıodo Tabú

El uso de la memoria basada en lo reciente que aparece en la literatura
con mayor frecuencia se gestiona mediante la creación de una o varias listas
tabú. Estas listas almacenan los atributos tabú-activos e identifican, expĺıcita
o impĺıcitamente, estados tabú actuales. El peŕıodo tabú puede ser diferente para
diferentes tipos o combinaciones de atributos, y con un mayor nivel de desarrollo,
pueden variar también sobre diferentes estados del proceso de búsqueda. Estas
variaciones del peŕıdo tabú de los atributos hace posible crear diferentes formas
de balance entre las estrategias de memoria a corto y a largo plazo.

Por lo tanto, para determinar cuándo son aplicables determinadas restric-
ciones tabú, obtenidas a partir de los estados tabú de deteminados atributos,
es necesario disponer de funciones de memoria que permitan almacenarlos efi-
caz y eficientemente. Dos ejemplos de funciones de memoria basadas en lo re-
ciente, usadas frecuentemente en la literatura, se especifican mediante los vectores
ComienzoTabu(e) y FinTabu(e), donde e vaŕıa sobre atributos relevantes a una
aplicación particular. Estos vectores identifican, respectivamente, las iteraciones
de comienzo y finalización del peŕıodo tabú para el atributo e, acotando aśı el
peŕıodo durante el cual e es tabú-activo.

La regla para identificar valores apropiados para ComienzoTabu(e) y
FinTabu(e) resulta de mantener los atributos en cada iteración que son compo-
nentes del movimiento actual. En particular, en la iteración i, si e es un atributo
del movimiento actual, se define un estado tabú para evitar inversiones. Enton-
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ces ComienzoTabu(e) = i + 1, indicando que el atributo inverso ē comienza su
estado tabú-activo al comienzo de la siguiente iteración. El atributo ē mantendrá
este estado a lo largo de su peŕıodo tabú, que denotamos por t. Esto produce
FinTabu(e) = i+ t, tal que el peŕıodo para ē se extiende sobre las t iteraciones
de i+ 1 a i+ t.

Como resultado, es fácil comprobar si un atributo arbitrario es activo, simple-
mente controlando si FinTabu(e) ≥ IteracionActual. Inicializando FinTabu(e) =
0 para todos los atributos nos aseguramos de que FinTabu(e) < IteracionActual,
y por lo tanto que el atributo e es tabú-inactivo, hasta que se realice la ac-
tualización especificada previamente. Esto sugiere que necesitamos mantener
sólo un único vector FinTabu(e) para proporcionar información sobre el es-
tado tabú. Sin embargo, veremos que surgen situaciones en las que es valioso
mantener ComienzoTabu(e), e inferir FinTabu(e) añadiendo un valor apropiado
de t (computado actualmente, o preferiblemente extráıdo de una secuencia pre-
almacenada), o mantener FinTabu(e) como un vector separado.

Independientemente de la estructura de datos usada, la cuestión clave para
crear el estado tabú usando memoria basada en lo reciente es determinar un “buen
valor” de t o peŕıodo tabú. Se ha demostrado emṕıricamente que un buen valor
de peŕıodo tabú depende del tamaño del ejemplo de problema que se aborda.
Sin embargo, no se ha diseñado ninguna regla estándar que determine un peŕıodo
tabú efectivo para todas las clases de problemas, en parte porque un peŕıodo tabú
apropiado depende de la regla de activación tabú usada. Para una determinada
clase de problemas es relativamente sencillo determinar peŕıodos tabú y reglas
de activación adecuadas mediante experimentación. Es posible reconocer que un
peŕıodo tabú es muy pequeño para una clase de problemas cuando se detectan
repetitivos valores de la función objetivo, lo cual sugiere la aparición de ciclado
en el proceso de búsqueda. De la misma forma, se detecta que un peŕıodo tabú
es muy grande cuando se produce un deterioro en la calidad de las soluciones
encontradas. Es posible, por tanto, establecer un rango de peŕıodos intermedios
para obtener un buen comportamiento de la búsqueda. Una vez obtenido este
rango de peŕıodos tabú, un modo de proceder es seleccionar diferentes valores del
rango en iteraciones diferentes.

Los elementos de la memoria a corto plazo mencionados hasta el momento,
combinados con consideraciones de memoria a largo plazo, que se discutirán con
más detalle en la siguiente sección, hacen de la búsqueda tabú un método con
gran poder. Sin embargo, tal como podemos comprobar a partir de muchas de las
aplicaciones que aparecen en la literatura, el enfoque inicial de memoria a corto
plazo por śı mismo es capaz de generar soluciones de alta calidad.

Las reglas para determinar el peŕıodo tabú, t, se clasifican en estáticas y
dinámicas (Figura 17). Las reglas estáticas eligen un valor para t que se mantiene
fijo a lo largo de la búsqueda. Las reglas dinámicas permiten que el valor de t
vaŕıe. La variación del peŕıodo tabú durante el proceso de búsqueda proporciona
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un método efectivo para inducir un balance entre examinar una región en detalle
y mover la búsqueda hacia regiones del espacio diferentes.

Reglas Ilustrativas para Crear Peŕıodo Tabú (Basado en lo Reciente)

Reglas Estáticas Elegir t como una constante tal que t = 7 o t =
√
n, donde n

es una medida de la dimensión del problema.

Reglas Dinámicas

Dinámico Simple: Elegir t para variar (aleatoriamente o mediante un
patrón sistemático) entre cotas tmin y tmax, tal que tmin = 5 y tmax = 7 o
tmin = .9

√
n y tmax = 1.1

√
n.

Dinámico Atributo Dependiente: Elegir t como en la regla dinámica
simple, pero determinar tmin y tmax para ser mayores para aquellos atri-
butos que son más atractivos; por ejemplo, basados en consideraciones de
calidad o de influencia.

Figura 17: Reglas Ilustrativas para Crear Peŕıodo Tabú.

Los valores indicados, tales como 7 y
√
n, son sólo para propósitos ilustrativos,

y representan parámetros cuyos valores preferidos debeŕıan ser establecidos me-
diante experimentación para una clase particular de problemas, tal como hemos
indicado anteriormente. En ocasiones, es apropiado permitir que diferentes tipos
de atributos definiendo una restricción tabú tengan diferentes valores de peŕıodo
tabú. Por ejemplo, algunos atributos pueden contribuir más fuertemente a una
restricción tabú que otros, y debeŕıa asignárseles un peŕıodo tabú más pequeño
para impedir hacer la restricción demasiado severa.

Para ilustrarlo, consideremos el problema de identificar un subconjunto óptimo
de m ı́tems de un conjunto mucho mayor de n ı́tems. Supongamos que cada
movimiento consiste en intercambiar uno o un número pequeño de ı́tems en el
subconjunto con un número igual fuera del subconjunto, para crear un nuevo
subconjunto de m ı́tems. Además de esto, supongamos también que se usa una
restricción tabú para prohibir un movimiento si contiene un ı́tem añadido reciente-
mente o recientemente eliminado, donde el peŕıodo tabú proporciona el significado
de recientemente.

Si el peŕıodo para ı́tems añadidos o eliminados es el mismo, la restricción
anterior puede ser muy ladeada. En particular, cuando otros factores son iguales,
evitar eliminar ı́tems del subconjunto es mucho más restrictivo que evitar que sean
añadidos ı́tems que no están en el mismo, dado que hay menos contenido que en el
subconjunto exterior. Además, evitar que elementos añadidos al subconjunto sean
eliminados por un tiempo relativamente largo puede inhibir significativamente
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las opciones disponibles y, por lo tanto, el peŕıodo para estos elementos debeŕıa
ser pequeño en comparación al peŕıodo para evitar que sean añadidos elementos
eliminados del subconjunto, usando reglas estáticas o dinámicas.

3.5 Criterios de Aspiración

Otro de los elementos fundamentales que permite al método de búsqueda
tabú alcanzar sus mejores niveles de ejecución es la introducción de los criterios
de aspiración durante el proceso de búsqueda. Los criterios de aspiración se
introducen para determinar cuándo se pueden reemplazar las restricciones tabú,
eliminando aśı la clasificación tabú aplicada a un movimiento. Aunque gran parte
de las aplicaciones que encontramos en la literatura emplean únicamente un tipo
simple de criterio de aspiración, que consiste en eliminar una clasificación tabú
de un movimiento de ensayo cuando el movimiento conduce a una solución mejor
que la mejor obtenida hasta ahora, hay otros criterios de aspiración efectivos para
mejorar la búsqueda.

Una base para uno de estos criterios surge al introducir el concepto de in-
fluencia, que mide el grado de cambio inducido en la estructura de la solución o
en la factibilidad. Esta noción puede ser ilustrada para el problema de distribuir
objetos desigualmente pesados entre cajas, donde el objetivo es dar a cada caja
aproximadamente el mismo peso. Un movimiento de alta influencia, que cambia
significativamente la estructura de la solución actual, se ejemplifica mediante un
movimiento que transfiera un objeto muy pesado de una caja a otra. Tal movi-
miento puede no mejorar la solución actual, siendo menos probable conducir a una
mejora cuando la solución actual sea relativamente buena. Se realizarán movi-
mientos de baja influencia mientras existan posibilidades de mejora significantes.
En el momento en el que se carezca de movimientos de mejora, los criterios de as-
piración cambian para dar un mayor peso a los movimientos influyentes. Además,
una vez que se ha realizado un movimiento influyente, cabe pensar que nos hemos
desplazado a una región diferente del espacio de búsqueda y, por tanto, debeŕıan
eliminarse las restricciones tabú establecidas previamente para movimientos me-
nos influyentes. Estas consideraciones de influencia de movimiento interactúan
con consideraciones de región y dirección de búsqueda.

Distinguimos entre aspiraciones de movimiento y aspiraciones de atributo.
Cuando se satisface una aspiración de movimiento, se revoca la clasificación tabú
del movimiento. De la misma forma, cuando se sastisface una aspiración de atri-
buto, se revoca el estado tabú-activo del atributo. En el último caso el movimiento
principal puede no cambiar su clasificación tabú, dependiendo de si la restricción
tabú se activa a partir de más de un atributo.

Los siguientes criterios determinan la admisibilidad de una solución ensayo,
xEnsayo, como un candidato a ser considerado, donde xEnsayo es generado por
un movimiento que ordinariamente seŕıa clasificado tabú.
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Criterios de Aspiración Ilustrativos

Aspiración por Defecto: Si todos los movimientos disponibles están cla-
sificados tabú, y no se han hecho admisibles mediante algunos otros
cirterios de aspiración, entonces se selecciona el movimiento “menos
tabú”. (Por ejemplo, seleccionamos un movimiento que pierda su cla-
sificación tabú por el menor incremento en el valor de IteraciónActual,
o por una aproximación a esta condición).

Aspiración por objetivo:

Forma Global: Se satisface una aspiración de movimiento, permitiendo
que xEnsayo sea un candidato para la selección, si c(xEnsayo) <
MejorCoste.

Forma Regional: Subdividimos el espacio de búsqueda en regiones R ⊆
X , identificadas mediante cotas sobre los valores de funciones g(x) (o
por intervalos de tiempo de búsqueda). Denotemos porMejorCoste(R)
el mı́nimo c(x) encontrado en R. Entonces para xEnsayo ∈ R, se sa-
tisface una aspiración de movimiento (para moverse hacia xEnsayo)
si c(xEnsayo) < MejorCoste(R).

Aspiración por Dirección de Búsqueda: Sea direccion(e) = mejora
si el movimiento más reciente conteniendo a ē fue un movimiento de
mejora, y direccion(e) = nomejora, en otro caso. (direccion(e) y
FinTabu(e) se fijan a sus valores actuales en la misma iteración). Se
satisface una aspiración de atributo para e (haciendo a e tabú-inactivo)
si direccion(e) = mejora y el movimiento ensayo actual es un movi-
miento de mejora, es decir, si c(xEnsayo) < c(xActual).

Aspiración por Influencia: Sea influencia(e) = 0 ó 1 según si el movi-
miento que establece el valor de ComienzoTabu(e) es un movimiento
de baja influencia o un movimiento de alta influencia. (influencia(e)
se fija a la vez que ComienzoTabu(e)). Además, sea Ultima(L), para
L = 0 ó 1, igual a la iteración más reciente en la que fue realizado un
movimiento de nivel de influencia L. Entonces una aspiración de atri-
buto para e se satisface si influencia(e) = 0 y ComienzoTabu(e) <
Ultima(1). Para múltiples niveles de influencia L = 0, 1, 2, ..., la
aspiración para e se satisface si hay un L > influencia(e) tal que
ComienzoTabu(e) < Ultima(L).

Las aspiraciones por Dirección de la Búsqueda y por Influencia proporcionan
aspiraciones de atributos en vez de aspiraciones de movimientos. En la mayoŕıa
de los casos, las aspiraciones de atributos y movimientos son equivalentes. Sin
embargo, se emplean diversos medios para probar estas dos clases de aspiraciones.
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Refinamientos de los Criterios de Aspiración

Algunas mejoras de los criterios ilustrados anteriormente proporcionan una
oportunidad para realzar la potencia de la búsqueda tabú para aplicaciones que
son más complejas, o que ofrecen una recompensa por soluciones de muy alta
calidad. En lo que sigue identificamos algunas de las posibilidades para alcanzar
esto.

La creación de un estado tabú que vaŕıe por grados, más que simplemente
señalar un atributo para ser tabú-activo o tabú-inactivo, conduce a un refina-
miento adicional de Aspiración por Dirección de Búsqueda y Aspiración por In-
fluencia. El estado tabú graduado está impĺıcito en las variantes probabiĺısticas
de la búsqueda tabú, donde el estado se expresa como una función de cómo un
atributo se ha convertido recientemente o frecuentemente en tabú-activo y tabú-
inactivo. Sin embargo, para emplear esta idea de realzar los criterios de aspiración
precedentes, creamos un único estado tabú intermedio que cae entre los dos es-
tados de tabú-activo y tabú-inactivo. En particular, cuando se satisface una
aspiración para un atributo que en otro caso es tabú-activo, lo llamamos atributo
tabú pendiente.

Un movimiento que seŕıa clasificado tabú si sus atributos tabú pendientes
fueran tratados como tabú-activos, pero que no seŕıa clasificado tabú en otro caso,
es llamado movimiento tabú pendiente. Un movimiento tabú pendiente puede ser
tratado en uno de dos modos. En el enfoque menos restrictivo, tal movimiento
no se previene de ser seleccionado, pero su estado cambia de tal manera que sólo
es candidato para selección si no existen movimientos de mejora excepto aquellos
que son tabú. En el enfoque más moderado, un movimiento tabú pendiente debe
ser, además, un movimiento de mejora para ser calificado para selección.

Aspiración por Admisibilidad Fuerte. Las nociones precedentes conducen a
un tipo adicional de aspiración. Definimos un movimiento como fuertemente
admisible si:

(1) es admisible para ser seleccionado y no conf́ıa en criterios de aspiración para
calificar para admisibilidad, o

(2) califica para admisibilidad basado en la Aspiración Global por Objetivo, sa-
tisfaciendo
c(xEnsayo) < MejorCoste.

La desigualdad UltimaNomejora < UltimaFuertementeAdmisible de la
condición de aspiración precedente implica, por un lado, que se ha realizado un
movimiento de mejora fuertemente admisible desde el último movimiento de no
mejora y, por otro lado, que actualmente la búsqueda está generando una secuen-
cia de mejora.

Este tipo de aspiración asegura que el método siempre procederá a un óptimo
local siempre que se cree una secuencia de mejora que contenga al menos un
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Aspiración por Admisibilidad Fuerte: Sea UltimaNomejora igual a la ite-
ración más reciente en la que fue realizado un movimiento de no mejora,
y sea UltimaFuertementeAdmisible igual a la iteración más reciente en
la que fue realizado un movimiento fuertemente admisible. Entonces, si
UltimaNomejora < UltimaFuertementeAdmisible, re-clasificamos cada
movimiento tabú de no mejora como un movimiento tabú pendiente (per-
mitiendo por tanto que sea un candidato para selección si no existe otro
movimiento de mejora).

movimiento fuertemente admisible. De hecho, la condición (2) que define un
movimiento fuertemente admisible puede ser eliminada sin alterar este efecto,
dado que una vez que se usa el criterio c(xEnsayo) < MejorCoste para justificar
una selección de movimiento, entonces continuará siendo satisfecho por todos
los movimientos de mejora en iteraciones subsiguientes hasta que se alcance un
óptimo local.

Consideraciones Especiales para la Aspiración por Influencia

El criterio de Aspiración por Influencia puede ser modificado para crear un
impacto considerable sobre su efectividad para ciertos tipos de aplicaciones. La
afirmación de esta aspiración deriva de la observación de que un movimiento
caracteŕısticamente es influyente en virtud de contener uno o más atributos in-
fluyentes. Bajo tales condiciones, es apropiado considerar niveles de influencia
definidos sobre los atributos, expresado por influencia(e). En otros casos, sin
embargo, un movimiento puede derivar su influencia de la combinación única de
los atributos involucrados, y entonces la Aspiración por Influencia preferiblemente
transforma una aspiración de movimiento en vez de una aspiración de atributo.

Más significativamente, en muchas aplicaciones, la influencia depende de una
forma de conectividad, haciendo a sus efectos ser expresados principalmente sobre
un rango particular. Llamaremos a este rango esfera de influencia del movimiento
o atributo asociado. Por ejemplo, en el problema de distribución de objetos entre
cajas, un movimiento que intercambia objetos entre dos cajas tiene una esfera
de influencia relativamente estrecha, afectando sólo a aquellos movimientos fu-
turos que transfieran un objeto dentro o fuera de una de estas dos cajas. Por
consiguiente, bajo tales circunstancias, la Aspiración por Influencia debeŕıa estar
limitada a modificar el estado tabú de atributos o la clasificación tabú de los
movimientos que caen dentro de una esfera de influencia asociada. En el ejemplo
de intercambiar objetos entre cajas, los atributos hechos tabú-inactivo debeŕıan
ser restringidos a DesdeAtributos, asociados con mover un objeto fuera de una
de las dos cajas y HaciaAtributos, asociados con mover un objeto dentro de una
de estas cajas. El cambio del estado tabú continúa dependiendo de las condi-
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ciones conocidas previamente. La influencia del atributo (o movimiento que lo
contenga) debe ser menor que la de un movimiento anterior, y la iteración para
el atributo debe preceder a la iteración sobre la cual ocurrió el movimiento influ-
yente anterior. Estas condiciones pueden ser registradas colocando un indicador
para ComienzoTabu(e) cuando se ejecuta el movimiento influyente, sin tener que
comprobar otra vez para ver si e es afectado por tal movimiento. Cuando a
ComienzoTabu(e) se le reasigna un nuevo valor, el indicador es eliminado.

Como sugieren las observaciones precedentes, son extremadamente importan-
tes las medidas de la influencia del movimiento y las caracterizaciones asociadas
de esferas de influencia. Además, debeŕıa notarse que la influencia puede ser
expresada como una función de los componentes de la memoria de la búsqueda
tabú, como cuando un movimiento que contiene atributos que no han sido ni
frecuentemente ni recientemente tabú-activos puede ser clasificado como más al-
tamente influyente (porque ejecutar el movimiento cambiará el estado tabú de
estos atributos más radicalmente). Esto fomenta una definición dinámica de la
influencia, la cual vaŕıa según el estado actual de la búsqueda.

4 Fundamentos de la Búsqueda Tabú: Memoria
a largo plazo

En algunas aplicaciones, los componentes de la memoria a corto plazo son su-
ficientes para producir soluciones de alta calidad. Sin embargo, tal como hemos
mencionado anteriormente, la inclusión de la memoria a largo plazo, aśı como de
las estrategias asociadas a la misma hacen de la búsqueda tabú una estrategia
más fuerte. En las estrategias de memoria a largo plazo, los entornos modifi-
cados de las soluciones actuales pueden contener soluciones que no estén en el
entorno original. Generalmente, se incluyen soluciones élite encontradas durante
el proceso de búsqueda.

4.1 Memoria Basada en Frecuencia

La memoria basada en frecuencia proporciona un tipo de información que
complementa la información proporcionada por la memoria basada en lo reciente,
ampliando la base para seleccionar movimientos preferidos. Al igual que sucede
en la memoria basada en lo reciente, la frecuencia a menudo está ponderada o
descompuesta en subclases teniendo en cuenta las dimensiones de calidad de la
solución e influencia del movimiento.

Concebimos medidas de frecuencia como proporciones, cuyos numeradores re-
presentan contadores del número de ocurrencias de un evento particular (por
ejemplo, el número de veces que un atributo particular pertenece a una solución
o movimiento) y cuyos denominadores generalmente representan uno de cuatro

Rect@ Monográfico 3 (2007)



54 Introducción a la Búsqueda Tabú

tipos de valores: (1) el número total de ocurrencias de todos los eventos represen-
tados por los numeradores (tal como el número de iteraciones asociadas), (2) la
suma de los numeradores, (3) el máximo valor del numerador, y (4) la media del
valor del numerador. Los denominadores (3) y (4) dan lugar a lo que se puede
llamar frecuencias relativas. En los casos en los que los numeradores representan
cuentas ponderadas, algunas de las cuales pueden ser negativas, los denominado-
res (3) y (4) se expresan como valores absolutos y el denominador (2) se expresa
como una suma de valores absolutos.

En el ejemplo de intercambiar objetos entre cajas, tal como indicamos an-
teriormente, los atributos DesdeAtributos están asociados con mover un objeto
fuera de una de las dos cajas y los atributos HaciaAtributos están asociados con
mover un objeto dentro de una de estas cajas.

Denotemos por x(1), x(2), . . . , x(IteracionActual) la secuencia de soluciones
generadas en el momento presente del proceso de búsqueda, y denotemos por S
una subsecuencia de esta secuencia de soluciones. Tomamos la libertad de tratar
S como un conjunto además de como una secuencia ordenada. Los elementos
de S no son necesariamente elementos consecutivos de la secuencia de solución
completa.

A modo de notación, denotemos por S(xj = p) el conjunto de soluciones en S
para las cuales xj = p, y denotemos por #S(xj = p) la cardinalidad de este con-
junto (el número de veces que xj recibe el valor p sobre x ∈ S). Análogamente,
denotemos por S(xj = p a xj = q) el conjunto de soluciones en S que resultan
por un movimiento que cambia xj = p a xj = q. Finalmente, denotemos por
S(de xj = p) y S(a xj = q) los conjuntos de soluciones en S que contienen res-
pectivamente xj = p como un DesdeAtributo o xj = q como un HaciaAtributo.
En general, si AtributoSolucion representa cualquier atributo de una solución
que puede tomar el papel de un DesdeAtributo o un HaciaAtributo para un
movimiento, y si MovimientoAtributo representa un atributo de movimiento ar-
bitrario denotado por (DesdeAtributo,HaciaAtributo), entonces

S(SolucionAtributo) = {x ∈ S: x contiene AtributoSolucion}.
S(MovimientoAtributo) = {x ∈ S: x resulta de un movimiento que contiene

MovimientoAtributo}.
S(DesdeAtributo) = {x ∈ S: x inicia un movimiento a DesdeAtributo}.
S(HaciaAtributo) = {x ∈ S: x resulta de un movimiento que contiene a

HaciaAtributo}.
La cantidad #S(xj = p) constituye una medida de residencia, dado que iden-

tifica el número de veces que el atributo xj = p reside en las soluciones de S.
Correspondientemente, llamamos a la frecuencia que resulta de dividir tal me-
dida por uno de los denominadores de (1) a (4) una frecuencia de residencia.
Para el numerador #S(xj = p), los denominadores (1) y (2) corresponden ambos
a #S, mientras que los denominadores (3) y (4) son dados respectivamente por
Max(#S(xk = q) : todo k, q) y por Media(#S(xk = q) : ∀ k, q).
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Las cantidades #S(xj = p a xj = q), #S(de xj = p) y #S(a xj = q)
constituyen medidas de transición, dado que identifican el número de veces que
xj cambia de y/o a valores especificados. Aśımismo, las frecuencias basadas en
tales medidas son llamadas frecuencias de transición. Los denominadores para
crear tales frecuencias de las medidas precedentes incluyen #S, el número total
de veces que los cambios indicados ocurren sobre S para diferentes valores j, p
y/o q, y cantidades Max y Media asociadas.

Las frecuencias de residencia y transición en ocasiones transmiten información
relacionada. Sin embargo, aunque a veces son confundidas en la literatura, en
general tienen implicaciones diferentes. Una distinción significativa es que las
medidas de residencia, en contraste con las medidas de transición, no se refieren
a si un atributo de solución particular de un elemento x(i) en la secuencia S es
un DesdeAtributo o un HaciaAtributo, o incluso si es un atributo que cambia en
movimiento de x(i) a x(i+ l) o de x(i− l) a x(i). Sólo es relevante que el atributo
puede ser un DesdeAtributo o un HaciaAtributo en algún movimiento futuro.
Tales medidas pueden conducir a diferentes tipos de implicaciones dependiendo
de la elección de la subsecuencia de S.

Una frecuencia de residencia alta, por ejemplo, puede indicar que un atributo
es altamente atractivo si S es una subsecuencia de soluciones de alta calidad, o
puede indicar lo contrario si S es una subsecuencia de soluciones de baja calidad.
Por otro lado, una frecuencia de residencia que es alta (baja) cuando S contiene
tanto soluciones de alta como de baja calidad puede apuntar a atributo fortalecido
(o excluido) que restringe al espacio de búsqueda, y que necesita ser desechado
(o incorporado) para permitir diversidad.

Desde el punto de vista de la simplificación del cómputo, cuando S está for-
mado por todas las soluciones generadas después de una iteración especificada,
entonces puede mantenerse una medida de residencia actual y actualizada por re-
ferencia a valores del vector ComienzoTabu, sin la necesidad de incrementar un
conjunto de contadores en cada iteración. Para un conjunto S cuyas soluciones
no vienen de iteraciones secuenciales, sin embargo, las medidas de residencia se
calculan simplemente poniendo una etiqueta sobre los elementos de S.

Las medidas de transición son generalmente bastante fáciles de mantener
ejecutando actualizaciones durante el proceso de generación de soluciones (asu-
miendo que las condiciones que definen S, y los atributos cuyas medidas de tran-
sición son buscadas, se especifican con anterioridad). Esto resulta del hecho de
que t́ıpicamente sólo se consideran relevantes unos pocos tipos de cambios de atri-
butos para detectar cuándo una solución se reemplaza por la siguiente, y éstos
pueden aislarse y registrados fácilmente. Las frecuencias del ejemplo de la sección
2.3 constituyen una instancia de frecuencias de transición que fueron mantenidas
en esta manera simple. Su uso en este ejemplo, sin embargo, alentaba la diversi-
dad aproximando el tipo de papel que las frecuencias de residencia son usualmente
mejor satisfechas para ser tomadas.
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Como una distinción final, una frecuencia de transición alta, en contraste con
una frecuencia de residencia alta, puede indicar que un atributo asociado es un
“llenador excelente”, que cambia dentro y fuera de la solución para ejecutar una
función de buen ajuste. Tal atributo puede ser interpretado como el opuesto
de un atributo influyente, como se consideró anteriormente en la discusión de
Aspiración de Influencia. En este contexto, una frecuencia de transición puede
ser interpretada como una medida de volatilidad.

Ejemplos de Usos de Medidas de Frecuencia. A continuación se muestran ilus-
traciones de frecuencias de residencia y de transición. (Sólo se indican los numera-
dores, entendiendo que los denominadores son proporcionados por las condiciones
(1) a (4)).

Ejemplos de Medidas de Frecuencia

(Numeradores)

(F1) #S(xj = p)

(F2) #S(xj = p para algún xj)

(F3) #S(a xj = p)

(F4) #S(xj cambia), es decir, #S(xj 6= p a xj = p)

(F5)
∑

x∈S(xj=p) c(x)/#S(xj = p)

(F6) Reemplazar S(xj = p) en (F5) con S(xj 6= p a xj = p)

(F7) Reemplazar c(x) en (F6) con una medida de la influencia S(xj 6= p a
xj = p)

La medida (F5) puede ser interpretada como el valor medio c(x) sobre S
cuando xj = p. Esta cantidad puede ser directamente comparada con otras
medias o puede ser pasada a una medida de frecuencia usando denominadores
tales como la suma o el máximo de estas medias.

Los atributos que tienen mayores medidas de frecuencia, como aquellos que
tienen mayores medidas de lo reciente (es decir, que ocurrieron en soluciones o
movimientos más cercanos al presente), pueden iniciar un estado tabú-activo si
S está formado por soluciones consecutivas que finalizan con la solución actual.
Sin embargo, la memoria basada en frecuencia t́ıpicamente encuentra su uso más
productivo como parte de una estrategia de peŕıodo más largo, la cual emplea
incentivos además de restricciones para determinar qué movimientos son selec-
cionados. En tal estrategia, las restricciones se convierten en penalizaciones de
evaluación, y los incentivos se convierten en mejoras de la evaluación, para alterar
la base para calificar movimientos como atractivos o no atractivos.

Para ilustrarlo, a un atributo tal como xj = p con una frecuencia de residencia
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alta le puede ser asignado un incentivo fuerte (“beneficio”) para servir como
un DesdeAtributo, resultando por tanto en la elección de un movimiento que
produce xj 6= p. Tal incentivo es particularmente relevante en el caso donde
ComienzoTabu(xj 6= p) es pequeño, dado que este valor identifica la última
iteración en que xj 6= p sirvió como un DesdeAtributo, y por tanto descubre que
xj = p ha sido un atributo de cada solución desde entonces.

La memoria basada en frecuencia por tanto es usualmente aplicada intro-
duciendo estados tabú graduados, como un fundamento para definir valores de
penalización e incentivos para modificar la evaluación de los movimientos. Existe
una conexión natural entre este enfoque y el enfoque de memoria basada en lo
reciente que crea estados tabú como una condición todo-o-ninguno. Si el peŕıodo
de un atributo en memoria basada en lo reciente está concebida como un umbral
condicional para aplicar una penalización muy grande, entonces las clasificaciones
tabú producidas por tal memoria pueden ser interpretadas como el resultado de
una evaluación que se convierte fuertemente inferior cuando las penalizaciones
están activadas. Es razonable anticipar que los umbrales condicionales debeŕıan
también ser relevantes para determinar los valores de penalizaciones y los incenti-
vos en estrategias de peŕıodo largo. La mayoŕıa de las aplicaciones en el presente,
sin embargo, usan un múltiplo lineal simple de una medida de frecuencia para
crear un término de penalización o de incentivo.

4.2 Estrategias de Intensificación y Diversificación Simples

Las funciones de intensificación y diversificación en la búsqueda tabú ya están
impĺıcitas en muchas de las prescripciones anteriores, pero se convierten espe-
cialmente relevantes en procesos de búsqueda de peŕıodo largo. Las estrategias
de intensificación crean soluciones agresivamente estimulando la incorporación de
“atributos buenos”. En el peŕıodo corto esto consiste en incorporar atributos que
han recibido las mayores evaluaciones por los enfoques y criterios descritos ante-
riormente, mientras que en el intermedio a largo peŕıodo consiste en incorporar
atributos de soluciones de subconjuntos élite seleccionados. Por otro lado, las
estrategias de diversificación generan soluciones que incorporan composiciones de
atributos significativamente diferentes a los encontrados previamente durante la
búsqueda. Estos dos tipos de estrategias se contrapesan y refuerzan mutuamente
de varias formas.

Examinamos formas simples de enfoques de intensificación y diversificación
que hacen uso de memoria basada en frecuencia. Estos enfoques serán ilustrados
por referencia a medidas de frecuencia de residencia, pero algunas observaciones
similares se aplican al uso de medidas de transición, teniendo en cuenta carac-
teŕısticas contrastantes notadas previamente.

Para una estrategia de diversificación elegimos S como un subconjunto sig-
nificativo de la secuencia de solución completa; por ejemplo, la secuencia en-
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tera empezando con el primer óptimo local, o la subsecuencia formada por todos
los óptimos locales. (Para ciertas estrategias basadas en medidas de transición,
S puede estar formado por la subsecuencia que contiene cada sucesión intacta
máxima de movimientos de no-mejora que inmediatamente siguen un óptimo lo-
cal, concentrándose en S(HaciaAtributo) para estos movimientos).

Para una estrategia de intensificación elegimos S como un subconjunto pe-
queño de soluciones élite (óptimos locales de alta calidad) que comparten un gran
número de atributos comunes, y en segundo lugar cuyos miembros pueden al-
canzarse uno de otro mediante números de movimientos relativamente pequeños,
independientes de si estas soluciones caen cerca la una de la otra en la secuencia
de la solución. Por ejemplo, las colecciones de tales subconjuntos S pueden ser
generadas por procedimientos de agrupamiento, seguido del uso de un enfoque de
procesamiento paralelo para tratar cada S seleccionado por separado.

Para propósitos ilustrativos, supongamos que un movimiento actualmente bajo
consideración incluye dos atributos de movimiento, denotados por e y f , los cua-
les pueden ser expresados como e = (eDesde, eHacia) y f = (fDesde, fHacia).
Proporcionamos reglas para generar una función de penalización o incentivo, PI,
basada en medidas de frecuencia de los atributos e y f , las cuales se aplican igual-
mente a estrategias de intensificación y diversificación. Sin embargo, la función PI
crea una penalización para una estrategia (intensificación o diversificación) si y
sólo si crea un incentivo para la otra. Para describir esta función, denotemos por
f(eDesde) y f(eHacia), etc., la medida de frecuencia para los DesdeAtributos
y HaciaAtributos indicados, y denotemos por T 1, T 2, ..., T6 umbrales positivos
seleccionados, cuyos valores dependen del caso considerado.

Funciones PI Ilustrativas de Penalización e Incentivo para
HaciaAtributos.

Elegir PI como una función monótona no decreciente de una de las siguien-
tes cantidades, donde PI es positiva cuando la cantidad es positiva, y es
0 en otro caso. (PI proporciona una penalización en una estrategia de
diversificación y un incentivo en una estrategia de intensificación).

(1) Min{f(eHacia), f(fHacia)}− T1

(2) Max{f(eHacia), f(fHacia)}− T2

(3) Media{f(eHacia), f(fHacia)}− T3

Las condiciones precedentes para definir PI están relacionadas con las ilus-
tradas previamente para identificar condiciones en las cuales los atributos se con-
vierten en tabú-activos. Por ejemplo, especificando que (1) debe ser positivo
para hacer PI positivo corresponde a introducir una penalización tabú (o un in-
centivo) cuando ambas medidas exceden sus umbrales comunes. Si una medida
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Funciones PI Ilustrativas de Penalización e Incentivo para
DesdeAtributos.

Elegir PI como una función monótona no decreciente de una de las siguien-
tes cantidades, donde PI es positiva cuando la cantidad es positiva, y es 0 en
otro caso. (PI proporciona un incentivo en una estrategia de diversificación
y una penalización en una estrategia de intensificación).

(1) Min{f(eDesde), f(fDesde)}− T4

(2) Max{f(eDesde), f(fDesde)} − T5

(3) Media{f(eDesde), f(fDesde)}− T6

es expresada como la duración desde que un atributo fue el más recientemente
hecho tabú-activo, y si el umbral representa un ĺımite común para el peŕıodo
tabú, entonces (1) puede expresar una restricción basada en lo reciente para de-
terminar una clasificación tabú. La asignación de diferentes umbrales a atributos
diferentes en (1) corresponde a establecer peŕıodos tabú atributo-dependientes.
Análogamente, los restantes valores de (2) a (6) pueden ser interpretados como
análogos a los valores que definen medidas basadas en lo reciente para establecer
una clasificación tabú, implementada en este caso a través de una penalización.

De estas observaciones se concluye que la medida de frecuencia F puede ex-
tenderse para representar medidas combinadas de lo reciente y de lo frecuente.
Note que la memoria basada en lo reciente, almacenando datos de ComienzoTabu,
puede también referirse a cambios que han ocurrido más lejos en el pasado además
de aquellos que han ocurrido más recientemente. Aunque estas medidas están ya
impĺıcitamente combinadas cuando se unen las penalizaciones y los incentivos ba-
sados en medidas de frecuencia con clasificaciones tabú basadas en medidas de lo
reciente, como un fundamento para seleccionar movimientos actuales, es posible
que otras formas de combinación sean superiores.

4.3 Aspectos más avanzados de Intensificación y Diversifi-
cación

Los métodos de intensificación y diversificación que utilizan penalizaciones e
incentivos representan sólo una clase de tales estrategias. Una colección mayor
surge de la consideración directa de los objetivos de intensificación y diversifi-
cación. Examinamos diversos métodos que se han demostrado útiles en aplicacio-
nes previas, e indicamos métodos que consideramos prometedores en aplicaciones
futuras. Para empezar hacemos una distinción importante entre diversificación y
aleatorización.

Diversificación frente a aleatorización. Cuando la búsqueda tabú busca una
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colección de soluciones diversas, es muy diferente de cuando busca una colección
de soluciones aleatorias. En general, estamos interesados no sólo en coleccio-
nes diversas sino en secuencias diversas, dado que frecuentemente el orden en el
que se examinan los elementos es importante en TS. Esto ocurre, por ejemplo,
cuando buscamos identificar una secuencia de nuevas soluciones de forma que
cada solución sucesiva sea maximalmente diversa en relación a todas las solucio-
nes previamente generadas. Esto incluye posibles referencias a un conjunto base
de soluciones, tales como x ∈ S, que da prioridad al objetivo de diversificación
(es decir, donde el primer objetivo es establecer diversificación con respecto a S,
y después con respecto a otras soluciones generadas). El concepto de diversifi-
cación se aplica también a la generación de una secuencia diversa de números
o a un conjunto diverso de puntos entre los vértices del hipercubo unidad. Sea
Z(k) = (z(1), z(2), ..., z(k)) una secuencia de puntos del conjunto Z. Por ejemplo,
Z puede ser un intervalo lineal si los puntos son escalares. Tomamos z(1) como
punto semilla de la secuencia. Entonces definimos Z(k) como una secuencia dis-
persa relativa a una métrica de distancia d elegida sobre Z requiriendo que cada
subsecuencia Z(h) de Z(k), h ≤ k, en todo punto asociado z = z(h+ 1) satisfaga
las siguientes condiciones jerárquicas:

(A) z maximiza la distancia mı́nima d(z, z(i)) para i ≤ h;
(B) sujeto a (A), z maximiza la distancia mı́nima d(z, z(i)) para 1 < i ≤ h, para

2 < i ≤ h, etc. (en orden de prioridad estricto);

(C) sujeto a (A) y (B), z maximiza la distancia mı́nima d(z, z(i)) para i = h,
para i = h − 1,..., y finalemte para i = 1. (Los empates pueden resolverse
arbitrariamente.)

Para tratar la diversificación relativa a un conjunto base inicial Z∗ (tal como un
conjunto de soluciones x ∈ S), la jerarqúıa precedente de condiciones se precede
por una condición que estipula que z primero maximiza la mı́nima distancia
d(z, z∗) para z∗ ∈ Z∗. Una variante (más débil) útil de esta condición trata
simplemente puntos de Z∗ como si fueran los últimos elementos de la secuencia
Z(h).

Algunas variaciones sobre (A), (B) y (C), incluso profundizando en la je-
rarqúıa anterior (desempates arbitrarios), son evidentemente posibles. Además,
computacionalmente demandan ser satisfechas. Incluso omitiendo (B), y mante-
niendo sólo (A) y (C), si los elementos z(i) se refieren a puntos del hipercubo
unidad, entonces según nuestro conocimiento actual, la única manera de generar
una secuencia diversa de más de unos pocos puntos es ejecutar una enumeración
comparativa. (No obstante, una secuencia dispersa de puntos en un intervalo
lineal, particularmente si z(1) es un extremo o el punto medio del intervalo, se
puede generar sin mucha dificultad). Con una visión más amplia, el esfuerzo que
requiere la generación de secuencias dispersas puede llevarse acabo previamente
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e independientemente de los esfuerzos para resolver el problema, con lo que tales
secuencias están precalculadas y disponibles cuando se necesiten.

Refuerzo por restricción. Uno de los primeros tipos de estrategias de intensifi-
cación, caracterizada en términos de explotar variables fuertemente determinadas
y consistentes en [4], comienza seleccionando un conjunto S como indicado para
determinar una penalización y una función de incentivo, es decir, un conjunto
formado por soluciones élite agrupadas a través de una medida de clasificación.
En vez de (o además de) crear penalizaciones e incentivos, con el objetivo de
incorporar atributos a la solución actual que tenga altas medidas de frecuencia
sobre S, el método de refuerzo por restricción opera estrechando el rango de posi-
bilidades permitidas añadiendo y quitando tales atributos. Por ejemplo si xj = p
tiene una alta frecuencia sobre S sólo para un pequeño número de valores de p,
entonces los movimientos se restringen permitiendo a xj tomar sólo uno de estos
atributos en la definición de un HaciaAtributo. Por tanto, si xj es una variable
0-1 con una medida de frecuencia alta sobre S para uno de sus valores, entonces
este valor se hará fijo una vez que exista un movimiento admisible que permita
que se asigne dicho valor. Otras asignaciones pueden permitirse, por una variante
de Aspiración por Defecto, si el conjunto actual de alternativas restringidas es
inaceptable.

La consideración inicial sugiere que este método de restricción no ofrece nada
más allá de las opciones disponibles por penalizaciones e incentivos. No obs-
tante, el método puede conseguir más que esto por dos motivos. Primero, las
restricciones expĺıcitas pueden acelerar substancialmente la ejecución de los pasos
de elección reduciendo el número de alternativas examinadas. Segundo, y más
significativamente, muchos problemas se simplifican y colapsan una vez que se in-
troducen un número de restricciones expĺıcitas, permitiendo que las implicaciones
estructurales salgan a la superficie, permitiendo que estos problemas se resuelvan
más fácilmente.

El refuerzo por restricción no se limita a crear un efecto de intensificación.
Dados enerǵıa y tiempo finitos para explorar alternativas, imponer restricciones
a algunos atributos permite examinar más variantes de los restantes atributos
que de otra manera. Por tanto, la intensificación con respecto a los elementos
seleccionados puede realzar la diversificación sobre otros elementos, creando una
forma de diversificación selectiva. Tal diversificación puede contrastarse con di-
versificación exhaustiva creada por las estructuras de memoria más ŕıgidas de
ramificación y acotación. En un ambiente donde el aspecto finito del esfuerzo
de búsqueda disponible es proporcionado por el número de alternativas a ser ex-
ploradas exhaustivamente, la diversificación selectiva puede ser una contribución
significativa a la búsqueda efectiva.

Reencadenamiento de camino. El reencadenamiento de camino (PR, path re-
linking) se inicia seleccionando dos soluciones x′ y x′′ de una colección de solu-
ciones élite producidas durante las fases de búsqueda. Se genera un camino desde
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x′ a x′′, produciendo una secuencia de soluciones x′ = x′(1), x′(2), ..., x′(r) = x′′

donde x′(i + 1) se crea a partir de x′(i) en cada paso eligiendo un movimiento
que deja el menor número de movimientos restantes hasta alcanzar x′′. Final-
mente, una vez que el camino esté completo, una o más de las soluciones x′(z) se
seleccionan como soluciones para iniciar una nueva fase de búsqueda

Este método proporciona un medio fundamental para perseguir el objetivo de
intensificación y diversificación cuando sus pasos se implementan para explotar
variantes estratégicas de reglas de elección. Un número de movimientos alternati-
vos t́ıpicamente calificarán para producir la siguiente solución a partir de x′(i) por
el critero del “menor número de movimientos restantes”, permitiendo consecuen-
temente una variedad de caminos posibles de x′ a x′′. Seleccionar movimientos
no atractivos relativos a c(x) en cada paso tenderá a producir una serie final de
movimientos de fuerte mejora, mientras que seleccionar movimientos atractivos
tenderá a producir movimientos de menor calidad al final. (El último movimiento,
no obstante, mejorará, o dejará c(x) sin cambiar, ya que x′′ es un mı́nimo local.)
Por tanto, elegir el mejor, peor o movimiento medio, usando un criterio de as-
piración para anular las elecciones en los dos últimos casos si está disponible
una solución suficientemente atractiva, proporciona opciones que producen efec-
tos contrastantes en la generación de la secuencia indicada. (Existen argumentos
a favor de seleccionar el mejor movimiento en cada paso, y entonces repetir el
proceso intercambiando x′ y x′′.)

La cuestión de una aspiración apropiada más amplia es relevante para seleccio-
nar una x′(i) preferida para lanzar una nueva fase de búsqueda, y para terminar
la secuencia más pronto. La elección de una o más soluciones x′(z) para lanzar
una nueva fase de búsqueda debe depender preferiblemente no sólo de c(x′(i)) sino
también de los valores de c(x) de aquellas soluciones x que pueden alcanzarse por
un movimiento a partir de x′(i). En particular, cuando x′(i) se examina para
moverse a x′(i + 1), se presentará un número de candidatos para x = x′(i + 1)
para su consideración.

Sea x∗(i) un vecino de x′(i) que proporciona un mı́nimo valor de c(x) durante
un paso de evaluación, excluyendo x∗(i) = x′(i+ 1). (Si las reglas de elección no
eliminan automáticamente la posibilidad x∗(i) = x′(h) para h < i, entonces una
simple restricción tabú puede usarse para esto). Entonces el método selecciona
una solución x∗(i) que da el valor mı́nimo para c(x∗(i)) como un nuevo punto
para lanzar la búsqueda. Si sólo se examina un conjunto limitado de vecinos de
x′(i) para identificar x∗(i), entonces se puede seleccionar en su lugar un x′(i) de
coste mı́nimo superior, excluyendo x′ y x′′. Una terminación temprana puede ser
elegida al encontrar un x∗(i) que de c(x∗(i)) < min{c(x′), c(x”), c(x′(p))}, donde
x′(p) es el x′(h) de mı́nimo coste para todo h ≤ i. (El procedimiento continúa
sin parar si x′(i), en cotraste con x∗(i), da un valor c(x) menor que x′ y x′′, ya
que x′(i) adopta efectivamente el papel de x′).

Variaciones y Túneles. Una variante del método PR empieza desde ambos ex-
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tremos x′ y x′′ simultáneamente, produciendo dos secuencias x′ = x′(1), ..., x′(r)
y x” = x”(1), ..., x”(s). Las elecciones se diseñan para provocar que x′(r) = x′′(s)
para los valores finales de r y s. Para progresar hacia este resultado cuando
x′(r) 6= x′′(s), se selecciona x′(r) para crear x′(r + 1), mediante el criterio de
minimizar el número de movimientos restantes hasta alcanzar x′′(s), o se selec-
ciona x′′(s) para crear x′′(s+ 1), mediante el criterio de minimizar el número de
movimientos restantes hasta alcanzar x′(r). De estas opciones se selecciona la
que produzca el menor valor c(x), determinando también si r o s se incrementa
en el paso siguiente.

El método de re-encadenamiento de camino se puede beneficiar de un proce-
dimiento de efecto “túnel” que permita usar una estructura de entornos diferente
que la de la fase de búsqueda estándar. En particular, frecuentemente es deseable
permitir periódicamente movimientos para el reenlace de camino que normal-
mente se excluiŕıan por crear infactibilidad. Esta práctica es menos susceptible
de llegar a perderse en una región no factible que otras formas de permitir infac-
tibilidad periódica, ya que evidentemente la factibilidad se vuelve a recuperar al
llegar a x′′. El efecto túnel creado ofrece la oportunidad para alcanzar soluciones
que de otra forma se pasaŕıan por alto. En la variante que empieza desde x′ y
x′′, algunas de las soluciones de x′(r) o x′′(s) deben mantenerse factibles.

El re-encadenamiento de camino se puede organizar para poner más énfasis
en la intensificación o diversificación optando por que x′ y x′′ compartan más o
menos atributos. Análogamente la elección de x′ y x′′ de un conjunto clasificado
de soluciones élite estimulará la intensificación, mientras que elegirlas de conjuntos
ampliamente separados estimulará la diversificación.

Re-encadenamiento extrapolado. Una extensión del método del re-encadena-
miento de camino, que llamamos re-encadenamiento extrapolado, va más allá del
punto extremo x′′ (o alternativamente x′), para obtener soluciones que se expan-
den a una región mayor. La habilidad para continuar más allá de este extremo
resulta de un método para aproximarse al criterio de selección de movimientos,
especificado por el método estándar del re-encadenamiento de camino, que busca
la próxima solución que deja el menor número de movimientos restantes para
alcanzar x′′. Espećıficamente, sea A(x) el conjunto de atributos de solución en x,
y sea Adrop el conjunto de atributos de solución que se sacan por los movimientos
ejecutados para alcanzar la solución actual x′(i), es decir, los atributos que han
servido como DesdeAtributos en estos movimientos. Entonces buscamos un movi-
miento en cada paso que maximice el número de HaciaAtributos que pertenecen
a A(x′′)−A(x′(i)), y sujeto a ello que minimice el número de los que pertenecen a
Adrop−A(x′′). Tal regla generalmente puede implementarse muy eficientemente,
a través de estructuras de datos limitando el examen de movimientos a aque-
llos que contienen HaciaAtributos de A(x′′)−A(x′(i)) (o permitiendo que estos
movimientos se examinen antes que otros).

Una vez que se alcanza x′(r) = x”, el proceso continúa modificando la regla
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de elección de la siguiente forma. El criterio ahora selecciona un movimiento para
maximizar el número de HaciaAtributos fuera de Adrop menos el número de sus
HaciaAtributos que están en Adrop, y sujeto a esto minimizar el número de sus
DesdeAtributos que pertenecen a A(x′′). El camino entonces se detiene donde
no quede elección que permita que el criterio de maximización sea positivo.

Para entornos que permitan elección de movimientos relativamente no res-
tringida, este método produce una extensión más allá de x′′ que introduce nuevos
atributos, sin reincorporar ningún antiguo atributo hasta que no quede ningún
movimiento que satisfaga esta condición. La habilidad para ir más allá de los
extremos x′ y x′′ crea una forma de diversificación que no es accesible desde el
camino que queda entre estos extremos. Al mismo tiempo, los puntos exteriores
están influidos por la trayectoria que enlaza x′ y x′′.

Soluciones evaluadas, pero no visitadas. Las estrategias de intensificación y
diversificación pueden beneficiarse del hecho de que un proceso de búsqueda ge-
nera información no sólo sobre las soluciones realmente visitadas, sino también
acerca de soluciones adicionales evaluadas durante el examen de los movimientos
no adoptados. Una manifestación de esto es explotada en referencia a las solu-
ciones x∗(i) en el método de re-encadenamiento de camino. Desde un punto de
vista diferente, sea S∗ un subconjunto de soluciones evaluadas, pero no visitadas
(es decir, tomadas de la secuencia x(1), ..., x(iteracionactual) cuyos elementos x
dan valores c(x) dentro de una banda de atracción elegida). Es relativamente
fácil mantener un contador tal como #S∗(a xj = p), que identifica el número de
veces que xj = p es un HaciaAtributo de un intento de movimiento que lleva a
una solución de S∗. Tal contador puede diferenciarse aún más estipulando que el
movimiento probado debe ser de mejora, y de alta calidad relativa a otros movi-
mientos examinados en la misma iteración. Entonces a un atributo que alcanza
una frecuencia relativamente alta sobre S∗, pero que tiene una baja frecuencia
de residencia sobre las soluciones realmente visitadas, se le da un incentivo para
incorporarlo a futuros movimientos, sirviendo simultáneamente para los objeti-
vos de intensificación y diversificación. Lo reciente y lo frecuente interactúan
en este método separando el incentivo si el atributo ha sido seleccionado en un
movimiento reciente.

Penalizaciones e incentivos espećıficos de intervalo. Un ajuste útil de las ideas
precedentes extiende la filosof́ıa de la Aspiración por Dirección de Búsqueda y As-
piración por Admisibilidad Fuerte. Por estos criterios de aspiración, los movimien-
tos de mejora se pueden escapar de la clasificación tabú bajo ciertas condiciones,
pero con el resultado de rebajar su estado de tal manera que sean tratados como
movimientos de mejora inferiores. Una extensión de esto preserva la distinción
mejora/no-mejora cuando se introducen las penalizaciones e incentivos que no se
pretende que sean preventivos. Para esta extensión, las evaluaciones vuelven a
dividirse en intervalos de mejora y no mejora. Las penalizaciones y los incentivos
se dan con alcance limitado, degradando o realzando las evaluaciones dentro de un

Rect@ Monográfico 3 (2007)



B. Melián, F. Glover 65

intervalo, pero sin alterar la relación entre las evaluaciones que caen en intervalos
diferentes.

Los incentivos concedidos en base a la similitud de influencia se hacen sujetos a
este desplazamiento restringido de las evaluaciones. Dado que un movimiento in-
fluyente usualmente no es de mejora en el entorno de un óptimo local, mantener la
relación entre evaluaciones de diferentes intervalos implica que tales movimientos
se seleccionarán sólo cuando no existan otros movimientos de mejora que los cla-
sificados tabú. Pero los movimientos influyentes también tienen un efecto basado
en lo reciente. Sólo la ejecución de un movimiento de alta influencia puede can-
celar la clasificación tabú de un movimiento de menor influencia sobre una serie
de iteraciones, por lo que debeŕıa reducir o cancelar el incentivo para seleccionar
otros movimientos influyentes por una duración correspondiente.

Procedimientos de Listas de Candidatos. Anteriormente, ya se ha destacado
la importancia de los procedimientos para aislar un conjunto de movimientos can-
didatos de un entorno grande, para evitar el gasto computacional de evaluar todo
el entorno. Algunos procedimientos de este tipo han sido utilizados en métodos
de optimización desde que el tema de la reducción de los esfuerzos computacio-
nales se ha tomado en serio (desde al menos los años 50 y probablemente antes).
Alguna de las formas más estratégicas de estos problemas vienen del campo de la
optimización de redes [14]. En tales métodos, el subconjunto de movimientos se
referencia mediante una lista que identifca sus elementos definitorios (tales como
ı́ndices de variables, nodos y arcos), y por tanto estos métodos han adquirido el
nombre de estrategias de listas de candidatos.

Una forma simple de estrategia de lista de candidatos es construir una lista
simple de elementos muestreando el entorno al azar, y repetir el proceso si el
resultado se estima inaceptable. Este es el fundamento de los métodos de Monte
Carlo. Sin embargo, algunos estudios de optimización de redes, sugieren que los
procedimientos basados en diseños más sistemáticos producen resultados superio-
res. Generalmente, éstos incluyen la descomposición del entorno en subconjuntos
cŕıticos, y el uso de una regla que asegure que los subconjuntos no examinados en
una iteración se planifiquen para ser examinados en iteraciones siguientes. Para
los subconjuntos apropiadamente determinados, los mejores resultados se obtie-
nen seleccionando los movimientos de máxima calidad de estos subconjuntos, bien
examinando expĺıcitamente todas las alternativas o usando un umbral adaptativo
para identificar tales movimientos.

Otra clase de estrategias de listas de candidatos examina periódicamente por-
ciones más grandes del entorno, creando una lista maestra de algún número de
las mejores alternativas encontradas. La lista maestra se consulta entonces para
identificar movimientos (derivados o relacionados con los almacenados) para ite-
raciones adicionales hasta que un umbral de aceptabilidad dispara la creación de
una nueva lista maestra.

Las estrategias de listas de candidatos impĺıcitamente tienen una influencia
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diversificante motivando que diferentes partes del espacio de entorno se examinen
en diferentes iteraciones. Esto sugiere que debe beneficiarse de coordinar tales
estrategias con otras estrategias de diversificación, un área que permanece abierta
a la investigación. Las estrategias de listas de candidatos también son muy na-
turales para procesos de paralelización, donde se examinan en paralelo formas
de descomposición de entornos a examinar de forma secuencial. Los movimien-
tos pueden seleccionarse eligiendo el mejor candidato por varios procesos, o en
su lugar cada proceso puede ejecutar sus propios movimientos preferidos, gene-
rando trayectorias de soluciones paralelas que son periódicamente coordinadas a
un nivel superior. Estos últimos procedimientos se mantienen considerablemente
prometedores.

Entornos compuestos. La identificación de un entorno efectivo para definir los
movimientos desde una solución a otra puede ser extremadamente importante.
Por ejemplo, un intento de resolver un problema de programación lineal eligiendo
los movimientos que incrementan o decrementan variables del problema, frente a
elegir movimientos que usan procesos de pivotaje o direcciones de búsqueda, ob-
viamente puede provocar una diferencia sustancial en la calidad de la solución final
obtenida. Las innovaciones que han hecho a la programación lineal una potente
herramienta de optimización dependen significativamente del descubrimiento de
entornos efectivos para hacer los movimientos.

Para aplicaciones combinatorias donde las posibilidades para crear entornos
están ampliamente confinadas a varios procesos constructivos o destructivos, o a
intercambios, mejoran frecuentemente los resultados combinando entornos para
crear movimientos. Por ejemplo, en aplicaciones de secuenciación generalmente
es preferible combinar entornos consistentes en movimientos de inserción y mo-
vimientos de intercambio, permitiendo considerar ambos tipos de movimientos
en cada paso. Otra forma de combinar entornos es generar movimientos combi-
natorios, donde una secuencia de movimientos simples es tratada como un solo
movimiento más complejo.

Un tipo especial de método para crear movimientos compuestos resulta de
una sucesión de pasos en los que un elemento es asignado a un nuevo estado,
con la consecuencia de expulsión de algún otro elemento de su estado actual.
El elemento expulsado se asigna a su vez a un nuevo estado, expulsando a otro
elemento, y aśı sucesivamente, creando una cadena de tales operaciones. Por
ejemplo, tales procesos ocurren en un problema de secuenciación de tareas al
mover una tarea a una nueva posición ocupada por otra tarea, expulsando esta
tarea de su posición. La segunda tarea entonces se mueve a una nueva posición
expulsando aún otra tarea, y aśı sucesivamente. Finalmente se acaba por insertar
la última tarea entre dos tareas que son actualmente adyacentes. Este tipo de
método llamado, estrategia de expulsiones en cadena, incluye la expulsión de
enlaces entre elementos (tales como tareas) más que expulsar los elementos en
śı, y también se aplica a elementos agregados y a enlaces. Las estrategias de
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expulsiones en cadena tienen aplicaciones útiles en problemas de muchos tipos,
particularmente en conexión con planificación, rutas, clasificación y partición [1],
[10].

Oscilación Estratégica. El método de oscilación estratégica está estrechamente
relacionado con los oŕıgenes de la búsqueda tabú, y proporciona una técnica efec-
tiva entre intensificación y diversificación para medio a largo plazo. La oscilación
estratégica opera moviendo hasta chocar con una frontera, representada por la
factibilidad o una etapa de construcción, que normalmente representaŕıa un punto
donde el método se paraŕıa. En vez de parar, sin embargo, la definición de entorno
se extiende o el criterio de evaluación para seleccionar movimientos se modifica
para permitir que la frontera se cruce. El método entonces continúa por una
profundidad especificada más allá de la frontera y luego vuelve. En este punto
se vuelve a aproximar a la frontera y se cruza, esta vez en dirección opuesta,
procediendo a un nuevo punto de giro. El proceso de acercarse repetidamente y
cruzar la frontera desde diferentes direcciones crea una forma de oscilación que
da al método su nombre. El control sobre esta oscilación se establece generando
evaluaciones modificadas y reglas de movimiento, dependiendo de la región en la
que se está actualmente navegando y de la dirección de búsqueda. La posibilidad
de recorrer de nuevo una trayectoria anterior se evita con los mecanismos tabú
estándares.

Un ejemplo de este método ocurre para el problema de la mochila multidi-
mensional, donde los valores de las variables 0-1 se cambian de 0 a 1 hasta que
se alcanza la frontera de factibilidad. El método entonces continúa dentro de
la región no factible usando el mismo tipo de cambios, pero con un evaluador
modificado. Después de un número seleccionado de pasos, la dirección se invierte
cambiando variables de 1 a 0. El criterio de evaluación conduce hacia la mejor
variación (o la de menor empeoramiento) de acuerdo a si el movimiento es de
más a menos o de menos a más factible (o no factible), y se acompaña por las
restricciones asociadas sobre los cambios admisibles de valores en las variables.
Una implementación de tal método de [2], [3] ha generado soluciones particulares
de alta calidad para el problema de la mochila multidimensional.

Un tipo algo diferente de aplicación ocurre para el problema de encontrar un
árbol generador óptimo sujeto a restricciones de desigualdad en un conjunto de
aristas ponderadas. Un tipo de método de oscilación estratégica para este pro-
blema resulta de un proceso constructivo de añadir aristas a un árbol que crece
hasta que es generador, y entonces continúa añadiendo aristas para cruzar la fron-
tera definida por la construcción del árbol. Un grafo diferente se obtiene cuando
la solución actual no es un árbol, y por tanto se requiere un entorno diferente,
produciendo reglas modificadas de selección de movimientos. Las reglas cambian
otra vez para proceder en la dirección contraria, quitando aristas hasta conse-
guir otra vez un árbol. En tales problemas, el esfuerzo requerido por diferentes
reglas puede hacer preferible cruzar la frontera con diferente profundidad por
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diferentes sitios. Una opción es aproximarse y retirarse de la frontera mientras
permanece a un solo lado, sin cruzar (es decir, eligiendo cruzar con profundidad
0). En este ejemplo, se pueden considerar otros tipos de frontera, derivados de
las restricciones de desigualdad.

El uso de oscilación estratégica en aplicaciones que alternan procesos cons-
tructivos y destructivos puede acompañarse de movimientos de intercambio que
mantienen la construcción a un determinado nivel. Un principio de optimalidad
aproximada, que establece aproximadamente que buenas construcciones a un nivel
son más probables de estar cerca de buenas construcciones a otro nivel, motiva
una estrategia de aplicar intercambios a distintos niveles, a cada lado de una es-
tructura blanco o diana tal como el árbol generador, para obtener construcciones
refinadas antes de pasar a niveles adyacentes.

Finalmente, remarcamos que la frontera incorporada en la oscilación estraté-
gica no necesita definirse en términos de factibilidad o estructura, pero puede
definirse en términos de una región donde la búsqueda parece gravitar. La osci-
lación entonces consiste en obligar a la búsqueda a salir de esta región y permitirle
volver.

Apéndice. Elementos a considerar al implementar
una Búsqueda Tabú.

Durante el proceso de diseño de un método de búsqueda tabú para una apli-
cación particular, puede resultar de utilidad plantearse algunas de las cuestiones
que se listan en este apéndice. Durante la presentación de estas cuestiones ha-
remos referencia, como bibliograf́ıa adicional al presente caṕıtulo, a diversas sec-
ciones del libro “Tabu Search” (TS) [8], escrito por los profesores Fred Glover y
Manuel Laguna en el año 1997. Para hacer alusión a sus caṕıtulos, por ejemplo al
caṕıtulo 3, usaremos la notación TS(3). De la misma forma, para hacer alusión,
por ejemplo a la sección 2 del caṕıtulo 3, mostraremos TS(3.2).

Independientemente del método de búsqueda utilizado para resolver un pro-
blema particular, hay cuatro elementos comunes a todos ellos: (i) la represen-
tación de la solución, la cual permite generar estructuras de entorno adecuadas
para el problema, (ii) un objetivo, (iii) una función de evaluación, y (iv) un me-
canismo de movimiento, proporcionado por el método usado; búsqueda tabú en
nuestro caso. En lo que sigue, mostramos la lista de cuestiones que es conveniente
plantearse antes de comenzar el diseño de una búsqueda tabú.

1. El tipo de entorno usado. ¿Hay más de una posible estructura de entorno
que pueda ser potencialmente relevante? Cuando la respuesta a la pregunta
anterior es positiva, ¿pueden combinarse o alternarse los entornos de forma
conveniente? ¿Es posible (y deseable) usar entornos que hayan surgido de la
resolución de forma óptima de problemas relacionados o ralajados? ¿Puede
un entorno asociarse más libremente a la solución de un problema auxiliar
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o relajado? ¿En qué medida puede la estructura del problema actual ser
explotada por la definición del entorno? (Ver TS(10.5), 351-352)

2. Indentificar los atributos de las soluciones. Estos atributos, que se derivan
de los movimientos determinados por las estructuras de entorno seleccio-
nadas, en ocasiones toman la forma de “variables del problema”. Pueden
ser acciones, decisiones, elementos asignados a determinadas localizaciones
o peŕıodos de tiempo, cantidades de art́ıculos comprados o adquiridos, y aśı
sucesivamente.

Referente a la memoria a corto plazo basada en lo reciente

3. Definición de los estados tabú relacionados con los atributos identificados
en el punto 2. Para aquellos movimientos que involucran el cambio de más
de un atributo al mismo tiempo, cada atributo componente tiene asignado
un estado tabú (por ejemplo, tal como hemos mencionado anteriormente en
este caṕıtulo, tabú-activo o tabú-inactivo). El número de iteraciones usadas
para determinar la duración de un estado tabú-activo puede despender del
atributo considerado, tal como se ha explicitado en el ejemplo de los dos
últimos párrafos de la sección 3.4 de este caṕıtulo.

4. La naturaleza del peŕıodo tabú para los atributos de las soluciones (fija
o dinámica), y la regla de decisión para inicializar o actualizar el peŕıodo
(aleatoria o sistemática) explicados en la sección 3.4 son otros dos de los
elementos fundamentales en el diseño de la búsqueda tabú. El “Método
de Ciclo Tabú”, descrito en TS(7.3.3) 241-244, constituye un ejemplo de
estrategia dinámica, cuya eficacia ha sido demostrada recientemente.

5. Determinar el uso de los criterios de aspiración usados para eliminar estados
tabú, explicados en la sección 3.5 de este caṕıtulo. Para obtener información
más completa sobre los mismos, se recomienda revisar TS(2.6) 50-54.

Referente a la memoria a largo plazo

6. Las estructuras y los usos hechos de la memoria basada en frecuencia. Por
ejemplo, ¿qué tipos de soluciones o movimientos proporcionan la base para
aplicar esta memoria? ¿Almacena el proceso la frecuencia con la que apa-
recen determinados atributos en soluciones o movimientos élite? ¿Consti-
tuye la memoria de frecuencia de transición, tal como aquella que cuenta
únicamente el número de veces que un atributo fue añadido para crear una
solución élite, o es una frecuencia de residencia, que cuenta el número de
soluciones (o soluciones élite) en las que ha estado presente un atributo?
De forma similar, ¿hace uso el método de frecuencias relativas a soluciones
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mediocres o malas? Por último, ¿tiene la memoria basada en frecuencia un
uso a corto plazo al igual que en su uso a largo plazo? Para obtener más in-
formación que permite dar respuesta a estas preguntas, véase TS(4.1) 94-94
y TS(4.7) 117-121.

7. Estrategias usadas para la intensificación. ¿Realiza el método un almace-
namiento expĺıcito de las soluciones élite y busca periódicamente explorar
otras soluciones cercanas a éstas, o conf́ıa sobre todo en reforzar la elección
de atributos que tienen una alta frecuencia por aparecer en soluciones bue-
nas, tal como se determinaba en el punto 6? Para encontrar la respuesta a
esta preguntas se puede consultar además TS(4.2) 96-98.

8. Estrategias usadas para la diversificación. ¿Usa el método una estrategia
de multi-arranque para obtener diversificación, o usa periódicamente mo-
vimientos que gúıan la búsqueda hacia zonas alejadas de las regiones ya
visitadas? Véase TS(4.3) 98-102 y las primeras partes de TS(5).

9. Uso de algunas estrategias fundamentales tales como oscilación estratégica,
re-encadenamiento de caminos, proyección de memoria adaptativa, etc. ¿Se
usa alguno de estos métodos como espina dorsal de la búsqueda? ¿Son invo-
cados periódicamente en un papel combinado de intensificación/diversifica-
ción?

10. ¿Qué estructuras de datos pueden usarse para facillitar los elementos an-
teriores, incluyendo estructuras que almacenen información suficiente para
permitir la rápida actualización de las evaluaciones de los movimientos en
vez de recalcular las soluciones completamente? (TS(3.1) 59-61.)

11. Las estrategias de listas de candidatos, que porporcionan un modo para
enfocar las reglas de decisión y reducir la computación global, constituyen
también un elemento fundamental de la búsqueda tabú (TS(3.2) 61-67).
Véase también el ejemplo completo de la sección 2.3 de este caṕıtulo.

Nota: En algunos problemas relacionados con la planificación, los entornos
que parecen ser los más fáciles y naturales son aquellos basados en procesos cons-
tructivos y destructivos, construyendo un plan paso a paso. En este caso, a
menudo es útil un enfoque de búsqueda tabú multi-arranque para generar una
nueva solución en cada paso. Sin embargo, en muchas aplicaciones en las que
un procedimiento constructivo o destructivo puede que no proporcione el enfo-
que más simple, pudiera resultar valioso el uso de otras estructuras de entorno,
siguiendo las consideraciones del punto 1. (En los art́ıculos 294 y 302 que apa-
recen en “Publications” de la página web http://spot.colorado.edu/∼glover, se
encuentran referencias sobre métodos de búsqueda tabú multi-arranque).
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1 Introducción

Consideremos un problema de optimización combinatoria definido por un con-
junto base finito E = {1, . . . , n}, un conjunto de soluciones factibles F ⊆ 2E , y
una función objetivo f : 2E −→ R. En la versión de minimización, buscamos una
solución óptima S∗ ∈ F tal que f(S∗) ≤ f(S); ∀S ∈ F . El conjunto base E, la
función de coste f , aśı como el conjunto de soluciones factibles F se definen para
cada problema espećıfico. Por ejemplo, en el caso del problema del agente viajero,
el conjunto base E consta de todas las aristas que conectan las ciudades a ser vi-
sitadas, f(S) es la suma de los costes de todas las aristas e ∈ S, y F está formado
por todos los subconjuntos de aristas que determinan un ciclo Hamiltoniano.

Un procedimiento de búsqueda miope aleatorizado y adaptativo (GRASP por
sus siglas en inglés) [42, 43] es una metaheuŕıstica para encontrar soluciones apro-
ximadas (i.e. sub-óptimas de buena calidad, pero no necesariamente óptimas) a
problemas de optimización combinatoria. Se basa en la premisa de que soluciones
iniciales diversas y de buena calidad juegan un papel importante en el éxito de
métodos locales de búsqueda.

*El autor agradece el apoyo recibido por el Tecnológico de Monterrey a través de la cátedra
CAT025 para la preparación de este manuscrito.
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Un GRASP es un método multi-arranque, en el cual cada iteración GRASP
consiste en la construcción de una solución miope aleatorizada seguida de una
búsqueda local usando la solución construida como el punto inicial de la búsqueda
local. Este procedimiento se repite varias veces y la mejor solución encontrada
sobre todas las iteraciones GRASP se devuelve como la solución aproximada. El
seudo-código en la Figura 1 ilustra un GRASP básico para minimización.

procedure GRASP
f∗ ←∞
for i ≤ imáx do

x← GreedyRandomized();
x← LocalSearch(x);
if f(x) < f∗ then

f∗ ← f(x);
x∗ ← x;

end if
i← i+ 1

end for
return x∗

Figura 1.

En este caṕıtulo, nos centraremos primero en las dos componentes más im-
portantes de GRASP. A saber, construcción y búsqueda local. Después exami-
naremos cómo el reencadenamiento de trayectorias puede ser usado en GRASP
como un mecanismo de memoria e intensificación. El trabajo termina con una
lista parcial de aplicaciones exitosas de GRASP.

Reseñas recientes de GRASP pueden encontrarse en [102, 93], una extensa
bibliograf́ıa comentada está en [50] y una actualización en el URL

http://graspheuristic.org/annotated.

2 Construcciones GRASP

En esta sección describimos varios mecanismos de construcciones miopes alea-
torizadas. Estos procedimientos mezclan mioṕıa con aleatorización de diferentes
formas. Todos los mecanismos de construcción considerados construyen una so-
lución incorporando un elemento a la vez. En cada paso del proceso de cons-
trucción, se tiene a la mano una solución parcial. Un elemento que pueda selec-
cionarse como parte de una solución parcial se llama elemento candidato. Con-
sideremos un problema de cubrimiento de conjuntos, donde se tiene una matriz
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A = [aij ] de ceros y unos, un coste cj para cada columna j, y se quiere de-
terminar un conjunto J de columnas con el menor coste total

∑

j∈J cj tal que
para cada renglón i, al menos una columna j del conjunto tenga una entrada
aij = 1. En este problema, una solución parcial es un conjunto de columnas que
no necesariamente forman un cubrimiento. Cualquier columna que no se haya
seleccionado previamente es un elemento candidato. El conjunto solución J se
construye incorporando un elemento (columna) a la vez hasta que el conjunto J
sea un cubrimiento.

Para determinar qué elemento candidato seleccionar enseguida para incluirse
en la solución, generalmente se hace uso de una función miope. Una función
miope mide la contribución local de cada elemento a la solución parcial. En el
caso del cubrimiento de conjuntos, una función miope plausible es la razón entre
el número pj de filas sin cubrir, que quedaŕıan cubiertas si la columna j se elige
y la contribución cj al coste total de elegir la columna j para la solución, esto es
pj/cj . La elección miope seŕıa agregar la columna con el mejor valor de la función
miope.

Procedure Construcción-C
Input: k, E, c( );

x← ∅;
C ← E;
while C 6= ∅ do

Calcular el costo miope c(e); ∀e ∈ C;
RCL ← {k elementos e ∈ C con el menor c(e)};
Seleccionar un elemento s de RCL al azar;
x← x ∪ {s};
Actualizar el conjunto candidato C;

end while
return x;

Figura 2

Existen varias formas posibles de introducir aleatoridad a este procedimiento.
Una de las primeras ideas fue el uso de una lista restringida de candidatos (RCL)
[42]. Tal lista contiene un conjunto de elementos candidatos con los mejores va-
lores de la función miope. El siguiente candidato a ser agregado a la solución se
selecciona al azar de la lista restringida de candidatos. Dicha lista puede consistir
de un número fijo de elementos (restricción por cardinalidad) o elementos con
los valores de la función miope dentro de un rango dado. La Figura 2 muestra
un seudo-código para un procedimiento de construcción GRASP basado en res-
tricción por cardinalidad. Por ejemplo, denotemos por c∗ y c∗, respectivamente,
los valores mayor y menor de la función miope para los elementos candidatos, y
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sea α un número real tal que 0 ≤ α ≤ 1. En una lista restringida de candidatos
basada en el valor, la RCL consiste en todos los elementos candidatos e cuyo valor
de función miope c(e) es tal que c(e) ≤ c∗ + α(c∗ − c∗). Nótese que si α = 0,
entonces este esquema de selección es un algoritmo miope, mientras que si α = 1,
entonces es totalmente aleatorio. La Figura 3 muestra un seudo- código para
un procedimiento de construcción GRASP basado en el valor. Más tarde será
discutida la forma de determinar valores para α.

procedure Construcción-V
Input: α,E, c( );

x← ∅;
C ← E;
while C 6= ∅ do

Calcular el costo miope c(e); ∀e ∈ C;
cm = mı́n {c(e) | e ∈ C};
cM = max {c(e) | e ∈ C};
RCL ← {e ∈ C | c(e) ≤ cm + α(cM − cm)};
Seleccionar un elemento s de RCL al azar;
x← x ∪ {s};
Actualizar el conjunto candidato C;

end while
return x;

Figura 3

Se puede también mezclar una construcción al azar con una construcción
miope de la siguiente manera. Elegir secuencialmente un conjunto parcial de
elementos candidato al azar y después completar la solución usando un algoritmo
miope [95]. La Figura 4 muestra un seudo-código para tal procedimiento de cons-
trucción.
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procedure Construcción-RG
input: k, E, c( );
x← ∅;
C ← E for i = 1, 2, ..., k do

if C 6= ∅ then
Elegir el elemento e al azar de C;
x← x ∪ {e};
Actualizar el conjunto de candidatos C;

end if
end for
while C 6= ∅ do

Calcular el costo miope c(e); ∀e ∈ C
e+ ← argmin {c(e) | e ∈ C};
x← x ∪ {e+};
Actualizar el conjunto de candidatos C;
Calcular el costo miope c(e);∀e ∈ C;

end while
return x;

Figura 4

Otro enfoque es mediante perturbación de costes. Aqúı, los datos de costes
se perturban aleatoriamente y se aplica un algoritmo miope [27]. La Figura 5
muestra un seudo-código para este procedimiento de construcción.

procedure Construcción-PG
input: E, c( );
x← ∅;
C ← E;
Perturbar aleatoriamente los datos del problema;
while C ← E; do

Calcular el costo miope perturbado c(e); ∀e ∈ C;
e∗ ← argmin {c(e) | e ∈ C};
x← x ∪ {e∗};
Actualizar el conjunto de candidatos C;

end while
return x;

Figura 5

Un ejemplo final de un procedimiento de construcción de GRASP es una
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variación sobre el enfoque de RCL basado en el valor. En este procedimiento,
llamado función de sesgo [25], en vez de seleccionar el elemento de la RCL al
azar con iguales probabilidades asignadas a cada elemento, se asignan diferentes
probabilidades, favoreciendo elementos bien evaluados. Los elementos de la RCL
se ordenan de acuerdo a los valores de la función miope.

La probabilidad π(r(e)) de seleccionar el elemento e es

π(r(e)) =
sesgo(r(e))

∑

e′∈RCL sesgo(r(e
′))
,

donde r(e) es la posición del elemento e en la RCL. Se han propuesto varias
alternativas para asignar sesgos a los elementos. Por ejemplo,

• sesgo aleatorio: sesgo(r) = 1;

• sesgo lineal: sesgo(r) = 1/r;

• sesgo exponencial: sesgo(r) = e−r.

En la siguiente sección, discutimos cómo determinar el valor de α para usarse
en los esquemas basados en RCL anteriormente discutidos. Recordemos que si
α = 0, entonces estos esquemas de selección se convierten en un algoritmo miope,
mientras que si α = 1, son totalmente aleatorios.

3 Búsqueda local

Un algoritmo de búsqueda local explora repetidamente la vecindad de una
solución en busca de una mejor solución. Cuando no se encuentra una solución
que mejora la actual, se dice que la solución es localmente óptima. La Figura 6
muestra un seudo-código para un procedimiento de búsqueda local.

procedure BúsquedaLocal
input: x0, N( ), f( );
x← x0;
while x no es localmente óptimo con respecto a N(x) do

Sea y ∈ N(x) tal que f(y) < f(x);
x← y;

end while
return x;

Figura 6

La búsqueda local juega un papel importante en GRASP ya que sirve para
buscar soluciones localmente óptimas en regiones prometedoras del espacio de
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soluciones. Esta es la diferenciación de GRASP con respecto del algoritmo semi-
miope de Hart y Shogan [55]. Por definición su desempeño nunca será peor que
semi-miope, y casi siempre producirá mejores soluciones en menos tiempo.

Aunque los algoritmos miopes pueden producir buenas soluciones razonables,
su principal desventaja como generador de soluciones iniciales para búsquedas lo-
cales es su falta de diversidad. Aplicando repetidamente un algoritmo miope, una
sola o muy pocas soluciones pueden generarse. Por otra parte, un algoritmo total-
mente aleatorio produce una gran cantidad de soluciones diversas. Sin embargo,
la calidad de estas soluciones generalmente es muy pobre y usarlas como solu-
ciones iniciales para búsquedas locales generalmente conduce a una convergencia
lenta hacia un mı́nimo local.

Para beneficiarse de la convergencia rápida del algoritmo miope y de la gran
diversidad del algoritmo aleatorio, se acostumbra usar un valor de α estrictamente
contenido en el interior del rango [0; 1]. Ya que no se conoce a priori qué valor usar,
se han propuesto diferentes esquemas. La primera referencia en la literatura en la
cual se propone una variación del parámetro α fue [66]. Los autores proponen un
valor inicial del parámetro, α = 1, con este valor se efectúan las construcciones,
una vez que han transcurrido un cierto número de iteraciones sin que se haya
construido una solución mejor, este valor se disminuye en una cantidad ∆α, esto
es α = α − ∆α. Esto se repite mientras el parámetro α, no sea negativo. Otra
estrategia razonable es seleccionar al azar un valor diferente en cada iteración
GRASP. Esto puede hacerse usando una probabilidad uniforme [92] o usando el
esquema de GRASP reactivo [88].

En el esquema de GRASP reactivo, sea Ψ = {α1, . . . , αm} el conjunto de
valores posibles para α. Las probabilidades asociadas con la elección de cada
valor se fijan todas inicialmente iguales a pi = 1/m; i = 1; :::;m. Más aún, sea
z∗ el valor de la solución incumbente, esto es, la mejor solución encontrada hasta
el momento, y sea Ai el valor promedio de todas las soluciones halladas usando
α = αi i = 1; :::;m. Las probabilidades de selección se reevalúan periódicamente
tomando p : i = qi/

∑

j=1,...,m qj , con qi = z∗/Ai para i = 1; :::;m. El valor de
qi será mayor para valores de α = αi que produzcan las mejores soluciones en
promedio. Mayores valores de qi corresponden a valores del parámetro α más
adecuados. Las probabilidades asociadas con estos valores más apropiados se
incrementarán cuando sean reevaluadas.

En el contexto de GRASP, se han usado esquemas de búsqueda local más
elaborados. Por ejemplo, búsqueda tabú [66, 35, 1, 101], recocido simulado [70],
vecindades variables [28, 49], y vecindades extendidas [3].
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4 Estructuras de memoria en GRASP

Quizás una de las principales desventajas del planteamiento original de GRASP
es su falta de estructuras de memoria. Las iteraciones de GRASP son indepen-
dientes y no utilizan las observaciones hechas durante iteraciones previas. Una
consecuencia de esto es el hecho de que una solución previamente construida
puede aparecer nuevamente, ya que esta situación es equivalente a un muestreo
con reemplazo, invirtiendo tiempo de cómputo en construir soluciones repetidas.

Un remedio ha sido sugerido por Fleurent y Glover [51] quienes usan un diseño
de memoria adaptativo tal como se propone en búsqueda tabú con el fin de retener
y analizar caracteŕısticas de ciertas soluciones seleccionadas y almacenadas en un
conjunto élite S, y proporcionar una base para mejorar las ejecuciones futuras
dentro del proceso constructivo.

Para esto definen una función de evaluaciónE(e) = F (valor(e), intensidad(e)),
para cada candidato en la lista C. F es una función monótona no decreciente en
sus argumentos, donde valor(e) está asociada con la función objetivo. Mayores
valores de esta función corresponden a mejores elecciones (aśı, en un problema de
minimización, valor(e) se incrementa si el cambio en el coste disminuye). Mien-
tras que intensidad(e), se vuelve más grande cuando e aparece con más frecuencia
en los mejores miembros del conjunto élite S.

Esta función es utilizada entonces para determinar las probabilidades de elec-
ción de cada miembro de la lista C, p(e) = E(e)/

∑

e′∈C E(e′). La función de
evaluación generalmente tiene la forma E(e) = λvalor(e) + intensidad(e)). Va-
lores mayores de λ dan más énfasis a valor, que a intensidad, esto es deseable al
inicio de la búsqueda, ya que no se cuenta con información suficiente para que
el factor intensidad pueda ser significativo. A medida que avanza la búsqueda y
se tiene información dentro del conjunto de soluciones élite, el valor de λ puede
disminuirse. Ya que la intensificación de alguna manera enfatiza la calidad de
las soluciones a costa de la aleatorización, generalmente se acompaña con una
componente de diversificación que periódicamente conduce la búsqueda hacia la
exploración de diferentes regiones del espacio de búsqueda. En este caso, la diver-
sificación se puede lograr incrementando λ, lo cual se hace cuando la diversidad
de las soluciones generadas es muy baja.

Otra alternativa es el uso del reencadenamiento de trayectorias (path relin-
king) con GRASP. El reencadenamiento de trayectorias fue propuesto original-
mente por Glover [53] como una forma de explorar las trayectorias entre soluciones
élite obtenidas por búsqueda tabú o búsqueda dispersa. Usando una o más solu-
ciones élite, se exploran las trayectorias en el espacio de soluciones que conducen
a otras soluciones élite para buscar mejores soluciones. Para generar trayectorias,
los movimientos se seleccionan para introducir atributos en la solución actual que
estén presentes en la solución élite gúıa.
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El reencadenamiento de trayectorias en el contexto de GRASP fue introducido
por Laguna y Mart́ı [70]. Desde entonces han aparecido numerosas extensiones,
mejoras, y aplicaciones exitosas [5, 27, 94, 97, 95, 49]. Ha sido usado como un
esquema de intensificación, en el que las soluciones generadas en cada iteración
de GRASP se reencadenan con una o más soluciones de un conjunto élite de
soluciones, o como en una fase de post-optimización, donde se reencadenan pares
de soluciones del conjunto élite.

Consideremos dos soluciones xs y xt en las cuales queremos aplicar reencade-
namiento de trayectorias desde xs hacia xt. La Figura 7 ilustra el procedimiento
de reencadenamiento de trayectorias mediante su seudo-código. El procedimiento
se inicia calculando la diferencia simétrica ∆(xs;xt) entre las dos soluciones, i.e.
el conjunto de movimientos necesarios para alcanzar xt desde xs. Se genera enton-
ces una trayectoria de soluciones encadenando a xs con xt. El algoritmo devuelve
la mejor solución encontrada en esta trayectoria. En cada paso, el procedimiento
examina todos los movimientos m ∈ ∆(x;xt) desde la solución actual x y elige
aquel que resulta en la solución menos costosa, i.e. aquel que minimiza f(x⊕m),
donde x ⊕m es la solución resultante de aplicar el movimiento m a la solución
x. Se efectúa el mejor movimiento m∗ produciendo x ⊕m∗ y el movimiento m∗

se elimina de la diferencia simétrica de ∆(x ⊕m;xt). En caso necesario, la me-
jor solución x∗ se actualiza. El procedimiento termina cuando se alcanza xt, i.e.
cuando ∆(x;xt) = ∅.

procedure PR
input: xs, xt;
Calcular la diferencia simétrica ∆(xs, xt);
x← xs;
f∗ ← mı́n {f(xs), f(xt)};
x∗ ← argmı́n{f(xs), f(xt)};
while ∆(xs, xt) 6= ∅; do

m∗ ← argmin{f(x⊕m); ∀m ∈ ∆(x, xt)};
∆(x⊕m∗, xt)← ∆(x, xt) \ {m∗};
x← x⊕m∗;
if f(x) < f∗ then

f∗ ← f(x);
x∗ ← x;

end if
end while
return x∗;

Figura 7

La figura 8 ilustra el reencadenamiento de trayectorias.En el grafo de esta
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figura, los nodos corresponden a soluciones, y los arcos corresponden a movimien-
tos que permiten que una solución se alcance a partir de otra. Supóngase que
dos soluciones, A y D, se reencadenan. Sea A la solución inicial y D la solución
meta, y supóngase que la diferencia simétrica ∆(A;D) = 3. Existen tres posibles
movimientos partiendo de A. Se elige el mejor movimiento, el cual produce la
solución B. En este punto, la diferencia simétrica ∆(B;D) = 2 y por lo tanto
existen dos movimientos posibles. De nuevo, se elige el mejor movimiento, el cual
produce la solución C. Finalmente, en este punto hay un solo movimiento posi-
ble, el cual conduce a la solución meta D. Este esquema de reencadenamiento de
trayectorias produjo una “trayectoria” A→ B → C → D la cual puede ahora ser
evaluada.

A B

C

D

Figura 8

El reencadenamiento de trayectorias mantiene un conjunto P de soluciones
élite halladas durante la optimización [51]. Las primeras |P | soluciones distintas
que se encuentran se insertan en el conjunto élite. Después de eso, una solución
candidato x∗ se agrega a P si su costo es menor que el costo de todas las soluciones
del conjunto élite, o si su costo es mayor que el mejor, pero menor que la peor
solución élite y es suficientemente diferente de todas las soluciones del conjunto
élite. Si se acepta su entrada al conjunto élite, la nueva solución reemplaza a
la solución más similar a ella entre el conjunto de soluciones élite con un costo
peor que ella [95]. El conjunto élite puede ser renovado periódicamente [4] si
no se observan cambios en el conjunto élite durante un número especificado de
iteraciones GRASP. Una forma de hacer esto es fijar en infinito los valores de la
función objetivo de la peor mitad del conjunto élite. De esta forma se crearán
nuevas soluciones del conjunto élite.

Se han propuesto varios esquemas alternativos para el reencadenamiento de
trayectorias. Ya que este procedimiento puede ser demandante en recursos com-
putacionales, no necesita ser aplicado después de cada iteración GRASP. Es más
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conveniente hacerlo periódicamente. Usualmente las trayectorias desde xs hasta
xt y desde xt hasta xs son diferentes y ambas pueden explorarse. Ya que las
trayectorias pueden ser largas, no es necesario seguir la trayectoria completa. Se
puede restringir siguiendo una trayectoria truncada que inicie en xs y otra que
inicie en xt.

5 GRASP Continuo

Recientemente Hirsch et al [57, 58, 59, 60], introdujeron un método de opti-
mización global el cual extiende GRASP del dominio de la optimización discreta
al de la optimización global continua. El dominio de la función se supone inmerso
en un hiper-rectángulo de dimensión n, donde n es el número de variables. En
el inicio de cada iteración GRASP, se genera de forma aleatoria una solución x
dentro del rectángulo. La fase de construcción se inicia con esta solución dejando
en libertad de variar todas sus coordenadas, en cada una de las coordenadas libres
i se lleva a cabo una búsqueda lineal manteniendo las otras n − 1 coordenadas
de x en sus valores actuales. El valor de zi de la i-ésima coordenada, que mini-
mice el valor de la función objetivo, aśı como el valor de la función objetivo gi se
almacenan. Una vez que se ha llevado a cabo para cada una de las coordenadas
libres la búsqueda local, se forma una lista restringida de candidatos (LRC) la
cual contiene la coordenadas libres i cuyos valores gi son menores o iguales a
αmax+ (1−α)min, donde max y min son, respectivamente los valores máximo y
mı́nimo de gi sobre todas las coordenadas libres de x, y α ∈ [0; 1]. De la LRC se
elige una coordenada al azar, digamos j ∈ LRC, y xj se fija a zj , quedando n− 1
variables libres. Eligiendo una coordenada de esta manera se asegura la aleatorei-
dad en la fase de construcción. Se continúa con el procedimiento anteriormente
descrito hasta que todas las n coordenadas de x se hayan fijado. En este punto
se ha obtenido x de la fase de construcción. Para la fase de post-procesamiento
la cual consiste en una búsqueda local, iniciando desde un punto x ∈ R

n, el algo-
ritmo genera un conjunto de direcciones y determina en qué dirección, si es que
hay una, mejora la función objetivo. Es fácil ver que existen 3n − 1 direcciones
posibles y aun para valores moderados de n este número puede ser muy grande.
Es por esto que se fija un cierto número máximo de direcciones a explorar, Ndir,
y se construyen al azar este máximo número de direcciones. Una vez construida
la dirección d, se genera el punto de prueba x∗ + hd donde h es un parámetro de
discretización. Si el punto de prueba x es factible y es mejor que x∗, entonces a x∗

se le asigna el valor de x y el proceso vuelve a comenzar con x∗ como la solución
inicial. Es importante notar que el conjunto de direcciones puede cambiar cada
vez durante el proceso, aśı como el orden en el cual estas direcciones se conside-
ran. Una vez que se encuentra un punto con f(x∗) ≤ f(x∗+hd) para cada una de
las Ndir d elegidas, se declara a x∗ localmente óptima y el procedimiento regresa
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esta solución. Esto corresponde a una iteración de construcción de GRASP, el
procedimiento se repite maxiter veces y se regresa la mejor de todas las soluciones
construidas.

6 Aplicaciones

La primera aplicación de GRASP fue a cubrimientos de conjuntos [42] en 1989,
y, a partir de entonces, ha sido aplicado a un amplio rango de tipos de problemas.
Referimos al lector a Festa y Resende [50] y al URL

http://graspheuristic.org/annotated
para una extensa bibliograf́ıa comentada de GRASP. Concluimos este caṕıtulo con
una lista parcial de aplicaciones de GRASP, mostrando su amplia aplicabilidad.

• enrutamiento [11, 14, 19, 29, 64];

• lógica [36, 86, 90, 91];

• cubrimiento y partición [11, 12, 42, 52, 54];

• localización [1, 35, 70, 102, 103];

• árbol mı́nimo de Steiner [28, 75, 76, 77, 97];

• optimización en grafos [2, 44, 65, 84, 89, 93, 96, 48, 65, 32];

• asignación [41, 51, 66, 70, 78, 81, 85, 88, 87, 100, 56];

• horarios, programación, y manufactura [16, 17, 18, 21, 33, 37, 38, 39, 40,
45, 46, 66, 98, 99, 105, 6];

• transporte [11, 38, 41, 71, 20];

• sistemas de potencia [22, 23, 15];

• telecomunicaciones [2, 13, 64, 70, 88, 89, 94, 26, 82, 104, 65, 72];

• diseño de redes [8], [34];

• dibujo de grafos y mapas [47, 67, 93, 96, 73, 74, 24];

• lenguaje [31];

• estad́ıstica [79, 80];

• bioloǵıa [9];

• programación matemática [83];

• empaquetado [30]; y

• VLSI [10], entre otras áreas de aplicación.

Rect@ Monográfico 3 (2007)
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[40] T.A. Feo and J.L. González-Velarde. The intermodal trailer assignment pro-
blem: Models, algorithms, and heuristics. Transportation Science, 29:330-
341,1995.

[41] T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computatio-
nally dificult set covering problem. Operations Research Letters, 8:67–71,
1989.

[42] T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search proce-
dures. Journal of Global Optimization, 6:109-133, 1995

[43] T.A. Feo, M.G.C. Resende, and S.H. Smith. A greedy randomized adap-
tive search procedure for maximum independent set. Operations Research,
42:860-878, 1994.

[44] T.A. Feo, K. Sarathy, and J. McGahan. A GRASP for single machine sche-
duling with sequence dependent setup costs and linear delay penalties. Com-
puters and Operations Research, 23:881-895, 1996.

[45] T.A. Feo, K. Venkatraman, and J.F. Bard. A GRASP for a difficult single
machine scheduling problem. Computers and Operations Research, 18:635-
643, 1991.

[46] E. Fernández and R. Mart́ı. GRASP for seam drawing in mosaicking of
aerial photographic maps. Journal of Heuristics, 5:181-197, 1999.

Rect@ Monográfico 3 (2007)
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1 Introducción

La Búsqueda Dispersa es un método que fue introducido en 1977 (publicado
en Glover 1998) como un heuŕıstico para la programación entera, basado en es-
trategias expuestas en el congreso ”Management Science and Engineering Mana-
gement” celebrado en Austin, Texas en septiembre de 1967. A pesar de eso SS no
fue aplicado ni debatido hasta 1990, cuando fue presentado en el ”EPFL Seminar
on Operations Research and Artificial Intelligence Search Methods” (Lausanne,
Switzerland). Un art́ıculo basado en esta exposición fue publicado en 1994 (Glo-
ver 1994), y desde entonces la metodoloǵıa de Scatter Search se empezó a aplicar
con más profusión.

La primera descripción de SS (Glover, 1977) usa una sucesión de principios
coordinados para generar soluciones. Concretamente los aspectos más destacados

*Los autores de este trabajo agradecen la ayuda del Ministerio de Educación y Ciencia por
la subvención económica para la realización de este trabajo a través del Plan Nacional de I+D,
(Proyecto SEJ- 2005 08923/ECON), aśı como la recibida de la Conserjeŕıa de Educación de
Castilla y León ( Proyecto BU008A06).
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de este trabajo son los siguientes:

• SS realiza una exploración sistemática sobre una serie de buenas soluciones
llamadas conjunto de referencia teniendo en cuenta las caracteŕısticas de
diversos elementos de la solución .

• El método se centra en combinar dos o más soluciones del conjunto de
referencia. La combinación de más de dos soluciones tiene como objetivo el
generar centroides.

• Generar soluciones en la ĺınea que une dos dadas se considera una forma
reducida del método.

• Al combinar se deben seleccionar pesos apropiados y no tomar valores al
azar.

• Se deben realizar combinaciones “convexas” y “no convexas” de las solucio-
nes.

• La distribución de los puntos se considera importante y deben tomarse
dispersos.

Básicamente se trata de que mediante la combinación de las soluciones que
forman el conjunto de referencia se obtengan nuevas soluciones que mejoren a las
que las originaron. Según esto, cuando por ejemplo se crean nuevas soluciones
a partir de una combinación lineal de otras dos o más, el conjunto de referencia
puede evolucionar según se observa en la Figura 1.

C

1

2

A

B

3

4

Fig.1.- Conjunto de Referencia

Considerando el conjunto de referencia original como el formado por las solu-
ciones etiquetadas como A, B y C, una combinación no convexa de las soluciones
de referencia A y B crea la solución 1. En realidad se crean más soluciones en el
segmento definido por A y B, aunque sólo se introduce en el conjunto de referen-
cia la solución 1 (el criterio usado para seleccionar las soluciones que forman parte
del conjunto de referencia será tratado más adelante). De igual forma, mediante
las combinaciones convexas y no convexas de las soluciones del conjunto de refe-
rencia y la recién creada se originan los puntos 2, 3 y 4. El conjunto de referencia
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completo mostrado en la Figura 1 consta de 7 soluciones que posteriormente serán
mejoradas con un procedimiento de búsqueda local.

Históricamente los antecedentes de las estrategias para combinar soluciones
fueron introducidos en el contexto de los métodos de planificación para obtener
mejoras en las soluciones para “job shop scheduling problems” (Glover 1963). Se
generaron nuevas soluciones mediante la creación de combinaciones numéricamente
ponderadas de las soluciones ya existentes. Esta técnica fue motivada por la su-
posición de que la información está contenida de diferentes formas en diferentes
soluciones y por ello esta información puede ser utilizada de un modo más efectivo
cuando se combina que cuando la tratamos con estrategias estándar de selección
de diferentes soluciones sin tener en cuenta el resto.

Además, en programación entera y no lineal, se desarrollaron procedimientos
asociados para combinar restricciones. Hoy en d́ıa son muy conocidos los métodos
para crear nuevas restricciones de desigualdad llamados surrogate constraints (res-
tricciones subrogadas) (Glover 1965 y 1968).

Otros mecanismos de combinación son aquellos basados en “votos”. En éstos
se definen reglas mediante las que cada solución “vota” para que sus caracteŕısticas
aparezcan en la solución que se está construyendo. Estos métodos de votos han
sido muy utilizados en las rutinas de combinación de SS y parece que constituyen
una de las claves de su éxito.

Esta forma de operar de SS combinando soluciones hace que se le enmarque
dentro de los métodos que llamamos “evolutivos” o “basados en población”, es
decir, aquellos que combinan soluciones para crear otras nuevas. De hecho se basa
en el principio de que la información sobre la calidad o el atractivo de un conjunto
de soluciones puede ser utilizado mediante la combinación de éstas. En concreto,
dadas dos soluciones, se puede obtener una nueva mediante su combinación de
modo que mejore a las que la originaron.

A pesar de que SS sea un método de los que denominamos “evolutivos” existen
algunas diferencias importantes entre los algoritmos genéticos, probablemente
el representante más conocido y extendido de los algoritmos evolutivos, y SS.
Básicamente son las siguientes:

• Mientras que en SS la selección de las soluciones se hace de forma sistemática
y estratégica, en los algoritmos genéticos se realiza de forma totalmente
aleatoria.

• SS selecciona las soluciones, para combinarlas posteriormente, de entre un
pequeño conjunto de soluciones denominado conjunto de referencia, mien-
tras que los algoritmos genéticos consideran una población de soluciones
de mayor tamaño. Aśı, los algoritmos genéticos suelen considerar una po-
blación de 100 soluciones mientras que en SS habitualmente se trabaja con
conjuntos de referencia de 10 soluciones.

• Podemos identificar aqúı otra diferencia con el resto de métodos evolutivos

Rect@ Monográfico 3 (2007)



100 Principios de la Búsqueda Dispersa

en los que con frecuencia se emplean métodos de combinación independien-
tes del contexto. Es decir que no utilizan ninguna información o conoci-
miento sobre el problema, como el conocido operador de sobrecruzamiento
(crossover) en los algoritmos genéticos.

Por otro lado, el método SS no sólo consiste en combinar soluciones del con-
junto de referencia sino que va más allá y a las soluciones obtenidas tras la com-
binación se les aplica un procedimiento de mejora que habitualmente es un pro-
cedimiento de búsqueda local, aunque en diseños avanzados se puede incorporar
al procedimiento de mejora estructuras de memoria. Esta forma de actuar está
basada en la suposición de que cuando se combinan soluciones y se aplica un
método de mejora sobre las mismas se obtienen mejores resultados que cuando
se aplica el método de mejora en las soluciones originales sin haberlas combinado
previamente.

En Glover (1998) se recopilan y organizan ideas fundamentales de SS pro-
cedentes de trabajos anteriores dando lugar a una versión estándar del método
mediante un esquema o plantilla. De ah́ı la gran importancia de la publicación de
este trabajo en lo que se refiere a la difusión del método. Básicamente destacamos
las siguientes ideas:

• La información útil sobre la forma o la situación de las soluciones óptimas
está normalmente contenida en un conjunto apropiado y diverso de solucio-
nes élite.

• Cuando la combinación de soluciones se usa como una estrategia para ex-
plotar tal información, es importante incorporar mecanismos capaces de
generar combinaciones que vayan más allá de las regiones abarcadas por
las soluciones consideradas. De un modo similar también es importante
incorporar procesos heuŕısticos para transformar las soluciones combinadas
en nuevas soluciones. El objetivo de estos mecanismos de combinación es
incorporar diversidad y calidad.

• Si se tienen en cuenta múltiples soluciones simultáneamente como base para
crear combinaciones, se intensifica la oportunidad de explotar información
contenida en la unión de soluciones élite.

2 Método Básico

Scatter Search trabaja sobre un conjunto pequeño de soluciones, denominado
conjunto de referencia, combinando sus soluciones para crear otras nuevas. A
continuación se describen los cinco elementos esenciales del método aśı como el
funcionamiento de estos elementos dentro del esquema básico de SS.

1. Método generador de soluciones diversas. Con este método se genera
un conjunto de soluciones diversas que en principio no tienen que ser necesaria-

Rect@ Monográfico 3 (2007)



S. Casado, R. Mart́ı 101

mente factibles. El tamaño de este conjunto, P , suele estar en torno a 100 aunque
depende de variantes.

2. Conjunto de referencia (Refset). De entre el conjunto de soluciones
diversas generado con el método anterior y una vez aplicado el método de me-
jora, se selecciona el conjunto de referencia, formado por un número pequeño de
soluciones, b (alrededor de b = 10). La mitad de éstas soluciones (b/2) serán las
de mayor calidad del conjunto de soluciones diversas y la otra mitad se obtiene
siguiendo el criterio de la diversidad, es decir se seleccionan aquellas que disten
más (según la medida de diversidad considerada en el problema) respecto a las
ya incluidas en el conjunto de referencia. Las soluciones seleccionadas se ordenan
según su calidad de mayor a menor.

3. Un método generador de subconjuntos. A través de este método
se generan subconjuntos de soluciones del conjunto de referencia. Las soluciones
de cada uno de estos subconjuntos se combinarán entre śı posteriormente. Un
criterio seguido en numerosas ocasiones para obtener los subconjuntos consiste
en considerar todos los pares de soluciones del conjunto de referencia, aunque se
pueden considerar tŕıos o subconjuntos formados por cualquier otro número de
soluciones.

4. Un método de combinación. Con este método se combinan entre śı las
soluciones de cada subconjunto obtenido con el método generador de subconjuntos
ya descrito.

5. Método de mejora de soluciones. Este método se usa para tratar
de obtener soluciones de mayor calidad que las de partida, aunque en el caso en
que aparezcan soluciones no factibles su función consistirá, primero en obtener
una solución factible y luego intentar mejorarla. Se aplica tanto al conjunto de
soluciones diversas como a aquellas soluciones que se obtienen tras la aplicación
del método de combinación a las del conjunto de referencia. Habitualmente como
método de mejora se usa un procedimiento de búsqueda local.

El modo de actuación de los elementos descritos anteriormente dentro del
esquema básico del algoritmo de SS se muestra a continuación.

Rect@ Monográfico 3 (2007)



102 Principios de la Búsqueda Dispersa

Algoritmo de Scatter Search

1. Generación de un conjunto de P soluciones diversas

2. Mejora de dichas soluciones

3. Construcción del conjunto de referencia con las b mejores soluciones
siguiendo los criterios de calidad y diversidad.

4. Repetir

4.1 Formación de subconjuntos con las soluciones del conjunto de re-
ferencia.

4.2 Generación de soluciones nuevas mediante la aplicación del método
de combinación a las soluciones de los subconjuntos (para obtener
soluciones distintas a las de partida)

4.3 Mejora de las nuevas soluciones

4.4 Actualización del conjunto de referencia. (Las nuevas soluciones ob-
tenidas que sean buenas por calidad o por diversidad se incorporan al
conjunto de referencia)

Hasta que el conjunto de referencia se estabilice (esto ocurre si durante un
ciclo completo no se obtiene ninguna solución que pueda ser incorporada en
el mismo)

Tal y como se observa en el esquema del algoritmo de SS, de la combinación de
las soluciones del conjunto de referencia se obtienen nuevas soluciones que una vez
mejoradas pueden pasar a formar parte del conjunto de referencia, actualizando
aśı dicho conjunto. Dado que el número de soluciones del conjunto de referen-
cia no vaŕıa a lo largo de todo procedimiento, la actualización de este conjunto
se realizará de forma que las nuevas soluciones sustituirán a las que mejoren en
el conjunto de referencia. Es importante destacar que el significado de “mejo-
res” no se restringe a la calidad de la solución, sino que también se considera
la diversidad que ésta aporta al conjunto. No obstante, aunque la actualización
se puede hacer según el criterio de diversidad se ha comprobado que siguiendo el
criterio de calidad se obtienen mejores resultados (Laguna y Mart́ı 2003). De esta
forma la calidad de las soluciones del conjunto de referencia puede ir mejorando
progresivamente.

Finalmente el algoritmo se detiene cuando el conjunto de referencia se esta-
biliza, es decir, cuando durante un ciclo completo no se obtiene ninguna solución
que pueda pasar a formar parte del conjunto de referencia. Llegado a este punto
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el algoritmo puede reiniciarse volviendo al paso 1 del esquema y repitiendo todo el
procedimiento. Una práctica habitual para reiniciar el proceso consiste en obtener
un nuevo conjunto de referencia de la manera siguiente: Partiendo del conjunto
de referencia que se hab́ıa estabilizado (no admit́ıa ninguna nueva solución) se
eliminan la mitad de las soluciones (b/2), manteniéndose la otra mitad. Con-
cretamente se eliminan las de peor calidad. Para obtener la otra mitad de las
soluciones se genera un nuevo conjunto de P soluciones (paso 1 del algoritmo)
considerando como objetivo favorecer la diversidad respecto a las soluciones que
no se han eliminado. De este conjunto, en sucesivos pasos, se selecciona la solución
más diversa respecto a las que ya forman parte del nuevo conjunto de referencia
hasta que éste llegue a tener b soluciones. Una vez obtenido el nuevo conjunto
de referencia se continúa con el paso 4 (4.1, 4.2, 4.3 y 4.4) siguiendo el esquema
del algoritmo. En el gráfico de la Figura 2 se muestra el funcionamiento básico
del algoritmo de SS.

Generar conjunto soluciones  diversas

Mejorar Soluciones

Calidad Diversidad

Conjunto de Referencia

Formar

subconjuntos

Combinar

soluciones

Mejorar Soluciones

Actualizar Refset

ÀHay nuevas soluciones en el Refset?

SI NO Parar

Fig.2.- Funcionamiento del algoritmo de SS

3 Estrategias Avanzadas

Scatter Search puede ser implementado de múltiples formas y ofrece alternati-
vas muy diversas para explotar sus ideas fundamentales. De hecho su mecanismo
no está restringido a un diseño único y uniforme, sino que permite diferentes
posibilidades que pueden resultar efectivas según el caso.
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SS proporciona, por tanto, un marco flexible que permite el desarrollo de
diferentes variantes con diversos grados de complejidad entre las que se pueden
destacar las siguientes propuestas:

1) Dependiendo del momento en que se realice la actualización del conjunto
de referencia podemos distinguir dos variantes:

a) Actualización Estática: La actualización del conjunto de referencia se realiza
una vez que se han combinado todos los subconjuntos y se han obtenido
todas las nuevas soluciones. De este modo hasta ese momento no se podrá
saber si una solución determinada se va a poder incorporar al conjunto
de referencia. Básicamente su funcionamiento se resume en el siguiente
esquema:

Algoritmo Scatter Search “estático”

1. Generar un conjunto inicial P de soluciones diversas

2. Mejorar las soluciones generadas

3. Con estas soluciones construir el conjunto de referencia inicial

4. Repetir

4.1 Obtener todos los subconjuntos de elementos del conjunto de re-
ferencia

4.2 Combinar las soluciones de cada subconjunto para obtener nuevas
soluciones

4.3 Mejorar las nuevas soluciones obtenidas

4.4 Actualizar el conjunto de referencia con estas nuevas soluciones
hasta que se estabilice (i.e. no se incluyan nuevas soluciones)

b) Actualización Dinámica: La actualización del conjunto de referencia se rea-
liza cada vez que se genera una nueva solución, de modo que en el momento
en que obtiene una solución se sabe si ésta va a formar parte del conjunto
de referencia. Esta segunda variante es más agresiva dado que cada vez
que se genera una solución apta para entrar en el conjunto de referencia
ésta pasa inmediatamente a formar parte de él, en vez de esperar a que se
hayan combinado todos los subconjuntos de soluciones. La ventaja de este
tipo de actualización es que en el caso en que el conjunto de referencia con-
tenga soluciones de baja calidad, esas soluciones pueden ser reemplazadas
rápidamente y aśı en las siguientes combinaciones intervendrán soluciones
de mayor calidad. Sin embargo, el hecho de que el tamaño de este con-
junto se deba mantener constante implica que puedan existir soluciones que
salgan del conjunto de referencia sin haber sido combinadas.
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Una vez descritas ambas variantes, observamos cómo implementar la variante
dinámica resulta ser más complejo que la variante estática. Además, en la va-
riante estática el orden en el cual tiene lugar la formación de subconjuntos y
combinación de soluciones carece de relevancia dado que se generan todos los
subconjuntos y se realizan todas las combinaciones. Sin embargo, en la actua-
lización dinámica este orden tiene una gran importancia dado que determina la
eliminación de combinaciones potenciales. Por esto, cuando se actualiza según
la variante dinámica, es necesario hacer pruebas siguiendo distintos órdenes de
formación de subconjuntos y combinación de soluciones.

A continuación se describe el esquema básico de funcionamiento de la variante
“dinámica” de SS :

Algoritmo Scatter Search “dinámico”

1. Generación de un conjunto P de soluciones diversas

2. Mejorar las soluciones generadas

3. Construir el conjunto de referencia inicial Refset

4. Repetir

4.1 Siguiendo el orden establecido de formación de subconjuntos, hacer:

4.1.1 Obtener el subconjunto de elementos que corresponda

4.1.2 Combinar las soluciones de este subconjunto para obtener una
nueva solución

4.1.3 Mejorar esta nueva solución

4.1.4 Actualizar el conjunto de referencia: la solución mejorada se incor-
pora al Refset si es mejor que la peor en él. hasta que se estabilice
el conjunto de referencia (i.e. ninguna nueva solución pueda ser
incluida en el Refset)

2) Se pueden implementar diferentes diseños en función del número de ele-
mentos que integran los subconjuntos de soluciones que se obtienen del conjunto
de referencia. Lo más común y que permite obtener los mejores resultados es
que estén formados por dos elementos (se suelen considerar todos los pares de
soluciones posibles). De hecho, en el experimento presentado en Campos y otros
(2001) se muestra como al menos el 80% de las soluciones que son admitidas en el
conjunto de referencia provienen de combinaciones de subconjuntos formados por
dos elementos. No obstante los subconjuntos pueden estar formados por cualquier
otro número de elementos o soluciones (por ejemplo subconjuntos de 3 elementos,
de cuatro, etc.)
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Un procedimiento práctico para generar subconjuntos que permite pasar de
subconjuntos de dos elementos a otros formados por un número mayor, teniendo
siempre controlado el número de subconjuntos que se van a generar, consiste en
crearlos de la siguiente forma propuesta en Glover (1998):

• Subconjuntos de dos elementos: formados por todos los pares de soluciones
posibles.

• Subconjuntos de tres elementos: derivados de los subconjuntos de dos ele-
mentos añadiendo a cada uno de ellos la mejor solución encontrada que no
pertenezca al subconjunto.

• Subconjuntos de cuatro elementos: derivados de los subconjuntos de tres
elementos añadiendo a cada uno de ellos la mejor solución encontrada que
no pertenezca al subconjunto .

• Subconjuntos formados por los i mejores elementos, desde i = 5 hasta b.

3 ) Según la forma de actualizar el conjunto de referencia: Este conjunto
inicialmente se forma siguiendo los criterios de calidad y diversidad, de modo
que generalmente aproximadamente la mitad de los elementos lo constituyan las
soluciones de mayor calidad y el resto se obtengan según el criterio de máxima
distancia. Sin embargo a la hora de actualizarlo lo más habitual es hacerlo sólo
siguiendo el criterio de calidad. De hecho tal y como se ha comentado ante-
riormente, se ha probado cómo actualizando el conjunto de referencia sólo por
diversidad se obtienen peores resultados que considerando sólo el criterio de cali-
dad (Laguna y Mart́ı 2003).

Además, otros aspectos clave del método de SS sobre los cuales se sigue estu-
diando y que permiten implementarlo según diversas alternativas son los siguien-
tes:

• Control de la diversidad cuando se forma el conjunto de referencia: Para
garantizar la diversidad cuando se seleccionan las b/2 soluciones de mayor
calidad de entre las P soluciones generadas por el método generador se puede
establecer un umbral de distancia entre estas soluciones de alta calidad, de
forma que una solución candidata solo puedan entrar a formar parte del
conjunto de referencia si la distancia mı́nima entre esta solución y las que
ya están en el conjunto de referencia sea igual o mayor que ese umbral
establecido.

• La incorporación del uso de memoria en el algoritmo:

– Para generar soluciones: además de poder generar el conjunto de P
soluciones diversas (paso 1 del algoritmo) de forma aleatoria, se puede
generar desarrollando algún método que use la memoria basada en la
frecuencia con que aparecen los distintos elementos en las soluciones
con objeto de evitar la repetición de soluciones similares y favorecer
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aśı la diversidad. Es importante destacar que desde sus oŕıgenes, SS,
se basa en obtener diversidad de un modo determinista pre-establecido
en lugar de recurrir a la aleatoriedad.

– Para su uso en el método de mejora: Cuando se añaden estructuras
de memoria al método de mejora, éste deja de ser un simple procedi-
miento de búsqueda local (procedimiento heuŕıstico) y se transforma
en una estrategia metaheuŕıstica, es decir, una estrategia maestra que
gúıa y modifica otras heuŕısticas para producir soluciones más allá de
aquellas que normalmente se generan en una búsqueda de óptimos lo-
cales (Glover y Laguna 1997). El resultado es un método h́ıbrido que
combina dos estrategias metaheuŕısticas: Scatter Search y el método
Tabu Search usado para mejorar las soluciones.

• Búsqueda de un equilibrio entre diversificación e intensificación: se
trata de estudiar cómo se va a distribuir el tiempo total de computación, es
decir, qué porcentaje del tiempo se dedica a generar las soluciones y cuál es
el que se dedica a combinarlas.

• Buscar el tamaño óptimo del conjunto de referencia: Se debe estudiar
si b debe ser un número pequeño tal y como se suele aconsejar o si por el
contrario se obtendŕıan mejores resultados aumentando este número. Asi-
mismo existe la posibilidad de considerar que b vaŕıe en función del estado
de la búsqueda.

• Probar con diversos métodos de combinación: En Campos y otros (2005)
se analizan distintos métodos de combinación de soluciones, algunos con
elementos aleatorios y otros deterministas, de forma que el algoritmo se-
lecciona el método de combinación probabiĺısticamente, de acuerdo con los
éxitos obtenidos por éste.

• Determinar a qué soluciones se debe aplicar el método de mejora: La
aplicación del método de mejora a todas las soluciones generadas y com-
binadas no garantiza mejores resultados. En este sentido según Ugray y
otros (2001) seŕıa conveniente establecer umbrales de calidad para excluir
de la aplicación del método de mejora a aquellas soluciones que dif́ıcilmente
puedan llegar a ser la mejor solución.

• Formar el conjunto de referencia inicial con la mitad de soluciones
obtenidas según el criterio de calidad y la otra mitad según el de diversidad.
Se han hecho pruebas considerando otras proporciones (véase Laguna y
Mart́ı, 2003 ) pero en principio parece ser que ésta es la que permite obtener
mejores resultados.
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4 Aplicación de SS a un Problema de Locali-
zación

Scatter search se ha aplicado a la resolución de una gran variedad de problemas
de optimización. En este caso concreto vamos a usar un SS propuesto en Pacheco
y Casado (2005) para resolver un problema de localización, concretamente el
problema de los p-centros.

El problema de los p-centros es un problema de localización bien conocido
que consiste en colocar p servicios como colegios, hospitales o similar y asignar
clientes a dichos servicios de forma que se minimice la máxima distancia entre un
cliente y su servicio. Se trata de un problema NP-hard tal y como se demostró
en Kariv y Hakimi (1979).

Sea U = {u1, u2, . . . , um} un conjunto de usuarios y V = {v1, v2, . . . , vn}
un conjunto de localizaciones donde colocar servicios. Considérese conocida la
distancia dij entre cada cliente ui y la localización vj , el problema consiste en
encontrar un subconjunto X de p localizaciones de forma que se minimice

max
i=1,...,m

{

min
vj∈X

dij

}

El problema se puede formular de forma lineal como sigue

Minimizar z
sujeto a:

∑

j=1,...,n xij = 1, i = 1 . . .m; (1)

xij ≤ yj , i = 1 . . .m; j = 1 . . . n; (2)
∑

j=1,...,n yj = p; (3)
∑

j=1,...,n dijxij ≤ z i = 1 . . .m; (4)

xij , yj ∈ {0, 1} i = 1 . . .m; j = 1 . . . n; (5)

donde yj = 1 indica que se ha colocado un servicio en vj (0 en caso contrario);
xij = 1 indica que al usuario ui se le ha asignado el servicio vj (0 en caso contra-
rio). Este modelo es usado por ejemplo en localización de estaciones de bomberos,
polićıa o ambulancias, unidades de urgencias, etc.

Para resolver este problema de localización se ha diseñado una versión que
podŕıamos denominar ‘estática’ de Scatter Search. La descripción en seudocódigo
de forma general es la siguiente:

Algoritmo Scatter Search “estático”

1. Generar un conjunto inicial de P soluciones con un método Generador-
Diversificador

2. Mejorar estas soluciones con un método de mejora
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3. Con estas soluciones construir el conjunto de referencia inicial

4. Repetir

4.1 Obtener todos los subconjuntos de pares del conjunto de referencia

4.2 Combinar estos subconjuntos para obtener nuevas soluciones

4.3 Mejorar estas nuevas soluciones con el método de mejora

4.4 Actualizar el conjunto de referencia con estas nuevas soluciones hasta
que se estabilice (i.e. no se incluyan nuevas soluciones)

5. Si han trascurrido max iter iteraciones (pasos 1-4) sin mejora finalizar; sino
volver al paso 1 (Reiniciar)

Denotamos por X la solución, total o parcial, en cada momento, es decir, las
localizaciones (́ındices) donde se han colocado servicios, y f el valor de la función
objetivo correspondiente a X .

Para formar el conjunto de Referencia, (paso 3) se comienza seleccionando
las b/2 soluciones de mayor calidad según la función objetivo. A este número
de soluciones de mayor calidad que forman el conjunto de Referencia, b/2, le
denominamos Tam Ref1. Posteriormente para añadir la otra mitad de soluciones
se usa la siguiente función o criterio que mide la ‘diversidad’ de una solución
candidata X a entrar con respecto a los que ya están en Refset

Difmin(X,Refset) = min{dif(X,X ′) | X ′ ∈ Refset};

donde dif(X,X ′) = |X−X ′|, es decir el número de elementos (localizaciones) de
la solución X que no están en X ′.

La actualización de Refset (paso 4.4.) se realiza considerando la calidad de
las soluciones. Es decir, se incorporan aquellas nuevas soluciones que mejoren la
función objetivo de alguna de las soluciones existentes en Refset. A continuación
se describen el método Generador-Diversificador, el método de mejora y el de
combinación.

4.1 Método Generador-Diversificador

Nuestro método diversificador está basado en constructivos tipo GRASP.
GRASP (greedy randomized adaptive search procedure), es un método heuŕıstico
que construye soluciones usando una función voraz y aleatoriedad controlada. La
mayoŕıa de las implementaciones GRASP incluyen un procedimiento de búsqueda
local para mejorar las soluciones generadas. GRASP fue originalmente propuesto
en el contexto de problemas de cubrimientos de conjuntos (Feo y Resende 1989).
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Un tutorial clásico se puede encontrar en Feo y Resende (1995) y más reciente-
mente en Pitsoulis y Resende (2002).

En nuestro caso la evaluación proporcionada por la función voraz ∆j en cada
paso es el valor de la función objetivo que se obtendŕıa si se añadiera un servicio
a j. El método diversificador consta de los siguientes pasos:

Procedimiento Avido-Aleatorio
Hacer X = ∅
Mientras |X | < p hacer

• Determinar ∀j ∈ V \X el valor ∆j de f si se añadiera j a X

• Determinar ∆max = max{∆j | j ∈ V \L} y ∆min = min{∆j | j ∈ V \L}
• Construir L = {j ∈ V \ L | ∆j ≤ α ·∆min+ (1− α) ·∆max}
• Elegir j∗ ∈ L aleatoriamente

• Hacer X = X ∪ {j∗}

El parámetro α (0 ≤ α ≤ 1) controla el nivel de aleatoriedad. A mayor
valor de α menor nivel de aleatoriedad. Con este uso de aleatoriedad controlada
se consigue una muestra de soluciones en la que normalmente la mejor de ellas
supera a la encontrada con una elección totalmente determińıstica, (con α = 1).
Una selección adecuada de α permite un equilibrio entre diversificación y calidad
de las soluciones.

La primera vez que se emplea el método generador-diversificador (paso 1)
no hay ‘historia’ acerca de cuántas veces un elemento ha formado parte de las
soluciones del conjunto de referencia. Sin embargo, esta información puede ser
utilizable cuando el método se usa para reiniciar el proceso. La información se
registra en el siguiente vector

freq(j) = Número de veces que cada localidad j de V ha pertenecido
a las soluciones del conjunto de referencia

La información registrada en freq(j) se usa para modificar los valores ∆j en el
método diversificador de la siguiente manera

∆′
j = ∆j − β∆max

freq(j)

freqmax

donde freqmax = max{freq(j) : ∀j}. Con los valores modificados ∆′
j se calculan

∆′
min y ∆′

max y se ejecuta el método diversificador con estos valores para construir

Rect@ Monográfico 3 (2007)
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la lista de candidatos L. Obsérvese que con β = 0, el método diversificador
modificado coincide con el original. Altos valores de β fuerzan a la selección de
elementos que menos han aparecido. El uso de información dada por la frecuencia
en el método diversificador está inspirada en Campos y otros (2005). Hay que
destacar que la incorporación de memoria a la construcción, hace que ésta ya no
sea de tipo GRASP en sentido estricto, pues el muestreo del espacio de soluciones
ya no es aleatorio e independiente.

4.2 Método de Mejora

El método de mejora usado tiene su origen en Mladenovic y otros (2001) donde
se hacen adaptaciones al problema de los p-centros de 3 heuŕısticos clásicos para
el problema de las p-medianas tomados de Mulvey and Beck (1984). Uno de estos
tres heuŕısticos, el procedimiento “Alternate”, es el que hemos seleccionado como
método de mejora y se describe a continuación:

Procedimiento Alternate
Repetir

• Para cada servicio j de X , determinar el subconjunto de los puntos de U
que tienen a j como servicio más cercano

• Para cada uno de estos subconjuntos de usuarios resolver el problema del
1-centro

• Hacer X ′ el conjunto de soluciones de estos p problemas, y f ′ su valor

• Si f ′ < f hacer X = X ′ y f = f ′

hasta que no haya cambios en X

4.3 Método de Combinación

e obtienen nuevas soluciones combinando pares del conjunto de referencia
(paso 4.2). El número de soluciones generadas de cada par depende de la relativa
calidad de las soluciones que son combinadas. Considérese xt y xq las soluciones
del conjunto de referencia que son combinadas, donde t < q. Se asume que el
conjunto de referencia está ordenado de forma que x1 es la mejor solución y xb la
peor; entonces el número de soluciones generadas de cada combinación es:

tres si t ≤ Tam Ref1 y q ≤ Tam Ref1
dos si t ≤ Tam Ref1 y q > Tam Ref1
uno si t > Tam Ref1 y q > Tam Ref1.
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Cada par de soluciones del conjunto de referencia se usa para generar nuevas
soluciones. Para ello se usa la estrategia denominada Path Relinking. La idea
básica es construir un camino que una las dos soluciones. Algunas de las soluciones
intermedias en dicho camino se utilizan como puntos iniciales a los que se les aplica
la fase de mejora tal y como muestra la Figura 3.

Mejora

x
t

x
 q

x* x**

x
1

x
2

Fig. 3.- Generación de nuevas soluciones usando Path Relinking

El camino que une dos soluciones dadas, xt y xq, se construye como sigue.
Inicialmente se hace x = xt. En los siguientes pasos se añade a x un elemento de
xq que no esté en x y se elimina un elemento que no esté en xq. De esta forma
la solución intermedia x en cada paso tiene un elemento más en común con xq

. En cada paso se elige el mejor entre estos posibles cambios. Path Relinking es
una estrategia tradicionalmente asociada a Tabu Search. La idea que subyace es
que en el camino entre dos buenas soluciones, se espera que haya soluciones de
parecida calidad (incluso en algún caso mejor). Para una mayor ilustración ver
Glover, Laguna y Mart́ı (2000).

4.4 Resultados Computacionales

Inicialmente, para mostrar el funcionamiento de SS se han hecho una serie
de pruebas usando los ejemplos de la libreŕıa OR-Lib correspondientes a valores
de p ≤ 10. Los valores de los parámetros que ha usado SS en este caso son:
P = 12, b = 6, α = β = 0, 8 y max iter = 5. En estos ejemplos U = V , es decir
las localizaciones donde colocar las facilidades coinciden con los usuarios. En la
Tabla 1 se muestran los resultados.

Además, se han hecho pruebas con problemas reales. Los datos de los proble-
mas reales se refieren a diversas provincias en el norte de España, concretamente
vila, León, Salamanca, Segovia y Burgos. Con estas experiencias se quiere ana-
lizar para cada provincia dónde situar una serie de unidades de diabetes entre
las diferentes localidades que pueden acoger las mismas (por tener algún tipo de
instalación que pueda considerarse adecuada). Los valores de p considerados son
siempre menores o iguales a 10. Esto se debe a que las autoridades sanitarias
correspondientes establecieron que, por diversas restricciones presupuestarias, el
número máximo de unidades de diabetes que se pod́ıan abrir era diez.

En cada caso se ha considerado la matriz de tiempos (en minutos) entre todas
las poblaciones origen, y las poblaciones que, potencialmente, pueden ser destinos.
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n p Scatter T iempoMejor
Search Solucion

100 53 121 0,98
100 10 98 1,16
100 10 93 1,25
200 5 82 4,39
200 10 63 4,75
300 5 57 6,88
300 10 49 10,69
400 5 45 10,7
400 10 39 16,64
500 5 40 16,91
500 10 37 27,2
600 5 38 23,42
600 10 32 34,78
700 5 30 31,77
700 10 28 45,52
800 5 39 60,94
800 10 27 76,11
900 5 28 54,86
900 10 24 73,91

Tabla 1: Resultados para ejemplos de OR-Lib, con p ≤ 10

Para hallar estos tiempos de recorrido se ha usado la información sobre carreteras
suministrada por el CNIG (Centro Nacional de Información Geográfica), consi-
derando diferentes velocidades según el tipo de tramo (Nacionales, Autonómicas,
Provinciales etc. . . ). Con esta información sobre la red de carreteras se ha calcu-
lado la matriz de tiempos usando el conocido algoritmo de Djikstra.

Estos problemas reales se han resuelto, además de con el SS descrito ante-
riormente, con un algoritmo basado en la estrategia metaheuŕıstica Búsqueda en
Entornos Variables (VNS) tomado de Mladenovic y otros (2001). El criterio de
parada que se ha considerado para ambas estrategias es un tiempo de compu-
tación máximo de 400 segundos. En estos ejemplos U 6= V y los valores de m y
n para cada provincia se muestran en la Tabla 2 junto con los resultados que se
obtienen.

Si observamos los resultados obtenidos por ambos algoritmos vemos como
aunque VNS obtiene en prácticamente todos los casos las mismas soluciones que
SS, éste último alcanza sus soluciones en un tiempo considerablemente inferior al
que emplea VNS.
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T iempo T iempo
M n P VNS mejorsol SS mejorsol

vila 248 156 5 36 4,12 36 0,08
248 156 10 25 106,4 23 3,72

Burgos 452 152 5 61 0,22 61 0,05
452 152 10 41 7,20 41 0,05

León 211 184 5 47 13,4 47 2,84
211 184 10 33 4,64 33 4,44

Salamanca 362 150 5 45 0,8 45 0,36
362 150 10 31 227,68 31 5,68

Segovia 209 119 5 31 35,4 31 1
209 119 10 22 87,88 22 2

Tabla 2: Resultados para ejemplos de diversas provincias del norte de España (p ≤ 10)

5 Conclusiones

La Búsqueda Dispersa es una estrategia metaheuŕıstica que tiene su origen en
los años setenta y se ha aplicado con éxito a la resolución de numerosos problemas
de optimización. Aunque se trate de un método evolutivo presenta diferencias res-
pecto a los algoritmos genéticos, probablemente el representante más conocido y
extendido de los algoritmos evolutivos. En este trabajo se introducen los aspec-
tos básicos de Búsqueda Dispersa, aśı como las múltiples alternativas que ofrece
para explotar sus ideas fundamentales. Además se muestra una aplicación a la
resolución de un conocido problema de localización.
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1 Introducción

A la hora de encarar la resolución de un gran número de problemas de optimi-
zación correspondientes a situaciones reales, los métodos clásicos de resolución se
encuentran muy a menudo con grandes dificultades que impiden abordar con ga-
rant́ıas su resolución. Aśı, encontramos numerosas aplicaciones reales en campos
como la Economı́a, la Ingenieŕıa y la ciencia donde con métodos con un amplio
soporte teórico matemático (que asegura la obtención de una solución óptima en
condiciones “ideales”) no se puede esperar obtener una solución o no se puede es-
perar obtener esta solución en un horizonte temporal razonable. Como ejemplo,
podemos encontrar en Garey y Johnson [27] problemas cuyos tiempos estimados
de resolución son del orden de 2 · 108 siglos, o numerosos problemas de optimi-
zación combinatoria donde siquiera encontrar un punto factible con un método
tradicional es una tarea intratable.

*Los autores desean agradecer a los editores del presente volumen su amable invitación a
colaborar con el presente trabajo. Aśımismo, desean agradecer a los evaluadores anónimos su
aportación a la mejora del presente trabajo. Este trabajo se ha realizado bajo la financiación
del Ministerio de Educación y Ciencia, y de la Consejeŕıa de Innovación, Ciencia y Empresa de
la Junta de Andalućıa.
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Por este motivo, a finales de los 50, Simon y Newell [63], y principios de los 60,
Glover [28], comenzaron a aparecer una serie de métodos que proporcionaban en
un tiempo computacional razonable soluciones factibles con un valor cercano al
óptimo. Este tipo de estrategias se denominaron métodos heuŕısticos (del griego
heuriskein: encontrar o descubrir). Aśı, Zanakis y Evans [74] definen un heuŕıstico
como “un procedimiento simple, a menudo basado en el sentido común, que ofrece
una buena solución (aunque no necesariamente la óptima) a problemas dif́ıciles
de un modo fácil y rápido”. Enseguida comenzaron a utilizarse ampliamente este
tipo de métodos para la resolución de problemas hasta el momento intratables
o de resolución demasiado costosa, tal y como se puede observar en el trabajo
de Zanakis y otros [75] donde clasifican 442 art́ıculos en revistas internacionales
relacionados con heuŕısticos en el periodo 1975-1986. El éxito de este tipo de
estrategias produjo un enorme interés en su estudio y desarrollo dando lugar a
su evolución en los métodos metaheuŕısticos. Aśı, el término metaheuŕıstico fue
introducido por Glover en [29] para definir una estrategia superior que gúıa y
modifica otros heuŕısticos para obtener mejores soluciones que las que obtendŕıan
estos heuŕısticos en solitario. El éxito de este tipo de técnicas fue inmediato, como
se puede observar en el informe del Committee on the Next Decade of Operations
Research (CONDOR 1988), donde tres de los más utilizados metaheuŕısticos en
la literatura, el Temple Simulado, los Algoritmos Genéticos y la Búsqueda Tabú,
fueron evaluados como “extremadamente prometedores”. El desarrollo de los
metaheuŕısticos en los últimos diez a nos ha sido enorme, dando lugar incluso a la
aparición de revistas especializadas como Journal of Heuristics (Kluwer Academic
Press) o Evolutionary Computation (MIT Press). En su forma moderna este
tipo de técnicas engloba una enorme variedad de lo que se considera búsquedas
inteligentes. Sin embargo, una clasificación rigurosa de los metaheuŕısticos no es
una tarea sencilla.

Una de las áreas de investigación emergentes en la cual los Algoritmos Meta-
heuŕısticos están alcanzando mayor popularidad es en el campo la Optimización
Multiobjetivo. En un problema de optimización multiobjetivo tenemos dos o
más funciones objetivo a optimizar simultáneamente en lugar de una sola. Como
consecuencia, los problemas de optimización multiobjetivo no tienen en general
una única solución sino todo un conjunto de soluciones que reflejan el trade-off
existente entre dichos objetivos. El desarrollo de las diversas técnicas de Progra-
mación Multiobjetivo ha conducido a su utilización para la resolución de un gran
número de casos reales donde, ademas de las dificultades habituales al enfrentarse
a un problema real, como es la complejidad del modelo, en lo relativo a tamaño del
problema (número de variables, restricciones...), o a la naturaleza de las funcio-
nes (no linealidad, no diferenciabilidad...) o de las variables (enteras, binarias...),
nos encontramos con la dificultad adicional que representa la multiplicidad de
objetivos y el hecho de que hemos de encontrar un conjunto de soluciones y no
un único punto. Por estos motivos, aunque el enfoque multiobjetivo aplicado
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sea correcto desde el punto de vista teórico, una implementación computacional
puede no resultar válida algoŕıtmicamente por carecer de herramientas para re-
solver el problema. Por estos motivos, resulta obvia la potencialidad del empleo
de técnicas metaheuŕısticas en combinación con los diversos enfoques de progra-
mación multiobjetivo, que permitan abordar con garant́ıas un amplio abanico de
problemas reales. En este trabajo intentaremos recorrer los diferentes enfoques
en la literatura a la hora de abordar este tipo de problemas mediante algoritmos
metaheuŕısticos.

Aśı, en la siguiente sección comenzamos definiendo formalmente lo que se
entiende por un problema de optimización multiobjetivo y otras definiciones aso-
ciadas. En la Sección 3 clasificamos los principales metaheuŕısticos para concluir
en la Sección 4 con algunos comentarios sobre las aplicaciones reales de este tipo
de técnicas, las lineas futuras y algunas conclusiones.

2 Problemas Multiobjetivo

Entendemos por Problema de Optimización Multiobjetivo (MOP) a aquellos
de la forma:

minimizar [f1(x), f2(x), ..., fk(x)]

sujeto a m restricciones de desigualdad:

gi(x) ≤ 0, i = 1, 2, ...,m

y p restricciones de igualdad:

hi(x) = 0, i = 1, 2, ..., p

donde k es el número de funciones objetivo y n el número de variables de decisión
del problema. Aśı, denotaremos por x = (x1, x2, ..., xn)t al vector de variables de
decisión.

Normalmente, los objetivos del problema están en conflicto unos con otros y
por ello raramente se da el caso en el que un solo vector optimiza simultáneamente
a todas las funciones objetivo (en este caso además el problema no seŕıa realmente
multiobjetivo). Por tanto, la definición de optimalidad es diferente a la usual de
los problemas mono-objetivo. La noción de optimalidad comúnmente aceptada
para problemas multiobjetivo es la conocida como optimalidad de Pareto [54]:

Diremos que un vector de variables de decisión x∗ ∈ F es un óptimo de Pareto
si no existe otro x ∈ F tal que fi(x) ≤ fi(x

∗) para todo i = 1, ..., k y fj(x) < fj(x
∗)

para al menos un j.
En otras palabras, x∗ es un óptimo de Pareto si no existe otro punto factible

x ∈ F que mejore alguno de los objetivos sin causar simultáneamente un empeo-
ramiento en alguno de los otros criterios. Ahora bien, este concepto casi siempre
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nos proporciona más de una solución. A este conjunto se le denomina conjunto
de óptimos de Pareto. A los vectores x∗ incluidos en el conjunto de óptimos de
Pareto también se les conoce como soluciones no dominadas. A la imagen del
conjunto de óptimos de Pareto por las funciones objetivo se le denomina fron-
tera de Pareto. Por tanto, el objetivo es determinar de entre todos los elementos
del conjunto F, formado por todos los vectores que satisfagan las restricciones,
aquellos que constituyen soluciones no dominadas.

Existen en la literatura diferentes procedimientos para convertir un problema
multiobjetivo en uno mono-objetivo. Quizás el procedimiento más sencillo es
el uso de combinaciones de éstos (usualmente mediante combinaciones lineales)
para su transformación en un único objetivo. Estas técnicas son conocidas como
funciones de agregación ya que se combinan o agregan todos los objetivos en uno
solo. Un ejemplo de este procedimiento es mediante la combinación lineal

min
k

∑

i=1

ωifi(x)

donde ωi ≥ 0 son los pesos que representan las importancia relativa de cada uno
de los k objetivos de nuestro problema. Es usual suponer que

k
∑

i=0

ωi = 1.

Las funciones de agregación pueden ser lineales (como en el ejemplo ante-
rior) o no lineales (cuando por ejemplo se utilizan distancias de tipo no-lineal).
Ambos tipos de funciones de agregación han sido utilizadas con algoritmos me-
taheuŕısticos, obteniéndose un éxito relativo.

Las funciones de agregación han sido en gran parte subestimadas por los
investigadores debido a las limitaciones que poseen principalmente las funciones
de agregación lineales (no pueden generar porciones no convexas de la frontera
de Pareto a pesar del uso de combinaciones de pesos [15]). No obstante, las
funciones de agregación no lineales no necesariamente presentan esta limitación
[8]. De hecho, se pueden definir funciones de agregación lineales con cierto ingenio
capaces de generar fronteras de Pareto no convexas. No obstante, la comunidad
de metaheuŕısticos tiende a prestar cada vez menos interés en las funciones de
agregación.

Por otra parte, existe una gran variedad de técnicas multiobjetivo represen-
tando distintas filosof́ıas, que no recurren a la agregación mediante pesos de
las funciones objetivo, como es la Programación por Metas, el método de la
ǫ-restricción o la Programación Compromiso. Una descripción detallada de este
tipo de técnicas puede encontrarse en [65].
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3 Algoritmos Metaheuŕısticos

La gran cantidad de metaheuŕısticos existentes hoy en d́ıa para el tratamiento
y la resolución de problemas de optimización multiobjetivo complican enorme-
mente la tarea de clasificarlos. No obstante, a grandes rasgos, podemos afirmar
que existen dos grandes grupos de heuŕısticas: los basados en búsquedas por
entornos, especialmente diseñados para búsquedas locales, y los basados en po-
blaciones, cuyo representante más destacado son los Algoritmos Genéticos.

No obstante, hibridizaciones de estas técnicas y otras más recientes inspiradas
en la Bioloǵıa o Ciencias de la Naturaleza están siendo también aplicadas con
gran éxito. A continuación, describimos brevemente el funcionamiento de las
principales heuŕısticas.

3.1 Basados en Búsquedas por Entornos

Estos métodos tienen en común utilizar una operación básica que denomina-
mos movimiento que consiste en la modificación de caracteŕısticas o elementos
de una solución para crear una serie de soluciones posibles que constituyen un
vecindario de dicha solución, y de entre las cuales se elegirá un elemento para
pasar a la siguiente iteración. Destacamos los siguientes:

• Temple Simulado: En 1983, Kirkpatrick et alt. [47] introdujeron el con-
cepto de Temple Simulado para la optimización combinatoria. El nombre
de Temple Simulado se debe a las similitudes que presenta con el proceso
f́ısico conocido como temple, en el cual un material es calentado hasta el
estado ĺıquido y luego es enfriado lentamente para obtener un refinamiento
del mismo. La principal virtud de este método es su capacidad para escapar
de los óptimos locales, lo cual hace que sea ampliamente utilizado en apli-
caciones prácticas en la literatura. Aśı, en el trabajo de Vidal [72] podemos
encontrar por ejemplo aplicaciones al Problema del Viajante, al Problema
de Rutas de Veh́ıculos o al dise no de redes de telecomunicaciones. El Tem-
ple Simulado fue utilizado para la Programación Multiobjetivo por primera
vez en 1992 en el trabajo de Serafini [62], donde la principal idea para la
adaptación de este método para problemas con criterios múltiples es la uti-
lización de un criterio de aceptación de soluciones de peor calidad basado
en la relación de dominancia entre dos soluciones dadas. Otros trabajos en
los que se ha utilizado Temple Simulado para la Programación Multiobje-
tivo son Ulungu et alt. [68, 69, 70], Teghem et alt. [67] (donde la principal
idea de estos trabajos es utilizar funciones agregativas basadas en pesos e ir
variando adeacuadamente estos pesos) o Czyzak y Jaszkiewicz [13] (donde
la gestión de estos pesos se hace de forma dinámica intentando moverse
en direcciones no exploradas previamente). Las adaptaciones del Temple
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Simulado a problemas multiobjetivo se han mostrado en general muy efi-
cientes y muy robustas, lo cual lo ha hecho muy popular para la resolución
de problemas reales. Aśı, en el trabajo de Hapke et alt. [39] podemos encon-
trar una aplicación del Temple Simulado al Multicriteria Project Scheduling
Problem. Estos mismos autores en su trabajo de 2000 [40] vuelven a aplicar
con éxito el Temple Simulado a problemas de Programación Multiobjetivo
Difusa. Ponce y Matos [56] utilizan el Temple Simulado para resolver pro-
blemas multiobjetivo de distribución y planificación de redes. Viana y Pino
da Sousa [71] utilizan un Temple Simulado para resolver problemas mul-
tiobjetivo de planificación de proyectos. Más detalles acerca de trabajos
relacionados con Temple Simulado y Programación Multiobjetivo pueden
encontrarse en Erhgott y Gandibleux [18] y en Jones et alt. [45].

• Búsqueda Tabú: La búsqueda tabú tiene sus oŕıgenes en un trabajo de
Glover de 1986 [29]. La búsqueda tabú es el principal metaheuŕısitco den-
tro de lo que se conoce como Programación mediante Memoria Adaptativa
(AMP), que se caracterizan por ser métodos de búsqueda por entornos en
los cuales se utiliza información acerca de los movimientos realizados con
anterioridad. Los principales atributos de cada solución visitada son al-
macenados en una lista (lista tabú) durante un determinado número de
iteraciones, para evitar que estas soluciones sean revisitadas, es decir, para
evitar ciclos en la búsqueda por entornos. Un elemento del vecindario de la
solución actual es declarado tabú (es decir, es prohibido) si alguno de sus
atributos está en la lista tabú. Dentro de un método de búsqueda tabú en-
contramos una gran variedad de distintas estrategias destinadas a mejorar
la búsqueda, como son, por ejemplo, la intensificación, que permite con-
centrar la búsqueda en aquellas zonas más prometedoras; la diversificación,
que permite desplazarse haćıa zonas no exploradas; la oscilación estratégica,
que permite visitar zonas infactibles temporalmente; o el reencadenamiento
de trayectorias, que permite combinar soluciones. Más detalles acerca de la
búsqueda tabú pueden encontrarse en Glover y Laguna [31]. La búsqueda
tabú es uno de los metaheuristicos más utilizados, tal y como se puede obser-
var en [32] donde se citan 70 áreas diferentes donde ha sido aplicado, desde
los problemas de rutas de veh́ıculos, de distribución de enerǵıa eléctrica o
dise no de redes de transporte. En cuanto a los métodos de búsqueda tabú
para problemas multiobjetivo, los procedimientos encontrados en la litera-
tura se centran en algún tipo de agregación de los criterios para transformar
el problema en un problema mono-objetivo que será resuelto mediante la
búsqueda tabú. Aśı, en Dahl et alt. [14] se genera una familia de vectores
de pesos para cada uno de los cuales se resuelve el problema mono-objetivo
resultante de agregar los criterios mediante una suma ponderada por este
vector de pesos. En Hertz et alt. [38] se resuelve una serie de problemas
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mono-objetivo considerando por turnos cada una de las funciones objetivo
junto con una función de penalización. En Gandibleux et alt. [24] utili-
zan una función escalarizada de logro basada en las funciones objetivo del
problema como gúıa para la búsqueda tabú. Otros trabajos en los que se
encuentran enfoques de búsqueda tabú para problemas multiobjetivo son
los de Hansen [36], Ben Abdelaziz et alt. [5], Gandibleux y Freville [26],
Alves y Climaco [2], Al-Yamani y otros [3], Caballero et alt. [6] o Ehrgott
et alt. [19].

• GRASP: Este método, que aparece por primera vez en el trabajo de Feo
y Resende [21], recibe su nombre de las iniciales en inglés de Procedimiento
de Búsqueda basado en funciones Ávidas, Adaptativas y Aleatorias.

GRASP es un método iterativo en el que cada iteración aporta una solución
al problema, siendo la solución final aportada la mejor de las soluciones en-
contradas. Cada iteración de un GRASP incluye dos fases: la primera cons-
truye inteligentemente una solución inicial a través de una función ávida,
aleatoria y adaptativa; y la segunda aplica un procedimiento de búsqueda
local a la solución construida con idea de encontrar una mejora para esta
solución.

Una de las ventajas de este método es su sencillez y facilidad de implemen-
tación, que ha hecho de él uno de los metaheuŕısticos de mayor desarrollo
actualmente. En cuanto a su utilización para problemas multiobjetivo en-
contramos los trabajos de Gandibleux et alt. [25] y Higgins et alt. [41].

3.2 Basados en Poblaciones: Algoritmos Evolutivos

Los Algoritmos Evolutivos son heuŕısticos que utilizan mecanismos de se-
lección natural como motor de búsqueda para resolver problemas. Además, una
de sus principales ventajas por la que son tan utilizados actualmente es por-
que los Algoritmos Evolutivos son capaces de evolucionar a todo un conjunto
de posibles soluciones (también llamada población) que nos permitirán encontrar
varios miembros del conjunto de Pareto en una ejecución simple del algoritmo,
en lugar de tener que hacer varias ejecuciones, como ocurŕıa con las técnicas de
programación matemática tradicionales. Además, los Algoritmos Evolutivos son
menos sensibles a caracteŕısticas geométricas de la frontera de Pareto como la
concavidad, convexidad, continuidad, etc.

Concretamente, un Algoritmo Evolutivo es un proceso estocástico e iterativo
que opera sobre un conjunto P de individuos donde cada uno de estos individuos
contiene una serie de cromosomas que le permiten representar una solución. Cada
individuo es evaluado a través de una función de adecuación, de forma que se
predispone la selección de aquellos individuos con mejor valor de adecuación para
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su reproducción. Dentro de los Algoritmos Evolutivos encontramos tres grandes
familias: la Programación Evolutiva, las Estrategias de Evolución y los Algoritmos
Genéticos, aunque en este caṕıtulo nos centraremos únicamente en esta última
familia por ser la técnica evolutiva más popular en la actualidad y por ser la familia
que concentra las aplicaciones al campo de la Programación Multiobjetivo.

Los Algoritmos Genéticos se han convertido en una herramienta muy utilizada
para optimización, aprendizaje de máquinas, problemas de dise no, problemas de
redes neuronales y otros campos de la Matemática y la Ingenieŕıa. En la natu-
raleza, los individuos han de adaptarse a su entorno para sobrevivir mediante el
proceso que denominamos evolución, en el cual aquellos aspectos o cambios que
favorecen su competitividad son preservados, y aquellos aspectos que debilitan su
adaptación son eliminados. Estas caracteŕısticas, favorables o desfavorables, se
almacenan y controlan desde unas unidades llamadas genes, que a su vez se agru-
pan formando unos conjuntos llamados cromosomas. A finales de los 60, John
Holland [43] se interesó en aplicar los principios de la evolución natural para la re-
solución de problemas complejos en el campo del aprendizaje de máquinas, dando
lugar a lo que hoy se conoce como algoritmos genéticos. En 1989 Goldberg [33]
publicó un libro en el cual se asentaba una sólida base cient́ıfica para este tipo
de estrategias y en el cual se inclúıan más de 70 aplicaciones reales con éxito de
Algoritmos Genéticos. Los primeros intentos de utilizar múltiples criterios en un
algoritmo genético se centraban fundamentalmente en el uso de funciones agre-
gativas (para más detalles, véase la Sección 2). El Método de la Restricción es
utilizado por Ritzel et alt. [58], dando lugar a mejores aproximaciones de la fron-
tera eficiente, aunque con un coste computacional mayor debido a que se han de
realizar múltiples resoluciones con distintas cotas para las restricciones y distintas
funciones a optimizar. Wilson y Macleod [73] utilizan con éxito un enfoque de
Programación por Metas Ponderadas para resolver un problema con múltiples ob-
jetivos. Sin embargo, desde entonces se han desarrollado otros enfoques distintos
que se basan en la eficiencia de Pareto y en otros tipos de ordenación.

Para evitar las dificultades a la hora de agregar los criterios, muchos de los
esfuerzos en la literatura se han dirigido hacia enfoques basados en rankings. Aśı
en 1985 Schaffer [61] desarrolló el método VEGA (Vector Evaluated Genetic Al-
gorithm), cuya única diferencia con un algoritmo genético usual es la forma en
que se realiza la selección para la reproducción. En este caso, en cada generación
la población se agrupa en un cierto número de subpoblaciones (tantas como cri-
terios) atendiendo en cada una de ellas al valor de una de las funciones objetivo.
Dentro de cada una de estas poblaciones se realiza la selección atendiendo al valor
de este criterio y luego las poblaciones se mezclan de nuevo para aplicar el ope-
rador de cruce y el operador de mutación, dando lugar a la siguiente generación.
VEGA tiene varios problemas entre los cuales destaca su incapacidad para rete-
ner buenas soluciones eficientes (aquellas que no son las mejores en ninguno de
los objetivos pero consiguen un buen compromiso entre todos ellos). Aunque su

Rect@ Monográfico 3 (2007)
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autor sugirió varias mejoras, su mayor desventaja sigue siendo el hecho de no
incorporar directamente una selección que incorporase la dominancia de Pareto.

Por otra parte, Fourman [23] utilizó un orden lexicográfico para realizar la
selección de los individuos a reproducirse, obteniendo muy buenos resultados
puesto que el orden lexicográfico es un orden total y por tanto siempre se puede
determinar cuándo un individuo está mejor adaptado que otro, lo cual permite
realizar una selección por ranking.

Basados en la Optimalidad de Pareto

A continuación aparecieron en la literatura lo que se ha denomindo enfoques
basados en el orden de Pareto. Con este tipo de enfoques, el valor de adaptación
de cada individuo depende no del valor de cada uno de los criterios, sino de
su eficiencia o dominación dentro de cada población. La idea es encontrar los
individuos en cada generación que no están dominados por ningún otro individuo,
asignarles el ranking más alto y extraerlos de la población. Con el resto de
individuos se repite este proceso hasta que todos ellos tienen asignado una posición
en el ranking según este proceso, realizándose entonces una selección por ranking.
Este enfoque se ha mostrado superior al enfoque VEGA en algunos casos, como
se puede ver en Hilliard et alt. [42]. Los algoritmos más representativos de la
primera generación son:

1. NSGA: Srinivas y Deb [64] evolucionaron la idea del ranking de no-domina-
ción para dar lugar al método NSGA (Non-Dominated Sorting Genetic Al-
gorithm) que se ha mostrado también muy eficiente a la hora de resolver
problemas con múltiples criterios. Antes de seleccionar a los individuos,
los puntos son clasificados en función de su no-dominación, esto es, a todos
los puntos no dominados de la población se les asigna un mismo valor de
aptitud proporcional al tama no de la población. Una vez eliminados estos
puntos, se repite el proceso hasta que todos los puntos de la población ini-
cial estén clasificados. Este proceso tiene una doble finalidad. Por una lado,
aquellos puntos con mayor valor de aptitud tiene una mayor probabilidad
para reproducirse en la siguiente población (lo que garantizará seguir explo-
rando en las zonas no dominadas) y, por otro lado, el hecho de que conjuntos
de puntos comparten el mismo valor de la función de aptitud garantiza la
diversidad en el conjunto de puntos eficientes.

2. NPGA: NPGA (Niched Pareto Genetic Algorithm) fue propuesto por Horn
y Nafpliotis [44] en 1993. NPGA usa un esquema de selección por torneo
basado en la dominancia de Pareto: dos individuos de la población son ele-
gidos aleatoriamente y comparados contra un subconjunto de la población
entera (normalmente el 10% de la población). Si alguno de ellos es domi-
nado (por los individuos aleatoriamente seleccionados de la población) y
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el otro no, entonces el individuo no dominado gana. Cuando ambos com-
petidores son dominados o no dominados el resultado del torneo se decide
a través de fitness sharing o método de proporción (se pretende lograr la
formación de subconjuntos de elementos vecinos en la población llamados
nichos, reduciendo la aptitud de los individuos por la presencia de otros
muy parecidos, véase [60]).

3. MOGA: Fonseca y Fleming [22] profundizan en la idea del ranking de los
individuos en su algoritmo MOGA (Multi Objective Genetic Algorithm).
En dicho algoritmo, el ranking de cierto individuo corresponde al número
de cromosomas en la población actual por los cuales es dominado. Consi-
deremos por ejemplo un individuo xi en la generación t que es dominado

por p
(t)
i individuos de la generación actual. Entonces, el ranking de xi viene

dado por rank(xi, t) = 1 + p
(t)
i . Aśı, los individuos no dominados poseen

ranking igual a 1 mientras que los dominados son penalizados en función de
la densidad de individuos en sus correspondientes regiones de dominancia.

La segunda generación de los Algoritmos Evolutivos nace con la introducción
de la noción de elitismo. En el contexto de la optimización multiobjetivo, el
elitismo usualmente se refiere al uso de una población externa (también denomi-
nada población secundaria) para almacenar todos los individuos no dominados
encontrados hasta el momento. No obstante, el uso de un fichero externo plantea
diversas cuestiones tales como la manera en que interactúan las dos poblaciones
o el tama no de la población secundaria.

El elitismo también puede ser introducido a través del uso de (µ+λ)-selección
en la cual los µ padres compiten con sus λ hijos y aquellos que son no dominados
son seleccionados para la siguiente generación.

Los más representativos de la segunda generación son los siguientes:

1. SPEA: El algoritmo Strength Pareto Evolutionary Algorithm (SPEA) fué
desarrollado por Zitzler y Thiele [76] en 1999 sobre la idea de mantener un
archivo externo de soluciones no-dominadas encontradas hasta el momento,
pero incorporando un proceso de tipo cluster (denominado average linkage
method) sobre este archivo para favorecer la diversidad y reducir su tama no
pero sin destruir sus caracteŕısticas.

2. SPEA2: Posteriormente aparece SPEA2 [77] el cual posee principalmente
tres diferencias con respecto a su predecesor: (1) incorpora una estrategia
de asignación de aptitud de “grano fino” (para cada individuo se tiene en
cuenta el número de individuos que domina y el número de individuos por los
que es dominado); (2) utiliza una técnica para la estimación de la densidad
de su vecindario que gúıa la búsqueda más eficientemente, y finalmente (3)
incorpora un método para truncar el archivo garantizando el matenimiento
de las soluciones extremas.

Rect@ Monográfico 3 (2007)



Caballero et al. 127

3. PAES: Knowles y Corne proponen en 2000 [48] el algoritmo denominado
Pareto Archived Evolution Strategy (PAES), que incorpora una estrategia
evolutiva del tipo (1 + 1) (un solo padre genera a un solo hijo compitiendo
entre ellos) junto con una búsqueda local y la utilización de un archivo
histórico para almacenar las soluciones no dominadas que se van encon-
trando a lo largo de la ejecución del algoritmo. Para mantener la diversidad
apropiada en este archivo histórico se introdujo la idea de una malla adap-
tativa que ofrece ciertas ventajas con respecto a la utilización de los nichos
del NPGA.

4. NSGA-II: Deb et alt. [16] solventan muchos de los problemas de la versión
original del algoritmo con el NSGA-II. NSGA-II es más eficiente (compu-
tacionalmente hablando), usa elitismo y un operador de comparación (ope-
rador de crowding) en función de la proximidad de soluciones alrededor de
cada uno de los puntos de la población. NSGA-II no usa una población
externa como su predecesor pero su mecanismo de selección ahora consiste
en la combinación de los mejores padres con los mejores hijos obtenidos
(selección del tipo (µ+ λ)).

5. NPGA2: Erickson et alt. [20] propusieron una versión revisada del NPGA.
Incorporan ranking de Pareto pero mantienen la selección mediante tor-
neo. En este caso, no utilizan memoria externa y utilizan un mecanismo de
elitismo similar al adoptado por NSGA-II.

En general, un problema común a las técnicas de este grupo radica en el
uso de un proceso de jerarquización basado en la dominancia de Pareto, siendo
precisamente este proceso el que consume más tiempo en una ejecución ya que
es un proceso de orden O(kM2) donde k es el número de funciones objetivo y
M es el tama no de la población. Adicionalmente a esto, un mecanismo extra es
requerido para preservar la diversidad de la población que, en las formas en que
se realiza en la actualidad, implica el uso de procesos de orden O(M2).

3.3 Nuevas tendencias

Además de estos dos grandes grupos de metaheuŕısticos, basados en Búsqueda
por Entornos y Basados en Población, existe actualmente una gran variedad de
métodos combinando ambos enfoques e intentando adaptar otros tipos de meta-
heuristicos que se han mostrado muy eficientes en el campo de la optimización
mono-objetivo. A continuación enumeramos algunos ejemplos.

Búsqueda Dispersa

La Búsqueda Dispersa es un metaheuŕıstico introducido en los setenta en el
trabajo de Glover [30] de 1977 para Programación Entera. Un procedimiento
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de Búsqueda Dispersa está basado fundamentalmente en la combinación de las
soluciones de un conjunto de referencia para construir a partir de estos elementos
nuevas soluciones que mejoren los elementos de este conjunto. En este sentido se
puede clasificar este método como un algoritmo evolutivo, puesto que el proce-
dimiento fundamental para encontrar nuevas soluciones es la combinación de las
soluciones existentes. Sin embargo, en un procedimiento de Búsqueda Dispersa
esta combinación de soluciones se hace de una forma sistemática, sin compo-
nentes aleatorios, sobre un conjunto peque no de soluciones de refencia, lo cual
representa una diferencia fundamental con los principios fundamentales de un
algoritmo evolutivo en general, donde la componente aleatoria es fundamental
y donde se recombinan un gran número de soluciones. En los últimos a nos
este procedimiento ha sido aplicado con éxito a numerosos problemas complejos
de Programación Matemática, lo cual ha producido un sensible aumento en el
número de trabajos utilizando este tipo de metaheuŕıstico, tal y como se puede
apreciar en Laguna y Mart́ı [49]. Sin embargo, hasta el momento las aplicaciones
de la Búsqueda Dispersa al campo de la Programación Multiobjetivo han sido
muy escasas. Destacamos los trabajos de Beausoleil [4] y Molina et alt. [51].

Colonias de Hormigas

Los algoritmos ACO (Ant Colony Optimization) son modelos inspirados en
el comportamiento de colonias de hormigas reales. Estudios realizados explican
cómo animales casi ciegos, como son las hormigas, son capaces de seguir la ruta
más corta en su camino de ida y vuelta entre la colonia y una fuente de abaste-
cimiento. Esto es debido a que las hormigas pueden “transmitirse” información
entre ellas gracias a que cada una de ellas, al desplazarse, va dejando un rastro de
una sustancia llamada feromona a lo largo del camino seguido. Aśı, mientras una
hormiga aislada se mueve de forma esencialmente aleatoria, los “agentes” de una
colonia de hormigas detectan el rastro de feromona dejado por otras hormigas
y tienden a seguir dicho rastro. Éstas a su vez van dejando su propia feromona
a lo largo del camino recorrido y por tanto lo hacen más atractivo, puesto que
se ha reforzado el rastro de feromona. Sin embargo, la feromona también se va
evaporando con el paso del tiempo provocando que el rastro de feromona sufra,
por otro lado, cierto debilitamiento. En definitiva, puede decirse que el proceso
se caracteriza por una retroalimentación positiva, en la que la probabilidad con
la que una hormiga escoge un camino aumenta con el número de hormigas que
previamente hayan elegido el mismo camino. El primer algoritmo basado en la op-
timización mediante colonias de hormigas fue aplicado al Problema del Viajante
(Dorigo et alt. [17]), obteniéndose unos resultados bastante alentadores. A partir
de dicho algoritmo se han desarrollado diversos heuŕısticos que incluyen varias
mejoras, y han sido aplicados a problemas de rutas [11]. Este método también se
ha adaptado con éxito a la Programación Multiobjetivo, tal y como puede verse
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en Gravel et alt. [34] o en Guntsch y Middendorf [35], y constituye actualmente
uno de los métodos mas prometedores para la resolución de problemas de rutas
multiobjetivo.

Cúmulo de Part́ıculas (PSO)

Los algoritmos de optimización mediante Cúmulo de Part́ıculas (Particle Swarm
Optimization, en adelante PSO) han sido propuestos recientemente por Ken-
nedy y Eberhart [46] motivados por el comportamiento social de las bandadas de
pájaros o los bancos de peces.

PSO, como herramienta de optimización, origina un algoritmo basado en po-
blación en el cual los individuos, denominados part́ıculas, cambian su posición a
lo largo del tiempo. En un PSO las part́ıculas vuelan en el espacio de búsqueda
multidimensional. Durante el vuelo cada part́ıcula ajusta su posición de acuerdo
a su propia experiencia y a la de las part́ıculas más cercanas haciendo uso de
la mejor posición encontrada por él y por sus vecinos. Aśı, se puede interpretar
como un algoritmo h́ıbrido entre un genético y un memético. Recientemente ha
sido adaptado para problemas multiobjetivo en [59].

Evolución Diferencial

La Evolución Diferencial (DE) es una heuŕıstica relativamente reciente pro-
puesta por Storn y Price [66] para problemas de optimización sobre dominios
continuos. En una DE, cada variable de decisión se representa en el cromosoma
por un número real (codificación real). Como en otros algoritmos evolutivos, la
población inicial de una DE se genera aleatoriamente. Para el proceso de selección
se seleccionan tres padres (uno de ellos se designará el padre principal) los cua-
les generarán un único hijo (en lugar de dos, como en muchos de los algoritmos
genéticos) que competirá con el padre principal. Este hijo se genera sumando al
padre principal la diferencia de los otros dos padres.

Podemos encontrar en la literatura distintas extensiones de la DE para pro-
blemas multiobjetivos. Destacamos, entre otros, PDE [10] (maneja una única
población, para la reproducción toma únicamente soluciones no dominadas y se
utiliza una métrica de distancia para favorecer a la diversidad), PDEA [50] (com-
bina la DE con distintos elementos del NSGA-II), VEDE [55] (DE con múltiples
poblaciones que maneja en paralelo inspirado en VEGA) y DEMORS [37] donde
se combina la evolución diferencial con el uso de Rough Sets, una herramienta de
Inteligencia Artificial.

Algoritmos Culturales

Los Algoritmos Culturales fueron desarrollados por Robert G. Reynolds [57]
como un complemento a la metáfora que usan los algoritmos de Computación
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Evolutiva, que se hab́ıan concentrado en conceptos genéticos, y de selección natu-
ral. Los Algoritmos Culturales están basados en las teoŕıas de algunos sociólogos y
arqueólogos que han tratado de modelar la evolución cultural. Tales investigado-
res indican que la evolución cultural puede ser vista como un proceso de herencia
en dos niveles: el nivel micro-evolutivo, que consiste en el material genético he-
redado por los padres a sus descendientes, y el nivel macro-evolutivo, que es el
conocimiento adquirido por los individuos a través de las generaciones, y que una
vez codificado y almacenado, sirve para guiar el comportamiento de los indivi-
duos que pertenecen a una población. Reynolds intenta captar ese fenómeno de
herencia doble en los Algoritmos Culturales. El objetivo es incrementar las tasas
de aprendizaje o convergencia, y de esta manera, que el sistema responda mejor
a un gran número de problemas.

Los Algoritmos Culturales operan en dos espacios. Primero, el espacio de
la población, como en todos los métodos de Computación Evolutiva, en el que
se tiene un conjunto de individuos. Cada individuo tiene un conjunto de carac-
teŕısticas independientes de los otros, con las que es posible determinar su apti-
tud. A través del tiempo, tales individuos podrán ser reemplazados por algunos
de sus descendientes, obtenidos a partir de un conjunto de operadores aplicados
a la población. El segundo espacio es el de creencias, donde se almacenarán los
conocimientos que han adquirido los individuos en generaciones anteriores. La
información contenida en este espacio debe ser accesible a cualquier individuo,
quien puede utilizarla para modificar su comportamiento. La mayoŕıa de los pa-
sos de un algoritmo cultural corresponden con los de los algoritmos tradicionales
de Computación Evolutiva, y se puede apreciar que las diferencias están en los
pasos que incluyen al espacio de creencias.

Sistema Inmune Artificial

El sistema inmune ha servido como inspiración para solucionar problemas
complejos de ingenieŕıa y la ciencia con gran éxito, debido principalmente a que
es un sistema de aprendizaje distribuido con interesantes caracteŕısticas. Una de
las principales tareas del sistema inmune es mantener al organismo sano. Algunos
microorganismos (llamados patógenos) que invaden al organismo pueden resultar
dañinos para éste. Los ant́ıgenos son moléculas que se encuentran expresadas en
la superficie de los patógenos que pueden ser reconocidos por el sistema inmune
y que además son capaces de dar inicio a la respuesta inmune para eliminarlos.
Esta respuesta defensiva del sistema inmune presenta interesantes caracteŕısticas
desde el punto de vista del procesamiento de información. Es por ello que se ha
usado como inspiración para crear soluciones alternativas a problemas complejos
de ingenieŕıa y la ciencia. Esta es un área relativamente nueva a la cual se le
llama Sistema Inmune Artificial [53].

Las primeros intentos por resolver problemas de optimización multiobjetivo
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(con o sin restricciones) usando un sistema inmune artificial basado en el concepto
de optimalidad de Pareto se deben a Coello y Cruz-Cortés [9].

4 Conclusiones

La popularidad que en los últimos años han adquirido los Algoritmos Me-
taheuŕısticos se ha visto también reflejado en el número de trabajos publicados
con aplicaciones a problemas multiobjetivo del mundo real (algo que no nos debe
extra nar ya que la mayoŕıa de los problemas reales son de naturaleza multiobje-
tivo). Prueba de ello es la reciente publicación del libro de Coello y Lamont [10]
dedicado expĺıcitamente a las aplicaciones de los Algoritmos Metaheuŕısticos y en
especial de los Algoritmos Evolutivos a problemas de optimización multiobjetivo.
Dichas aplicaciones pueden ser clasificadas en tres grandes grupos: ingenieŕıa,
industria y otras ciencias. Dentro de las aplicaciones a la ingenieŕıa destacamos
las aplicaciones a la ingenieŕıa electrica, hidráulica, aeronáutica, robótica o con-
trol. Por otro lado, en el grupo de las aplicaciones en la industria destacamos
el los problemas de dise no, loǵıstica, almacenamiento, distribución o schedu-
ling. Finalmente, las aplicaciones en F́ısica, Qúımica, Medicina o Ciencias de la
Computación destacan dentro del tercer grupo.

Hemos de señalar tambien el auge actual del campo de los Metaheuristicos
para la Programación Multi-objetivo, tal y como refleja la sección de Nuevas Ten-
dencias, donde se puede ver el esfuerzo en la literatura por extender al caso mul-
tiobjetivo un gran número de metaheuristicos diseñados para problemas mono-
objetivo, constituyendo una garant́ıa de desarrollo de numerosas lineas futuras.

Por otra parte, observamos en la inmensa mayoŕıa de las adaptaciones ac-
tuales de metaheuŕısticas a la Programación Multiobjetivo tienen como finalidad
la aproximación de la frontera eficiente, pero en la metodoloǵıa multicriterio y
en especial en las aplicaciones, es necesario encontrar una solución entre el gran
número de soluciones generadas en la aproximación de la frontera eficiente. En
este sentido, los Métodos Interactivos surgen de manera natural para la obtención
final de soluciones adaptadas a las preferencias del decisor. Todos estos aspectos
deben ser incorporados en los metaheuŕısticos implementados, y no son usuales
en la bibliograf́ıa existente.

Otra carencia importante en el campo de los metaheuristicos para Progra-
mación Multiobjetivo es el desarrollo de métodos con capacidad eficiente para el
manejo de restricciones. La mayor parte de los métodos encontrados en la lite-
ratura son desarrollados para problemas sin restricciones o con restricciones muy
simples, tal y como se señala en Coello [7]. Sin embargo, no hace falta señalar
que esto puede ser un problema a la hora de resolver problemas de ámbito real.
Por este motivo, el uso de técnicas de manejo de restricciones constituye una ne-
cesidad (tal y como se señala también en [7]) y una importante linea futura de
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investigación en el campo de los metaheuristicos para Programación Multiobje-
tivo.

Finalmente, a la vista de todo lo anterior podemos concluir que el campo
de los metaheuŕısticos para la Programación multiobjetivo es un area de gran
actividad actualmente, de una gran aplicabilidad y donde encontramos numerosas
y prometedoras lineas futuras de investigación.
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Rect@ Monográfico 3 (2007)



Caballero et al. 133

[9] Coello Coello, C.A., Cruz-Cortés, N., An Approach to Solve Multiobjective
Optimization Problems Based on an Artificial Immune System, En Jonathan
Timmis and Peter J. Bentley (editores), First International Conference on
Artificial Immune Systems (ICARIS’2002), páginas 212–221, University of
Kent at Canterbury, Inglaterra, 2002.

[10] Coello Coello, C.A., Lamont, G.B., Applications of multi-objective evolutio-
nary algorithms, Advances in Natural Computation, Vol. 1 2005.

[11] Corne, D., Dorigo, M., Glover, F., New Ideas in Optimization. McGraw Hill,
1999.

[12] Corne, D., Knowles, J., Oates, M., The Pareto Envelope-based Selection
Algorithm for Multiobjective Optimization. En Marc Shoenauer, Kalyanmoy
Deb, Günter Rudolph, Xin Yao, Evelyne Lutton, J.J. Merelo y Hans-Paul
Schwefel (eds.), Proceedings of the Parallel Problem Solving from Nature VI
Conference, Springer. Lectures Notes in Computer Science No

¯ 1917, páginas
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134 Metaheuŕısticos en Programación Multiobjetivo

[20] Erickson, M., Mayer, A., Horn, J., The Niched Pareto Genetic Algorithm
2 Applied to the Design of Groundwater Remediation Systems. En Eckart
Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos Coello y David Corne (eds.)
First International Conference on Evolutionary Multi-Criterion Optimiza-
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multiobjective combinatorial optimization problems. En Caballero, R., Ruiz,
F. Steuer, R. (eds.) Advances in multiple objective and goal programming,
Vol. 455. Lecture Notes in Economics and Mathematical Systems, páginas
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136 Metaheuŕısticos en Programación Multiobjetivo

[41] Higgins, J., Hajkowicz, S., Bui, E., A multi-model for environmental invest-
ment decision making. Computers and Operations Research, to appear.

[42] Hilliard, M.R., Liepins, M. Palmer, M., Rangarajen, G., The computer as
a partner in algorithmic design: Automated discovery of parameters for a
multiobjective scheduling heuristic. En R. Sharda, B.L. Golden, E. Wasil,
O. Balci and W. Stewart (eds.), Impact of Recent Computer Advances on
Operations Research. North-Holland Publishing Company, 1989.

[43] Holland, J., Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, 1975.

[44] Horn, J., Nafpliotis, N., Multiobjective Optimization using the Niched Pa-
reto Genetic Algorithm. Technical Report IlliGA1 Report 93005, Univiserty
of Illinois at Urbana-Champaign, Illinois, USA, 1993.

[45] Jones, D.F., Mirrazavi, S.K., Tamiz, M., Multi-Objective Meta-heuristics:
An overview of the currrent state of the art. European Journal of Operational
Research, Vol. 137, páginas 1–9, 2002.
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1 Introducción

Uno de los periodos clave en la historia de la Optimización como disciplina lo
constituyen sin duda alguna las primeras décadas de la segunda mitad del siglo
XX. En un tiempo en el que la concepción natural de la resolución de problemas
era la obtención de la solución óptima al mismo (o cuanto menos de una solución
con una garant́ıa de aproximación al óptimo), empezó a tomar cuerpo una de-
sagradable realidad: exist́ıan muchos problemas de utilidad cierta para los que
no sólo resultaba insostenible plantear una resolución exacta, sino que ni tan si-
quiera un enfoque aproximado con garant́ıas realistas era aceptable en la práctica.
Esto abrió el camino a diferentes ĺıneas de investigación para dar respuesta a esta
problemática, y que más adelante desembocaŕıan en lo que hoy se conoce como
metaheuŕısticas. Entre las mismas, deben destacarse los algoritmos evolutivos
[1, 2, 3, 4] (EAs1) por estar ı́ntimamente relacionados con el tema que nos ocupa:
los algoritmos meméticos.

A pesar de que estas técnicas fueran consideradas en su momento por parte
de la comunidad cient́ıfica como un “reconocimiento de la derrota”, el tiempo ha
demostrado su utilidad como punta de lanza tecnológica en la optimización de
problemas reales. Por supuesto, este éxito no es exclusivo de los EAs, sino que

*El autor agradece el apoyo parcial del MCyT a través del contrato TIN2005-08818-C04-01.
1En este y en sucesivos acrónimos se empleará la versión inglesa por motivos de consistencia

con la literatura, y para evitar posibles fuentes de confusión o ambigüedad.
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se extiende a otras técnicas relacionas tales como el recocido simulado [5] (SA),
la búsqueda tabú [6] (TS), etc. Parte de la justificación (y de hecho, del enfoque
metodológico) de los algoritmos meméticos (MAs) se haya precisamente en el éxito
de métodos de optimización tan diversos. En este sentido, debe considerarse que
en ciertos campos se desarrolló una tendencia al purismo algoŕıtmico, esto es, a no
apreciar como caracteŕıstica esencial de estas técnicas su flexibilidad y capacidad
de asimilación de elementos algoŕıtmicos externos o ad hoc, que pudieran acercar
la técnica de resolución al problema que resolver en cada momento. No fue hasta
mediados de los noventa cuando la formulación del aśı denominado Teorema de
No Free Lunch por Wolpert and Macready [7] dio pie a una suerte de catarsis,
a partir de la cual quedó definitivamente claro que un algoritmo de búsqueda u
optimización se comporta en estricta concordancia con la cantidad y calidad del
conocimiento espećıfico del problema que incorpora. Mirando retrospectivamente
a estos años nos encontramos con que esta filosof́ıa que comenzó a imponerse de
manera generalizada a finales del siglo XX ya estaba siendo promulgada de hecho
con anterioridad por diversos investigadores, e.g., Hart and Belew [8], Davis [9], y
Moscato [10]. El paradigma de los MAs surgiŕıa precisamente a partir del trabajo
de Pablo Moscato [11, 12, 13].

Los MAs son una familia de mataheuŕısticas que intentan aunar ideas y con-
ceptos de diferentes técnicas de resolución, como por ejemplo EAs y TS. El ad-
jetivo “memético” viene del término inglés meme, acuñado por R. Dawkins [14]
para designar al análogo del gen en el contexto de la evolución cultural. Resulta
conveniente resaltar sin embargo que el empleo de esta terminoloǵıa no repre-
senta un propósito de adherirse a una metáfora de funcionamiento concreta (la
evolución cultural en este caso), sino más bien lo contrario: hacer expĺıcito que se
difumina la inspiración puramente biológica, y se opta por modelos más genéricos
en los que se manipula, se aprende y se transmite información. En relación con
esto último y a la forma en la que más comúnmente un MA puede implementarse,
pueden encontrarse diversos trabajos que hacen uso de nombre alternativos para
referirse a éstos (e.g., EAs h́ıbridos o lamarckianos), o que aun usando el propio
término MA, hacen una interpretación muy restringida del mismo. Sea como
fuere, puede decirse que un MA es una estrategia de búsqueda en la que una po-
blación de agentes optimizadores compiten y cooperan de manera sinérgica [10].
Más aún, estos agentes hacen uso expĺıcito de conocimiento sobre el problema
que se pretende resolver, tal como sugiere tanto la teoŕıa como la práctica [15].
La siguiente sección proporciona una descripción algoŕıtmica más detallada de los
MAs.

2 Un Algoritmo Memético Básico

Los MAs son metaheuŕısticas basadas en población. Esto quiere decir que
mantienen un conjunto de soluciones candidatas para el problema considerado.
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De acuerdo con la jerga empleada en EAs, cada una de estas soluciones tentativas
es denominada un individuo. Tal como se anticipó anteriormente, la naturaleza de
los MAs sugiere que el término agente es no obstante más apropiado. El motivo
básico es el hecho de que “individuo” denota un ente pasivo que está sujeto
a los procesos y reglas evolutivas, mientras que el término “agente” implica la
existencia de un comportamiento activo, dirigido a propósito a la resolución de
un cierto problema. Dicho comportamiento activo se ve reflejado en diferentes
constituyentes t́ıpicos del algoritmo, como por ejemplo técnicas de búsqueda local.

La Figura 1 muestra el esquema general de un MA. Como en los EAs, la
población de agentes está sujeta a los procesos de competición y cooperación
mutua. Lo primero se consigue a través de los bien conocidos procedimientos
de selección (ĺınea 6) y reemplazo (ĺınea 12): a partir de la información que
proporciona una función de gúıa ad hoc se determina la bondad de los agentes
en pop; acto seguido, se selecciona una parte de los mismos para pasar a la fase
reproductiva atendiendo a dicha bondad. Posteriormente, se vuelve a hacer uso
de esta información para determinar qué agentes serán eliminados de la población
para hacer sitio a los nuevos agentes. En ambos casos –selección y reemplazo–
pueden usarse cualesquiera de las estrategias t́ıpicas de los EAs, e.g., torneo,
ranking, elitismo, etc.

En cuanto a la cooperación, ésta se consigue a través de la reproducción. En
esta fase se crean nuevos agentes a partir de los existentes mediante el empleo
de una serie de operadores de reproducción. Tal como se muestra en la Figura
1, ĺıneas 7–11, pueden considerarse un número arbitrario #op de tales operado-
res, que se aplican secuencialmente a la población de manera segmentada, dando
lugar a varias poblaciones intermedias auxpop[i], 0 6 i 6 #op, donde auxpop[0]
está inicializada a pop, y auxpop[#op] es la descendencia final. En la práctica,
la situación más t́ıpica es la de utilizar simplemente tres operadores: recombi-
nación, mutación, y mejora local. Apréciese en la ĺınea 9 del pseudocódigo que
estos operadores reciben no sólo las soluciones sobre las que actúan, sino también
la instancia I que se desea resolver. Con esto se ilustra el hecho de que los ope-
radores de un MA son conscientes del problema, y basan su funcionamiento en
el conocimiento que incorporan sobre el mismo (a diferencia de los modelos más
clásicos de EA).

Uno de los procesos reproductivos que mejor encapsula la cooperación entre
agentes (dos, o más [16]) es la recombinación. Esto se consigue mediante la cons-
trucción de nuevas soluciones a partir de la información relevante contenida en
los agentes cooperantes. Por “relevante” se entiende que los elementos de infor-
mación considerados tienen importancia a la hora de determinar (en un sentido o
en otro) la calidad de las soluciones. Ésta es sin duda una noción interesante que
se aleja de las más clásicas manipulaciones sintácticas, t́ıpicas de EAs simples.
Volveremos a esto más adelante, en la próxima sección.

El otro operador clásico –la mutación– cumple el rol de “mantener vivo el
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Algoritmo Memetico

Entrada: una instancia I de un problema P .
Salida: una solucion sol.

// generar poblacion inicial

1 : para j ← 1:popsize hacer
2 : sea ind← GenerarSolucionHeuristica (I)
3 : sea pop[j]← MejoraLocal (ind, I)
4 : finpara
5 : repetir // bucle generacional

// Seleccion

6 : sea criadores← SeleccionarDePoblacion (pop)
// Reproduccion segmentada

7 : sea auxpop[0]← pop
8 : para j ← 1:#op hacer
9 : sea auxpop[j]← AplicarOperador (op[j], auxpop[j − 1], I)

10 : finpara
11 : sea newpop← auxpop[#op]

// Reemplazo

12 : sea pop← ActualizarProblacion (pop, newpop)
// Comprobar convergencia

13 : si Convergencia (pop) entonces
14 : sea pop← RefrescarPoblacion (pop, I)
15 : finsi
16 : hasta CriterioTerminacion (pop, I)
17 : devolver Mejor (pop, I)

Figura 1: Plantilla general de un MA

fuego”, inyectando nueva información en la población de manera continua (pero a
ritmo bajo, ya que de lo contrario el algoritmo se degradaŕıa a una pura búsqueda
aleatoria). Por supuesto, esta interpretación es la que proviene del área de los
algoritmos genéticos [17], y no necesariamente coincide con la otros investigadores
(aquellos del área de la programación evolutiva [1] sin ir más lejos). De hecho,
en ocasiones se ha aducido que la recombinación no es es más que una macro-
mutation, y ciertamente ese puede ser el caso en numerosas aplicaciones de los
EAs en los que este operador de recombinación simplemente realiza una mezcla
aleatoria de información. Sin embargo, no cabe hacer una apreciación similar en
el campo de los MAs, ya que en éstos la recombinación se realiza t́ıpicamente
mediante el empleo de estrategias astutas, y por lo tanto contribuyen de manera
esencial a la búsqueda.
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Finalmente, una de las caracteŕısticas más distintivas de los MAs es el em-
pleo de estrategias de búsqueda local (LS). Éstas (nótese que pueden emplearse
diferentes estrategias de LS en diferentes puntos del algoritmo) constituyen una
de las razones esenciales por las que es apropiado usar el término “agente” en
este contexto: su funcionamiento es local, y en ocasiones incluso autónomo. De
esta manera, un MA puede verse como una colección de agentes que realizan una
exploración autónoma del espacio de búsqueda, cooperando en ocasiones a través
de la recombinación, y compitiendo por recursos computacionales a través de los
mecanismos de selección/reemplazo.

El pseudocódigo de la Figura 1 muestra un componente que merece asimismo
atención: el procedimiento RefrescarPoblación (ĺıneas 13–15). Este procedimiento
tiene suma importancia con vistas al aprovechamiento de los recursos computa-
cionales: si en un determinado instante de la ejecución todos los agentes tienen un
estado similar (esto es, se ha producido convergencia), el avance de la búsqueda
se torna muy complejo. Este tipo de circunstancias puede detectarse a través
del empleo de medidas tales como la entroṕıa de Shannon [18], fijando un um-
bral mı́nimo por debajo del cual se considera que la población ha degenerado.
Obviamente, dicho umbral depende de la representación de problema que se esté
usando, y debe decidirse por lo tanto de manera particular en cada caso.

3 Diseño de MAs Efectivos

Atacar un cierto problema de optimización con MAs requiere instanciar la
plantilla genérica descrita anteriormente, empleando para ello conocimiento del
problema. Dado que el diseño de un algoritmo de búsqueda efectivo es en general
tan complejo como los propios problemas que se desean resolver, nos encontramos
ante la tesitura de tener que emplear directrices heuŕısticas para abordar dicho
problema de diseño. A continuación se consideraran algunas de estas directrices
para algunos de los componentes esenciales de los MAs.

3.1 Representación

El primer elemento que debe determinarse es la representación de las solu-
ciones que se va a usar. Es importante en este punto aclarar que representación
no debe entenderse como meramente codificación, algo para lo que lo relevante
son consideraciones relativas a consumo de memoria, complejidad de manipu-
lación, etc. Muy al contrario, la representación hace referencia a la formulación
abstracta de las soluciones desde el punto de vista del algoritmo [19]. En este sen-
tido, recuérdese la mención a información relevante que se hizo en la Seccción 2.
Dada una cierta representación de las soluciones, éstas pueden entenderse como
compuestas de determinadas unidades de información; si los operadores que em-
plea el MA son conscientes del problema atacado, las unidades de información que
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identifiquen deben servir para determinar si una solución es buena/prometedora
o no. La dinámica del sistema debe entonces tender a retener las unidades de
información que lleven asociadas un efecto positivo, y a eliminar aquellas que
tengan connotación negativa.

El siguiente ejemplo puede ayudar a ilustrar este aspecto de la representación.
Considérese un problema definido sobre un espacio de soluciones compuesto de
todas las permutaciones de n elementos; estas soluciones pueden entenderse como
compuestas por diferentes tipos de información [20], e.g.,

• posicional, i.e., el elemento e aparece en la posición j.

• precedencia, i.e., el elemento e aparece antes/después que el elemento e′.

• adyacencia, i.e., el elemento e aparece junto al elemento e′.

La relevancia de cada tipo de información dependerá obviamente del problema
que se desea resolver. Por ejemplo, la información de adyacencia es importante
para el problema del viajante de comercio (TSP), pero no aśı la información
posicional. Por otra parte, se ha comprobado que esta última śı es relevante
en problemas de planificación de cadenas de montaje (flowshop scheduling) (FS)
[21], siendo la información de adyacencia menos importante en este caso. Esto
quiere decir que un operador de recombinación como ER (edge-recombination)
[22] funcionará mejor que un operador basado en información posicional como
PMX (partially-mapped crossover) [23] o UCX (uniform cycle crossover) [21] en
el TSP, pero los últimos funcionarán mejor sobre FS.

No es sorprendete a la vista de lo anterior que la obtención de métodos o
medidas para cuantificar la bondad de una cierta representación para un cierto
problema haya sido y sea un tema de gran interés. Ha habido diferentes propues-
tas en este sentido: epistasis (i.e., la influencia no aditiva que sobre la función
objetivo tiene la combinación de varias unidades de información) [24, 25], va-
rianza en la adecuación de formas (i.e., varianza en los valores que devuelve la
función objetivo para soluciones que comparten un cierto conjunto de unidades de
información) [26], y correlación de adecuación (correlación entre los valores de la
función objetivo para entre unas soluciones y sus descendientes directos) [27, 28].
Debe reseñarse que además de usar una métrica para predecir cuán bueno puede
ser el rendimiento de un cierto operador pre-existente (i.e., análisis inverso), pue-
den definirse nuevos operadores ad hoc para manipular la mejor representación
(análisis directo) [13].

Sea cual fuere la métrica usada para cuantificar la bondad de una represen-
tación concreta, hay otras consideraciones que también pueden jugar un papel
determinante en el rendimiento final del algoritmo, tales como por ejemplo la
existencia de restricciones en el espacio de búsqueda. Esta última problemática
puede atacarse de tres maneras: (i) usando funciones de penalización que diri-
jan la búsqueda hacia regiones factibles, (ii) usando mecanismos de reparación
que produzcan soluciones factibles a partir de soluciones infactibles, y (iii) usando
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operadores reproductivos que permanezcan siempre dentro de la zona factible. En
los dos primeros casos es posible mantener la complejidad de la representación a
un nivel más bajo (aunque lógicamente el algoritmo se beneficiará de cualquier
conocimiento que adicional que pudiera usarse aqúı). En el tercer caso, es respon-
sabilidad de la representación o de los operadores el garantizar la factibilidad, y
esto conllevará una complejidad adicional. Aśı, es posible definir representaciones
indirectas que mediante el empleo de decodificadores garanticen la factibilidad de
las soluciones representadas. La idea básica es utilizar un mecanismo sofisticado
para pasar del genotipo al fenotipo, de manera que no sólo se consigan soluciones
factibles, sino que además se introduzca conocimiento del problema que facilite
que éstas sean de calidad (e.g., [29, 30, 31] entre otras).

3.2 Operadores Reproductivos

La generación de nuevas soluciones durante la fase reproductiva se realiza me-
diante la manipulación de las unidades de información relevantes que se han iden-
tificado. A tal fin, puede emplearse cualquiera de las plantillas genéricas definidas
para ello, e.g., RRR (random respectful recombination), RAR (random assorting
recombination), y RTR (random transmitting recombination) entre otras [32]. En
cualquier caso, huelga decir que el rendimiento de algoritmo se verá beneficiado si
en lugar de manipular las unidades de información a ciegas, se hace de manera in-
teligente empleando conocimiento del problema. Desde un punto de vista general,
esta inclusión de conocimiento del problema en la manipulación de las unidades
de información tiene dos vertientes: la selección de las caracteŕısticas parenta-
les que serán transmitidas a la descendencia, y la selección de las caracteŕısticas
no-parentales que serán incluidas en la misma.

En relación a la selección de la información contenida en los padres que debe
transmitirse a los hijos, la evidencia experimental aconseja conservar aquellas
caracteŕısticas comunes a ambos padres (e.g., [22, 33]). Una vez hecho esto, el
descendiente puede completarse de diferentes maneras. Aśı, Radcliffe y Surry [26]
proponen el empleo de estrategias de búsqueda local o de esquemas de enume-
ración impĺıcitos. Estos últimos pueden usarse también para encontrar la mejor
combinación posible de la información parental [34, 35, 36, 37] (dependiendo de
las caracteŕısticas de la representación, seŕıa posible que esta combinación no
necesariamente respetara las propiedades comunes). Puede apreciarse fácilmente
que este tipo de recombinación seŕıa monótono en el sentido de que los hijos seŕıan
siempre al menos tan buenos como los padres.

Hasta cierto punto podŕıa hacerse un análisis similar del operador de mu-
tación, si bien es verdad que éste juega un papel bien distinto: introducir nueva
información en la población. En principio, esto puede conseguirse mediante la
eliminación de ciertas unidades de información de una solución, y su substitución
por información puramente aleatoria, o por información obtenida por alguno de
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los métodos de completado descritos anteriormente. Sin embargo, hay que re-
saltar que el papel de la mutación tiene ciertos matices diferenciadores en MAs
frente a los clásicos EAs. De hecho, es posible incluso que un MA no tenga un ope-
rador de mutación diferenciado, sino que éste esté simplemente empotrado en la
búsqueda local, e.g., véase [38, 39]. Uno de los motivos es el hecho de que los MAs
están dotados de mecanismos de reinicio de la población (véase la Sección 3.4), y
en ciertos contextos puede ser mejor dejar converger la población rápidamente y
luego reiniciar, que diversificar constantemente la búsqueda. En cualquier caso,
hay situaciones en las que mutación śı adquiere un papel determinante, y en las
que incluso se emplean varios operadores de mutación. Esto se realiza bien por
el empleo de diferentes vecindades (e.g., [40]), o definiendo mutaciones débiles
y fuertes que introduzcan diferentes niveles de perturbación (e.g., [41]). Nótese
que en cierto sentido el empleo de diferentes operadores reproductivos implica
de manera impĺıcita la consideración de diferentes representaciones y/o vecinda-
des durante la ejecución, muy en la ĺınea de los que se hace en la búsqueda en
vecindades variables [42] (VNS).

Es posible introducir también conocimiento del problema mediante el empleo
de heuŕısticas constructivas en los operadores de inicialización usados para la ge-
neración de la población inicial (Figura 1, ĺınea 2). Por ejemplo, se han empleado
estrategias voraces para este propósito en [43, 44].

3.3 Búsqueda Local

La presencia de componentes de búsqueda local (LS) es –tal como se comento
anteriormente– una de las caracteŕısticas más distintivas de los MAs. El hecho
de que la mayoŕıa de los MAs incorporen LS es una de las causas por las que a
veces se pueden encontrar simplificaciones del tipo MA = EA + LS, y que deben
evitarse; véase [11, 12, 13] para más detalles. De hecho, es posible encontrar
enfoques metaheuŕısticos con muy similar filosof́ıa a la de los MAs, y que sin
embargo no pueden llamarse evolutivos a no ser que se asuma una definición tan
amplia del termino que prácticamente abarque a cualquier método basado en
población. La técnica de búsqueda dispersa (SS) [45] es un buen ejemplo en este
sentido. Por otra parte, no es extraño encontrar enfoques evolutivos en los que
el conocimiento del problema se concentra más en el operador de recombinación
que en el uso de una búsqueda local, e.g., [35, 46]. En cualquier caso, esta claro
que EA + LS ⊂ MA, y que el componente LS es t́ıpicamente uno de los que más
contribuyen al éxito del algoritmo.

Las técnicas de mejorar local pueden modelarse como trayectorias en el espa-
cio de búsqueda tal que soluciones vecinas en dicha trayectoria difieren en una
pequeña cantidad de unidades de información. Esta definición idealizada puede
requerir no obstante diferentes matizaciones si por ejemplo se emplea TS para
este fin, e.g., [47, 36, 48] entre otras muchas. Aśı, es normal que muchas imple-
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mentaciones de TS usen estrategias de intensificación que hagan que en ciertos
momentos la búsqueda se continúe por ciertas soluciones anteriores de calidad
(aśı, más que a un camino lineal, el recorrido a través del espacio de búsqueda
se asemejaŕıa a una trayectoria ramificada). Más aún tanto en TS como en otras
metaheuŕısticas tales como SA, puede darse que la calidad de las soluciones no
se incremente de manera monótona, sino que en ciertos momentos empeore con
la finalidad de poder escapar de óptimos locales. Por supuesto, al final de la eje-
cución del procedimiento se conserva la mejor solución encontrada, y no la última
generada.

A la hora de implementar el componente LS es importante determinar el
criterio de terminación. Si se está empleando una técnica simple de escalada (HC)
puede tener sentido determinar si la solución actual es un óptimo local y detener el
procedimiento únicamente en ese caso. Obviamente, esto no es posible si se usa TS
o SA, ya que estas técnicas tienen capacidades globales de optimización, por lo que
lo más común es definir un tope computacional máximo (e.g., en forma de número
de soluciones exploradas). Lógicamente, en este caso la solución final no tiene por
qué ser un óptimo local (como algunas descripciones erróneas de MAs aseguran).
Además, debe encontrarse un equilibrio adecuado entre el esfuerzo computacional
que se realiza durante LS y el que la búsqueda poblacional subyacente realiza.
La importancia de este hecho ha dado lugar a la noción de lamarckismo parcial
[49, 50], esto es, no usar siempre la búsqueda local, sino únicamente sobre algunas
soluciones o bien seleccionadas aleatoriamente, o bien en función de su calidad, o
bien según algún otro método (véase también [51]).

Del mismo modo que se pueden definir métricas para cuantificar la bondad
de una representación (u operador que trabaje sobre la misma), pueden definirse
métricas que ayuden a predecir si una determinada definición de vecindad puede
ser beneficiosa. Por ejemplo, la correlación entre distancia y adecuación [52,
53] (FDC) es una de las propuestas. Esencialmente, la distancia mencionada
se entiende como el número de movimientos (saltos de vecindad) que hay que
realizar para pasar de un óptimo local al óptimo global. Si el coeficiente de
correlación entre esta distancia y la calidad de la función objetivo es alta, entonces
la calidad de las soluciones tiende a mejorar al acercarse al óptimo global, y
la dinámica evolutiva del MA lo llevará a su cercańıa. Si la correlación fuera
negativa, el problema seŕıa engañoso para el MA, ya que los óptimos locales
mejores se alejaŕıan del óptimo global.

Otro aspecto importante en relación al paisaje de búsqueda es su topoloǵıa
global, y más precisamente si la relación de vecindad es regular o no, y que relación
guarda con la calidad de las soluciones. Bierwirth et al. [54] han estudiado
esta circunstancia para un problema de planificación, y han encontrado que las
mejores soluciones tienen una mayor conectividad, lo que las hace más fácilmente
alcanzables, incluso por mor de pura deriva genética. No todos los problemas
tienen esta propiedad, y de hecho, Cotta y Fernández han encontrado que la
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representación directa para la búsqueda de reglas de Golomb de tamaño mı́nimo
tiene precisamente la propiedad opuesta [55].

3.4 Gestión de la Diversidad

Hay diferentes maneras de enfocar la diversidad en algoritmos basados en
población. Por un lado pueden considerarse métodos de preservación de la diver-
sidad, dentro de los cuales se engloban claramente los operadores de mutación.
Éstos no son los únicos mecanismos posibles sin embargo. Por ejemplo, pue-
den introducirse soluciones completamente nuevas (los aśı llamados “inmigrantes
aleatorios”) [56] en la población, e.g., [57], o pueden emplearse poblaciones con
estructura espacial [58]. En este último caso, se restringe el emparejamiento de
agentes o el reemplazo de los mismos a elementos situados en posiciones vecinas
dentro de la estructura topológica de la población. Esto causa un ralentizamiento
de la propagación de información a través de la población, con lo que se impide
(o al menos dificulta) que algunos super-agentes tomen rápidamente control de
la misma y destruyan toda diversidad.

En la literatura se han propuesto diferentes topoloǵıas para organizar la po-
blación, i.e., anillos, rejillas, hipercubos, etc. En relación con los MAs, una de
las opciones más exitosas has sido una estructura jerárquica en forma de árbol
ternario [59, 41, 60, 61]. Esta topoloǵıa se ha combinado con una estrategia para
organizar la distribución de las soluciones en función de su calidad. Más con-
cretamente, cada nodo del árbol está restringido a tener una solución mejor que
cualquiera de los nodos descendientes. Esto implica que cuando un agente tiene
una solución mejor que la de su antecesor directo en el árbol, las intercambian. De
esta manera, hay un continuo flujo de soluciones de calidad hacia la parte superior
del árbol, lo cual también garantiza que cuando se realiza una recombinación, las
soluciones que toman parte en ella son de calidad similar.

Como complemento a los mecanismos de preservación anteriores se pueden
considerar también los mecanismos de restauración de la diversidad: cuando se
detecta que la diversidad ha cáıdo por debajo de un cierto umbral, o cuando
la dinámica del algoritmo apunta a un estado de degeneración en la búsqueda
[62] se activa uno de estos mecanismos para relanzarla. Una posibilidad en este
sentido es emplear hipermutación [63, 41] (cf. mutación pesada, véase Sección
3.2). Alternativamente, la población puede refrescarse mediante la llegada masiva
de inmigrantes aleatorios que sustituyan a toda la población, salvo a algunas
soluciones de elite.

4 Aplicaciones de los MA

Uno de los campos más fruct́ıferos para los MAs es el ámbito de la optimización
combinatoria, para el que estas técnicas cuentan con cientos de aplicaciones. Eso
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no es sorprendente si tenemos en consideración que existen miles de problemas de
optimización pertenecientes a la clase NP, donde los MA se han mostrado de gran
valor. De entre todas éstas, y a modo ilustrativo, pueden destacarse las siguien-
tes: problemas de particionado en grafos [64, 65], partición de números [66, 59],
conjunto independiente de cardinalidad máxima [67, 68], empaquetado [69], colo-
reado de grafos [70, 71], recubrimiento de conjuntos [72], planificación de tareas
en una máquina con tiempos de “set-up” y fechas de entrega [73, 74], planificación
de tareas en varias máquinas [75, 76], problemas de asignación generalizados [77],
problemas de mochila multidimensional [78, 79], programación entera no-lineal
[80], asignación cuadrática [81, 53], particionado de conjuntos [82], y muy espe-
cialmente el problema del viajante de comercio [83, 53, 84]. Es de destacar que en
una gran parte de estas publicaciones los propios autores destacan que la metodo-
loǵıa constituye el estado del arte para el problema en consideración, lo que es de
interés debido a que estos son problemas “clásicos” en el área de la optimización
combinatoria.

El paradigma fue utilizado en otros problemas menos conocidos, pero sin duda
de igual importancia, como son: emparejamiento parcial de formas geométricas
[85], optimización en “paisajes NK” [86], diseño de trayectorias óptimas para
naves espaciales [87], asignación de frecuencias [88], construcción de árboles de
expansión mı́nimos con restricciones de grado [89], problemas de emplazamiento
[90, 91], optimización de rutas [92], problemas de transporte [93, 94], isomor-
fismos en grafos [95], problemas de biconexión de vértices [96], agrupamiento
[97], telecomunicaciones [98], búsqueda de regleros de Golomb mı́nimos [99, 100],
búsqueda de patrones estables en autómatas celulares [36, 101], identificación de
sistemas no-lineares [102], programación de tareas de mantenimiento [103, 104],
open shop scheduling [105, 40], flowshop scheduling [106, 44], planificación de
proyectos [107, 108], planificación de almacén [109], planificación de producción
[110, 111], confección de horarios [112, 113], planificación de turnos [114, 115],
planificación de juegos deportivos [116] y planificación de exámenes [117, 118].

Los MAs, también han sido citados en la literatura de aprendizaje en máquinas
y robótica como algoritmos genéticos h́ıbridos. Destacamos algunas aplicaciones
como por ejemplo: entrenamiento de redes neuronales [119, 120], reconocimiento
de caracteŕısticas [121], clasificación de caracteŕısticas [122, 123], análisis de series
temporales [124], aprendizaje de comportamientos reactivos en agentes móviles
[125], planificación de trayectorias [126, 127], control óptimo [128], etc.

En las áreas de la Electrónica y la Ingenieŕıa podemos destacar: proyectos
de VLSI [129], optimización de estructuras [130] y mecánica de fracturas [131],
modelado de sistemas [132], control de reactores qúımicos [133], calibración de
motores [134], problemas de diseño óptimo en Aeronáutica [135, 136], diseño de
sistemas ópticos [137], control de tráfico [138], y planificación en problemas de
potencia [139] entre otros.

Otras aplicaciones de estas técnicas pueden encontrarse en: Medicina [140,
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141], Economı́a [142, 143], Oceanografia [144], Matemáticas [145, 146, 147], Pro-
cesamiento de imágenes y de voz [148, 149, 150], y un sinnúmero de ellas en
Bioinformática ([49, 60, 151, 152] entre otras muchas).

5 Conclusiones

A diferencia de otras técnicas de optimización, los MAs fueron expĺıcitamente
concebidos como un paradigma ecléctico y pragmático, abierto a la integración
de otras técnicas (metaheuŕısticas o no). En última instancia, esta habilidad para
combinar de manera sinergética diferentes métodos es una de las razones de su
éxito. Los MAs proporcionan un marco de trabajo apropiado para integrar en
un único motor de búsqueda diferentes heuŕısticas provechosas. En este sentido,
los MAs deben considerarse no como competidores, sino como integradores: allá
donde una metaheuŕıstica pura empiece a alcanzar sus ĺımites, los MAs constitu-
yen el siguiente paso natural.

Aunque existe un importante componente experimental en el diseño de los
MAs, no por ello puede afirmarse que el paradigma se reduce a combinar varias
técnicas y realizar pruebas experimentales para comprobar si es satisfactoria.
Muy al contrario, todo el corpus teórico disponible tanto para técnicas basadas
en población como para técnicas de búsqueda local es de aplicación en el diseño de
un MA. Otras estrategias de gran interés en este área son el diseño por analoǵıa, y
el máximo aprovechamiento de los recursos computaciones. Téngase en cuenta en
relación a esto último que una técnica de búsqueda local muy sofisticada puede
proporcionar mejores resultados que un simple HC, pero necesitar mucho más
tiempo de cómputo para ello. En problemas en los que el coste de evaluar una
solución es grande, o en los que los tamaños de las vecindades son considerables,
éste es un problema que debe tenerse muy en cuenta.

Está claro asimismo que nuestro mundo se está haciendo cada vez más com-
plejo a un ritmo acelerado, al menos desde un punto de vista tecnológico. Los
años venideros depararán nuevos desaf́ıos desde el punto de vista de la optimi-
zación a los que habrá que dar respuesta con metaheuŕısticas. No sólo habrá
que hacer frente a problemas de optimización a gran escala, sino que estos mis-
mos serán cada vez más complejos per se. Para ello, las técnicas de optimi-
zación tendrán que adaptarse a esta complejidad, dejando de lado los tradicio-
nales enfoques unidimensionales y puramente secuenciales. Aśı, algunos de los
aspectos de los MAs que tomarán cada vez más relevancia son la optimización
multi-objetivo [51, 153, 154], la auto-adaptación [155, 156], y el funcionamiento
autónomo [157, 158]. Como puede apreciarse, ya hay algunas propuestas en este
sentido, siendo posible además aprovechar ideas de técnicas relacionadas tales
como las hiperheuŕısticas [159, 160]. Otros métodos jugarán también un papel
esencial, e.g., las técnicas de reducción a un kernel seguro comúnmente empleadas
dentro del campo de la complejidad parametrizada [161]. Dado que el eclecticismo
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es esencial para adaptarse a este nuevo escenario, sólo cabe decir que el futuro es
prometedor para los MAs.
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[12] Moscato, P., Cotta, C.: A gentle introduction to memetic algorithms. In
Glover, F., Kochenberger, G., eds.: Handbook of Metaheuristics. Kluwer
Academic Publishers, Boston MA (2003) 105–144

[13] Moscato, P., Cotta, C., Mendes, A.S.: Memetic algorithms. In Onwu-
bolu, G.C., Babu, B.V., eds.: New Optimization Techniques in Engineering.
Springer-Verlag, Berlin Heidelberg (2004) 53–85

[14] Dawkins, R.: The Selfish Gene. Clarendon Press, Oxford (1976)

[15] Culberson, J.: On the futility of blind search: An algorithmic view of “No
Free Lunch”. Evolutionary Computation 6 (1998) 109–127

[16] Eiben, A.E., Raue, P.E., Ruttkay, Z.: Genetic algorithms with multi-parent
recombination. In Davidor, Y., Schwefel, H.P., Männer, R., eds.: Parallel
Problem Solving From Nature III. Volume 866 of Lecture Notes in Compu-
ter Science. Springer-Verlag (1994) 78–87

[17] Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Reading, MA (1989)

[18] Davidor, Y., Ben-Kiki, O.: The interplay among the genetic algorithm
operators: Information theory tools used in a holistic way. In Männer, R.,
Manderick, B., eds.: Parallel Problem Solving From Nature II, Amsterdam,
Elsevier Science Publishers B.V. (1992) 75–84

[19] Radcliffe, N.J.: Non-linear genetic representations. In Männer, R., Man-
derick, B., eds.: Parallel Problem Solving From Nature II, Amsterdam,
Elsevier Science Publishers B.V. (1992) 259–268

[20] Fox, B.R., McMahon, M.B.: Genetic operators for sequencing problems.
In Rawlins, G.J.E., ed.: Foundations of Genetic Algorithms I, San Mateo,
CA, Morgan Kaufmann (1991) 284–300

[21] Cotta, C., Troya, J.M.: Genetic forma recombination in permutation flows-
hop problems. Evolutionary Computation 6 (1998) 25–44

[22] Mathias, K., Whitley, L.D.: Genetic operators, the fitness landscape and
the traveling salesman problem. In Männer, R., Manderick, B., eds.: Para-
llel Problem Solving From Nature II, Amsterdam, Elsevier Science Publis-
hers B.V. (1992) 221–230

[23] Goldberg, D.E., Lingle Jr., R.: Alleles, loci and the traveling salesman
problem. In Grefenstette, J.J., ed.: Proceedings of the 1st International
Conference on Genetic Algorithms, Hillsdale NJ, Lawrence Erlbaum Asso-
ciates (1985) 154–159

Rect@ Monográfico 3 (2007)
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In Eiben, A., Bäck, T., Schoenauer, M., Schwefel, H.P., eds.: Parallel Pro-
blem Solving From Nature V. Volume 1498 of Lecture Notes in Computer
Science., Berlin, Springer-Verlag (1998) 745–754

[72] Beasley, J., Chu, P.: A genetic algorithm for the set covering problem.
European Journal of Operational Research 94 (1996) 393–404

[73] França, P., Mendes, A., Moscato, P.: Memetic algorithms to minimize
tardiness on a single machine with sequence-dependent setup times. In:
Proceedings of the 5th International Conference of the Decision Sciences
Institute, Athens, Greece, Atlanta, GA, USA, Decision Sciences Institute
(1999) 1708–1710

[74] Miller, D., Chen, H., Matson, J., Liu, Q.: A hybrid genetic algorithm for the
single machine scheduling problem. Journal of Heuristics 5 (1999) 437–454

[75] Mendes, A., Muller, F., França, P., Moscato, P.: Comparing meta-heuristic
approaches for parallel machine scheduling problems with sequence-
dependent setup times. In: Proceedings of the 15th International Confe-
rence on CAD/CAM Robotics & Factories of the Future, Aguas de Lindoia,
Brasil. Volume 1., Campinas, SP, Brazil, Technological Center for Informa-
tics Foundation (1999) 1–6

[76] Min, L., Cheng, W.: Identical parallel machine scheduling problem for
minimizing the makespan using genetic algorithm combined with simulated
annealing. Chinese Journal of Electronics 7 (1998) 317–321

Rect@ Monográfico 3 (2007)
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gorithm. In Bäck, T., ed.: Proceedings of the Seventh International Confe-
rence on Genetic Algorithms, San Francisco CA, Morgan Kaufmann (1997)
489–496

[108] Ozdamar, L.: A genetic algorithm approach to a general category project
scheduling problem. IEEE Transactions on Systems, Man and Cybernetics,
Part C (Applications and Reviews) 29 (1999) 44–59

[109] Watson, J., Rana, S., Whitley, L., Howe, A.: The impact of approximate
evaluation on the performance of search algorithms for warehouse schedu-
ling. Journal of Scheduling 2 (1999) 79–98

[110] Dellaert, N., Jeunet, J.: Solving large unconstrained multilevel lot-sizing
problems using a hybrid genetic algorithm. International Journal of Pro-
duction Research 38 (2000) 1083–1099

[111] Ming, X., Mak, K.: A hybrid hopfield network-genetic algorithm approach
to optimal process plan selection. International Journal of Production Re-
search 38 (2000) 1823–1839

[112] Burke, E.K., Elliman, D.G., Weare, R.F.: A hybrid genetic algorithm
for highly constrained timetabling problems. In: Proceedings of the Sixth
International Conference on Genetic Algorithms, Morgan Kaufmann, San
Francisco, CA (1995) 605–610

[113] Paechter, B., Cumming, A., Norman, M., Luchian, H.: Extensions to a
Memetic timetabling system. In Burke, E., Ross, P., eds.: The Practice
and Theory of Automated Timetabling. Volume 1153 of Lecture Notes in
Computer Science. Springer Verlag (1996) 251–265

[114] de Causmaecker, P., van den Berghe, G., Burke, E.: Using tabu search as a
local heuristic in a memetic algorithm for the nurse rostering problem. In:
Proceedings of the Thirteenth Conference on Quantitative Methods for De-
cision Making, Brussels, Belgium (1999) abstract only, poster presentation

[115] Burke, E.K., De Causmaecker, P., van den Berghe, G.: Novel metaheuristic
approaches to nurse rostering problems in belgian hospitals. In Leung,
J., ed.: Handbook of Scheduling: Algorithms, Models, and Performance
Analysis. Chapman Hall/CRC Press (2004) 44.1–44.18

[116] Costa, D.: An evolutionary tabu search algorithm and the NHL scheduling
problem. INFOR 33 (1995) 161–178

[117] Burke, E.K., Newall, J.: A multi-stage evolutionary algorithm for the
timetable problem. IEEE Transactions on Evolutionary Computation 3
(1999) 63–74

Rect@ Monográfico 3 (2007)
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Rect@ Monográfico 3 (2007)



C. Cotta 165

[149] Krishna, K., Ramakrishnan, K., Thathachar, M.: Vector quantization using
genetic k-means algorithm for image compression. In: 1997 International
Conference on Information, Communications and Signal Processing. Vo-
lume 3., New York, NY, IEEE (1997) 1585–1587

[150] Yoneyama, M., Komori, H., Nakamura, S.: Estimation of impulse response
of vocal tract using hybrid genetic algorithm-a case of only glottal source.
Journal of the Acoustical Society of Japan 55 (1999) 821–830

[151] Merz, P., Zell, A.: Clustering gene expression profiles with memetic algo-
rithms. In Yao, X., et al., eds.: Parallel Problem Solving From Nature VIII.
Volume 3242 of Lecture Notes in Computer Science., Berlin, Springer-Verlag
(2004) 811–820

[152] Moscato, P., Berretta, R., Mendes, A.: A new memetic algorithm for
ordering datasets: Applications in microarray analysis. In Doerner, K.,
et al., eds.: Proceedings of the 6th Metaheuristics International Conference,
Vienna, Austria (2005) 695–700

[153] Knowles, J., Corne, D.: M-PAES: A memetic algorithm for multiobjective
optimization. In: Proceedings of the 2000 Congress on Evolutionary Com-
putation CEC00, La Jolla Marriott Hotel La Jolla, California, USA, IEEE
Press (2000) 325–332

[154] Ponnambalam, S.G., Mohan Reddy, M.: A GA-SA multiobjective hybrid
search algorithm for integrating lot sizing and sequencing in flow-line sche-
duling. International Journal of Advanced Manufacturing Technology 21
(2003) 126–137

[155] Krasnogor, N., Smith, J.E.: Emergence of profitable search strategies based
on a simple inheritance mechanism. In Spector, L., et al., eds.: Proceedings
of the 2001 Genetic and Evolutionary Computation Conference, Morgan
Kaufmann (2001) 432–439

[156] Li, J., Kwan, R.S.K.: A self adjusting algorithm for driver scheduling.
Journal of Heuristics 11 (2005) 351–367

[157] Cowling, P.I., Ouelhadj, D., Petrovic, S.: Dynamic scheduling of steel
casting and milling using multi-agents. Production Planning and Control
15 (2002) 1–11

[158] Cowling, P.I., Ouelhadj, D., Petrovic, S.: A multi-agent architecture for
dynamic scheduling of steel hot rolling. Journal of Intelligent Manufacturing
14 (2002) 457–470

Rect@ Monográfico 3 (2007)
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Rect@ Monográfico 3 (2007)
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1 Introducción

Un problema de Optimización Combinatoria puede formularse como:

optimizarX∈Sf(X)

donde f : S → R es una función que a cada X ∈ S asocia un número real, y S
es un conjunto finito o infinito numerable de puntos. Al conjunto S se le conoce
como espacio de soluciones o región factible y a la función f por función de costo
o función objetivo. Por optimizar se entiende minimizar o maximizar la función
objetivo f sobre el espacio solución. Un problema queda caracterizado por el
espacio de soluciones y por la función objetivo, por lo que, a partir de ahora, lo
denotaremos por el par (S, f).

*Este trabajo ha sido parcialmente financiado por el Ministerio de Ciencia y Tecnoloǵıa, a
través de los proyectos TIN 2005-08943-C02-02, TIN2006-02696 y TIN2005-08404-C04-03 (70%
son fondos FEDER), y por el Gobierno de Canarias, a través del proyecto PI042004/088. La
actividad desarrollada se enmarca dentro de los objetivos de la red RedHeur (proyecto TIN2004-
20061-E).
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Existen multitud de problemas reales que pueden formularse como un pro-
blema de optimización combinatoria. A esta clase pertenecen, por ejemplo, algu-
nos problemas de localización de servicios, de determinación de rutas óptimas o
de asignación de recursos.

Las Búsquedas Locales son los procedimientos más simples para resolver este
tipo de problemas. En una Búsqueda Local, dada una solución inicial del pro-
blema, se realizan movimientos de mejora mientras sea posible. Un movimiento es
una modificación de una solución que suministra otra solución del problema. Las
Búsquedas Locales no suministran, en general, la solución óptima del problema.
Para aumentar la probabilidad de encontrar dicha solución, puede aplicarse una
Búsqueda Local a varias soluciones de la región factible. Este método recibe el
nombre de Búsqueda Multiarranque.

En el presente trabajo se presentan los fundamentos de las Búsquedas Mul-
tiarranque para problemas combinatorios. Para ello, se describen algunas de las
variantes propuestas para los diferentes elementos que definen estas búsquedas:
mecanismo de generación de soluciones iniciales, método de mejora (búsqueda lo-
cal) y regla de parada. El trabajo se estructura como sigue. En la próxima sección
se introducen las búsquedas locales, en la sección 3 se describe la Búsqueda Mul-
tiarranque y se enumeran algunas de sus variantes y en la sección 4 se muestran
dos Búsquedas Multiarranque para el Problema de la Máxima Diversidad. Por
último, se listan las referencias bibliográficas que aparecen en el texto.

2 Búsqueda Local

En optimización real continua, un concepto importante es el de óptimo local
de la función que se define como cualquier punto x∗ para el que exista un entorno,
en la topoloǵıa usual de R, de tal forma que x∗ sea óptimo en ese entorno. La
importancia radica en que el óptimo global puede definirse como aquel óptimo
local con mejor valor de la función objetivo. Es decir, se dispone de una condición
necesaria para encontrar el óptimo global de la función. Aśı, al menos en teoŕıa,
la dimensión del problema se reduce al tener que buscar la solución óptima del
problema sólo entre los óptimos locales.

Para intentar usar estas ideas en los problemas discretos que nos ocupan, se
define el entorno de una solución.

Definición 1
Dado el problema (S, f), una estructura de entorno es una función N : S → 2S

que asocia a cada solución X ∈ S un conjunto N(X) ⊂ S de soluciones cercanas
a X en algún sentido. El conjunto N(X) se llama entorno de la solución X, y
cada Y ∈ N(X), solución vecina de X.

La anterior definición es bastante general y deja a criterio del decisor el establecer
cuando dos soluciones están cercanas en algún sentido.
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Una estructura de entorno particularmente importante para problemas com-
binatorios es aquella en la que se sustituyen k elementos presentes en la solución
por k elementos no presentes en la misma. Esta sustitución puede implementarse
de varias formas que, básicamente, consisten en cambiar de valor k elementos de
la solución. Aśı puede consistir en cambiar de 1 a 0 k posiciones de la solución y
de 0 a 1 otras k posiciones distintas, sustituir k aristas presentes en la solución
por otras k aristas, etc. A continuación se describe esta estructura de entorno
para el problema de la p-mediana.

Problema de la p-mediana Dado un conjunto de puntos de demanda, D =
{d1, . . . , dn}, y un conjunto de posibles localizaciones, L = {l1, . . . , lm}, se pre-
tende determinar la ubicación óptima de p servicios que minimice la suma de los
costos entre los puntos de demanda y los servicios.

Para formalizar el problema, se considera la existencia de una matriz n×m con
el costo c(di, lj) que supone atender al punto de demanda di desde la localización
lj. La región factible de este problema está formada por subconjuntos de L con
p puntos

S = {X ⊂ L : | X |= p}.
Sea el costo que supone atender el punto de demanda di desde la solución X igual
a

c(di, X) = min
lj∈X

c(di, lj).

El problema se formula como

min
X∈S

n
∑

i=1

c(di, X)

Las soluciones del problema de la p-mediana son subconjuntos de L de tamaño
p, formados por los ı́ndices de las localizaciones en las que se ubican los servicios.

Ejemplo 1
En la estructura de entorno del k-intercambio, una solución, X ′, del problema de
la p-mediana es vecina de otra solución X, si puede obtenerse de ésta intercam-
biando una localización presente en la solución por otra no presente en la misma.
Aśı, si m = 5, p = 3 y k = 1 las soluciones X = {l1, l3, l5} y X ′ = {l1, l3, l4}
son vecinas, ya que X ′ puede obtenerse desde X intercambiando l5 por l4. En la
tabla 1 se muestran todas las soluciones factibles de un problema de la 3-mediana
cuando m = 5, el valor objetivo de éstas (escogido de forma ficticia para este
ejemplo) y las correspondientes soluciones vecinas si k = 1.

Una Búsqueda Local comienza con una Solución Actual de la región factible con
costo asociado Objetivo(Solución Actual). A continuación selecciona, si es posible,
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Solución Costo Soluciones vecinas

{l1, l2, l3} 10 {l1, l2, l4} {l1, l2, l5} {l1, l3, l4} {l1, l3, l5} {l2, l3, l4} {l2, l3, l5}
{l1, l2, l4} 6 {l1, l2, l3} {l1, l2, l5} {l1, l3, l4} {l1, l4, l5} {l2, l3, l4} {l2, l4l5}
{l1, l2, l5} 8 {l1, l2, l3} {l1, l2, l4} {l1, l3, l5} {l1, l4, l5} {l3, l2, l5} {l2, l4, l5}
{l1, l3, l4} 5 {l1, l2, l4} {l1, l4, l5} {l1, l2, l3} {l1, l3, l5} {l1, l2, l4} {l1, l4, l5}
{l1, l3, l5} 7 {l1, l2, l5} {l1, l4, l5} {l1, l2, l3} {l1, l3, l4} {l2, l3, l5} {l3, l4, l5}
{l1, l4, l5} 6 {l1, l2, l4} {l1, l3, l4} {l1, l2, l5} {l1, l3, l5} {l2, l4, l5} {l3, l4, l5}
{l2, l3, l4} 6 {l1, l2, l4} {l2, l4, l5} {l1, l3, l4} {l3, l4, l5} {l1, l2, l3} {l2, l3, l5}
{l2, l3, l5} 8 {l1, l2, l5} {l2, l4, l5} {l1, l3, l5} {l3, l4, l5} {l1, l2, l3} {l2, l3, l4}
{l2, l4, l5} 3 {l1, l4, l5} {l3, l4, l5} {l1, l2, l5} {l2, l3, l5} {l1, l2, l4} {l2, l3, l4}
{l3, l4, l5} 4 {l1, l4, l5} {l2, l4, l5} {l1, l3, l5} {l2, l3, l5} {l1, l3, l4} {l2, l3, l4}

Tabla 1: Soluciones factibles y vecinas de un problema de la 3-mediana con m = 5
y k = 1

procedure Búsqueda Local(Var Solución Actual);
begin

repeat

Obtener(Solución Vecina/
Objetivo(Solución Vecina) < Objetivo(Solución Actual));

Solución Actual := Solución Vecina;
until (Objetivo(Solución Vecina) ≥ Objetivo(Solución Actual),

∀ Solución Vecina);
end

Figura 1: Descripción general de la Búsqueda Local

una Solución Vecina con coste Objetivo(Solución Vecina) < Objetivo(Solución
Actual). Si tal solución existe, el algoritmo continúa con Solución Vecina. En caso
contrario, el procedimiento termina con Solución Actual como solución propuesta
por el algoritmo. El procedimiento puede describirse como aparece en la figura
1.

El principal inconveniente del procedimiento Búsqueda Local radica en que,
en general, suministra soluciones localmente óptimas, con respecto a la estructura
de entorno considerada, que pueden estar alejadas de la solución óptima global.
Este hecho se pone de manifiesto en el siguiente ejemplo.

Ejemplo 2
Considérese el problema de localización la 2-mediana Supóngase que el conjunto
de posibles localizaciones consta de los cuatro puntos del cuadrado unidad:

L =

{

l1 =

(

1

4
,
1

2

)

, l2 =

(

1

2
,
3

4

)

, l3 =

(

1

2
,
1

4

)

, l4 =

(

3

4
,
1

2

)}
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la demanda está formada por los puntos

D =

{

d1 =

(

3

8
,
5

8

)

, d2 =

(

3

8
,
3

8

)

, d3 =

(

5

8
,
5

8

)

, d4 =

(

5

8
,
1

2

)

, d5 =

(

5

8
,
3

8

)}

y se pretende encontrar la 2-mediana con distancia eucĺıdea. La matriz de dis-
tancias es la siguiente:

























d1 d2 d3 d4 d5

l1

√

1
32

√

1
32

√

10
64

3
8

√

10
64

l2

√

1
32

√

10
64

√

1
32

√

5
64

√

10
64

l3

√

10
64

√

1
32

√

10
64

√

5
64

√

1
32

l4

√

10
64

√

10
64

√

1
32

1
8

√

10
64

























Si se utiliza la estructura del 1-intercambio, las posibles soluciones del pro-
blema, sus costos respectivos y las soluciones vecinas, aśı como los costos de éstas
(entre paréntesis), se recogen en la tabla siguiente.

Solución Costo V ecinas
X1 = {l1, l2} 1.205 X2(1.205) X3(0.832) X4(0.986) X5(1.05)
X2 = {l1, l3} 1.205 X1(1.205) X3(0.832) X4(0.986) X6(1.05)
X3 = {l1, l4} 0.832 X1(1.205) X2(1.205) X5(1.05) X6(1.05)
X4 = {l2, l3} 0.986 X1(1.205) X2(1.205) X5(1.05) X6(1.05)
X5 = {l2, l4} 1.050 X1(1.205) X3(0.832) X4(0.986) X6(1.05)
X6 = {l3, l4} 1.050 X2(1.205) X3(0.832) X4(0.986) X5(1.05)

Si la solución actual del procedimiento búsqueda local es X4, el algoritmo acaba
con esta solución, ya que todas las vecinas de X4 poseen un costo mayor. Sin em-
bargo, X4 no es la solución óptima. El algoritmo se ha estancado en un mı́nimo
local no global. Nótese además que la solución propuesta por el algoritmo puede
estar muy alejada de la solución óptima del problema. En el ejemplo que trata-
mos, la solución propuesta no posee ninguna localización presente en la solución
óptima.

2.1 Muestreos en el entorno.

En la Búsqueda Local, dada la solución actual, se debe generar una nueva
solución, del entorno de ésta, con coste menor. En muchas ocasiones, se intenta
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una exploración completa del entorno de la solución actual en busca de la mejor
vecina. Sin embargo, esta estrategia suele ser muy ineficiente. Por ello, deben
considerarse otros muestreos del entorno.

1. Búsqueda del mejor: se realiza una búsqueda exhaustiva por el entorno de
la solución y se toma la mejor vecina.

Si se aplica una búsqueda local del mejor desde la solución {l1, l2, l3} con
costo 10, el recorrido de la misma (ver cuadro 1) es {l1, l2, l3}, {l1, l3, l4},
{l1, l2, l4}, {l2, l4, l5}. Se obtiene la mejor solución del problema, {l2, l4, l5},
con costo 3.

2. Búsqueda del primer mejor: se recorre en orden el entorno de la solución
actual hasta encontrar una solución mejor.

Si se aplica una búsqueda local del primer mejor desde la solución {l1, l2, l3}
con costo 10, el recorrido de la misma (ver cuadro 1) es {l1, l2, l3}, {l1, l2, l4},
{l1, l3, l4}. Se obtiene la solución {l1, l3, l4} con costo 5.

3. Muestreo aleatorio: se escoge aleatoriamente una solución del entorno de la
solución actual. O la mejor de una muestra seleccionada aleatoriamente del
entorno.

Si se aplica una búsqueda local con muestreo aleatorio desde la solución
{l1, l2, l3} con costo 10, el recorrido de la misma puede ser {l1, l2, l3},
{l2, l3, l4}, {l3, l4, l5}, {l2, l4, l5}). Se obtiene la mejor solución del pro-
blema, {l2, l4, l5}, con costo 3. Nótese que, en este caso, puede obtenerse
un recorrido distinto al comenzar una nueva búsqueda local desde la misma
solución {l1, l2, l3}.

4. Muestreo heuŕıstico: se toma aquella solución (o equivalentemente se realiza
aquel movimiento) que, con base a una evaluación heuŕıstica, suministre una
solución mejor que la actual.

5. Muestreo Aspiration Plus: se muestrea el entorno hasta que se alcanza un
valor mı́nimo de la función objetivo establecido previamente. Una vez alcan-
zado este nivel de aspiración, se analiza un número adicional de soluciones
en busca de soluciones con mejor calidad. Para controlar el número de solu-
ciones evaluadas en el entorno de cualquier solución, se establece el número
mı́nimo y máximo de movimientos que pueden analizarse en cada iteración.
Este muestreo ha sido propuesto por Glover [17].

3 Multiarranque

El principal inconveniente de las Búsquedas Locales es que, en general, sumi-
nistran soluciones localmente óptimas que pueden estar muy alejadas (en términos
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procedure Búsqueda con Arranque Múltiple
begin

Generar (Solución Inicial);
Mejor Solución := Solución Inicial;
repeat

Solución Actual := Búsqueda Local(Solución Inicial);
if Objetivo(Solución Actual) < Objetivo(Mejor Solución)

then Mejor Solución := Solución Actual;
Generar(Solución Inicial);

until criterio de parada;
end.

Figura 2: Descripción de la Búsqueda con Arranque Múltiple.

de valor objetivo) de la solución o soluciones óptimas globales. Una alternativa
para solventar este inconveniente consiste en aplicar Búsquedas Locales desde
varias soluciones de partida. La repetición de los procesos Generar Solución Ini-
cial y Búsqueda Local constituye el primer Método Multiarranque descrito en la
literatura [6] [28]. Este esquema puede generalizarse para contemplar diferentes
Métodos Multiarranque que consisten en aplicar reiteradamente un optimizador
o método de búsqueda desde diferentes soluciones iniciales.

La Figura 2 muestra el esquema general de un Método Multiarranque. Tı́pica-
mente podemos hablar de dos fases en cada paso. En la primera, se construye
una solución Solución Inicial y en la segunda se trata de mejorar mediante la
aplicación de un método de búsqueda, obteniendo la solución Solución Actual
(que eventualmente puede ser igual a Solución Inicial).

En algunas aplicaciones, la fase 1 se limita a la simple generación aleatoria de
las soluciones, mientras que en otros ejemplos se emplean sofisticados métodos
de construcción que consideran las caracteŕısticas del problema de optimización
para obtener soluciones iniciales de calidad. Algo similar ocurre con el método de
búsqueda de la fase 2. Podemos encontrar algoritmos de Búsqueda Local que, a
partir de la solución inicial, conducen al óptimo local más cercano mediante una
serie de movimientos de mejora, o elaborados procedimientos metaheuŕısticos que
realizan una búsqueda inteligente del espacio de soluciones y tratan de alcanzar
la solución óptima del problema, evitando quedar atrapados en un óptimo local
de baja calidad. En cuanto a la condición de parada, se han propuesto desde
criterios simples, como el de parar después de un número dado de iteraciones,
hasta criterios que analizan la evolución de la búsqueda y aseguran, en muchos
casos, la convergencia asintótica al óptimo global del problema. Otra cuestión a
considerar es si el método de búsqueda de la segunda fase debe aplicarse a todos
los puntos generados o sólo a un subconjunto de dichos puntos. La combinación de
todos estos elementos (construcción de soluciones iniciales, optimizador o método
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de mejora, criterio de parada, ...) suministra una gran variedad de procedimientos
h́ıbridos basados en el esquema Multiarranque.

Mart́ı [29] hace una revisión de los métodos multiarranque y propone una
clasificación basada en el uso o no de memoria y en el grado de reconstrucción
de la solución de inicio. Schoen [38] hace una revisión personal de tales métodos,
dando una definición formal de los mismos y subrayando las caracteŕısticas propias
de estos métodos. En [31] se enumeran algunas de las alternativas propuestas para
los diferentes elementos que definen un Método Multiarranque. En las siguientes
subsecciones, describimos brevemente algunas de las variantes propuestas que
pueden encontrarse en [31] .

3.1 Solución inicial.

Los mecanismos de generación de soluciones iniciales pueden ser dependientes
o independientes del problema considerado. Entre los mecanismos dependientes
del problema destacamos los de generación aleatoria, determińıstica y mixta. A
continuación se describen estos tres métodos para el problema de la p-mediana.

• Generación aleatoria. Escoger aleatoriamente p localizaciones y estable-
cer en ellas los servicios.

Para aplicar el mecanismo de generación aleatoria al ejemplo 2, deben es-
cogerse aleatoriamente dos servicios del conjunto de posibles localizaciones
L = {l1, l2, l3, l4}. Aśı, una de las soluciones que podŕıan obtenerse es
X5 = {l2, l4}.
• Generación determinista. En primer lugar, establecer un servicio en

la localización más cercana al punto medio de los puntos de demanda. A
continuación, establecer un servicio en la localización más alejada de los
servicios previamente establecidos. Repetir el paso anterior hasta localizar
p servicios.

En el ejemplo 2, el punto medio de los puntos de demanda es (0.525, 0.425).
La localización más cercana a este punto es l3, y la localización más ale-
jada de l3 es l2. Por tanto, la solución inicial empleando la generación
determińıstica es X4 = {l2, l3}.
• Generación mixta. En primer lugar, establecer un servicio en la loca-

lización más cercana al punto medio de los puntos de demanda. A conti-
nuación, escoger aletoriamente el siguiente servicio con probabilidades pro-
porcionales a la distancia a los servicios previamente establecidos. Repetir
el paso anterior hasta localizar p servicios.

En el ejemplo 2, el punto medio de los puntos de demanda es (0.525, 0.425).
La localización más cercana a este punto es l3. Teniendo en cuenta la
distancia que separa las localizaciones l1, l2 y l4 de l3, se sigue que existe
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la misma probabilidad de escoger l1 o l4 como nuevo servicio, y que esta
probabilidad es menor que la de escoger l2. El nuevo servicio debe escogerse
usando a estas probabilidades. Si suponemos que se escoge l1, se obtiene la
solución inicial X2 = {l1, l3}.

Boese et al. [8] analizan la relación entre los óptimos locales de un problema
al tratar de determinar el mejor de todos ellos. Basado en los resultados de
ese estudio, proponen un método multiarranque, llamado Adaptive Multistart
(AMS), en el que los puntos iniciales se generan a partir de los mejores óptimos
locales encontrados. En un primer paso, AMS genera r soluciones al azar y les
aplica a todas ellas un procedimiento de búsqueda local greedy para determinar el
conjunto inicial de óptimos locales. En el segundo paso (adaptive) se construyen
las soluciones iniciales a partir del conjunto de óptimos locales. A estas soluciones
iniciales se les aplica varias veces el método de mejora. Los autores prueban el
método en la resolución del problema del viajante de comercio, y muestran que
mejora significativamente a implementaciones previas de métodos multiarranque.

Hagen y Kang [19] proponen un método multiarranque de tipo AMS para el
problema de partición VLSI donde el objetivo es minimizar el número de señales
que circulan entre componentes. El método tiene dos fases. En la primera se
genera un conjunto de soluciones aleatorias y se les aplica a todas ellas un al-
goritmo de búsqueda local, obteniendo un conjunto de óptimos locales. En la
segunda parte, se construyen soluciones iniciales como los puntos centrales de
los mejores óptimos locales conocidos. Con el objetivo de reducir el tamaño del
problema a resolver, se añade una fase de preproceso basada en técnicas de agru-
pamiento. Un estudio emṕırico permite establecer la superioridad del método
propuesto frente a algoritmos previos para este problema.

Uno de los métodos multiarranque más aplicados actualmente es el denomi-
nado GRASP, debido a Feo y Resende [7] [8]. Como el resto de métodos mul-
tiarranque, GRASP consta de dos fases. La construcción o generación y la mejora
o búsqueda. En cada iteración de la fase constructiva, GRASP mantiene un con-
junto de elementos candidatos que pueden ser añadidos a la solución parcial que
se está construyendo. Todos los elementos candidatos se evalúan usando una
función que mide su atractivo. En lugar de seleccionar el mejor de todos los ele-
mentos, se construye la lista restringida de candidatos RCL (restricted candidate
list) con los mejores según una cantidad establecida (ésta es la parte greedy del
método). El elemento que finalmente se añade a la solución parcial actual, se
escoge al azar del conjunto RCL (ésta es la parte probabiĺıstica). Entonces se
recalcula la lista de elementos candidatos y se realiza una nueva iteración (ésta es
la parte que se adapta en el método). Estos pasos se reiteran hasta que se obtiene
una solución del problema. A ésta se le aplica el método de mejora (ésta es la
parte de búsqueda del método). A continuación, se repiten la fase constructiva y
de mejora hasta que se cumpla el criterio de parada.
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Existen diferentes variantes de este esquema entre las que podemos desta-
car el método heuŕıstico conocido como semi-greedy debido a Hart y Shogan [21].
Este método sigue el esquema multiarranque basado en aleatorizar una evaluación
greedy en la construcción, pero no tiene una fase de búsqueda local o mejora. Ac-
tualmente se están implementando versiones de este método denominadas Reac-
tive GRASP en donde el ajuste de los parámetros necesarios (básicamente los que
determinan la RCL) se realiza de forma dinámica según el estado de la búsqueda
[36].

Fleurent y Golver [14] proponen un método multiarranque AMP (Adaptive
Memory Programming) en el que se modifica la función de evaluación usando una
medida de frecuencia para intensificar la búsqueda en un procedimiento cons-
tructivo. Los autores aplican su método al problema de asignación cuadrática y
muestran la ventaja de usar tal estructura de memoria.

Melián et al. [33] usan información sobre las soluciones de inicio y sobre
los óptimos locales encontrados para dirigir la búsqueda. La técnica se diseña
para problemas combinatorios en los que se desea encontrar la mejor selección
de un número dado de ı́tems desde un universo. Sea RefSet el conjunto de
óptimos locales encontrados hasta el momento. Para cada x

′

i del conjunto RefSet,
se conoce el porcentaje de búsquedas locales que, comenzando en soluciones a
distancia menor o igual que k (k = 1, . . .) de x

′

i, acaban en x
′

i. Sea k(x
′

i) el valor
de k cuyo porcentaje asociado es mayor que α (parámetro fijado por el usuario),
y considérese

k∗ = max
x
′

i
∈RefSet

k(x
′

i).

Sea, además, w(x
′

i) el porcentaje de búsquedas locales que acaban en x
′

i, y, para
cada item u,

w(u) =
∑

u∈x
′

i
∈RefSet

w(x
′

i),

la suma de los porcentajes de aquellos óptimos locales que incluyen a u como
parte de la solución.

Los anteriores valores se emplean para diversificar e intensificar la búsqueda.
Para diversificar la misma, se desarrollan búsquedas locales desde soluciones a
distancia mayor que k∗ de un óptimo local seleccionado aleatoriamente de RefSet.
Para intensificar la búsqueda, se construye aleatoriamente una solución en la que
la probabilidad de incluir un elemento u en la misma es proporcional a los valores
w(u).

3.2 Reglas de parada

Como ocurre con cualquier método heuŕıstico para resolver un problema, uno
de los elementos más dif́ıciles de fijar en un Método Multiarranque es el criterio
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de parada. Los principales criterios de parada propuestos analizan tres variables
aleatorias: valores objetivos de los mı́nimos locales, número de mı́nimos locales
distintos de la función objetivo y número de iteraciones necesarias para alcanzar
el mı́nimo global.

Los y Lardinois [28], en uno de los primeros trabajos dedicados a los Métodos
Multiarranque, obtienen reglas de parada a partir de la función de distribución
asintótica del mı́nimo global. El Teorema de Fisher y Tipper establece que esta
distribución debe ser una de las tres distribuciones de Gumbel: tipo I, tipo II o
tipo III. En particular, se trata de la distribución asintótica tipo III o de Wei-
bull. De esta forma, se pueden obtener estimaciones puntuales e intervalos de
confianza para el óptimo global, y reglas de parada para el método. El trabajo
analiza varias metodoloǵıas para obtener las anteriores estimaciones e intervalos
de confianza y compara experimentalmente las diferentes reglas de parada que,
consecuentemente, se obtienen.

Usando un esquema Bayesiano, Betrò y Schoen [3] asumen una distribución
a priori sobre los valores objetivos de los óptimos locales encontrados, y utilizan
ésta para obtener reglas de parada.

Si el número de mı́nimos locales, κ, de la función objetivo fuese conocido,
un criterio de parada obvio seŕıa desarrollar búsquedas locales hasta encontrarlos
todos. Sin embargo, este valor es desconocido. No obstante, el número de veces
que aparece cada uno de los mı́nimos encontrados al aplicar las búsquedas locales
suministra información sobre κ y sobre el tamaño de las correspondientes regio-
nes de atracción. Boender y Rinnooy Kan [5] realizan un estudio detallado de
estos parámetros siguiendo la metodoloǵıa bayesiana. En ésta se supone que los
parámetros son variables aleatorias para las que se asume una distribución a priori
conocida que luego se modifica por las evidencias muestrales. Aśı, obtienen, ini-
cialmente, dos reglas de parada: parar cuando se haya encontrado un número de
mı́nimos locales distintos mayor o igual que el estimador bayesiano entero óptimo
de κ; parar cuando el estimador del tamaño relativo de las regiones de atracción
muestreadas sea suficientemente grande.

Las reglas obtenidas por Boender y Rinnooy Kan no tienen en cuenta el coste
que supone desarrollar nuevas búsquedas locales. Una metodoloǵıa alternativa
para obtener reglas de parada consiste en suponer que cada vez que se finaliza
un método multiarranque se incurre en dos pérdidas: una pérdida de finaliza-
ción, que depende del coste que supone finalizar la búsqueda antes de encontrar
el mı́nimo global, y una pérdida de ejecución, que depende del coste de realizar
nuevas búsquedas locales. Boender y Zielinski [7] y Boender y Rinnooy Kan [4][5]
consideran tres estructuras de pérdida según el esquema anterior y, para cada una
de ellas, obtienen reglas de parada.

Moreno et al. [34] proponen una regla de parada para el método multiarran-
que basada en el estudio estad́ıstico del número de iteraciones necesarias para
encontrar el óptimo global. Los autores introducen dos variables aleatorias cuya
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combinación proporciona el número de iteraciones necesarias hasta encontrar el
óptimo global (variable ψ). Estas variables son: el número de soluciones iniciales
generadas hasta que la correspondiente búsqueda local alcanza el óptimo global
y el número de evaluaciones de la función objetivo hasta que la correspondiente
búsqueda local alcanza un óptimo local. Si bien la distribución exacta de la varia-
ble que suministra el número de iteraciones necesarias para encontrar el óptimo
global es dif́ıcil de obtener, si puede aproximarse apropiadamente usando la distri-
bución normal. El criterio de parada propuesto consiste en finalizar la búsqueda
después de e iteraciones siempre que la probabilidad de que ψ sea menor que e
sea suficientemente grande. Por tanto, la regla de parada propuesta es, tras cada
aplicación de una búsqueda local, verificar si la anterior condición es cierta o no.
Si la respuesta es afirmativa, el algoritmo finaliza; en caso contrario, se selecciona
una nueva solución desde la que aplicar una búsqueda local.

Hart [20] describe diversas reglas de parada secuenciales para la Búsqueda
Aleatoria Pura que se basan en la estimación del óptimo global de una función.
A continuación, las modifica y generaliza para otros algoritmos secuenciales, y
describe como pueden usarse en un multiarranque. De la experiencia computa-
cional desarrollada concluye que estas reglas de parada se comportan de forma
similar a las reglas de parada bayesianas propuestas por [3][5]. Además, son, a
juicio del autor, más sencillas y fáciles de usar.

4 Métodos multi-arranque para el problema de
la Máxima Diversidad

El problema de seleccionar un subconjunto de elementos de diversidad máxima
de un conjunto dado se conoce como Problema de la Máxima Diversidad o MDP
(del inglés Maximum Diversity Problem). Este problema tiene multitud de apli-
caciones prácticas entre las que destacan: tratamientos médicos, balanceo de sis-
temas ecológicos, poĺıticas de inmigración o ingenieŕıa genética entre otros [18].
El MDP ha sido estudiado por numerosos autores, entre los que destacan Kuo
et al. [25] donde se describen cuatro formulaciones del problema, desde la pri-
mera más intuitiva a la última más eficiente, sirviendo también éstas para demos-
trar que el MDP es NP-dif́ıcil. En 1996 Ghosh [16] propone un método multi-
arranque y se demuestra la completitud del problema. Posteriormente, Glover y
otros [18] proponen cuatro métodos heuŕısticos deterministas, dos de ellos cons-
tructivos y los otros dos destructivos. Silva y otros [39] presentan un algoritmo
multi-arranque basado en la metodoloǵıa GRASP. Concretamente describen tres
métodos constructivos, denominados KLD, KLDv2 y MDI y dos métodos de me-
jora: LS, que es una adaptación del que propuso Ghosh, y SOMA, basado en una
implementación VNS. Desde un punto de vista formal, el MDP se describe como
un problema de optimización combinatoria que se peude formular como sigue:
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sea S = {si : i ∈ N} un conjunto de elementos donde N = {1, 2, . . . , n} es el
conjunto de ı́ndices. Cada elemento del conjunto si ∈ S, se puede representar por
un vector si = (si1, si2, .., sir). Sea dij la distancia entre dos elementos si y sj y
sea m (con m < n) el tamaño deseado del conjunto de máxima diversidad. En
este contexto, la resolución del MDP consiste en encontrar un subconjunto Sel de
m elementos de S ( Sel ⊂ S y |Sel| = m) de tal forma que se maximice la suma
de las distancias entre los elementos seleccionados. Matemáticamente, el MDP se
puede reescribir como un problema de decisión en los siguientes términos:

max z =
∑

i<j

dijxixj

sujeto a:
n

∑

i=1

xi = m

xi ∈ {0, 1} i = 1, . . . , n

donde xi = 1 indica que el elemento si ha sido seleccionado.
Para abordar la resolución del MDP mediante un esquema multi-arranque, se

proponen dos algoritmos constructivos, uno de ellos sin memoria y el otro con
memoria. En las siguientes secciones se describe cada uno de estos algoritmos.

4.1 Multi-Arranque Sin Memoria (MASM)

El algoritmo Multi-Arranque Sin Memoria (MASM) propuesto en este trabajo
consta de un procedimiento constructivo basado en GRASP y una búsqueda lo-
cal tipo firts improvement. Esta propuesta se inspira en un heuŕıstico propuesto
por Glover y otros [18]. El procedimiento constructivo, en cada paso, añade un
elemento de buena calidad (dado por una función tipo greedy) y se introduce en
el conjunto Sel, de tal forma que en el conjunto S \ Sel estarán los elementos
no seleccionados. Inicialmente, el conjunto Sel está vaćıo; por lo tanto, todos los
elementos podŕıan ser seleccionados. El algoritmo empezaŕıa eligiendo aleatoria-
mente un elemento de S y lo introduciŕıa en el conjunto Sel. Posteriormente,
se calcula la distancia de todos los elementos no seleccionados si ∈ S \ Sel al
conjunto Sel como sigue:

d(si, X) =
∑

j∈Sel

d(si, sj) (1)

que establecen una ordenación entre todos los elementos no seleccionados. Para
seleccionar el siguiente elemento que se incluirá en el conjunto Sel, se construye
una lista ordenada L donde estén todos los elementos si ∈ S \Sel con un porcen-
taje α de la máxima distancia. Matemáticamente, L se define como sigue:

L = {si ∈ S \ Sel/d(si, sc) ≥ dmin + α(dmax − dmin)} (2)
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donde
dmax = max

si∈S
d(si, Sel) dmin = min

si∈S
d(si, Sel)

El siguiente elemento que se introduce en el conjunto Sel se elige aleatoriamente
de entre los elementos que hay en L, de tal forma que se asegura que tiene un
porcentaje de calidad mı́nimo, fijado por α , y que no es una elección puramente
greedy, que conduciŕıa a un óptimo local. Este procedimiento se mantiene hasta
haber seleccionado m elementos (|Sel| = m), de tal forma que en Sel se tendrá
la solución al problema. Este constructivo se ejecutaŕıa niter de tal forma que
la media aritmética de las niter soluciones construidas será peor que si la so-
lución se hubiese construido tomando el elemento con distancia máxima a los
ya seleccionados, pero probablemente alguna de las niter soluciones mejore este
valor.

Para tener un comportamiento reactivo del algoritmo, el parámetro α se ini-
cializa a 0.5 y posteriormente se ajusta dinámicamente en función de la calidad de
las soluciones construidas; es decir, si después de niter/5 iteraciones consecutivas,
la solución con mejor valor no ha sido mejorada, entonces se incrementa α en 0.1
(hasta un máximo de 0.9).

Como método de mejora se presenta un procedimiento basado en una sim-
plificación de la búsqueda local descrita en [16], que persigue el aumento de la
eficiencia de la búsqueda local. El método propuesto se encuadra dentro de las
búsquedas locales tipo first improvement que, como se describe en Laguna y otros
[26], suele proporcionar mejores resultados que las estrategias tipo best improve-
ment, obviamente en mucho menos tiempo. Para ello, se factoriza la aportación de
cada elemento si en Sel; es decir, di para cada elemento si ∈ Sel es la contribución
a la función objetivo de cada elemento si:

di =
∑

sj∈Sel

dij = d(si, Sel) (3)

ya que la función objetivo se define como

z =
1

2

∑

si∈Sel

di (4)

Posteriormente, se selecciona el elemento si∗ en Sel con menor contribución a la
solución actual; es decir, el elemento si∗ ∈ Sel con menor valor de di∗ , de tal forma
que si∗ ∈ Sel se intercambia con el primer elemento sj ∈ S \ Sel que aumente el
valor de la función objetivo. El procedimiento de búsqueda se mantiene mientras
que haya mejora en la función objetivo, de tal forma que se extrae el elemento del
conjunto Sel que menos aporte y se introduce otro de S \Sel que mejore el valor
dicha función objetivo. Cuando no se obtenga una mejora, se pasa al segundo
elemento que menos aporte y aśı sucesivamente. Este procedimiento se mantiene
hasta que no se pueda conseguir ninguna mejora.

Rect@ Monográfico 3 (2007)
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4.2 Multi-Arranque Con Memoria (MACM)

Como segundo algoritmo multi-arranque, denominado Multi-Arranque Con
Memoria (MACM), en [11] se presenta un método que utiliza memoria tanto en
la fase de construcción de soluciones como en la fase de mejora. Estas estrategias
se describen dentro de la metodoloǵıa Tabu Search [17].

El algoritmo constructivo se basa en una penalización por frecuencia en cada
iteración a aquellos elementos que aparecieron en soluciones pasadas. El pro-
cedimiento también premia a aquellos elementos que aparecieron en soluciones
pasadas de muy alta calidad. Para implementar dicho algoritmo se guarda en
freq[i] el número de veces que el elemento si ha sido seleccionado en construc-
ciones previas. En max freq se almacena el valor máximo de freq[i] para todo
i. Por otro lado, en quality[i] se guarda el valor medio de las soluciones en las
que ha participado el elemento si. Además, en max q se almacena el máximo
valor de quality[i] para todo i. En estas condiciones, se modifica la evaluación del
atractivo de cada elemento no seleccionado en la construcción actual de acuerdo
a estas magnitudes para aśı favorecer la selección de elementos con baja frecuen-
cia y alta calidad. Para ello, en vez de utilizar la distancia descrita en (3) entre
un elemento y el conjunto de los elementos seleccionados, se utiliza la siguiente
expresión:

d′(si, Sel) = dsi, Sel− βrange(Sel)
freq[i]

max freq
+ δrange(Sel)

quality[i]

max q

con
range(Sel) = max

sj∈S\Sel
d(sj , Sel)− min

sj∈S\Sel
d(sj , Sel)

donde β y δ son parámetros del algoritmo que cuantifican la aportación de la
penalización por frecuencia y la bonificación por calidad. Ambos se ajustan ex-
perimentalmente. La introducción del valor de range(Sel) se hace para suavizar
los cambios en la función de penalización.

Inicialmente, el conjunto Sel está vaćıo; por lo tanto, todos los elementos
podŕıan ser seleccionados. El algoritmo empezaŕıa seleccionando aleatoriamente
un elemento de S y lo introduciŕıa en el conjunto Sel. Posteriormente, calcula para
cada elemento si ∈ S \Sel la distancia d′(si, Sel), que en la primera construcción
coincidirá con d(si, Sel), ya que freq[i] = quality[i] = 0. Se elige aquél elemento
que maximice dicha distancia:

i∗/d′(s∗i , Sel) = max
si∈S
{d′(si, Sel)}

y se introduce en Sel, actualizando consecuentemente el vector de frecuencias.
Este procedimiento se mantiene hasta haber seleccionado m elementos, de tal
forma que en Sel se tendrá la solución al problema. Una vez que se tiene cons-
truida dicha solución, se actualiza el vector de calidad. El método tabú multi-
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arranque ejecuta este procedimiento niter veces, de tal forma que en cada cons-
trucción las distancias entre un elemento al conjunto de los ya seleccionados se
actualiza en función de su historia pasada.

Como método de mejora se utiliza una modificación del método de mejora
propuesto anteriormente al que se le ha añadido memoria de corto plazo basado
en intercambios entre Sel y S \ Sel. Una iteración de este algoritmo consiste en
seleccionar aleatoriamente un elemento si ∈ Sel. La probabilidad de seleccionar
dicho elemento es inversamente proporcional a su valor correspondiente de di.
Ese elemento de Sel se sustituye por el primer elemento sj de S \Sel que mejore
el valor de la función objetivo. En el caso de que ningún elemento mejore el valor
de la función objetivo, se selecciona aquél que menos la empeore, de tal forma que
siempre se realiza un movimiento. Una vez ejecutado dicho movimiento, tanto
si, como sj adquieren estatus tabú durante TabuTenure iteraciones. Por consi-
guiente, el elemento sj no se podrá extraer del conjunto Sel (respectivamente, el
elemento si del conjunto S \ Sel) durante este tiempo. El proceso de búsqueda
tabú se mantiene hasta que se supere un número MaxIter de iteraciones conse-
cutivas sin que se mejore el mayor valor obtenido hasta el momento.

4.3 Resultados experimentales

Para ilustrar el comportamiento de los dos algoritmos multi-arranque resumi-
dos en este trabajo y propuestos en [11], se presenta una comparativa con otros
dos algoritmos previos. Concretamente, los algoritmos con los que se comparan
MASM y MACM son el algoritmo constructivo D2, propuesto en Glover y otros
[18] junto con el método de mejora descrito en [16] y el algoritmo KLDv2 con
su correspondiente mejora, presentado en Silva y otros [39], que representan los
mejores métodos para este problema. Todos los algoritmos fueron codificados
en C y compilados con Borland Builder 5.0, optimizado para máxima velocidad.
Los experimentos se ejecutaron en un Pentium IV a 3GHz con 1 GB RAM. Los
algoritmos se probaron en tres conjuntos de ejemplos:

1. Silva: 20 matrices n × n con valores aleatorios enteros generados con una
distribución uniforme de [0, 9] con n ∈ [100, 500] y m ∈ [0.1n, 0.4n].

2. Glover: 20 matrices n× n en el que los valores de distancias entre cada par
de puntos con coordenadas eucĺıdeas se generan aleatoriamente en el plano
[0, 10]. Para cada instancia, cada uno de estos n puntos tiene r coordenadas,
con r ∈ [2, 21].

3. Random: 20 matrices n×n con pesos reales generados con una distribución
uniforme de [0, 10] con n = 2000 y m = 200. Indicar que en la bibliograf́ıa
consultada, estas son las instancias más grandes que se han resuelto.

En las tablas 2, 3 y 4 se comparan MASM, MACM, D2 + LS y KLDv2+LS. Es-
tas tablas muestran para cada procedimiento el porcentaje medio de desviación
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D2 + LS KLDv2 + LS MASM MACM
Dev. 1.722% 1.079% 0.0377% 0.0130%
♯ Best 2 5 12 13
♯ Const. 5140.5 2663.6 925.4 864.1

Tabla 2: Métodos constructivos. Ejemplos tipo Silva

D2 + LS KLDv2 + LS MASM MACM
Dev. 0.018% 0.006% 0.0000% 0.0000%
♯ Best 16 18 20 20
♯ Const. 2149.6 971.0 790.4 397.5

Tabla 3: Métodos constructivos. Ejemplos tipo Glover

con respecto a la mejor solución conocida (en cada experimento, ya que no se
conocen los valores óptimos), el número de veces que el algoritmo encuentra la
mejor solución y el número de construcciones y mejora que hace el algoritmo en
10 segundos (criterio de parada). La conclusión que se puede obtener de estas
tablas es que los métodos multi-arranque propuestos mejoran sustancialmente
los algoritmos previos tanto en desviación con respecto al mejor valor conocido
como al número de veces que encuentra ese valor. Además, en la experimentación
presentada también se pude concluir que el uso de memoria, al menos para este
problema y estos ejemplos, conduce a mejores resultados. Indicar que en el caso
de los ejemplos de tipo Glover, los algoritmos estudiados obtienen valores muy
similares, de lo que se deduce que éstos son los más sencillos; como consecuencia,
permiten discernir poco sobre la calidad de cada algoritmo. En el otro extremo es-
taŕıan los ejemplos de tipo Random, donde se observa claramente que los métodos
multi-arranque propuestos mejoran sustancialmente a los algoritmos previos.

D2 + LS KLDv2 + LS MASM MACM
Dev. 1.270% 1.219% 0.204% 0.099%
♯ Best 0 0 7 15
♯ Const. 128.1 3.5 12.0 14.8

Tabla 4: Métodos constructivos. Ejemplos tipo Random
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1 Introducción

El problema de corte bidimensional no-guillotina que estudiamos en este tra-
bajo consiste en cortar un conjunto de pequeñas piezas rectangulares de un tablero
rectangular grande de manera que se maximice el beneficio de las piezas corta-
das. El problema aparece en muchos procesos productivos, en las industrias del
textil, papel, acero, madera o cristal, en las que los tableros grandes obtenidos
en la fase de producción se han de cortar en piezas más pequeñas para atender
las demandas de los clientes, o cuando cajas rectangulares se han de colocar en
containers y sólo dos dimensiones son relevantes. Patrones de corte eficientes re-
ducen las pérdidas de material y estrategias de empaquetado eficientes mejoran
la utilización del espacio y reducen los costes de transporte.

En este trabajo no imponemos a los patrones de corte la restricción de uti-
lizar cortes guillotina, cortes que dividen completamente un rectángulo en dos
subrectángulos. Esta restricción, que es muy común en algunas industrias, como
las de la madera o el vidrio, aparece en muchos trabajos, pero no es necesaria

*Este trabajo ha sido financiado parcialmente por el Proyecto PBC-02-002, Consejeŕıa de
Ciencia y Tecnoloǵıa, JCCM, y el Ministerio de Educación y Ciencia DPI2005-04796.

Rect@ Monográfico 3 (2007)
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cuando se utilizan nuevas tecnoloǵıas de corte y obviamente no se necesita en
problemas de empaquetamiento. Sin esta restricción, se pueden obtener mejores
soluciones, pero la complejidad del problema aumenta considerablemente. Los
algoritmos exactos existentes sólo pueden resolver problemas de pequeño tamaño
y por tanto es necesario el uso de algoritmos heuŕısticos. Nosotros propone-
mos primero un algoritmo constructivo y, a partir de él, un algoritmo GRASP y
un algoritmo Tabu Search. Los resultados de un extenso estudio computacional
muestran la eficiencia de dichos algoritmos.

2 Descripción del problema

El problema de corte bidimensional no-guillotina puede describirse de la forma
siguiente. Sea R = (L,W ) el rectángulo grande, con longitud L y anchura W .
Cada pieza i tiene dimensiones (li, wi), y valor vi, i = 1, . . . ,m. Las piezas tie-
nen orientación fija y han de ser cortadas con sus lados paralelos a los lados del
rectángulo (cortes ortogonales). El problema consiste en cortar el rectángulo R
en xi copias de cada pieza i, de manera que 0 ≤ Pi ≤ xi ≤ Qi, y el valor total de
las piezas cortadas,

∑

i vixi, sea máximo. Denotaremos M =
∑

iQi el número
máximo de piezas que se pueden cortar. El problema se clasifica como 2D-SLOPP
(2-Dimensional Single Large Object Placement Problem) en la clasificación pro-
puesta por Wäscher et al. (2006).

Según los valores de Pi y Qi, podemos distinguir tres tipos de problemas:

1. No restringido: ∀i, Pi = 0, Qi = ⌊L ∗W/li ∗ wi⌋ (cota trivial).

2. Restringido: ∀i, Pi = 0; ∃i, Qi < ⌊L ∗W/li ∗ wi⌋

3. Doblemente restringido: ∃ i, Pi > 0; ∃ j, Qj < ⌊L ∗W/lj ∗ wj⌋

En la Figura 1 vemos un ejemplo, con un rectángulo R = (10, 10), y m = 10
piezas que cortar. La primera solución, Figura 1(b), es óptima para el problema
irrestringido, mientras que la segunda solución, Figura 1(c), corresponde al caso
restringido y la tercera, Figura 1(d), al doblemente restringido, con algunos Pi 6=
0.

Algunos autores han estudiado el problema irrestringido: Tsai et al. (1988),
Arenales y Morabito (1995), Healy et al. (1999). Sin embargo, el problema
restringido es más interesante para las aplicaciones y ha recibido mucha mayor
atención. Métodos exactos han sido propuestos por Beasley (1985), Scheithauer y
Terno (1993), Hadjiconstantinou y Christofides (1995), Fekete y Schepers (2004)
y Caprara y Monaci (2004).

Una sencilla cota superior para el problema se obtiene resolviendo el siguiente
problema mochila acotado, en el que la variable xi representa el número de piezas
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R = (10, 10)
Pieza li wi Pi Qi vi

1 3 2 1 2 7
2 7 2 1 3 20
3 4 2 1 2 11
4 6 2 0 3 13
5 9 1 0 2 21
6 8 4 0 1 79
7 4 1 1 2 9
8 1 10 0 1 14
9 3 7 0 3 52
10 4 5 0 2 60 1 2

3 4

5

6

7

8

9

10

10

10

10

10

8 8

(b) No restringido Opt: 268

1 1

10

10

99

7

(c) Restringido Opt: 247

2

7
3

1

10 9 9

7

(d) Doblemente restr. Opt: 220

Figura 1: Problema 3 de Beasley (1985)

de tipo i que se cortan por encima de su cota inferior Pi:

Max

m
∑

i=1

vixi +

m
∑

i=1

viPi (1)

s.t. :

m
∑

i=1

(liwi)xi ≤ LW −
m

∑

i=1

Pi(liwi) (2)

xi ≤ Qi − Pi, i = 1, . . . ,m (3)

xi ≥ 0, integer, i = 1, . . . ,m. (4)

Otras cotas, aparte de las inclúıdas en los métodos exactos mencionados, han
sido propuestas por Scheithauer (1999) y Amaral y Letchford (2003).

Recientemente han ido apareciendo diversos algoritmos heuŕısticos. Wu et
al. (2002) proponen un algoritmo constructivo. Lai y Chan (1997) y Leung
el al. (2001, 2003) utilizan templado simulado y algoritmos genéticos. Beasley

Rect@ Monográfico 3 (2007)



194 GRASP y Tabu Search para problemas de corte bidimensional

(2004) desarrolla un algoritmo genético basado en una formulación no lineal del
problema. Presenta además un estudio computacional muy completo sobre un
conjunto de problemas test estandard y sobre un nuevo conjunto de problemas
grandes generado aleatoriamente.

En este art́ıculo describimos nuestros trabajos en el desarrollo de dos tipos
de algoritmos, GRASP y Tabu Search, e inclúımos los resultados obtenidos sobre
cuatro conjuntos de problemas test: los 21 problemas de la literatura utiliza-
dos por Beasley (2004); los 630 problemas grandes, generados aleatoriamente por
Beasley (2004); 10 problemas utilizados por Leung et al. (2003), y los 21 proble-
mas utilizados por Hopper y Turton (2001). Este último conjunto fue inicialmente
diseñado para otro problema de empaquetamiento bidimensional y ha sido adap-
tado a nuestro problema para probar nuestros algoritmos sobre problemas dif́ıciles
en los que la solución óptima no contiene pérdidas. Más detalles sobre nuestros
algoritmos pueden encontrarse en Alvarez-Valdes et al. (2005).

3 Un algoritmo constructivo

Seguimos un procedimiento iterativo en el que combinamos dos elementos:
una lista P de piezas por cortar, inicialmente la lista completa de piezas, y una
lista L de rectángulos vaćıos en los que se puede cortar una pieza, que contiene
inicialmente el rectángulo R = (L,W ). En cada paso se elige un rectángulo de
L, y de las piezas de P que caben en él, se elige la pieza a cortar. Al cortar
la pieza se pueden producir nuevos rectángulos, que se añaden a L y el proceso
continúa hasta que L = ∅ o ninguna de las piezas restantes cabe en ninguno de
los rectángulos de L.

Paso 0. Inicialización:

L = {R}, el conjunto de rectángulos vaćıos.
P = {p1, p2, . . . , pm}, el conjunto de piezas pendientes de cortar.
El conjunto P se ordena inicialmente siguiendo 3 criterios: Ordenar por
Pi ∗ li ∗ wi no creciente, dando prioridad a las piezas que se han de cortar
obligatoriamente. Si se da un empate (por ejemplo, si Pi = 0, ∀i), ordenar
por vi/(li ∗wi) no creciente. Si hay empates (por ejemplo, si vi = li ∗wi, ∀i),
ordenar por li ∗ wi no creciente.

B = ∅, el conjunto de piezas ya cortadas. Las piezas del mismo tipo pueden
aparecer agrupadas en bloques rectangulares.

Paso 1. Elección del rectángulo:

Tomar R∗, el menor rectángulo de L en el que cabe una pieza pi ∈ P.
Si tal R∗ no existe, parar.
En otro caso, ir al Paso 2.
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Paso 2. Elección de la pieza:

Elegir una pieza pi y una cantidad ni ≤ Qi, formando el bloque B∗ para
cortarlo de R∗.
Se elige la pieza i que produzca el mayor aumento de la función objetivo.
El bloque B∗ se corta en la esquina de R∗ más próxima a una esquina del
rectángulo R inicial.
Actualizar P, B y Qi que indica el número de piezas de tipo i que quedan
por cortar.
Mover el bloque B∗ hacia la esquina más próxima del rectángulo R.

Paso 3. Actualización de L:

Añadir a L los posibles rectángulos producidos al cortar B∗ de R∗.
Tener en cuenta los posibles cambios en L al mover el bloque B∗.
Fusionar rectángulos para favorecer el corte de nuevas piezas de P.
Volver al Paso 1.

Aunque a lo largo del algoritmo nosotros mantenemos una lista de rectángulos
vaćıos L, en realidad tenemos un espacio vaćıo poligonal irregular en el que las
piezas pendientes podŕıan tener cabida. Una manera de adaptar nuestra lista L

a la flexibilidad del corte no-guillotina es fusionar algunos de los rectángulos de
la lista, produciendo nuevos rectángulos en los que las piezas pendientes puedan
caber mejor.

Cuando fusionamos 2 rectángulos, pueden aparecer, como máximo, 3 nuevos
rectángulos, t́ıpicamente un rectángulo grande y 2 pequeños (ver Figura 2). Entre
las diversas alternativas de fusión, tratamos de seleccionar la mejor, es decir,
aquélla en la que es posible cortar las piezas mejor situadas en la lista ordenada
P. Con este objetivo en mente, imponemos las siguientes condiciones:

1. Si el orden de la mejor pieza que cabe en el rectángulo grande es estricta-
mente menor que el orden de las piezas en los rectángulos originales, los
fusionamos.

2. Si el orden de la mejor pieza que cabe en el rectángulo grande es igual que
el orden de las piezas en los rectángulos originales, los fusionamos si el área
del rectángulo grande es mayor que el área de cada uno de los rectángulos
originales.

3. Si el orden de la mejor pieza que cabe en el rectángulo grande es estricta-
mente mayor que el orden de las piezas en los rectángulos originales, no los
fusionamos.

En la Figura 2 vemos varios casos posibles. En la Figura 2(a) los rectángulos
originales siempre se fusionarán. El nuevo rectángulo es mayor que ambos y todas
las piezas que cab́ıan en los originales cabrán en él. En la Figura 2(b) los nuevos
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rectángulos no son mayores que los originales. Éstos se fusionarán sólo si el nuevo
rectángulo central permite cortar una pieza de menor orden que las que cab́ıan en
los originales. En la Figura 2(c) uno de los nuevos rectángulos es mayor que los
originales y por tanto éstos se fusionarán, a menos que la mejor pieza que cab́ıa
en el rectángulo original vertical no quepa en los nuevos rectángulos.

(a) (b) (c)

Figura 2: Fusionando 2 rectángulos vaćıos

Al final de proceso constructivo, una solución está compuesta por una lista de
bloques B, y una lista de rectángulos vaćıos L, con valor total

∑

i vixi.

4 Un algoritmo GRASP

GRASP (Greedy Randomized Adaptive Search Procedure) fue desarrollado
por Feo y Resende (1989) para resolver problemas combinatorios dif́ıciles. Para
una introducción actualizada, consultar Resende y Ribeiro (2003). GRASP es un
procedimiento iterativo que combina una fase constructiva y una fase de mejora.
En la fase constructiva se construye paso a paso una solución posible, añadiendo
elementos a una solución parcial. El elemento a añadir en cada paso se elige
mediante una función greedy que se adapta dinámicamente a lo largo del pro-
ceso. Sin embargo, esta elección no es determinista, sino sujeta a un proceso de
aleatorización. De esta forma, al repetir el proceso se pueden obtener soluciones
diferentes. Al acabar cada fase constructiva, una fase de mejora, que suele consis-
tir en una búsqueda local, intenta sustituir algunos elementos que forman parte
de la solución debido a la aleatorización por otros que mejoren la calidad de la
solución.
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4.1 Fase constructiva

En nuestro algoritmo GRASP, la fase constructiva corresponde al algoritmo
constructivo descrito en la sección anterior, introduciendo procedimientos de alea-
torización al elegir la pieza a cortar. Sea si el valor de la pieza (o bloque de piezas)
i y smax = max{si|i ∈ P}, y sea δ un parámetro a determinar (0 < δ < 1). Hemos
considerado tres alternativas:

1. Elegir la pieza i al azar en el conjunto S = {j | sj ≥ δsmax}
(S suele denominarse Conjunto restringido de Candidatos).

2. Elegir la pieza i al azar entre el mejor 100 (1− δ)% de las piezas.

3. Elegir la pieza i en todo el conjunto P, pero con probabilidades proporcio-
nales a sus valores si (pi = si/Σsj)

4.2 Elección del parámetro δ

Un estudio preliminar mostró que no exist́ıa ningún valor de δ que produjera
siempre los mejores resultados. Por tanto, consideramos varias alternativas en las
que el valor de δ variaba aleatoria o sistemáticamente a lo largo de las iteraciones.
Estas estrategias fueron:

1. En cada iteración, elegir δ al azar en el intervalo [0.4, 0.9]

2. En cada iteración, elegir δ al azar en el intervalo [0.25, 0.75]

3. En cada iteración δ toma por turno uno de los siguientes 6 valores:

0.4, 0.5, 0.6, 0.7, 0.8, 0.9.

4. δ = 0.75

5. GRASP Reactivo

En el GRASP Reactivo, propuesto por Prais y Ribeiro (2000), δ se toma
inicialmente al azar de un conjunto dado de valores discretos, pero trans-
currido un cierto número de iteraciones se analiza la calidad relativa de las
soluciones obtenidas con cada valor de δ y se aumentan las probabilidades
de los valores que producen mejores soluciones.

4.3 Fase de mejora

Cada solución construida en la fase anterior es el punto de partida para una
búsqueda local en la que tratamos de mejorarla. Hemos estudiado tres alternati-
vas:
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I) Tomamos un bloque adyacente a un rectángulo vaćıo y consideramos redu-
cirlo o eliminarlo completamente. Los demás bloques se desplazan hacia las
esquinas, los rectángulos vaćıos resultantes se fusionan y la lista actualizada
L se vuelve a cortar utilizando el algoritmo constructivo (Figura 3). Si la
solución obtenida mejora la inicial, se realiza el movimiento y se pasa a
estudiar otro bloque. Sólo se considera la reducción de un bloque cuando
ello no viola las cotas inferiores Pi en el número de piezas a cortar.

II) El segundo procedimiento es una simplificación del método I en el que los
bloques no se desplazan hacia las esquinas y los rectángulos vaćıos sólo se
fusionan con los ya existentes (Figura 4).

III) El tercer método consiste en eliminar el último k% de los bloques incorpo-
rados a la solución (por ejemplo, el último 10%) y volver a cortar el espacio
vaćıo resultante con el algoritmo constructivo determinista, como proponen
Beltran et al. (2002). Cuando estos últimos bloques han sido eliminados,
los bloques restantes se desplazan hacia las esquinas y los rectángulos vaćıos
resultantes se fusionan, antes de aplicar el procedimiento constructivo (ver
Figura 5, en la que los números en las piezas indican el orden en el que
fueron incluidas en el proceso de corte).

(a) Seleccionar (b) Reducir

(c) Mover (d) Cortar de nuevo

Figura 3: Método de mejora I. Problema 8, Tabla 1
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(a) Seleccionar (b) Reducir (c) Cortar de nuevo

Figura 4: Método de mejora II. Problema 6, Tabla 1

1 1

3 3

2
5

4
6

(a) Seleccionar (b) Eliminar (c) Cortar de nuevo

Figura 5: Método de mejora III. Problema 15, Tabla 1

5 Algoritmo Tabu Search

Tabu Search es actualmente un metaheuŕıstico bien conocido (para una
introducción, consultar el libro de Glover y Laguna (1997). Los elementos básicos
del algoritmo se describen en los apartados siguientes.

5.1 Definición de movimientos

El espacio de soluciones en el que nos movemos está compuesto únicamente
por las soluciones posibles. En este espacio definimos varios movimientos para
ir de una solución a otra. La solución inicial se obtiene aplicando el algoritmo
constructivo de la seccción 3.

Distinguimos dos tipos de movimientos: reducción de bloques e inserción de
bloques. En la reducción de bloques, se reduce el tamaño de un bloque existente
eliminando algunas de sus filas o columnas. En la inserción de bloques, un nuevo
bloque se añade a la solución. En ambos casos, presentamos priemro un esquema
del procedimiento y luego un ejemplo detallado.

• Reducción de bloques

Paso 0. Inicialización:
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B = lista de bloques de la solución actual
L = lista de rectángulos vaćıos

Paso 1. Elección del bloque a reducir

Tomar B, uno de los bloques de B, con k columnas y l filas de piezas
pi.

Seleccionar el número de r de columnas (filas) a eliminar,

1 ≤ r ≤ k (1 ≤ r ≤ l),
manteniendo el número de piezas en la solución xi ≥ Pi.

Si Pi = 0, el bloque puede desaparecer completamente.

El nuevo rectángulo vaćıo se añade L.

Paso 2. Mover los bloques restantes hacia sus esquinas más próximas:

La lista de rectángulos vaćıos L se actualiza adecuadamente.

Paso 3. Volver a cortar nuevos bloques en los rectángulos vaćıos:

Aplicar el algoritmo constructivo de la Sección 3,

El algoritmo parte de las listas actualizadas L y B, y P contiene las
piezas pendientes de cortar. Antes de aplicar el procedimiento cons-
tructivo, se estudia las posibles fusiones de rectángulos de L, para
adaptarse lo mejor posible a las piezas de P.

Al seleccionar la pieza a cortar, la pieza eliminada en el Paso 1 no se
considera hasta que otra pieza haya sido añadida a la solución.

Paso 4. Fusionar los bloques con la misma estructura:

Fusionamos dos bloques de la misma pieza si son adyacentes (o uno
de ellos puede desplazarse para ser adyacente con el otro) y en el lado
adyacente tienen la misma dimensión.

En la Figura 6 vemos un ejemplo de movimiento de reducción sobre un pro-
blema propuesto por Jakobs (1996) y utilizado posteriormente por Leung et
al. (2003). Los rectángulos se denotan (x1, y1, x2, y2) donde (x1, y1) son las
coordenadas del vértice inferior izquierdo y (x2, y2) las del vértice superior
derecho. El rectángulo inicial es R = (0, 0, 120, 45), con m = 22 tipos de
piezas y un total de M = 25 piezas que utilizan todo el rectángulo, sin
dejar zonas de pérdida. La Figura 6(a) muestra una solución con 23 piezas,
en la que no caben dos piezas (6x12). El conjunto L está compuesto por
R1 = (60, 24, 72, 30) y R2 = (72, 18, 84, 24) (en gris claro). En el Paso 1,
se selecciona un bloque compuesto por una pieza (12x21) (en gris oscuro).
Su reducción supone su desaparición completa de la solución, creando un
nuevo rectángulo vaćıo R3 = (72, 24, 84, 45) que se añade a L (Figura 6(b)).
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En el Paso 2, el bloque compuesto por una pieza (12x15) se desplaza ha-
cia la esquina superior derecha. Por tanto, L = {R1, R2, R4, R5}, donde
R4 = (60, 30, 72, 45) y R5 = (72, 24, 84, 30) (Figura 6(c)). En el Paso 3 el
procedimiento constructivo vuelve a cortar los rectángulos vaćıos. Primero,
R1 y R4 se fusionan, formando R6 = (60, 24, 72, 45), y lo mismo sucede con
R2 y R5, que forman R7 = (72, 18, 84, 30). Entonces, se selecciona R7 y las
dos piezas (6x12) se cortan en él, llenándolo completamente. Finalmente,
se toma R6 y se corta en él la pieza eliminada inicialmente. La solución
final, que es óptima, aparece en la Figura 6(d).

(a) Seleccionar (b) Reducir

(c) Mover hacia la esquina (d) Volver a cortar

Figura 6: Reducción de bloques. Problema 3 de Jakobs (1996)

• Inserción de bloques

Paso 0. Inicialización:

B = lista de bloques
L = lista de rectángulos vaćıos

Paso 1. Elegir el bloque a insertar

Tomar pi, una pieza para la que xi < Qi, y considerar un bloque de
esas piezas con k columnas y l filas (k ∗ l ≤ Qi − xi).

Paso 2. Seleccionar la posición en la que insertar el nuevo bloque

Paso 3. Eliminar las piezas de la solución que se solapan con el nuevo
bloque

Actualizar B (algunos de los bloques originales se reducen o eliminan)
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Actualizar L (pueden aparecer nuevos rectángulos vaćıos).

Paso 4. Volver a cortar nuevos bloques en los rectángulos vaćıos

Paso 5. Fusionar los bloques con la misma estructura:

Los Pasos 4 y 5 son los mismos del procedimiento de reducción de
bloques.

En la Figura 7 vemos un ejemplo de movimiento de inserción sobre un pro-
blema propuesto por Fekete y Schepers (2004) y utilizado posteriormente por
Beasley (2004). El rectángulo inicial es R = (0, 0, 100, 100) y se han de cor-
tar m = 15 tipos de piezas, con un total de M = 50 piezas. La Figura 7(a)
muestra una solución de valor z = 27539. El conjunto L está compuesto por
R1 = (70, 41, 72, 81) y R2 = (72, 80, 100, 81). En el Paso 1 seleccionamos una
pieza i = 5 de dimensiones (6x40) con Qi = 5 y sólo 2 copias en la solución actual
y consideramos un bloque B∗ de una pieza. En el Paso 2 colocamos B∗ sobre R1,
seleccionando la esquina superior izquierda del rectángulo para colocar la esquina
superior izquierda del bloque. B∗ cubre completamente R1 y parte de R2, que se
transforma en R3 = (76, 80, 100, 81). B∗ también cubre parcialmente un bloque
de la solución (Figura 7(b)). Por tanto, en el Paso 3, eliminamos las piezas de
la solución que se solapan con B∗. Esto produce dos nuevos rectángulos vaćıos
R4 = (76, 40, 78, 80) y R5 = (72, 40, 76, 41) (Figura 7(c)). En el Paso 4, el proce-
dimiento constructivo comienza con la lista L = {R3, R4, R5}. Primero, R3 y R4

se fusionan, produciendo R6 = (76, 40, 78, 81) y R7 = (78, 80, 100, 81). Mientras
que ninguna de las piezas restantes cab́ıa en R3 o en R4, una pieza i = 13 de
dimensiones (2x41) cabe en R6. La nueva solución es mejor que la inicial y tiene
un valor z∗ = 27718, que es el óptimo (Figura 7(d)).

5.2 Movimientos que se estudian

En cada iteración estudiamos todos los posibles movimientos de reducción e
inserción que se pueden aplicar a la solución actual.

• Reducción:

1. Tomar cada bloque de la solución, de uno en uno, en orden aleatorio.

2. Considerar todas las posibilidades de reducción en las direcciones en
las que sea adyacente a un rectángulo de pérdida.

• Inserción:

1. Seleccionar una pieza para la que el número de copias en la solución,
xi, es menor que Qi, de una en una, en orden aleatorio.
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(a) Solución inicial (b) Insertar bloque

(c) Eliminar solapamiento (d) Fusionar y volver a cortar

Figura 7: Inserción de bloques. Problema 1 de Fekete y Schepers (2004)

2. Considerar todos los bloques posibles que se pueden formar con esa
pieza.

3. Considerar todas las posiciones en las que se puede colocar el bloque
sobre un rectángulo vaćıo.

5.3 Selección del movimiento

La función objetivo original consiste únicamente en maximizar el valor de las
piezas cortadas f(x) =

∑

i vixi. Sin embargo, si los movimientos se evalúan con
esta función, pueden haber muchos movimientos con la misma evaluación. Para
discriminar entre estos movimientos, utilizamos una función objetivo secundaria:
g(x) = k1S + k2|L|+ k3C + k4F .

• S (Simetŕıa): Intentamos no explorar soluciones simétricas y concentrarnos
en aquellas soluciones en las que los rectángulos vaćıos están concentrados
preferentemente en la parte superior derecha del rectángulo.
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S = 1 si no existe una solución simétrica con los rectángulos de pérdida más
concentrados en la parte superior derecha. En otro caso, S = 0.

• |L| (Número de rectángulos vaćıos)). Si es posible, preferimos soluciones
con el menor número de rectángulos vaćıos.

• C (Rectángulos vaćıos centrados y agrupados): Preferimos soluciones en las
que los rectángulos vaćıos están centrados y agrupados, ya que esto facilitará
su fusión y poder cortar más piezas. Consideramos el menor rectángulo ER
que contiene todos los rectángulos vaćıos y

C = 1− (0.75 ∗ rd + 0.25 ∗ ra)
donde rd es la distancia desde el centro de ER al centro del rectángulo
inicial, dividida por la distancia del centro del rectángulo inicial a su esquina
inferior izquierda, y ra es el área of ER dividida por el área del rectángulo
inicial.

• F (Factibilidad). En problemas doblemente restringidos, la solución puede
no ser factible. En ese caso F = 1. Si no, F = 0.

Estos criterios se suman en la función objetivo secundaria con pesos que re-
flejan su importancia relativa, de acuerdo con los resultados de un estudio com-
putacional preliminar sobre un subconjunto de problemas. En la versión actual
del algoritmo los pesos son:

Criterio Coeficiente Peso
Simetŕıa k1 5000
Número de rectángulos vaćıos k2 −950
Rectángulos vaćıos centrados y agrupados k3 50
Factibilidad k4 −50000

5.4 Lista Tabú

La lista tabú contiene para cada solución un par de atributos: el valor de la
función objetivo y el menor rectángulo ER que contiene todos sus rectángulos
vaćıos. Un movimiento es tabú si estos dos atributos de la nueva solución corres-
ponden a un par de la lista tabú.

El tamaño de la lista tabú vaŕıa dinámicamente. Después de un cierto número
de iteraciones sin mejorar la mejor solución conocida, la longitud de la lista se
elige al azar en el intervalo [0.25 ∗M, 0.75 ∗M ], donde M =

∑

iQi.

El criterio de aspiración permite moverse a una solución con estatus tabú si
mejora la mejor solución conocida.
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5.5 Estrategias de intensificación y diversificación

Los movimientos que hemos definido implican un alto nivel de diversificación.
Sin embargo, hemos añadido dos nuevas estrategias de diversificación:

• Memoria a largo plazo

A lo largo del proceso de búsqueda, guardamos la frecuencia con la que cada
tipo de pieza aparece en las soluciones.

Esta información se usa para intensificación y diversificación. En una estra-
tegia de diversificación, favorecemos movimientos que incluyen piezas que
no aparecen frecuentemente en las soluciones. En una estrategia de intensi-
ficación, consideramos únicamente las piezas que aparecen en soluciones de
alta calidad y favorecemos que esas piezas aparezcan en las nuevas solucio-
nes.

En la fase de diversificación, la función objetivo se modifica restándole un
término que es la suma de las frecuencias de las piezas que aparecen en la
solución

f(x)→ f(x)−∑

i freq(pi)

En la fase de intensificación, la función objetivo se modifica sumándole un
término que es la suma de las frecuencias de las piezas que aparecen en un
conjunto de soluciones de élite E

f(x)→ f(x) +K
∑

i∈E
freq(pi)

• Reinicio

De acuerdo con la función objetivo secundaria, tendemos a explorar solu-
ciones que satisfagan el criterio de simetŕıa. Después de un cierto número
de iteraciones sin mejorar la mejor solución conocida, la solución actual
se transforma aplicándole un movimiento de simetŕıa vertical y otro hori-
zontal respecto a los ejes vertical y horizontal que pasan por el centro del
rectángulo. La nueva solución obtenida será muy diferente de las recien-
temente estudiadas y puede ser considerada como un punto de reinicio del
proceso de búsqueda.

6 Estudio computacional

6.1 Problemas test

Hemos usado varios conjuntos de problemas test:

1. Un conjunto de 21 problemas de la literatura: 12 de Beasley (1985), 2 de
Hadjiconstaninou y Christofides (1995), 1 de Wang (1983), 1 de Christofides
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y Whitlock (1977), 5 de Fekete y Schepers (2004). Para todos ellos la
solución óptima es conocida y aparece en Beasley (2004).

2. Un conjunto de 630 problemas grandes generados por Beasley (2004), si-
guiendo el esquema de Fekete y Schepers (2004). Todos tienen un rectángulo
inicial (100, 100). Para cada valor de m, número de tipos de piezas (m =40,
50, 100, 150, 250, 500, 1000), se han generado aleatoriamente 10 problemas
con Pi = 0, Qi = Q∗, ∀i = 1, . . . ,m donde Q∗ = 1; 3; 4. El valor asignado
a cada pieza es igual a su área multiplicada por un entero aleatoriamente
elegido entre {1, 2, 3}.

3. Los 21 problemas test mencionados en primer lugar fueron transformados
por Beasley (2004) en problemas doblemente restringidos definiendo cotas
inferiores Pi. Concretamente, para cada tipo de pieza i = 1, . . . ,m que
satisface:

m
∑

j=1,j 6=i

(ljwj)Pj + liwi ≤ (LW )/3, la cota inferior Pi se fija a 1.

Este conjunto de problemas nos permitirá probar nuestros algoritmos en el
caso general de problemas doblemente restringidos.

4. Finalmente, hemos incluido los problemas test utilizados por Leung et al.
(2003), entre los que se encuentran 3 problemas de Lai y Chan (199a), 5
de Jakobs (1996), y 2 de Leung et al. (2003). También hemos incluido 21
problemas más grandes de Hopper y Turton (2001). Son problemas en los
que el valor de cada pieza corresponde a su área y el objetivo es minimizar
los rectángulos vaćıos asociados a la solución. Estos problemas han sido
generados de forma que la solución óptima no contiene rectángulos vaćıos.

Hemos incluido los problemas de Leung et al. (2003) y Hopper y Turton (2001)
porque presentan caracteŕısticas que los hacen complementarios de los problemas
de los grupos anteriores. Mientras muchos de aquéllos pueden considerarse pro-
blemas de selección, ya que no todas las piezas posibles pueden ser cortadas y
el problema es elegir el mejor subconjunto, éstos pueden considerarse problemas
rompecabezas, pues todas las pieza caben en el rectángulo y el problema es elegir
su posición.

6.2 Implementación de los algoritmos

Los algoritmos han sido codificados en lenguaje C + + y se han ejecutado en
un ordenador PentiumIII a 800Mhz. En la implementación final del algoritmo
GRASP utilizamos como estrategia de aleatorización la alternativa 1, basada en
el Conjunto Restringido de Candidatos. Para la elección del δ utilizamos GRASP
reactivo y como procedimiento de mejora el Método III. El algoritmo para cuando

Rect@ Monográfico 3 (2007)



Alvarez-Valdes et al. 207

se alcanza el ĺımite de 10000 iteraciones o se iguala la cota inferior o la solución
óptima si es conocida. Esta estrategia de parada cuando se consigue la solución
óptima ha sido previamente utilizada por Beasley (2004) y la hemos adoptado
para poder comparar con sus resultados.

En cuanto al algoritmo Tabu Search, el tamaño de la lista tabú cambia tras 100
iteraciones sin mejorar la mejor solución conocida. Si transcurren 400 iteraciones
sin mejora, se realiza una fase de diversificación basada en memoria a largo plazo
durante 100 iteraciones o hasta que se mejore la solución. Tras ella, se recupera la
función objetivo original y se continúa el proceso de búsqueda. Después de otras
400 iteraciones sin mejora se realiza una fase de intensificación, con K = 100
durante 100 iteraciones o hasta que se mejore la solución. Tras ella recuperamos la
función objetivo original, pero si la solución no ha mejorado, en lugar de continuar
la búsqueda desde la solución actual se realiza un reinicio y se continúa a partir
de la solución transformada. Como en el caso del algoritmo GRASP, el algoritmo
Tabu Search para cuando se alcanza un ĺımite de iteraciones, en este caso 1500,
o cuando se llega a la solución óptima.

6.3 Resultados obtenidos

Los resultados obtenidos para los tres conjuntos de problemas restringidos apa-
recen en las tablas 1, 2 y 3. Los resultados sobre los problemas doblemente restrin-
gidos aparecerán más adelante. Las dos primeras tablas incluyen una comparación
directa con los resultados obtenidos por Beasley (2004). Los tres algoritmos pue-
den compararse en términos de calidad. Sin embargo, los tiempos de ejecución
no pueden compararse directamente. Beasley codificó su algoritmo en lenguaje
FORTRAN y utilizó un ordenador Silicon Graphics O2 workstation (R10000 chip,
225MHz, 128 MB). Una comparación aproximada (http : //www.spec.org) indica
que su ordenador es el doble de rápido que el nuestro. En la tabla 1 vemos que
el algoritmo Tabu Search resuelve óptimamente todos los problemas en tiempos
de computación muy breves, aventajando a los otros algoritmos en términos de
calidad y tiempo. Para los problemas grandes de la tabla 2 las soluciones óptimas
no son conocidas y las comparaciones se hacen con las cotas superiores obtenidas
resolviendo problemas mochila acotados (Sección 2). La tabla 2 muestra que el
algoritmo Tabu Search obtiene nuevamente los mejores resultados sobre cada tipo
de problemas, excepto para m = 50, Q∗ = 1 donde GRASP es ligeramente mejor.
Los tiempos de computación son mucho más cortos que los de Beasley, aunque
son mayores que los requeridos por el GRASP. Ambos algoritmos están basados
en ideas similares. El algoritmo Tabu Search, más complejo, obtiene mejores so-
luciones pero necesita tiempos de ejecución más largos. En la tabla 3 volvemos
a comparar GRASP y Tabu Search. Tabu Search aventaja claramente a GRASP
en cuanto a la calidad de las soluciones, con tiempos de ejecución similares.

La tabla 4 muestra los resultados de los algoritmos sobre el conjunto de pro-
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blemas doblemente restringidos. La cota superior corresponde en este caso a la
solución del problema restringido. Los problemas para los que los algoritmos no
encuentran solución son claramente infactibles. Aparecen aqúı para no modificar
la tabla de resultados publicada por Beasley. El algoritmo Tabu Search obtiene
los mejores resultados, pero sus tiempos de computación son más largos.
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Rect@ Monográfico 3 (2007)



210 GRASP y Tabu Search para problemas de corte bidimensional

[24] Scheithauer G. LP-based bounds for the container and multi-container loa-
ding problem. International Transactions in Operations Research 1999; 6;
199-213.

[25] Tsai RD, Malstrom EM, Meeks HD. A two-dimensional palletizing procedure
for warehouse loading operations. IIE Transactions 1988; 20; 418-425.
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Origen del problema I Tamaño Solución Solución Solución Solución Tiempo de CPU (segundos)
(L,W) m M de Beasley GRASP TABU óptima Beasley GRASP TABU

Beasley (1985) 1 (10, 10) 5 10 164 164 164 164 0,02 0,00 0,06
2 (10, 10) 7 17 230 230 230 230 0,16 0,00 0,00
3 (10, 10) 10 21 247 247 247 247 0,53 0,00 0,00
4 (15, 10) 5 7 268 268 268 268 0,01 0,00 0,00
5 (15, 10) 7 14 358 358 358 358 0,11 0,00 0,00
6 (15, 10) 10 15 289 289 289 289 0,43 0,00 0,00
7 (20, 20) 5 8 430 430 430 430 0,01 0,00 0,00
8 (20, 20) 7 13 834 834 834 834 3,25 0,77 0,16
9 (20, 20) 10 18 924 924 924 924 2,18 0,00 0,05

10 (30, 30) 5 13 1452 1452 1452 1452 0,03 0,00 0,00
11 (30, 30) 7 15 1688 1688 1688 1688 0,60 0,05 0,00
12 (30, 30) 10 22 1801 1865 1865 1865 3,48 0,05 0,06

Hadjiconstantinou 3 (30, 30) 7 7 1178 1178 1178 1178 0,03 0,00 0,00
y Christofides (1995) 11 (30, 30) 15 15 1270 1270 1270 1270 0,04 0,00 0,00
Wang (1983) (70, 40) 19 42 2721 2726 2726 2726 6,86 0,77 0,11
Christofides y Whitlock (1977) 3 (40, 70) 20 62 1720 1860 1860 1860 8,63 0,39 0,06
Fekete y Scheppers (2004) 1 (100, 100) 15 50 27486 27589 27718 27718 19,71 2,31 0,05

2 (100, 100) 30 30 21976 21976 22502 22502 13,19 4,17 2,14
3 (100, 100) 30 30 23743 23743 24019 24019 11,46 3,68 3,40
4 (100, 100) 33 61 31269 32893 32893 32893 32,08 0,00 0,66
5 (100, 100) 29 97 26332 27923 27923 27923 83,44 0,00 0,00

Porcentaje medio de desviación respecto al óptimo 1,21% 0,19% 0,00% 8,87 0,58 0,32
Número de soluciones óptimas (de 21) 13 18 21

Tabla 1: Resultados computationales – Problemas de la literatura
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Desviaciones medias respecto de la cota superior
m Q* M Solución Solución Solución Tiempo de CPU (segundos)

de Beasley GRASP TABU Beasley GRASP TABU
40 1 40 7,77 6,97 6,55 13,57 2,33 10,97

3 120 3,54 2,22 1,95 47,43 6,62 14,20
4 160 3,24 1,81 1,65 63,30 4,44 18,26

50 1 50 5,48 4,80 4,85 14,60 4,71 15,49
3 150 2,35 1,50 1,27 59,27 7,05 22,50
4 200 2,63 1,18 0,96 80,07 5,34 18,19

100 1 100 2,26 1,51 1,50 27,20 5,36 38,79
3 300 1,27 0,47 0,31 119,47 9,41 32,11
4 400 1,06 0,26 0,18 175,10 6,99 19,67

150 1 150 1,31 0,89 0,84 40,60 5,53 54,90
3 450 0,60 0,14 0,07 190,53 11,71 31,76
4 600 0,92 0,11 0,05 323,83 6,75 19,87

250 1 250 0,88 0,51 0,45 76,70 5,27 90,07
3 750 0,57 0,04 0,01 439,47 13,89 13,70
4 1000 0,39 0,03 0,00 693,67 6,65 4,50

500 1 500 0,26 0,05 0,03 203,10 3,24 86,17
3 1500 0,18 0,00 0,00 1210,80 12,24 1,10
4 2000 0,18 0,00 0,00 1790,83 1,15 0,84

1000 1 1000 0,09 0,00 0,00 667,23 1,01 7,80
3 3000 0,07 0,00 0,00 3318,47 6,53 1,54
4 4000 0,07 0,00 0,00 4840,57 0,29 1,19

Tipo I 1,64 1,04 0,95 558,11 5,13 19,61
Tipo 2 1,70 1,14 1,06 668,41 5,90 23,84
Tipo 3 1,66 1,03 0,94 830,02 7,28 32,56
Todos 1,67 1,07 0,98 685,51 5,91 25,34

Tabla 2: Resultados computationales – Problemas aleatorios grandes
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Origen del I Tamaño Solución Solución Solución Tiempo de CPU
problema (L,W) m M GRASP TABU óptima GRASP TABU

Lai y Chan (1997a) 1 (400,200) 9 10 80000 80000 80000 0,00 0,00
2 (400,200) 7 15 79000 79000 79000 0,00 0,02
3 (400,400) 5 20 154600 160000 160000 4,12 0,38

Jakobs (1996) 1 (70,80) 14 20 5447 5600 5600 10,16 1,89
2 (70,80) 16 25 5455 5540 5600 15,44 16,88
3 (120,45) 22 25 5328 5400 5400 12,57 0,42
4 (90,45) 16 30 3978 4050 4050 10,28 1,97
5 (65,45) 18 30 2871 2925 2925 14,94 1,53

Leung et al. (2003) 1 (150,110) 40 40 15856 16280 16500 90,52 52,36
2 (160,120) 50 50 18628 19044 19200 132,26 63,95

Hopper y Turton (2001) 1-1 (20,20) 16 16 400 400 400 0,94 0,42
1-2 (20,20) 17 17 386 400 400 9,28 4,23
1-3 (20,20) 16 16 400 400 400 0,06 0,95
2-1 (40,15) 25 25 590 600 600 19,44 0,44
2-2 (40,15) 25 25 597 600 600 17,36 4,16
2-3 (40,15) 25 25 600 600 600 0,71 0,00
3-1 (60,30) 28 28 1765 1800 1800 26,80 4,91
3-2 (60,30) 29 29 1755 1800 1800 37,35 10,11
3-3 (60,30) 28 28 1774 1800 1800 30,92 5,52
4-1 (60,60) 49 49 3528 3580 3600 102,05 45,27
4-2 (60,60) 49 49 3524 3564 3600 110,79 68,59
4-3 (60,60) 49 49 3544 3580 3600 94,41 51,11
5-1 (60,90) 73 73 5308 5342 5400 212,07 135,97
5-2 (60,90) 73 73 5313 5361 5400 231,56 96,80
5-3 (60,90) 73 73 5312 5375 5400 231,24 82,06
6-1 (80,120) 97 97 9470 9548 9600 480,44 240,39
6-2 (80,120) 97 97 9453 9448 9600 465,49 399,86
6-3 (80,120) 97 97 9450 9565 9600 478,02 206,78
7-1 (160,240) 196 196 37661 38026 38400 3760,14 3054,38
7-2 (160,240) 197 197 37939 38145 38400 2841,96 1990,70
7-3 (160,240) 196 196 37745 37867 38400 3700,99 5615,75

Porcentaje medio de desviación del óptimo 1,68% 0,42% 423,95 392,19
Número de soluciones óptimas (de 31) 5 16

Tabla 3: Resultados computationales – Problemas sin pérdida
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Origen del problema I Tamaño Solución Solución Solución Cota Tiempo de CPU (segundos)
(L,W) m M de Beasley GRASP TABU superior Beasley GRASP TABU

Beasley (1985) 1 (10, 10) 5 10 164 164 164 164 0,02 0,00 0,00
2 (10, 10) 7 17 225 225 225 230 5,53 0,71 1,70
3 (10, 10) 10 21 220 220 220 247 7,85 1,21 2,26
4 (15, 10) 5 7 268 268 268 268 0,01 0,00 0,00
5 (15, 10) 7 14 301 301 301 358 5,05 0,72 1,48
6 (15, 10) 10 15 265 252 265 289 6,81 1,81 1,59
7 (20, 20) 5 8 430 430 430 430 0,01 0,00 0,00
8 (20, 20) 7 13 819 819 819 834 6,54 1,32 1,76
9 (20, 20) 10 18 924 924 924 924 5,64 0,00 0,00

10 (30, 30) 5 13 n/f n/f n/f n/f 2,38 0,22 0,94
11 (30, 30) 7 15 1505 1518 1518 1688 2,96 1,59 2,52
12 (30, 30) 10 22 1666 1648 1672 1865 3,78 1,65 3,73

Hadjiconstantinou 3 (30, 30) 7 7 1178 1178 1178 1178 0,25 0,00 0,00
y Christofides (1995) 11 (30, 30) 15 15 1216 1216 1216 1270 2,60 2,08 3,18
Wang (1983) (70, 40) 19 42 2499 2700 2716 2726 6,36 1,48 6,16
Christofides y Whitlock (1977) 3 (40, 70) 20 62 1600 1720 1720 1860 6,81 0,88 5,27
Fekete y Scheppers (2004) 1 (100, 100) 15 50 25373 24869 25384 27718 11,86 3,73 25,27

2 (100, 100) 30 30 17789 19083 19657 22502 5,80 3,02 18,35
3 (100, 100) 30 30 n/f n/f n/f n/f 4,03 0,66 12,41
4 (100, 100) 33 61 27556 27898 28974 32893 20,42 2,80 37,46
5 (100, 100) 29 97 21997 22011 22011 27923 18,41 3,30 61,90

Porcentaje medio de desviación de la cota superior 8,11% 7,36% 6,62% 5.86 1.29 8.86
n/f: Problema no factible

Tabla 4: Resultados computacionales – Problemas doblemente restringidos
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1 Introducción

La secuenciación de proyectos consiste en determinar el inicio y final de un
conjunto de actividades en un proyecto. Dichas actividades están ligadas entre śı
por relaciones de precedencia y requieren uno o más recursos. La secuenciación
de proyectos ha sido objeto de una gran aten-ción en la investigación desde que
los primeros métodos, CPM y PERT, fueron desarrollados en los años 50. Estos
procedimientos fueron capaces de resolver grandes problemas y fueron considera-
dos una herramienta muy útil en el proceso de planificación. Sin embargo, ambos
presuponen que los recursos son ilimitados con lo que su aplicación queda muy
limitada en los problemas reales. Por esto muchos investigadores comenzaron a
estudiar el caso de los recursos limitados (RCPSP) del cual se han desarrollado
hasta el momento muchos algoritmos exactos y aproximados. El libro de Demeu-
lemeester y Herroelen [4] muestra una excelente descripción de la actual situación
de la investigación. El problema clásico del RCPSP incluye dos tipos de recursos;
los renovables, cuya disponibilidad se renueva en cada peŕıodo del intervalo de
planificación, y los no renovables, cuya disponibilidad se va reduciendo a lo largo
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del proyecto a medida que se consumen. Sin embargo estos dos tipos de recursos
no son suficientes para representar muchas situaciones reales por lo que han sido
propuestos algunos otros tipos de recursos como los comprometidos (allocatable)
[8, 13] o los acumulativos[9, 10].

En nuestro trabajo consideramos los recursos parcialmente renovables, intro-
ducidos por Böttcher et al. [3] en 1999. La disponibilidad de este tipo de recursos
está asociada a un subconjunto de periodos del horizonte de planificación y las
actividades sólo consumen el recurso si son procesadas dentro de esos periodos.
Este tipo de recursos pueden ser un instrumento poderoso para resolver proble-
mas de secuenciación de actividades. Además, desde el punto de vista teórico,
engloban como casos particulares tanto a los renovables como a los no renovables.
Por otro lado, los recursos parcialmente renovables permiten modelizar complica-
das reglas laborales y restricciones en problemas de horarios como casos concretos
de problemas de secuenciación. Como ejemplo consideremos un proyecto que in-
volucra recursos humanos. Podemos encontrarnos con condiciones laborales tales
como trabajar a lo sumo dos d́ıas del fin de semana cada tres semanas consecuti-
vas. Esta restricción no puede ser modelizada como un recurso renovable porque
eso exigiŕıa considerar cada periodo por separado. Tampoco puede serlo como
uno no renovable porque tendŕıamos que considerar todo el horizonte de plani-
ficación. Sin embargo podemos hacerlo como un recurso parcialmente renovable
con un conjunto de periodos 6, 7, 13, 14, 20, 21 que incluyen los d́ıas de los tres
primeros fines de semana y con una disponibilidad de 2 unidades. Cada tarea
consume 1 unidad de dicho recurso durante cada d́ıa del fin de semana en el que
es procesada. Supongamos tres actividades A, B y C secuenciadas en la escala
temporal. De ellas, la actividad A está en proceso en los periodos 5, 6 y 7 y, por
tanto, consume 2 unidades del recurso. La actividad B se realiza en los periodos
del 9 al 12, ambos inclusive, y no consume nada. Por fin, la actividad C comienza
en el 16 y acaba en el 20 y consume únicamente 1 unidad en el periodo 20. Si estas
tres tareas fueran realizadas por el mismo trabajador la solución seŕıa imposible
porque excede a la disponibilidad de recursos.

Böttcher et al.[3] propusieron una formulación entera y desarrollaron algorit-
mos exactos y heuŕısticos. Schirmer [12] estudió ampliamente este nuevo tipo de
recursos en su libro sobre problemas de secuenciación de actividades. En él pre-
sentó muchos ejemplos de condiciones especiales que pod́ıan ser adecuadamente
modelizadas usando los recursos parcialmente renovables y también presentó va-
rias familias de algoritmos aproximados para resolver el problema de secuenciación
de actividades con recursos parcialmente renovables (RCPSP/π). En este trabajo
describimos algunas técnicas de preproceso y desarrollamos diferentes algoritmos
heuŕısticos para el RCPSP/π. El preproceso reduce las dimensiones del problema
tanto en los recursos como en los tiempos posibles de finalización, a partir de aqúı
TPF, de las actividades y, por tanto, mejora la eficiencia de los algoritmos.

En el apartado 2 definimos los elementos del problema y exponemos una for-
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mulación entera del mismo. El apartado 3 describe los aspectos principales del
preproceso. En el 4 exponemos el algoritmo constructivo que utilizaremos en las
metaheuŕısticas de los apartados posteriores. Los apartados 5 y 6 están dedicados
a exponer los procedimientos GRASP y de Búsqueda Dispersa respectivamente,
estableciendo comparaciones entre los resultados obtenidos por ambos. Por fin,
el apartado 7 expone conclusiones y futuras ĺıneas de investigación.

2 Formulación del problema

El RCPSP/π puede ser definido de la manera siguiente: Sea J el conjunto de
n = |J | actividades, numeradas de 1 a n, donde las actividades ficticias 1 y n re-
presentan el inicio y final del proyecto. Sea Pj el conjunto de actividades que son
predecesoras inmediatas de la actividad j y P ′

j el conjunto de todas las predeceso-
ras de j. Cada actividad j tiene una duración dj y no puede ser interrumpida. Sea
R el conjunto de recursos parcialmente renovables. Cada recurso r ∈ R tiene una
disponibilidad total Kr y un conjunto de periodos asociado Πr. Una actividad
j que necesite del recurso r consumirá kjr unidades del mismo en cada periodo
t ∈ Πr en que esté en proceso. Finalmente, sea T el último periodo del horizonte
de planificación. Para cada actividad j , mediante el análisis del camino cŕıtico,
obtenemos el primero y el último de los TPF de la actividad que denotamos EFTj

y LFTj. Representamos por Ej = {EFTj, ...., LFTj}, su conjunto de TPF, y por
Qjt = {t, ..., t+ dj − 1}.
El RCPSP/π consiste en secuenciar las actividades de manera que se satisfagan
las relaciones de precedencia y las restricciones de los recursos y se minimize el
tiempo total de duración del proyecto o makespan.

Si definimos las variables:

xjt =

{

1 si la actividad j acaba en el tiempo t

0 en otro caso.

se puede formular como:

Min
∑

t∈En

txnt (1)

s.t.
∑

t∈Ej

xjt = 1 j ∈ J (2)

∑

t∈Ei

txit ≤
∑

t∈Ej

(t− dj)xjt j ∈ J, i ∈ Pj (3)

∑

j∈J

kjr

∑

t∈Πr

∑

q∈Qjt

⋂

Ej

xjq ≤ Kr r ∈ R (4)
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xjt ∈ {0, 1} j ∈ J, t ∈ Ej (5)

La función objetivo (1) minimiza el tiempo final de la última actividad y, por
tanto, la duración del proyecto. Las restricciones (2) aseguran que cada actividad
acaba una sola vez. Las restricciones (3) son las de precedencia y (4) las de
recursos. Nótese que a diferencia del problema con recursos renovables donde
hay una restricción por cada recurso y periodo, en este problema sólo hay una
restricción global para cada recurso r ∈ R. Otra caracteŕıstica especial de este
problema es que todas las actividades deben acabar dentro del intervalo cerrado
Ej porque el conjunto Πr está definido dentro del horizonte de planificación (0, T ).
Por tanto, no está garantizada la existencia de soluciones posibles. De hecho,
Schirmer[12] ha probado que el problema de factibilidad del RCPSP/π es NP-
completo en sentido estricto.

La formulación anterior se conoce como formulación normalizada de Böttcher
et al. [3] y Schimer[12]. En sus trabajos también han considerado formulaciones
alternativas pero finalmente adoptaron la normalizada por su simplicidad.

3 El preproceso

El preproceso tiene dos objetivos. En primer lugar, ayudar a decidir si una
instancia dada tiene soluciones posibles. En este caso, el segundo objetivo es
reducir la cantidad de recursos y de TPF de las actividades. Si se consiguen
estos dos objetivos, los procedimientos de solución no perderán tiempo tratando
de resolver problemas imposibles y concentrarán sus esfuerzos en los elementos
significativos del problema. El preproceso que hemos desarrollado incluye varios
procedimientos:

1. Identificar los problemas triviales. Se secuencia cada actividad j en su
EFTj Si esta solución cumple las restricciones de recursos, es la solución
óptima.

2. Reducir el horizonte de planificación. Construimos una primera solución
aplicando un algoritmo iterativo GRASP. Si el makespan de esta solución,
tS , coincide con el que proporcionaŕıa el CPM, la solución es óptima y el
preproceso finaliza. En caso contrario, hacemos T = tS . Con este nuevo T
se recalculan los LFTj reducidos y con ellos los intervalos Ej.

3. Eliminar recursos ociosos y no restrictivos. En primer lugar, eliminamos
recursos ociosos, es decir, aquellos recursos r que no son utilizados por
ninguna actividad. Esto sucede si ∀j ∈ J con krj 6= 0 → Πr

⋂

Ej = ∅. A
continuación, calculamos para cada uno de los recursos no eliminados una
cota superior de la cantidad máxima que de él se demanda resolviendo el
siguiente problema lineal:
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Max DMDr =

J−1
∑

j=2

kjr

∑

t∈Πr

∑

q∈Qjt

⋂

Ej

xjq

(6)

s.t.

LFTj
∑

t=EFTj

xjt = 1 (1 ≤ j ≤ J) (7)

T
∑

m=t

xim +

t+dj−1
∑

s=1

xjs ≤ 1 (j ≤ J ; i ∈ Pj ; t ≤ T ) (8)

xjt ≤ 0 (1 ≤ j ≤ J ;EFTj ≤ t ≤ LFTj)
(9)

Se trata de maximizar la demanda de cada recurso (6), sujeto a que cada
actividad debe acabar en un y sólo en un instante (7), se respeten las re-
laciones de precedencia (8), y todas las variables son no negativas. Si este
máximo no supera la disponibilidad del recurso, no será restrictivo y puede
eliminarse.

4. Eliminación de variables. Calculamos, para cada uno de los TPF de cada
actividad j y cada recurso, el consumo que realizaŕıa esa actividad si aca-
base en ese tiempo junto con el consumo que como mı́nimo realizaŕıan el
resto de actividades teniendo en cuenta que j acaba en ese TPF. Si esta
estimación del consumo global excede la disponibilidad del recurso, el TPF
no será posible y es eliminado. Al eliminar un TPF de una actividad se
comprueba la coherencia de los TPF de una actividad con los TPF de sus
antecesoras y sus sucesoras. Si alguno de éstos es imposible, se suprime. Si
como consecuencia de estos procesos alguna actividad se queda sin TPF el
problema es imposible.

Todos estos pasos pueden encontrarse expuestos detalladamente en [1, 2].

4 El procedimiento GRASP

El GRASP (Greedy Randomized Adaptive Search Procedure) es un pro-
ceso iterativo que combina una fase constructiva y una fase de mejora hasta que
se cumple un criterio de parada. La fase constructiva construye una solución
paso a paso, añadiendo elementos a una solución parcial. El elemento a añadir
es seleccionado de acuerdo con una función greedy que se adapta dinámicamente
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según se va construyendo la solución. Sin embargo la selección que se hace no es
determinista sino sujeta a una cierta aleatorización. Por tanto, cuando repetimos
el proceso obtenemos diferentes soluciones. Cuando hemos obtenido una solución
posible exploramos su entorno en una fase de búsqueda local hasta que obte-
nemos un óptimo local. Las primeras dos subsecciones contienen el algoritmo
constructivo y la fase de mejora. Las dos últimas describen procedimiento de
GRASP agresivo y un Reencadenamiento de Trayectorias (Path Relinking) que
opera sobre las mejores soluciones obtenidas por el GRASP. Se puede encontrar
una visión general sobre el GRASP en Resende y Ribeiro[11] y un compendio
extensivo sobre la literatura acerca del GRASP en Festa and Resende[5].

4.1 El algoritmo constructivo

Hemos adaptado el Esquema de Secuenciación en Serie (SSS) propuesto por
Schirmer[12], que a su vez es una adaptación del Esquema de Secuenciación en
Serie normalmente usado para el clásico RCPSP. Denotamos por FTj el tiempo de
finalización asignado a la actividad j. En cada etapa del procedimiento iterativo
se secuencia una actividad eligiendo entre el vigente conjunto de decisiones, que
son pares (j, t) formados por una actividad j y un tiempo posible de finalización
t ∈ TPFj. La selección se basa en una regla de prioridad aleatorizada.

Paso 0. Inicialización

s = 1 (pone en marcha el contador)

FT1 = 0 (secuenciamos la actividad ficticia 1)

S1 = {1} (secuenciación parcial en la etapa 1)

EL1= conjunto de actividades elegibles (actividades que tienen a 1 por
único predecesor)

Paso 1. Construcción del conjunto de decisiones

Ds = {(j, t) | j ∈ ELs , t ∈ TPFj}
Paso 2. Elección de la decisión

Seleccionamos una decisión (j∗, t∗) in Ds, de acuerdo con una regla aleato-
rizada de prioridad

Paso 3. Test de Factibilidad

Si (j∗, t∗) es factible por recursos, ir al Paso 4

En caso contrario

Ds = Ds \ {(j∗, t∗)}
Si Ds = ∅, llamar al Mecanismo de Reparación
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Si encontramos una decisión posible (j∗, t∗) para secuenciar j∗ ∈ ELs,
ir al Paso 4

En otro caso, PARAR. El algoritmo no encuentra una solución posible

En caso contrario, ir al Paso 2

Paso 4. Actualización

s = s+ 1

FTj∗ = t∗

Ss = Ss−1 ∪ {j∗}
ELs = (ELs−1 \ {j∗}) ∪ {j ∈ J |Pj ⊆ Ss}
∀l ∈ J | j ∈ Pl : TPFl = TPFl \ {τ | t∗ + dl > τ}
Si s = n, PARAR. La secuenciación se ha completado.

En caso contrario, ir al Paso 2.

En el Paso 1, la construcción de Ds podŕıa haber incluido el test de factibi-
lidad del Paso 3, como en el esquema original de Schirmer [12]. Sin embargo,
hemos preferido no comprobar la disponibilidad de recursos de cada decisión sino
solamente la de la decisión que escogemos. En los problemas con un gran número
de TPF para las actividades esta estrategia es más eficiente.

Para seleccionar la regla de prioridad hemos probado con 32 reglas de prioridad
usadas por Schirmer[12]. Las 8 primeras están basadas en la estructura de la red,
incluyendo las reglas clásicas como EFT, LFT, SPT o MINSLK. La otras 24 reglas
se basan en la utilización de los recursos. 12 de ellas usan todos los recursos y
las otras 12 solamente los escasos. Una experiencia computacional preliminar nos
condujo a elegir la regla LFT como la más adecuada en términos de velocidad y
calidad de la solución. Estos resultados previos también mostraban que incluso
con las reglas más eficientes el algoritmo constructivo, si seleccionábamos en cada
etapa la decisión con mayor prioridad, fallaba para obtener una solución posible
para muchas de las instancias de 10 actividades generadas por Böttcher et al.[3].
Por tanto, la aleatorización incluida en el algoritmo no persigue sólo conseguir
soluciones diversas, sino también asegurar la obtención de soluciones posibles para
la mayoŕıa de los problemas.

Introducimos un procedimiento de aleatorización para seleccionar la decisión
en el Paso 2. Sea sjt la puntuación de la decisión (j, t) en la regla de prioridad
y smax = max{sjt|(j, t) ∈ Ds}, y sea δ un parámetro a determinar (0 < δ < 1).
Hemos considerado tres alternativas:

1. Elección equiprobable en una Lista Restringida de Candidatos, S

Elegimos una decisión (j∗, t∗) al azar en el conjunto S = {(j, t) | sjt ≥
δsmax}
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2. Elección sesgada en una Lista Restringida de Candidatos, S

Las decisiones que incumben a la misma actividad j reciben un peso que es
inversamente proporcional al orden de sus tiempos de finalización. Por ejem-
plo, si en S tenemos las decisiones (2, 4), (2, 5), (2, 7), (2, 8) que incumben a
la actividad 2 y las ordenamos por sus tiempos de finalización crecientes,
entonces la decisión (2, 4) tendrá un peso igual a 1, la decisión (2, 5) un
peso de 1/2, la (2, 7) un peso de 1/3 y la (2, 8) de 1/4. El mismo método se
aplica a las decisiones correspondientes a las otras actividades. Por tanto,
las decisiones de S correspondientes a los tiempos de finalización más bajos
de las actividades involucradas serán equiprobables y el proceso de selección
aleatoria les favorecerá.

3. Elección sesgada en el conjunto de decisiones D

La decisión (j, t) se elige entre todas las de D con una probabilidad que
viene dada por un valor de Regret propuesto por Schirmer [12].

Los resultados de las pruebas computacionales, que pueden encontrarse en
[1], nos hicieron decidirnos por el segundo procedimiento para implementar el
algoritmo definitivo.

Constatamos que la estrategia aleatoria mejora significativamente la habilidad
del algoritmo constructivo para encontrar soluciones posibles para instancias fuer-
temente restringidas. Sin embargo, una limitada experiencia computacional nos
ha mostrado que el algoritmo construtivo podŕıa ser incapaz de obtener solucio-
nes posibles para todas las instancias de 10 actividades generadas por Böttcher et
al.[3]. Por tanto, decidimos incluir un mecanismo de reparación para secuencias
parciales infactibles. Si en el Paso 3 todas las decisiones de Dn fallan en la prueba
de factibilidad y Dn resulta vaćıo, en lugar de parar el proceso e iniciar una nueva
iteración tratamos de reasignar algunas de las actividades ya secuenciadas a otros
TPF con la idea de liberar algunos recursos que puedan ser utilizados para que
alguna de las actividades todav́ıa no secuenciadas sea procesada. Si este pro-
cedimiento tiene éxito, el proceso constructivo continua. En caso contrario, se
para.

4.2 La fase de mejora

Dada una solución posible obtenida en la fase constructiva, la fase de me-
jora consta de 2 pasos. Primero, identificar las actividades cuyos tiempos de
finalización deban ser reducidos para conseguir una nueva solución con el menor
tiempo tiempo total, que etiquetamos como cŕıticas. Después, mover las acti-
vidades cŕıticas de manera que la secuencia resultante sea posible de acuerdo
con las relaciones de precedencia y recursos. Hemos diseñado dos tipos de mo-
vimientos: un movimiento simple, que implica una sola actividad cŕıtica, y un
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movimiento doble en el cual, además de la actividad cŕıtica, también son movidas
otras actividades.

1. Construcción de M , el conjunto de las actividades cŕıticas

Paso 0. Inicialización

M = {n} (la última actividad del proyecto, n, siempre es cŕıtica)

Paso 1. Añadir actividades a M

Mientras( ∃j ∈M que no haya sido considerada para aumentar M)

{
Tomar la actividad más larga todav́ıa no considerada j ∈M
∀i ∈ Pj : Si FTi + dj = FTj (no hay holgura entre i y j)

M = M ∪ {i}
}

En el Paso 1, la condición para incluir una actividad en M es, simple-
mente, si j ha de ser movida hacia la izquierda, reduciendo su tiempo de
finalización, un predecesor i procesado inmediatamente antes de j también
ha de ser movido hacia la izquierda para dejar espacio para poder mover
j. Esta condición, si consideramos que los filtros del preproceso pueden
haber eliminado algunos TPF de las actividades, puede ser refinada. Si
t′j = max{t ∈ TPFj | t′j < FTj}, la condición del Paso 1 puede escribirse
como: Si FTi + dj > t′j , i es cŕıtica.

2. Movimiento simple

Intentamos mover, en orden topológico, cada actividad j ∈M hacia la
izquierda a un nuevo tiempo de finalización en el que satisfaga las relacio-
nes de precedencia y recursos. Si alguna actividad no se puede mover, el
procedimiento se detiene. Si hay varios nuevos TPF para una actividad,
elegimos aquel cuya suma de todos los consumos de recursos sea mı́nima.

3. Movimiento doble

Consideramos las actividades de M , en orden topológico, para valorar
sus posibilidades de ser movidas hacia la izquierda. Para cada actividad
j ∈ M estudiamos todos los TPF que sean anteriores al vigente. Si encon-
tramos un t factible por recursos, movemos j para que acabe en t y no es
necesario mover ninguna otra actividad. En caso contrario, consideramos
la posibilidad de mover las otras actividades de J . Movemos una actividad
i, hacia la izquierda o la derecha, a un nuevo tiempo de finalización provi-
sional si satisface las relaciones de precedencia y compensa la violación de
recursos provocada por el movimiento de j o, al menos, reduce el déficit.
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Por tanto, a lo largo de la búsqueda en J , construimos una lista provisional
de cambios LC hasta que la solución es reparada o J está agotada. Si la
solución es reparada con la lista LC, efectuamos estos cambios y conside-
ramos un nuevo j ∈ M . En caso contrario, el procedimiento se para sin
mejorar la solución.

El movimiento doble se puede reforzar utilizándolo repetidamente mien-
tras se produzcan reducciones del déficit. El procedimiento es más complejo
pero, a veces, ofrece movimientos posibles para las actividades cŕıticas.

Los tres procedimientos de la fase de mejora se realizan iterativamente:

S= solución vigente

improve = false

do{
Construir el conjunto M de actividades cŕıticas

improve=SimpleMove(S, M)

if improve = false

improve=DoubleMove(S, M)

} while (improve = true)

4.3 Un procedimiento agresivo

La versión estandar de nuestro algoritmo heuŕıstico comienza aplicando
el preproceso de la Sección 3. El problema reducido va entonces al algoritmo
GRASP descrito antes, combinando una fase constructiva y una de mejora en
cada iteración, hasta que el procedimiento de parada, en este caso un número fijo
de iteraciones, lo interrumpe.

Una versión reforzada del algoritmo heuŕıstico combina el preproceso y el
GRASP de una forma más agresiva. Después de un número determinado de
iteraciones (criterio de parada), comprobamos si la mejor solución conocida ha
mejorado. En este caso, fijamos el horizonte T en el nuevo makespan mejorado
y volvemos a pasar los filtros de reducción de variables. El algoritmo GRASP se
aplica entonces al problema reducido. Ahora, obtener soluciones posibles es más
dif́ıcil, pero si las conseguimos serán de alta calidad.

4.4 Reencadenamiento de Trayectorias

Si durante los procedimientos descritos antes guardamos un conjunto de
buenas soluciones, normalmente llamadas soluciones de élite, podemos llevar a
cabo un procedimiento de Reencadenamiento de Trayectorias. Comenzando en
una de estas soluciones de élite, llamada solución inicial, construimos un camino
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hacia otra solución de élite, llamada solución gúıa. En el camino vamos impo-
niendo progresivamente, a las soluciones intermedias, los atributos de la solución
gúıa de manera que evolucionen desde la solución inicial hasta que alcancen la
solución gúıa. A lo largo de este camino confiamos en encontrar soluciones que
sean mejores que las dos soluciones de élite que estamos utilizando.

En nuestro caso guardamos las 10 mejores soluciones obtenidas en el GRASP
y combinamos todas las parejas posibles tomando una de ella como solución ini-
cial y la otra como gúıa y, después, al contrario. Dada una solución inicial se le
va imponiendo sucesivamente a cada actividad el tiempo de finalización corres-
pondiente de la solución gúıa. Aśı vamos obteniendo una familia de soluciones
que se transforman de la inicial a la gúıa. En muchos casos estas soluciones inter-
medias no son posibles. Entonces aplicamos un mecanismo de reparación similar
al descrito en la Sección 4.1. Vamos de la actividad 1 a la n comprobando, para
cada actividad j, si la solución parcial de 1 a j es posible. Si no lo es, tratamos
de repararla. Si lo conseguimos pasamos a estudiar la actividad j + 1. En otro
caso, descartamos la solución y procedemos con la solución intermedia siguiente.
Si obtenemos una solución intermedia completa que sea posible le aplicamos la
fase de mejora descrita en el GRASP.

5 El procedimiento de Scatter Search

Un algoritmo de Scatter Search es un procedimiento aproximado donde
se construye una población de soluciones posibles y, posteriormente, se combinan
sistemáticamente los elementos de unos subconjuntos determinados con la finali-
dad de producir nuevas soluciones posibles que esperamos que mejoren la mejor
solución conocida (para una descripción más exhaustiva del algoritmo se puede
ver el libro de Laguna and Marti[7]). El esquema básico del algoritmo se compone
de 5 pasos:

1. Generación y mejora de soluciones

2. Construcción del Conjunto de Referencia

3. Elección de Subconjuntos

4. Procedimiento de combinación

5. Actualización del Conjunto de Referencia

Este algoritmo básico acaba cuando el Conjunto de Referencia no puede ser
actualizado y no hay nuevas soluciones disponibles para el procedimiento de com-
binación. Sin embargo, el esquema puede ser intensificado añadiendo un nuevo
paso donde el Conjunto de Referencia es regenerado y, por tanto, son posibles
nuevas combinaciones. Las subsecciones siguientes describen con detalle cada
paso del algoritmo.
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5.1 Generación y mejora de soluciones

En nuestro algoritmo la población inicial se genera mediante una versión sim-
plificada del algorimo GRASP expuesto anteriormente.

5.2 Construcción del Conjunto de Referencia

A partir de la población inicial seleccionamos un conjunto de b soluciones
para formar el Conjunto de Referencia, S, que será el conjunto cuyas soluciones
combinaremos para obtener nuevas soluciones. La estrategia habitual es seleccio-
nar b1 elementos con el criterio de calidad: las b1 soluciones con los makespans más
cortos y en el caso de empates eligiendo aleatoriamente. Las restantes b2 = b− b1
soluciones se seleccionan con el criterio de diversidad: las soluciones se seleccionan
una por una, buscando en cada momento la solución más lejana a las soluciones
que integran en ese momento el Conjunto de Referencia. Esto es, seleccionamos la
solución s∗ para la cual el Mins∈S{dist(s, s∗)} es máximo. Definimos la distancia
entre dos soluciones s1 y s2 como

dist(s1, s2) =
∑n

i=1 |si
1 − si

2|

donde si
j es el tiempo de finalización de la i-ésima actividad de la solución sj .

5.3 Elección de Subconjuntos

Hemos desarrollado y comprobado diferentes procedimientos de combi-
nación. La mayoŕıa de ellos combina 2 soluciones, mientras que uno combina
3. La primera vez que ejecutamos la combinación se combinan todos los pares
(o trios). En las ejecuciones siguientes, cuando el Conjunto de Referencia ha
sido actualizado y se compone de soluciones viejas y nuevas, sólo estudiamos las
combinaciones que contienen, al menos, una solución nueva.

5.4 Procedimiento de combinación de soluciones

Hemos desarrollado ocho procedimientos diferentes de combinación. Cada
solución sj está representada por el vector de tiempos de finalización de cada una
de las n actividades del proyecto: sj = (s1j , s

2
j , ..., s

n
j ). Cuando combinamos 2

soluciones s1 y s2 (o 3 soluciones s1, s2 y s3), ordenamos las soluciones según
los makespans no decrecientes. Por tanto, s1 será una solución con un makespan
menor o igual que s2 (y el makespan de s2 será menor o igual que el de s3).

En este trabajo sólo exponemos las combinaciones 1 y 8 que han resultado las
más eficaces y sobre las que se implementaron las mejoras posteriores como fue la
regeneración del conjunto de referencia. Además son las que vienen reflejadas en
los resultados computacionales. La descripción de las otras combinaciones puede
encontrarse en [2].
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Combinación 1
Los tiempos de finalización de cada actividad en la nueva solución, sc, se

obtienen como una media ponderada de los tiempos de finalización de las dos
soluciones, con pesos relacionados con sus makespans según la expresión:

si
c = ⌊k1s

i
1 + k2s

i
2

k1 + k2
⌋ donde k1 = (1/sn

1 )2 y k2 = (1/sn
2 )2

Combinación 8
Se combinan tres soluciones s1, s2 y s3 mediante un procedimiento de votación.

Para decidir el valor de si
c, las tres soluciones votan cada una por su propio

tiempo de finalización si
1, s

i
2, s

i
3. Escogemos como si

c el valor con mayor número
de votos. Si los tres valores son diferentes tendremos un empate. En este caso,
si el makespan de s1 es estrictamente menor que los otros actúa como voto de
calidad e impone su tiempo de finalización a los otros. Si no lo fuera, es decir si
dos o tres soluciones tienen el mismo makespan mı́nimo el tiempo de finalización
se escoje al azar entre aquellos que corresponden a las soluciones empatadas.

La mayoŕıa de las soluciones obtenidas por procedimientos de combinación
no satisfacen todas las restricciones de precedencia y recursos. Las soluciones
imposibles son sometidas a un proceso de reparación que trata de conseguir so-
luciones posibles tan próximas como sea posible a las soluciones creadas por la
combinación. Este proceso se compone de dos fases. En la primera conside-
ramos los tiempos de finalización si

c en orden topológico para comprobar si la
solución parcial (s1c , s

2
c , .., s

i
c) satisface todas las restricciones. En este caso, estu-

diamos el tiempo siguiente si+1
c . En caso contrario, descartamos si

c como tiempo
de finalización de la actividad i y buscamos un nuevo tiempo entre aquellos que
son posibles para i. La búsqueda va de los tiempos más próximos a si

c a los
más lejanos. Cuando encontramos un tiempo ti que puede ser incluido en una
solución parcial (s1c , s

2
c , .., t

i) paramos la búsqueda y consideramos el tiempo si-
guiente si+1

c . Si no encontramos ningún tiempo posible para la actividad i el
proceso va a una segunda fase que consiste en un procedimiento de reparación si-
milar al del algoritmo constructivo que trata de cambiar el tiempo de finalización
de las actividades previas, 2, 3, .., i − 1, para darle a la actividad i más posibili-
dades de encontrar un tiempo de finalización que satisfaga las restricciones. Si el
mecanismo tiene éxito, el proceso vuelve a la primera fase y considera el tiempo
siguiente si+1

c . Si fracasa, descartamos la solución combinada.

5.5 Actualización del Conjunto de Referencia

La soluciones combinadas que son inicialmente posibles y las obtenidas
por el proceso de reparación pasan a la fase de mejora descrita en la Sección
4.2. Entonces estudiamos las soluciones mejoradas para su posible inclusión en
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el Conjunto de Referencia. El Conjunto de Referencia S es actualizado siguiendo
el criterio de calidad, es decir, formarán parte de él las mejores soluciones b entre
las que forman S y las que provienen de la mejora. Si no se puede actualizar S
porque ninguna de las nuevas soluciones es mejor que las existentes entonces el
algoritmo se para a menos que se incluya la regeneración de S.

5.6 Regeneración del Conjunto de Referencia

La regeneración del Conjunto de Referencia S tiene dos objetivos. Por un
lado introducir diversidad en el conjunto ya que, por la forma en que actualizamos
S, muchas soluciones con altos makespans pueden ser rápidamente sustituidas por
otras que los tengan inferiores pero que sean muy similares a las soluciones que
ya hay en S. Por otro, tratamos de obtener soluciones de alta calidad, incluso
mejores que las que ya tenemos en S.

Obtenemos las nuevas soluciones aplicando de nuevo el algoritmo del GRASP
descrito en la Sección 4, pero con una modificación. Sacamos provecho de la
información obtenida hasta este momento sobre la solución óptima para orientar
la búsqueda hacia las soluciones de alta calidad. Más en concreto, si la mejor
solución conocida tiene un makespan sn

best, ponemos el horizonte de planificación
T = sn

best y corremos el preproceso de nuevo para reducir los TPF de las activida-
des. Cuando ahora corremos el GRASP es más dif́ıcil obtener soluciones, porque
sólo permitimos soluciones con iguales o mejores que sn

best, pero si tenemos éxito
conseguimos soluciones de alta calidad.

6 Resultados computacionales

6.1 Instancias para las pruebas

Böttcher et al.[3] generaron un primer conjunto de instancias para pruebas.
Tomaron como punto de partida PROGEN 2 [6], un generador de instancias para
el clásico RCPSP con recursos renovables, modificaron y agrandaron el conjunto
de parámetros y generaron un conjunto de 2160 instances con 10 actividades
no ficticias, 10 réplicas para cada una de las 216 combinaciones de valores de los
parámetros. Como la mayoŕıa de los problemas fueron imposibles restringieron los
valores de los parámetros a las 25 combinaciones más prometedoras y generaron
250 instancias con 15, 20, 25 y 30 actividades operativas, manteniendo siempre
la cantidad de 30 recursos.

Más recientemente, Schirmer[12] desarrolló PROGEN 3, una extensión de
PROGEN 2, y generó algunas instancias nuevas. En concreto, generó 960 instan-
cias de 10, 20 30 y 40 actividades, con 30 recursos. La mayoŕıa de ellas teńıan
solución posible, unos pocos de ellos eran imposibles y algunos fueron considera-
dos como no decididos porque no se consiguió una solución posible en un tiempo
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limitado del algoritmo de branch and bound de Böttcher et al.[3]. La Tabla 1
muestra la categoŕıa de los problemas de Schirmer como viene expuesta en [12].

Conjunto de No resueltos Resueltos Problemas No decididos Problemas Total
Instancias optimamente optimamente posibles imposibles

J10 39 901 940 11 9 960
J20 203 734 937 23 0 960
J30 181 757 938 22 0 960
J40 183 743 926 34 0 960

Total 606 3135 3741 90 9 3840

Tabla 1: Problemas para pruebas generados por Schirmer

Por último, consideramos que era necesario disponer de instancias de mayores
dimensiones y utilizamos el PROGEN 3 con los mismos parámetros de Schirmer
para generar 960 nuevas instancias de 60 actividades y 30 recursos.

6.2 Resultados del preproceso

Los procedimientos del preproceso indicados en la sección 3 se han aplicado
a los problemas de Böttcher et al.[3] de 10, 15, 20, 25 y 30 actividades que estaban
disponibles solicitándolos a los autores. En las Tablas 2, 3 y 4 aparecen diferentes
aspectos de los resultados. La Tabla 2 muestra los logros del preproceso para
determinar el estatus de los problemas. Hemos señalado como posibles aquellas
instancias para las que el preproceso encuentra una solución y como imposibles
aquellas que el preproceso puede demostrar que no tienen solución. Cuando no ha
sido posible determinar dicho estatus los hemos marcado como no decididos. En
resumen, podemos decir que nuestro preproceso es muy eficiente para determinar
el estatus de una instancia dada.

n=10 n=15 n=20 n=25 n=30

Problemas 2160 250 250 250 250
Detectados como imposibles 1205 16 17 12 8
Detectados como possibles 879 233 231 236 239
No decididos 76 1 2 2 3

Categoŕıa real Imposibles Posible No decididos Imposibles No decididos

Tabla 2: Problemas de Böttcher et al. - Determinación del estatus

La última ĺınea de la Tabla 2 muestra el estatus que hemos sido capaces de
determinar para los problemas que quedaban por decidir después del preproceso.
Para ello usamos CPLEX con una formulación entera del problema adaptada a
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partir de la expuesta en la Sección 2. Incluso en este caso para 2 instancias de
tamaño 20 y 3 de tamaño 30 ha sido imposible determinar su estatus, aunque
suponemos que serán imposibles.

La Tabla 3 muestra las soluciones óptimas que obtiene el preproceso. En esta
tabla no se han incluido los problemas que quedaban como no decididos porque
es muy improbable que tengan solución. Para más del 70 % de las instancias las
técnicas del preproceso han obtenido los óptimos.

n=10 n=15 n=20 n=25 n=30

Problemas 2160 250 250 250 250
Problemas posibles 879 234 231 236 239
ptimos obtenidos por el preproceso 646 165 177 190 193
Problemas restantes 233 67 54 46 46

Tabla 3: Problemas de Böttcher et al. - Soluciones óptimas identificadas en el prepro-
ceso

La Tabla 4 presenta la reducción de recursos y variables conseguida para aque-
llos problemas no resueltos por el preproceso. Las rápidas técnicas del preproceso
reducen significativamente la cantidad de recursos a considerar y, todav́ıa más
importante, la cantidad de valores posibles de las variables de decisión.

n=10 n=15 n=20 n=25 n=30
Problemas 233 67 54 46 46

Recursos iniciales 30 30 30 30 30
Recursos restantes (media) 18 (60%) 18 (60%) 23 (77%) 25 (83%) 25 (83%)

Variables iniciales (media) 90 268 565 874 1314
Variables restantes (media) 51 (57%) 130 (49%) 348 (62%) 611 (70%) 906 (69%)

Tabla 4: Problemas de Böttcher et al. - Reducción de recursos y variables

Los resultados obtenidos para los problemas de prueba generados por Schirmer[12]
son de calidad similar y pueden ser consultados en [1, 2].

6.3 Resultados computacionales de los algoritmos construc-
tivos

Las 32 reglas de prioridad descritas por Schirmer[12] fueron introducidas
en el algoritmo constructivo de la Sección 4.1. Fueron comprobadas con las 879
instancias posibles de tamaño 10 generadas por Böttcher et al.[3]. La Tabla 5
nos muestra los resultados obtenidos por la 6 reglas que mejor han funcionado.
Las 3 primeras reglas se basan en el grafo de los problemas, mientras que las 3
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últimas lo hacen en el consumo de recursos. ES indica que las reglas requieren
solo el uso de recursos escasos con sub́ındices r. Rkrs es la capacidad restante
del recurso r en el estadio s, según se define en la sección 4.1. RDjrt es la
demanda relevante, definida como RDjrt = kjr |Qjt∩Πr|. MDEjrt es la demanda
mı́nima relevante comprometida para el recurso r por todos los sucesores de la
actividad j cuando esta empieza en el periodo t. La caracteŕıstica más importante
de la Tabla 5 es que incluso las mejores reglas son incapaces de obtener una
solución posible para el 20% de esas pequeñas instancias de tamaño 10. Por
tanto, necesitamos estrategias de aleatorización y mecanismos de reparación que
incrementen significativamente la probablidad de encontrar soluciones posibles en
la fase constructiva del algoritmo GRASP.

Regla Definición Soluciones posibles (%) Soluciones óptimas (%)

LFT Min{LFTj} 80.09 64.28

MTS Max{|{i|j ∈ P
′

i }|} 79.64 69.98
SLK Min{LSTj − EFTj} 76.22 61.66
DRC/ES Max{

∑

r
(RKrs − RDjrt)} 81.57 27.08

DRS/ES Min{
∑

r
(RKrs/RDjrt)} 79.29 27.53

TRS/ES Min{
∑

r
(RDjrt + MDEjrt)} 79.41 28.56

Tabla 5: Resultados de la Reglas Prioridad

La Tabla 6 muestra los resultados finales del algoritmo constructivo completo
con la regla de prioridad LFT , incluyendo ya el mecanismo de reparación. Como
en la Tabla 5, los problemas de prueba son los de tamaño 10 de Böttcher et al.[3].

Regla Estrategia Iteraciones Soluciones Posibles (%) Soluciones ptimas (%)

LFT Aleatorización 2 1000 99.89 99.09
Aleatorización 2 2000 100 99.43

Tabla 6: Resultados del algoritmo constructivo completo

6.4 Resultados computacionales de los algoritmos GRASP

La Tabla 3 muestra los resultados del algoritmo GRASP en los proble-
mas no triviales de Schirmer[12]. Hemos probado cuatro versiones del algoritmo:
GRASP, que es el algoritmo GRASP básico, GR+PR, en el cual se se utilizan las
mejores soluciones obtenidas con el GRASP para realizar el Reencadenamiento de
Trayectorias descrito en la Sección 4.4, el AG-GR, el procedimiento GRASP mo-
dificado descrito en la Sección 4.3, y AG-GR+PR, que combina los dos anteriores.
El algoritmo GRASP usa la regla de prioridad LFT , el segundo procedimiento de
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aleatorización con δ = 0.85 y realiza un máximo de 2000 iteraciones. Para cada
tamaño de problema las tablas muestran el número de soluciones no óptimas, la
distancia media al óptimo y la distancia máxima al mismo. Sin embargo, no se
conocen todas las soluciones óptimas. De hecho, en la Tabla 3, la solución óptima
no es conocida para una instancia de tamaño 30 y para 5 de tamaño 40. En
estos casos, que están marcados (*), la comparación se realiza con la mejor so-
lución conocida, obtenida mediante un proceso de tiempo limitado realizado con
el código entero CPLEX, proveniente de alguna versión del algoritmo GRASP en
cualquiera de los tests preliminares o del algoritmo de Scatter Search desarrollado
por los autores [2].

Tamaño Instancias GRASP GR AG − GR AG − GR
Problema no triviales +PR +PR

10 803 No óptimos 1 1 1 1
Dist. Media (%) 0.004 0.004 0.005 0.007
Dist. Máx. (%) 2.9 2.9 4.0 4.0
T. Medio CPU (seg.) 0.9 0.9 0.3 0.3

20 565 No óptimos 43 32 22 19
Dist. Media (%) 0.40 0.33 0.13 0.12
Max dist. (%) 20.5 20.5 13.0 13.0
T. Medio CPU (seg.) 1.4 1.4 1.1 1.2

30 453 No óptimos* 68 63 35 33
Dist. Media (%) 1.00 0.88 0.24 0.21
Max dist. (%) 36.4 33.3 13.6 12.1
T. Medio CPU (seg.) 2.9 3.1 3.4 3.7

40 386 No óptimos* 89 84 59 54
Dist. Media (%) 2.03 1.82 0.67 0.59
Max dist. (%) 38.9 38.9 20.5 20.5
T. Medio CPU (seg.) 5.7 6.2 2.9 7.2

60 346 No óptimos 110 105 91 80
Dist. Media a la cota (%) 3.68 3.31 1.38 1.16
Dist. Máx. a la cota (%) 78.0 78.0 26.8 26.8
T. Medio CPU (seg.) 8.7 10.3 10.6 13.4

Tabla 7: Resultados de los algoritmos GRASP en los problemas de Schirmer y en los
de 60 actividades

Los resultados de la Tabla 3 nos permiten observar más claramente las diferen-
cias de resultados entre los cuatro algoritmos. El GRASP agresivo no garantiza
una solución mejor que el GRASP básico, pero para los problemas grandes tiende
a producir resultados mejores. El algoritmo de Rencadenamiento de Trayectorias
añade pequeñas mejoras a los ya buenos resultados obtenidos por los procedi-
mientos GRASP.

Las últimas ĺıneas de cada bloque de la Tabla 3 proporcionan los tiempos
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(en segundos de CPU) usados por los algoritmos en los diferentes tamaños de
problemas. En todos los casos el preproceso está incluido como un parte del
procedimiento de solución. El algoritmo está codificado en C++ y corre en un
Pentium IV a 2.8 Ghz y un mayor detalle sobre la valoración de los tiempos
puede encontrarse en [1]. De dicha valoración deducimos que el algoritmo GRASP
agresivo con el Reencadenamiento de Trayectorias parece ser la mejor opción para
un algoritmo heuŕıstico eficiente.

El último bloque de la Tabla 3 muestra los resultados de los algoritmos GRASP
en las instacias de 60 actividades que generamos aleatoriamente. Como las so-
luciones óptimas no son conocidas, para aquellos problemas cuya optimalidad
no hemos podido probar, hemos calculado las distancias entre la mejor solución
obtenida y la cota lineal como (best − lb)/lb. En este conjunto de instancias el
GRASP agresivo es claramente mejor y los tiempos de cálculo no han aumentado
mucho.

6.5 Resultados del algoritmo Scatter Search

Para obtener la población inicial se ejecuta el algoritmo GRASP hasta
que ha obtenido 100 soluciones posibles o ha llegado a 2000 iteraciones. Con la
población inicial se construye un conjunto de referencia S con 10 soluciones de
las cuales 5 son soluciones de calidad y 5 lo son de diversidad.

En la Tabla 8 aparecen los resultados de los 2 métodos de combinación descri-
tos en la Sección 5.4. Se indica también la cantidad de soluciones no óptimas para
cada método. En esta experiencia preliminar no se incluye ninguna regeneración
del conjunto de referencia y el algoritmo se para cuando, después de una fase de
combinación, no se han encontrado nuevas soluciones para añadir al conjunto de
referencia.

Método de Soluciones no óptimas
Combinación n=10 n=20 n=30 n=40 Total

1 3 25 39 61 128
8 3 22 41 61 127

Tabla 8: Comparación de los métodos de combinación en los problemas de Schirmer

La Tabla 8 también muestra que el algoritmo básico de Scatter Search es
muy eficiente y obtiene soluciones óptimas para la mayoŕıa de las 3826 instan-
cias posibles de Schirmer. Por tanto, una fase adicional para regenerar el con-
junto de referencia sólo estará justificada si ayuda a resolver los problemas más
dif́ıciles. El procedimiento de regeneración descrito en la Sección 5.6 depende
de tres parámetros: la cantidad de iteraciones del algoritmo GRASP modificado,
la cantidad de nuevas soluciones obtenidas y la cantidad de veces que se llama
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al proceso de regeneración. Hemos considerado los siguientes valores para esos
parámetros:

1. Máxima cantidad de iteraciones: 500 - 1000
2. Máxima cantidad de nuevas soluciones: 20 - 50

3. Llamadas a regenerar: 3 - Sólo cuando la solución ha mejorado desde la
última llamada a la regeneración.

Mét. Reg Iter. Soluciones Regeneración Sol. No D. Media D. Máx. Tiempo
Comb. óptimas al óptimo al óptimo medio (segs)

1 0 Sin regenerar 128 3.19 18.06 35.1
1 1 500 20 Mientras mejore 100 2.17 15.22 66.6
1 2 1000 20 Mientras mejore 94 2.02 15.22 84.5
1 3 1000 50 Mientras mejore 90 1.84 15.22 96.9
1 4 500 20 3 veces 66 1.39 13.04 129.5
1 5 1000 20 3 veces 62 1.30 13.04 172.7
1 6 1000 50 3 veces 60 1.23 15.22 191.3

8 0 Sin regenerar 127 3.30 18.06 47.3
8 1 500 20 Mientras mejore 80 1.78 13.04 86.0
8 2 1000 20 Mientras mejore 76 1.66 13.04 111.0
8 3 1000 50 Mientras mejore 73 1.55 13.04 119.6
8 4 500 20 3 veces 62 1.32 13.04 158.4
8 5 1000 20 3 veces 58 1.14 13.04 210.6
8 6 1000 50 3 veces 53 1.10 13.04 225.3

Tabla 9: Comparación de los procedimientos de regeneración en los problemas dif́ıciles
de Schirmer

Hemos probado 6 combinaciones de estos parámetros sobre los problemas de
Schirmer no resueltos por el algoritmo básico con los diversos métodos de combi-
nación. La Tabla 9 muestra los resultados de los métodos de combinación 1 y 8
sobre los 148 problemas restantes. Para cada estrategia de regeneración las tablas
presentan la media y el máximo porcentaje de distancia al óptimo o a las mejores
soluciones conocidas porque la solución óptima no es conocida para 1 instancia
de tamaño 30 y para 5 de tamaño 40. La última columna proporciona el tiempo
medio, en segundos, en un Pentium IV a 2.8 GHz.

Si comparamos ĺınea a ĺınea las dos partes de la tabla, correspondientes res-
pectivamente a los métodos de combinación 1 y 8, podemos ver que las estrategias
de regeneración funcionan mejor, en términos de soluciones no óptimas y distan-
cia al óptimo, cuando se usa el método 8 aunque necesita más tiempo de cálculo
debido a que hay que combinar 3 soluciones en cada paso. En la parte inferior
de la tabla, correspondiente al método 8, podemos ver que la última alternativa,
Reg 6, obtiene muy buenos resultados y resuelve óptimamente más del 50% de
los problemas restantes. Sin embargo, requiere más tiempo y, como el número de

Rect@ Monográfico 3 (2007)



R. Alvarez-Valdes et al. 235

llamadas a regenerar es fijo, regenerará el conjunto de referencia 3 veces incluso
para instancias para las que el algoritmo básico ya habŕıa encontrado la solución
óptima. Por tanto, para la experiencia computacional final, reflejada en la tabla
10, también mantenemos la alternativa Reg 1, donde se llama a la regeneración
sólo mientras la solución mejora, y también restringe el tiempo máximo de cálculo
a 300 segundos por instancia. Este tiempo ĺımite, que se comprueba únicamente
al final de cada fase, producirá un ligero deterioro en los resultados globales pero
los tiempos medios se reducirán mucho ya que se impiden los tiempos extrema-
damente largos de algunas instancias.

Tamaño del Instancias Scatter Search GRASP
problema Regen 0 Regen 1 Regen 6

Desviación media respecto al óptimo

10 946 0.02 0.00 0.00 0.01
20 960 0.09 0.03 0.02 0.07
30 960 0.15 0.09 0.05 0.11
40 960 0.24 0.14 0.10 0.23
Total 3826 0.13 0.07 0.04 0.11

Soluciones No óptimas

10 946 3 0 0 1
20 960 22 10 5 19
30 960 41 29 21 33
40 960 61 41 31 54
Total 3826 127 80 57 107

Tiempo medio de cálculo

10 946 1.1 1.6 2.1 1.0
20 960 1.8 3.4 10.1 0.7
30 960 3.5 5.7 13.8 2.1
40 960 6.6 10.6 20.7 4.4
Total 3826 3.3 5.3 11.7 2.1

Tabla 10: Comparación del Scatter Search y el GRASP en los problemas de Schirmer

La tabla 10 muestra los resultados completos para las tres versiones del al-
goritmo de Scatter Search: Reg 0, Reg 1, Reg 6, y las compara con la mejor
versión del GRASP desarrollado por Alvarez-Valdes et al.[1], el que llamamos
Grasp Agresivo con Reencadenamiento de Trayectorias.

Dicha tabla contiene los resultados de las 3826 instancias posibles de Schir-
mer. La primera parte de la tabla muestra la distancia media a los óptimos (o a
las mejores soluciones conocidas, ya que el óptimo es desconocido para 6 instan-
cias de Schirmer). La segunda parte muestra la cantidad de veces que la mejor
solución obtenida no consigue el óptimo o la mejor solución conocida, mientras
que la tercera parte nos dice el tiempo medio de cálculo. También se puede ver
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que mientras que el algoritmo GRASP es muy eficiente y puede obtener mejo-
res soluciones en los problemas pequeños, el Scatter Search con el incremento de
complejidad que suponen las estrategias de regeneración puede mejorar significa-
tivamente los resultados generales con incrementos moderados de los tiempos de
cálculo.

7 Conclusiones

Hemos estudiado una generalización del problema clásico de secuenciación
de proyectos con limitación de recursos. Hemos considerado un tipo de recursos
relativamente nuevo, los recursos parcialmente renovables, donde la disponibili-
dad de un recursos está asociada a un conjunto dado de periodos y las actividades
sólo lo consumen si son procesadas en dichos periodos. Este tipo de recursos pue-
den considerarse como una generalización tanto de lo recursos renovables como
de los no renovables, pero su principal interés proviene de su utilidad para mo-
delizar situaciones que aparecen en los problemas de turnos, horarios de trabajo
y calendarios que pueden ser formulados como problemas de secuenciación de
proyectos.

Hemos desarrollado diferentes técnicas de preproceso que ayudan a determinar
la existencia de soluciones posibles y a reducir la cantidad de variables y restric-
ciones. También hemos diseñado e implementado unos algoritmos heuŕısticos
basados, por un lado, en el GRASP y el Reencadenamiento de Trayectorias y por
otro, en el Scatter Search. El preproceso y los algoritmos heuŕısticos, que han sido
probados en dos conjuntos de instancias provinientes de la literatura y en otro de
instancias de mayor tamaño creado por nosotros con un procedimiento similar al
utilizado en los otros dos, han sido capaces de determinar el status de factibilidad
de muchas de las instancias que hasta el momento estaba sin determinar y de
resolver óptimamente la mayoŕıa de las instancias posibles.

Estamos convencidos que las técnicas de preproceso aqúı desarrolladas de-
beŕıan ser usadas por cualquier procedimiento de solución, exacto o heuŕıstico,
aplicado a este problema. Nuestros algoritmos heuŕısticos son muy eficientes y
pueden ser consideraros una herramienta útil para obtener soluciones de alta ca-
lidad para este problema.

Las ĺıneas futuras de investigación serán el desarrollo de un algoritmo exacto
y el diseño de nuevos algoritmos heuŕısticos para problemas que combinen los
recursos parcialmente renovables con los clásicos recursos renovables, dado que
esto sucede en muchas situaciones reales.
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1 Introducción

Las Metaheuŕısticas son estrategias generales para diseñar procedimientos
heuŕısticos para resolver un problema de optimización mediante un proceso de
búsqueda en un cierto espacio de soluciones alternativas. Los procesos de búsqueda
heuŕıstica están generalmente basados en transformaciones de las alternativas que
determinan una estructura de entornos en el espacio de soluciones. La Búsqueda
por Entornos Variables (Variable Neighbourhood Search (VNS) [60], [38], [48]
está basada en un principio simple: cambiar sistemáticamente la estructura de
entornos por la que se realiza la búsqueda [40], [45]. Su desarrollo ha sido rápido,
con muchos art́ıculos ya publicados o pendientes de aparecer [43]. Se han reali-
zado muchas extensiones, principalmente para permitir la solución de problemas
de gran tamaño [42]. En la mayoŕıa de ellas, se ha hecho un esfuerzo por mantener
la simplicidad del esquema básico [47][46].

En la siguiente sección se exponen las reglas básicas de la VNS. Las exten-
siones, incluyendo los h́ıbridos, se consideran en la sección 3. En la sección 4
se repasan las aplicaciones prácticas más importantes de la VNS en planificación

*Este trabajo ha sido parcialmente financiado por los proyectos TIN2005–08404–C04–03 (el
70% son fondos FEDER) y PI042005/044
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loǵıstica. En la sección 5 se profundiza en algunas cuestiones relevantes de esta
metaheuŕıstica. El trabajo finaliza con unas breves conclusiones.

2 Esquemas Fundamentales

Un problema de optimización consiste en encontrar, dentro de un conjunto X
de soluciones factibles, la que optimiza una función f(x). Si el problema es de
minimización se formula como sigue:

min{f(x) | x ∈ X} (1)

donde x representa una solución alternativa, f es la función objetivo y X es
el espacio de soluciones factibles del problema. Una solución óptima x∗ (o
mı́nimo global) del problema es una solución factible donde se alcanza el mı́nimo
de (1).

Si X es un conjunto finito pero de gran tamaño es un problema de optimi-
zación combinatoria. Si X = R

n, hablamos de optimización continua. La
mayoŕıa de los problemas de optimización que surgen en aplicaciones prácticas son
NP-duros [27] y para abordarlos se necesitan métodos de optimización heuŕıstica
(al menos para instancias de gran tamaño o como solución inicial para algún pro-
cedimiento exacto). Las metaheuŕısticas se han mostrado como una herramienta
apropiada para abordar este tipo de tareas.

Una estructura de entornos en el espacio de soluciones X es una aplicación
N : X → 2X que asocia a cada solución x ∈ X un entorno de soluciones N(x) ⊆
X , que se dicen vecinas de x. Las metaheuŕısticas de búsqueda local aplican
una transformación o movimiento a la solución de búsqueda y por tanto utilizan,
expĺıcita o impĺıcitamente, una estructura de entornos. El entorno de una solución
x ∈ X estaŕıa constituido por todas aquellas soluciones que se pueden obtener
desde x mediante una de las transformaciones o movimientos contemplados.

Una solución factible x∗ ∈ X es un mı́nimo global del problema (1) si no
existe una solución x ∈ X tal que f(x) < f(x∗). Decimos que la solución x′ ∈ X
es un mı́nimo local con respecto a N si no existe una solución x ∈ N(x′) ⊆ X
tal que f(x) < f(x′). Una búsqueda local descendente cambia la solución actual
por otra solución mejor de su entorno, por tanto corren el riesgo de quedarse
atascada en un mı́nimo local que no sea óptimo global. Las metaheuŕısticas
basadas en procedimientos de búsqueda local aplican distintas formas de continuar
la búsqueda después de encontrar el primer óptimo local. La metaheuŕıstica VNS
consiste básicamente en cambiar la estructura de entornos de forma sistemática.

La metaheuŕıstica VNS se basa en aprovechar sistemáticamente tres hechos
simples:

1. Un mı́nimo local con una estructura de entornos no lo es necesariamente
con otra.
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2. Un mı́nimo global es mı́nimo local con todas las posibles estructuras de
entornos.

3. Para muchos problemas, los mı́nimos locales están relativamente próximos
entre śı.

Los dos primeros hechos sugieren el empleo de varias estructuras de entornos
en las búsquedas locales para abordar un problema de optimización. El último
hecho, constatado emṕıricamente, indica que los óptimos locales proporcionan
información acerca del óptimo global. Puede ser, por ejemplo, que tengan carac-
teŕısticas comunes pero, generalmente, no se sabe cuales son esas caracteŕısticas.
Es conveniente, por tanto, realizar un análisis de las proximidades de cualquier
óptimo local buscando información que permita orientar la búsqueda hacia el
óptimo global.

Las heuŕısticas basadas en VNS, al contrario de lo que ocurre con otras me-
taheuŕısticas, se mantienen simples; no sólo sus esquemas básicos sino también la
mayoŕıa de las extensiones, requiriendo el ajuste de muy pocos parámetros. Esta
caracteŕıstica permite que la metaheuŕıstica VNS y sus extensiones sean útiles
para diseñar rápidamente procedimientos heuŕısticos con los que proporcionar
buenas soluciones con rapidez de manera muy simple dejando al descubierto cua-
les son las razones que determinan su rendimiento, lo que frecuentemente facilita
la elaboración de implementaciones sofisticadas muy eficientes.

Al abordar la resolución de un problema, o tipo de problemas, particular,
una de las primeras tareas consiste en la recopilación de información y documen-
tación acerca del problema y de sus caracteŕısticas. Esta información debe incluir
aspectos referentes a, aspectos de los problemas reales, su dificultad y los pro-
cedimientos, heuŕısticos o no, aplicados al enfrentarse a ellos. Esta información
puede completarse con algunos diseños intuitivos de operaciones de mejora de las
soluciones propuestas o información aportada por la experiencia del rendimiento
de tales operaciones. Esta información y el conocimiento de procedimientos rudi-
mentarios, generalmente búsquedas locales, puede ser aprovechada para el diseño
de ingredientes de la VNS que pueden ser determinantes en su éxito.

En los problemas de loǵıstica más importantes, las soluciones están constitui-
das por selecciones u ordenaciones de elementos. Una forma corriente de realizar
movimientos en el espacio de soluciones es cambiar algunos de estos elementos.
Estos movimientos dan lugar a diversas estructuras de entornos si se fija algunos
de los aspectos de estos cambios. En muchos procedimientos de búsqueda se uti-
lizan estos movimientos fijando o acotando el número de elementos de la solución
que se pueden cambiar. De esta forma se obtienen los entornos más utilizados las
búsquedas de entornos variables. Un k- intercambio es un movimiento consistente
en intercambiar k elementos de la solución. Es decir, cambiar k elementos de la
solución por otros k elementos que no estén en la solución, si las soluciones con-
sisten en la selección de un número fijo de elementos, o intercambiar de posición k
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elementos de la solución, si se trata de ordenaciones. Se suelen utilizar los entor-
nos Nk(x) consistentes en cambiar k elementos en la solución x, para k = 1, 2, ...
En otras aplicaciones el k-ésimo entorno consiste en las soluciones que se obtienen
al cambiar, a lo sumo, k elementos de la solución. Este es el tipo de entornos
más corriente en las aplicaciones de la VNS a problemas de loǵısticos estándares
como el problema de la p-mediana [38]. Para los problemas de rutas de veh́ıculos,
como el problema del vendedor o TSP (Travelling Salesman Problem) también se
utilizan otros movimientos estándares en las heuŕısticas de estos problemas [62].

2.1 VNS Descendente

Una búsqueda local descendente consiste básicamente en determinar iterativa-
mente una mejor solución a partir de la solución actual mediante alguna transfor-
mación o movimiento. La clásica búsqueda descendente greedy o voraz consiste
en reemplazar siempre la solución actual por la mejor de todas las soluciones que
se pueden obtener a partir de la actual mediante uno de los movimientos con-
templados. En el extremo opuesto a la estrategia voraz, de “el mejor primero”,
se encuentra la estrategia ansiosa, de “el primero mejor”, que aplica un movi-
miento de mejora desde que se detecte alguno. Otras estrategias intermedias son
posibles para elegir esta solución del entorno que mejora la solución actual, pero
todas ellas deben detenerse cuando no sea posible encontrar dicha mejora. Segu-
ramente la elección de los movimientos a considerar puede ser determinante en el
éxito de la búsqueda local, pero dif́ıcilmente se puede determinar a priori cual de
las posibilidades vislumbradas va a ser la más efectiva. Frente a las estrategias
de probarlas una de tras de otra en cada caso o emplearlas conjuntamente con-
templando todos los movimientos posibles, que son estrategias poco inteligentes,
el hecho 1 reseñado anteriormente indica la posible conveniencia de combinar los
distintos tipos de movimientos.

Si en una búsqueda local descendente se realiza un cambio de estructura de
entornos cada vez que se llega a un mı́nimo local, se obtiene la Búsqueda por
Entornos Variables Descendente (Variable Neighbourhood Descent, VND).
Denotemos por Nk, k = 1, ..., kmax, a una serie finita de estructuras de entornos
en el espacio X . Los entornos Nk pueden ser inducidos por una o más métricas
introducidas en el espacio de soluciones x.

Los pasos de la VND se muestran en la figura 1.

Inicialización. Seleccionar una serie de estructuras de entornos Nk, k = 1, ...,
kmax, y una solución inicial x.

Iteraciones. Repetir, hasta que no se obtenga mejora, la siguiente secuencia:

1. Hacer k ← 1.
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2. Repetir, hasta que k = kmax, los pasos:

(a) Exploración del entorno. Encontrar la mejor solución x′ del k-ésimo
entorno de x.

(b) Moverse o no. Si la solución obtenida x′ es mejor que x, hacer x← x′

y k ← 1; en otro caso, hacer k ← k + 1.

Figura 1. VNS Descendente; VND

Nótese que, dado que se vuelve a iniciar el recorrido de las estructuras de
entornos desde la primera cada vez que se produce un cambio, cuando se trata
de encontrar la mejor solución del k-ésimo entorno de la solución actual x, esta
solución no ha podido ser mejorada con ninguno de los (k-1) entornos anteriores.
Por tanto, la solución final proporcionada por el algoritmo es un mı́nimo local
con respecto a cada una de las kmax estructuras de entornos. Como consecuencia
de ellos, la probabilidad de alcanzar un mı́nimo global es mayor que usando una
sola estructura.

En la selección de la estructura de entornos para abordar un determinado
problema, tanto implementando una búsqueda local, voraz o ansiosa, o cualquier
otra metaheuŕıstica de búsqueda que utilice los entornos de forma expĺıcita o
impĺıcita deben tenerse en cuenta diversas cuestiones sobre los entornos. Entre
tales cuestiones está la completitud, complejidad y número de los movimientos
a aplicar, la eficiencia de los mismos, la posibilidad de examinarlos en distinto
orden, e incluso el grado de precisión. Estos aspectos son también cruciales para
el uso de varias estructuras de entornos en una VNS.

La mayoŕıa de las heuŕısticas de búsqueda local usan en sus descensos simple-
mente un entorno y algunas veces dos (kmax ≤ 2). Además del orden secuencial de
las estructuras de entornos en la VND anterior, se puede desarrollar una estrategia
anidada. Supongamos, por ejemplo, que kmax = 3. Entonces una posible estrate-
gia anidada es: ejecutar la VND de la figura 1 para las dos primeras estructuras
de entornos, sobre cada x′ que pertenezca al tercer entorno de x (x′ ∈ N3(x)).
Esta VNS ha sido aplicada en [6], [44] y [4].

2.2 VNS Reducida

Aparte de la búsqueda local descendente, otro método de búsqueda basado
expĺıcitamente o impĺıcitamente en una estructura de entornos y aún más rudi-
mentario pero de uso muy frecuente es la búsqueda por recorrido al azar. Mientras
que la búsqueda local concentra su esfuerzo en la explotación o intensificación de
la búsqueda entorno a la solución actual, la búsqueda por recorrido al azar, por
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el contrario, persigue una mayor capacidad de exploración o diversificación de la
búsqueda. El procedimiento consiste en realizar transformaciones de la solución
actual hasta encontrar una mejora; cuando esto ocurre, se toma la nueva solución
como solución actual y se continúa la búsqueda desde ella. En la elección de es-
tas transformaciones o movimientos es conveniente tener en cuenta también una
serie de aspectos: en qué dirección realizar los movimientos, qué lejańıa abarcar
en las transformaciones. Si se repiten los fracasos en la búsqueda de una solución
mejor, se puede probar otra forma distinta de realizar las transformaciones. La
VNS reducida realiza estos cambios de forma sistemática.

La Búsqueda por Entornos Variables Reducida (Reduced Variable Neigh-
bourhood Search, RVNS) selecciona al azar soluciones del entorno actual de la
solución actual cambiando a la siguiente estructura de entornos si no se obtiene
mejora y volviendo a la primera estructura en otro caso. Los pasos de la RVNS
se presentan en la figura 2.

Inicialización Seleccionar una serie de estructuras de entornos Nk, k = 1, ...,
kmax, y una solución inicial x. Elegir una condición de parada

Iteraciones. Repetir, hasta que se cumpla la condición de parada, la siguiente
secuencia:

1. Hacer k ← 1.

2. Repetir, hasta que k = kmax, los pasos:

(a) Agitación. Generar al azar una solución x′ del k- ésimo entorno de x
(x ∈ Nk(x)).

(b) Moverse o no. Si la solución obtenida x′ es mejor que x, hacer x← x′

y k ← 1; en otro caso, hacer k ← k + 1.

Figura 2. VNS Reducida; RVNS.

El cambio de estructura de entornos se puede realizar sólo si la mejora no
se produce en cierto número de intentos. En este caso, se considera que varias
estructuras de entornos consecutivas coinciden; Nk = Nk+1, para algunos valores
de k. Frecuentemente, la distinta forma de realizar los movimientos que de lugar
a las distintas estructuras de entornos puede significar probar soluciones más
distantes o más distintas. En estos casos se está usando una serie de estructuras
de entornos anidadas, es decir donde Nk(x) ⊆ Nk+1(x), y por tanto el cambio
de estructura de entornos se interpreta como una ampliación del entorno o del
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radio de búsqueda de la mejora. La ampliación del radio se realiza por escalones
si Nk(x) = Nk+1(x) para una serie de iteraciones consecutivas.

La RVNS es útil para instancias muy grandes de problemas en las que la
búsqueda local es muy costosa. Como condición de parada se usa generalmente
el máximo número de iteraciones entre dos mejoras. La RVNS se ha mostrado
superior a un método de Monte-Carlo en un problema minimax continuo y a
la heuŕıstica del intercambio rápido de Whittaker al aplicarla al problema de la
p-mediana [45].

2.3 VNS Básica

La Búsqueda por Entornos Variables Básica (Basic Variable Neighbour-
hood Search, BVNS) es una estrategia que alterna búsquedas locales con movi-
mientos aleatorios sobre unas estructuras de entornos que vaŕıan de forma sis-
temática.

Los pasos de la VNS básica se dan en la figura 3.

Inicialización Seleccionar una serie de estructuras de entornos Nk,k = 1, ...,
kmax, y una solución inicial x. Elegir una condición de parada

Iteraciones. Repetir, hasta que se cumpla la condición de parada, la siguiente
secuencia:

1. Hacer k ← 1.

2. Repetir, hasta que k = kmax, los pasos:

(a) Agitación. Generar al azar una solución x′ del k- ésimo entorno de x.

(b) Moverse o no. Si la solución obtenida x′′ es mejor que x, hacer x← x′′

y k ← 1; en otro caso, hacer k ← k + 1.

Figura 3. VNS Básica; BVNS.

Las estructuras de entornos utilizadas pueden ser anidadas y escalonadas como
en la búsqueda por entornos variables reducida. La condición de parada puede
ser, por ejemplo, el máximo tiempo de CPU permitido, el máximo número de
iteraciones, o el máximo número de iteraciones entre dos mejoras. Obsérvese que
la solución x′ se genera al azar en el paso (2a) para evitar el ciclado prematuro,
que puede ocurrir si se usa cualquier regla determińıstica.
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2.4 VNS General

La Búsqueda por Entornos Variables General (General Variable Neigh-
bourhood Search, GVNS) se obtiene al sustituir la búsqueda local del paso (2b)
de la Búsqueda por Entornos Variables básica por una Búsqueda por Entornos
Variables descendente; es decir, una VND. Esta estrategia utiliza dos series de
estructuras de entornos posiblemente distintas, una para la búsqueda descendente
y otra para los movimientos aleatorios de agitación.

Los pasos de la VNS general (GVNS) se muestran en la figura 4.

Inicialización Seleccionar una serie de estructuras de entornos Nk, k = 1, ...,
kmax, que se usarán en la agitación; y una serie de estructuras de entornos N ′

j , j
= 1, ..., jmax, que se usarán en el descenso y una solución inicial x. Elegir una
condición de parada

Iteraciones. Repetir, hasta que se cumpla la condición de parada, la siguiente
secuencia:

1. Hacer k ← 1.

2. Repetir, hasta que k = kmax, los pasos:

(a) Agitación. Generar al azar una solución x′ del k- ésimo entorno de x.

(b) Búsqueda local. Aplicar la VND con los entornos N ′
j , j = 1, ..., jmax,

y x′ como solución inicial; denótese con x′′ la solución aśı obtenida.

(c) Moverse o no. Si la solución obtenida x′′ es mejor que x, hacer x← x′′

y k ← 1; en otro caso, hacer k ← k + 1.

Figura 4. VNS General; GVNS.

El uso de la Búsqueda por Entornos Variables general (GVNS) ha dado lugar a
las aplicaciones más exitosas aparecidas recientemente (ver, por ejemplo, [44],[6],
[10], [11], [12], [13], [71] y [75]).

2.5 VNS Anidada

Es el caso más sencillo del uso de una VNS general. Ambas series de entorno
coinciden en una serie anidada obtenida a partir de un único tipo de movimiento
sencillo. El movimiento más usual en este sentido es el del intercambio que con-
siste en cambiar un elemento de la solución por otro elemento posible. Si las
soluciones se identifican como vectores el cambio consiste en modificar una de las
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componentes; si se trata de la selección de un número determinado de elementos
de un universo, el cambio consiste en sustituir un elemento de la solución por otro
que no esté en la solución; si se trata de permutaciones, se intercambian las po-
siciones de dos elementos. El valor de k corresponde con el número de elementos
de la solución cambiados (esta ha sido la versión paralelizada en [25]).

La estrategia de Búsquedas por Entornos Variables Anidados (Nes-
ted Variable Neighbourhood Search, NVNS) se obtiene a partir de un único mo-
vimiento elemental al que está asociada una estructura de entornos N . Los
entornos anidados se definen recursivamente por N1(x) = N(x) y Nk+1(x) =
N(Nk(x)), ∀x ∈ X . El número máximo de entornos a usar en la agitación y en la
búsqueda local se fijan por los valores kmax y jmax, respectivamente.

Los pasos de la VNS anidada (NVNS) se muestran en la figura 5.

Inicialización Seleccionar una estructura de entornos N y una solución inicial
x. Elegir una condición de parada

Iteraciones. Repetir, hasta que se cumpla la condición de parada, la siguiente
secuencia:

1. Hacer k ← 1.

2. Repetir, hasta que k = kmax, los pasos:

(a) Agitación. Generar al azar una solución x′ del k- ésimo entorno de x.

(b) Búsqueda local con VND.

(i) Hacer j ← 1.
(ii) Repetir, hasta que j = jmax, los pasos:

∗ Exploración del entorno. Encontrar la mejor solución x′′ ∈
Nj(x

′).
∗ Moverse o no. Si f(x′′) ¡ f(x′), hacer x′ ← x′′ y j? ←?1; en

otro caso, hacer j ← j + 1.

(c) Moverse o no. Si la solución obtenida x′′ es mejor que x, hacer x← x′′

y k ← 1; en otro caso, hacer k ← k + 1.

Figura 5. VNS anidada; NVNS.

Rect@ Monográfico 3 (2007)
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3 Extensiones de la VNS

Se han propuesto en la literatura diversas formas de extender la VNS para
dotarla de algunas caracteŕısticas adicionales. Describimos en primer lugar va-
rias formas sencillas de realizar estas extensiones en la subsección 3.1. Las tres
siguientes subsecciones se dedican a otras tantas extensiones que constituyen me-
joras prácticas de la VNS que han permitido resolver con éxito problemas muy
grandes: la Búsqueda por Entornos Variables con descomposición (VNDS), la
Búsqueda por Entornos Variables sesgada (SVNS) y la Búsqueda por Entornos
Variables paralela (PVNS). En la subsección 3.5 se consideran las extensiones por
hibridación de la VNS. En algunos casos se han propuesto independientemente
procedimientos heuŕısticos que en esencia explotan ideas del VNS y que pueden
considerarse como casos espećıficos o extensiones de esta metaheuŕısticas como
la búsqueda local iterada (Iterated Local Search ,ILS) o la búsqueda por entornos
grandes (Large Neighbourhood Search, LNS).

3.1 Extensiones básicas

Las primeras extensiones se derivan directamente de la VNS básica. La BVNS
es un método descendente de la primera mejora con aleatorización. Sin mucho
esfuerzo adicional se transforma en un método ascendente-descendente: en el paso
(2c) hacer también x← x′′ con alguna probabilidad, incluso si la solución es peor
que la actual (o que la mejor solución encontrada hasta el momento). La búsqueda
en los entornos se intensifica si en lugar de una agitación para tomar una única
solución al azar se toman en el paso (2a) todas las soluciones del k-ésimo entorno
de la solución actual. En este caso es conveniente explotar un posible recorrido
sistemático del entorno. También se puede transformar en una búsqueda de la
mejor mejora si se realiza la búsqueda local del paso (2b) desde una solución de
cada uno de los kmax entornos y se aplica el cambio al mejor entorno k∗. Una
estrategia distinta con intensificación intermedia se tiene eligiendo la solución
x′ en el paso (2a) como la mejor entre b (un parámetro) soluciones generadas
aleatoriamente en el k-ésimo entorno. Una última extensión sencilla consiste en
introducir kmin y kpaso, dos parámetros que controlan el proceso de cambio de
entorno: en el algoritmo anterior, en vez de k ← 1 hacer k ← kmin y en vez
de k ← k + 1 hacer k ← k + kpaso. Estas extensiones pueden aplicarse a la vez
produciendo nuevas variantes de la búsqueda por entornos variables.

3.2 VNS con Descomposición

La Búsqueda por Entornos Variables con Descomposición (Variable
Neighbourhood Decomposition Search, VNDS) [51] extiende la VNS en un esquema
de entornos variables en dos niveles basado en la descomposición del problema.
Cuando se obtiene al azar la solución agitada, se fijan los atributos comunes entre
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la solución actual y la agitada y se aborda el problema de optimizar los elementos
no comunes, mediante un procedimiento exacto u otra heuŕıstica. Sus pasos son
los presentados en la figura 6.

Inicialización Seleccionar una serie de estructuras de entornos Nk, k = 1, ...,
kmax, y una solución inicial x. Elegir una condición de parada

Iteraciones. Repetir, hasta que se cumpla la condición de parada, la siguiente
secuencia:

1. Hacer k ← 1.

2. Repetir, hasta que k = kmax, los pasos:

(a) Agitación. Generar al azar una solución x′ del k- ésimo entorno de x.
Definir y como el conjunto de atributos presentes en x′ pero no en x
(y = x′ \ x).

(b) Búsqueda local. Buscar el óptimo parcial en el espacio de los atributos
y por alguna heuŕıstica. Sea y′ la mejor solución encontrada para estos
atributos y sea x′′ la correspondiente solución del espacio completo
obtenida al incorporar a x tales atributos (x′′ = x \ x′ ∪ y′).

(c) Moverse o no. Si la solución obtenida x′′ es mejor que x, hacer x← x′′

y k ← 1; en otro caso, hacer k ← k + 1.

Figura 6. VNS por Descomposición; VNDS.

La diferencia entre la VNS básica y la VNDS está en el paso (2b): en vez de
aplicar algún método de búsqueda local en el espacio completo X (empezando
desde x′ ∈ Nk(x)), en la VNDS se resuelve en cada iteración un subproblema en
un subespacio Xk ⊆ Nk(x) con x′ ∈ Xk. Cuando la búsqueda local utilizada en
este paso es también una VNS, aparece un esquema VNS en dos niveles.

3.3 VNS Sesgada

Una vez que se ha alcanzado la mejor solución en una gran región es necesario
buscar estrategias para alejarse bastante de ella para posibilitar una nueva mejora.
La Búsqueda por Entornos Variables Sesgada (Skewed Variable Neighbour-
hood Search, SVNS) [37] afronta la exploración de regiones de valles alejados de la
solución actual. Si el óptimo local alcanzado está considerablemente alejado del
anterior y no es significativamente peor puede ser conveniente llevar hasta alĺı el
proceso de búsqueda. Las soluciones generadas al azar en entornos muy lejanos
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pueden diferenciarse substancialmente de la solución actual; por lo que la VNS
degenera, en algún sentido, en una heuŕıstica de arranque múltiple (en la que se
realizan iterativamente descensos desde soluciones generadas al azar). Por tanto,
la VNS sesgada incorpora una compensación por la distancia desde la solución
actual para evitar este inconveniente. Sus pasos son presentados en la figura 7.

Inicialización Seleccionar una serie de estructuras de entornos Nk, k = 1, ...,
kmax. Encontrar una solución inicial x y su valor objetiva f(x); hacer x∗ ← x y
f∗ ← f(x). Elegir una condición de parada y un parámetro α.

Iteraciones. Repetir, hasta que se cumpla la condición de parada, la siguiente
secuencia:

1. Hacer k ← 1.

2. Repetir, hasta que k = kmax, los pasos:

(a) Agitación. Generar al azar una solución x′ del k- ésimo entorno de x.

(b) Búsqueda local. Aplicar algún método de búsqueda local con x′ como
solución inicial; denótese con x′′ el mı́nimo local aśı obtenido.

(c) Mejora o no. Si f(x′′) < f∗, hacer x∗ ← x′′ y f∗ ← f(x′′).

(d) Moverse o no. Si f(x′′) − α · ρ(x, x′′) < f(x), hacer x ← x′′ y k ← 1;
en otro caso, hacer k ← k + 1.

Figura 7. VNS sesgada; SVNS.

La SVNS usa una función ρ(x, x′′) para medir la distancia entre la solución
actual x y el óptimo local encontrado x′′. La distancia usada para definir los en-
tornos Nk puede también utilizarse con este propósito. La elección del parámetro
αdebe permitir la exploración de valles lejanos a x cuando f(x′′) es algo peor
que f(x), pero no demasiado (en otro caso siempre se abandonaŕıa la solución x).
Con ello se pretende evitar frecuentes trayectorias desde x a una solución relati-
vamente cercana para volver a x. Un buen valor para α tiene que determinarse
experimentalmente en cada caso.

3.4 VNS Paralela

Las úsquedas por Entornos Variables Paralelas (Parallel Variable Neigh-
bourhood Search, PVNS) constituyen la tercera extensión [66]. Se han propuesto
en [25] y [17] diversas formas de paralelizar la VNS que han sido aplicadas al
problema de la p- mediana. En [25] se analizan tres de ellas: (i) paralelizar la
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J.A. Moreno Pérez y N. Mladenović 251

búsqueda local, (ii) aumentar el número de soluciones obtenidas del entorno ac-
tual y realizar búsquedas locales en paralelo desde cada una de ellas y (iii) hacer
lo mismo que en (ii) pero actualizando la información sobre la mejor solución
encontrada. En todas ellas se utiliza la conocida estrategia maestro-esclavo en la
que el procesador maestro, distribuye la información a los procesadores esclavos
que una vez realizada su tarea la devuelven al procesador maestro.

En la primera estrategia de paralelización, los procesadores disponibles com-
parten la tarea de realizar cada búsqueda local. Por ejemplo, en una búsqueda
local greedy basada en una estructura de entorno, cada procesador busca la me-
jor solución de una parte del entorno y se selecciona la mejor de ellas. Cuando
ninguno de los procesadores consigue mejorar a la solución, la búsqueda local
se detiene. En la segunda paralelización, cada procesador toma una solución del
entorno de la solución actual y aplica la búsqueda local. Se toma el mejor mı́nimo
local de los encontrados por los procesadores y se compara con la solución actual
a la que reemplaza si la mejora. Sin embargo, en la tercera paralelización cada vez
que un procesador se detiene en un mı́nimo local se compara la solución actual y
la reemplaza si la mejora. Entonces, mientras un procesador realiza la búsqueda
local es posible que otro procesador haya mejorado la solución actual y con esta
solución con la que se compara el mı́nimo encontrado. Se utiliza la conocida
estrategia maestro-esclavo en la que el procesador maestro, que almacena la so-
lución actual x, env́ıa a los procesadores soluciones x′p del entorno de la solución
actual x, recibe los mı́nimos locales x′′p encontrados por éstos que si mejoran la
solución actual x en el momento de recibirlos. La estructura de entornos se modi-
fica cuando ninguno de los procesadores ha conseguido mejorar la solución actual.
El inconveniente de esta estrategia es que los procesadores quedan ociosos más
tiempo que en la anterior. La segunda paralelización, cuyos pasos se muestran en
la figura 8, es la que ha dado mejores resultados.

Inicialización Seleccionar una serie de estructuras de entornos Nk, k = 1, ...,
kmax, y una solución inicial x. Elegir una condición de parada

Iteraciones. Repetir, hasta que se cumpla la condición de parada, la siguiente
secuencia:

1. Hacer k ← 1.

2. Repetir en paralelo, hasta que k = kmax, para cada procesador p los pasos:

(a) Agitación. Generar al azar una solución x′p del k- ésimo entorno de x.

(b) Búsqueda local. Aplicar algún método de búsqueda local con x′p como
solución inicial; denótese con x′′p el mı́nimo local aśı obtenido.

(c) Moverse o no. Si la solución obtenida x′′p es mejor que x, hacer x← x′′py
k ← 1; en otro caso, hacer k ← k + 1.

Figura 8. VNS Paralela; PVNS.
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3.5 Hı́bridos

Dado que el cambio sistemático de estructura de entornos es una herramienta
simple y muy potente, otra forma de extender la VNS ha sido incorporarla a otras
metaheuŕısticas. Estas propuestas han dado lugar a diversas metaheuŕısticas
h́ıbridas.

La búsqueda tabú (Tabu Search, TS) [30], [31], [32], [34] generalmente usa una
estructura de entornos con respecto a la que ejecuta movimientos de ascenso y
descenso explotando diferentes tipos de memoria. En principio hay dos maneras
de hacer h́ıbridos de VNS y TS: usar algún tipo de memoria para orientar la
búsqueda dentro de la VNS o usar la VNS dentro de la TS. En [67], [8], [5] y [53]
se proponen h́ıbridos del primer tipo y en [6] y [19] del segundo tipo.

La metaheuŕıstica GRASP (Greedy Randomized Adaptive Search Procedure)
[22] [73] consta de dos fases; en la primera fase se construyen soluciones usando un
procedimiento greedy aleatorizado y en la segunda, las soluciones se mejoran por
alguna búsqueda local o un método enumerativo. Una forma natural de hibridizar
la VNS con GRASP es usar la VNS en la segunda fase de GRASP lo que ha sido
aplicado en [58], [75], [1], [10], [68], [23].

La búsqueda Multi-arranque (MultiStart Search, MS) [56] [57] es una meta-
heuŕıstica clásica que, para evitar el estancamiento de un procedimiento descen-
dente en un óptimo local, sencillamente reinicia la búsqueda desde otra solución.
En [4] se propone y analiza una heuŕıstica h́ıbrida entre la VNS y la MS con-
sistente en reiniciar la VNS desde otra solución generada al azar del espacio X ,
cuando se estanca en un mı́nimo local, por no encontrar ninguna mejora a través
de ninguno de los entornos de la solución x.

En combinación con el método Piloto [21] se ha propuesto recientemente [52].
La VNS se combina con operadores genéticos en [19].

3.6 La VNS en planificación Loǵıstica

La VNS ha alcanzado éxitos relevantes en campos de aplicación diversos entre
los que caben destacar los de unas técnicas de descubrimiento que han permitido
descubrir una herramienta informática (el Sistema AutoGraphiX [13], [2]) que
ha conseguido probar o refutar algunas conjeturas abiertas en teoŕıa de Grafos.
Se ha aplicado a problemas de optimización continua [61] creando un software
espećıfico GLOB [20]. También se ha aplicado con éxito a multitud de problemas
de optimización combinatoria importantes en la industrial [43] y la economı́a [26],
entre los que se encuentran los problemas más relevantes de planificación loǵıstica
[78]: problemas de empaquetado, problemas de localización y problemas de rutas.

Los Problemas de Empaquetado constituyen una clase de problemas im-
portantes en contextos de loǵıstica y distribución. En [24] se usa la VNS básica
para una de las versiones básicas: el problema de empaquetado unidimensional
(Bin-Packing Problem, BPP) en el que se tiene que empaquetar un conjunto de
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objetos de diferente tamaño en el menor número de cajas o segmentos de capaci-
dad fija.

Los Problemas de Localización, muy relevantes en la planificación loǵıstica,
y los de agrupamiento o clustering (dentro de la clasificación no supervisada) tie-
nen caracteŕısticas comunes que los hacen similares al ser abordados por búsquedas
metaheuŕısticas. El problema de la p-mediana es el problema más extensamente
estudiado en Teoŕıa de Localización. Consiste en determinar p ubicaciones, en-
tre un conjunto de m localizaciones posibles para un servicio, de forma que se
minimice la suma de las distancias de n usuarios a su punto de servicio más cer-
cano. Este problema ha sido abordado con éxito en [38] y [51] por medio de una
VNS básica, una VNS reducida y una VNDS, respectivamente. En [26] y [17] se
proponen y prueban diversas VNS paralelas para este problema [66]. En [63] se
aplica la VNS al problema del p-centro en el que hay que minimizar, en lugar
de la suma, el máximo de las distancias de los usuarios a sus respectivos puntos
de servicios más próximos. Diversas variantes de la VNS han sido aplicadas con
éxito en [6] y [7] al problema múltiple de Weber que es la versión continua del
problema de la p-mediana, en el que las p localizaciones pueden elegirse en todo
el plano donde también están ubicados los usuarios. En [51] se muestra la apli-
cación de la RVNS y la VNDS para el problema simple de localización de plantas
(Simple Plant Location Problem, SPLP) en el que se debe decidir el número p de
localizaciones, minimizando la suma del coste total que implica la separación de
los usuarios a los puntos de servicio, y el coste de la selección de cada ubicación
para el servicio. El problema de asignación cuadrática (Quadratic Assignment
Problem, QAP) es otro problema relevante que surge en localización y ha sido
abordado con la VNS en [15].

Otro tipo de problemas de optimización combinatoria importante, sobre todo
en el contexto de la planificación loǵıstica, son los Problemas de Rutas. Tanto
las versiones clásicas del problema del vendedor o viajante de comercio (Travelling
Salesman Problem, TSP), del problema de rutas de veh́ıculos (Vehicle Routing
Problem, VRP) y del problema de rutas de arcos (Arc Routing Problem, ARP),
aśı como algunas de sus extensiones, han sido abordadas con la VNS. El problema
del viajante de comercio o TSP consiste en, dadas n ciudades con las distancias o
costes entre ellas, encontrar una ruta de mı́nimo coste (es decir, una permutación
de las ciudades que minimiza la suma de las n distancias entre ciudades adyacentes
en la ruta). En [9], [39] y [62] se aplican procedimientos del tipo de la VNS con
distinto tipo de movimiento para el TSP. En [28] se aplica una VNDS similar con
dos esquemas de descomposición diferentes. En [76] y [68] se usa una VNS para
resolver otra importante extensión del TSP denominada problema del comprador
en el que, dada una partición del conjunto de clientes, hay que visitar al menos
uno de cada conjunto de la partición. Un trabajo interesante sobre el TSP con
recogida y distribución es [14].

Un problema de ruta de veh́ıculos o VRP consiste en diseñar las rutas desde un
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depósito para visitar un conjunto dado de clientes con mı́nimo coste. Los clientes
tienen demandas conocidas y los veh́ıculos tienen capacidad limitada. En [5] y
[15] se aplican la VNS y la VND en la resolución de la variante del problema en el
que cada cliente puede ser visitado en cierto intervalo de tiempo que se denomina
VRPTW (VRP with Time Windows) y en [71] se trata un problema múltiple de
este tipo. En [18] se explora el uso de una VND para un VRP con recogida. En
[35] se considera un problema on-line muy general.

En [67] se propone una combinación de la VNS y la TS que usa varias estruc-
turas de entornos para el problema del ciclo mediano (Median Cycle Problem,
MCP). En este problema se debe determinar la ruta de menor longitud que re-
corra parte de las ciudades con una cota superior para la suma de las distancias
desde las ciudades no incluidas en el recorrido hasta la ciudad más cercana de
la ruta. En [38] se aplica una VNS a una versión del problema del viajante de
comercio con clientes de recogida y entrega de mercanćıas. La ruta tiene que
recorrer todos los clientes de recogida antes que los de entrega, partiendo y lle-
gando al depósito. En [29], [41] y [42] se aborda con una VNS de forma exitosa
problemas de rutas de arcos en los que las rutas deben recorrer todas las aristas
o arcos de un grafo o red.

3.7 Conclusiones

Las heuŕısticas más tradicionales en optimización realizaban búsquedas locales
descendentes por lo que se bloquean con el primer óptimo local encontrado. Las
metaheuŕısticas proporcionaron métodos para escaparse de los óptimos locales
de mala calidad. El valor de tales óptimos locales difiere considerablemente del
valor del óptimo global y, especialmente si hay muchos óptimos locales, la mejora
en la calidad de los nuevos óptimos alcanzados era insuficiente para acercarse
suficientemente. Sin embargo, las mejoras introducidas en las estrategias básicas
y los recursos computacionales de las implementaciones han permitido obtener
procedimientos cada vez rápidos en acercarse con garant́ıas a la solución óptima
por lo que el impacto práctico de las metaheuŕısticas ha sido inmenso.

En contraste con este éxito, el desarrollo teórico de resultados sobre meta-
heuŕısticas está más retrasado [49]. Frecuentemente se obtienen buenas heuŕıs-
ticas con algo de inventiva, experiencia e intuición. y con un gran esfuerzo en el
ajuste de numerosos parámetros se van mejorando. Pero las razones de porqué
unas estrategias funcionan tan bien como lo hacen para algunos problemas y otras
no, y estas funcionan mejor que aquellas para otros problemas son desconocidas.
La situación es incluso peor con los h́ıbridos y las mejoras computacionales; mu-
chas veces es dif́ıcil discernir si el mérito lo tiene una de las componentes o se está
obteniendo beneficio de la interacción.

El desarrollo y aplicación de la VNS contribuye a profundizar en algunas
cuestiones que influyen en el rendimiento general de las metaheuŕısticas. Tres de
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estas ideas son la topograf́ıa de los óptimos locales, el las trayectorias seguidas
por los procesos en su acercamiento al óptimo, y la dicotomı́a entre la mejor o
la primera mejora. El estudio de la topograf́ıa de los mı́nimos locales se realiza
en términos de una descripción de los perfiles de montañas y valles encontrados
durante la búsqueda. Cuando se aplica la VNS, el descenso desde una solución
x′, seleccionada al azar, puede volver al óptimo local x alrededor del que están
centrados los entornos actuales, o a otro óptimo local x′′ cuyo valor puede ser
mejor o no que el de x. Se ha estudiado en [37] la probabilidad de estos tres
sucesos como una función de la distancia de x a x′ al aplicarla al problema de la
máxima satisfabilidad ponderada. Conviene también observar si x′′ está más cerca
de x que x′ (lo que puede ser interpretado como que x′′ pertenece al mismo valle
que x, con rugosidades locales en relieve) o no (lo que puede interpretarse como
un indicio de que se ha encontrado un nuevo gran valle). El relieve suministra esta
información en base a una determinada cantidad de descensos desde puntos en
entornos sucesivamente más amplios. Los perfiles vaŕıan considerablemente con
la calidad del óptimo local x. Cuando x es una mala solución es suficiente alejarse
un poco para obtener, con alta probabilidad, un óptimo local mejor. Cuando el
óptimo local x es bueno, o muy bueno, debe alejarse bastante más para encontrar
un nuevo gran valle y, además, la probabilidad de encontrar una solución mejor
que la actual es entonces baja. Esto ilustra una debilidad del esquema básico de
la VNS que tiende a degenerar en un arranque múltiple cuando la distancia de x
a x′ se hace grande. El remedio es el proporcionado por el esquema de la VNS
sesgada.

Para algunos problemas se dispone de instancias para las que se conoce el
óptimo global y se puede analizar la distancia al blanco durante el proceso de
búsqueda. Es corriente analizar las búsquedas heuŕıstica determinando lo fre-
cuente que se alcanza el óptimo global o el promedio de la diferencia relativa
entre el valor óptimo del objetivo y el alcanzado por la búsqueda. Sin embargo,
se obtiene mucha más información si se consideran las propias soluciones y no
sólo su valoración. Una herramienta para poner en práctica esta idea ha sido
desarrollada para aplicar una VNS para el problema del vendedor en [28]. Esta
herramienta presenta en pantalla la solución óptima para el caso de entrenamiento
bajo estudio, la solución actual y la diferencia simétrica entre estas dos soluciones.
Esto indica cuanta mejora queda por hacer y donde. Además, una rutina permite
también la representación de la diferencia entre la solución actual en una iteración
y en la siguiente. Finalmente, como las representaciones de las soluciones para
problemas grandes pueden ser dif́ıciles de leer, y muchos problemas, en particular
los problemas eucĺıdeos, permiten una descomposición natural, una rutina de en-
foque permite la representación de la información mencionada anteriormente para
subproblemas seleccionados; es decir, en alguna región del espacio en la que se
traza la ruta. Además de usar esta información para guiar la búsqueda, se puede
evaluar el trabajo realizado paso a paso por una VNS u otra metaheuŕıstica. Se
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pueden estudiar variantes en cada uno de esos pasos y recopilar información de-
tallada para sacar conclusiones que pueden no ser evidentes en un rendimiento
global de la heuŕıstica. Esto puede dar lugar al descubrimiento de fenómenos
inesperados y, la profundización proporcionada por su explicación, puede a su vez
dar lugar a principios para mejorar las heuŕısticas.

En muchos trabajos se ha observado que cuando se aplica un paso de una
la heuŕıstica buscando iterativamente un movimiento de mejora dentro de un
conjunto de posibilidades se puede optar por dos tácticas bien diferenciadas: la
primera mejora (es decir, el primer movimiento que reduce el valor de la función
objetivo) o la mejor mejora, (es decir, el movimiento que más reduce el valor
de la función objetivo). Del análisis de las caracteŕısticas de los entornos se
deduce si al acercarse al óptimo local es conveniente realizar el esfuerzo de recorrer
completamente el entorno de la solución actual o en los estadios iniciales de la
búsqueda las mejoras encontradas inicialmente son suficientemente significativas
para hacer irrelevante el análisis exhaustivo del entrono.

Los criterios de comparación entre las mateheuŕısticas deben referirse al ma-
yor o menor grado de cumplimiento de las propiedades deseables de las meta-
heuŕısticas. Tales buenas cualidades son las que propician o garantizan el interés
práctico y teórico de las propuestas. En [59] se propone una propuesta de relación
de dichas propiedades. Esta relación es similar a las propuestas por otros autores.
En [46] se analiza en que medida la VNS en relación a otras metaheuŕısticas se
ajustan a tales propiedades. Algunas de tales propiedades son las siguientes: la
simplicidad, la precisión: la coherencia: la efectividad, la eficacia: la eficiencia, la
robustez, la interactividad y la innovación

La VNS está basada en un principio simple poco explorado: el cambio sis-
temático de la estructura de entornos durante la búsqueda. Esta simplicidad de
la metaheuŕıstica contribuye a dotarla de la amplia aplicabilidad que se refleja en
la variedad de las aplicaciones aparecidas en la naturaleza. La VNS está dotada
de reglas precisas que describen la forma de efectuar tales cambios. Todos los
pasos de los esquemas básicos y extendidos de la VNS se traducen coherente-
mente de los principios en que se inspira. La eficacia de la VNS se sustenta en
la probabilidad de encontrar soluciones óptimas para una gran cantidad de pro-
blemas en los que ha sido probada superior o equivalente a otras metaheuŕısticas
con la que ha sido comparada. La VNS tiene probada efectividad en la reso-
lución de problemas de varios bancos de prueba con resultados óptimos o muy
cercanos a los óptimos, y con tiempo computacional moderado (o al menos ra-
zonable). La metaheuŕıstica VNS se ha mostrado considerablemente eficiente en
muchos experimentos al obtener de una forma más rápida resultados mejores o
equivalentes a los de otras metaheuŕısticas. Además, la VNS se muestra robusta
ya que ha probado su rendimiento en multitud de problemas sin necesidad de
realizar un ajuste espećıfico de parámetros al conjunto de entrenamiento. Las
metaheuŕısticas VNS se ha extendido considerablemente al hibridizarse con otros
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procedimientos mejorando su efectividad. Cabe destacar además la frecuencia con
la que las metaheuŕısticas incorporan las ideas en las que se basa la VNS para
beneficiarse de sus efectos positivos. La amigabilidad de los sistemas basados en
la VNS cuenta con la ventaja de que los principios básicos en que se basa son
fáciles de usar con un número de parámetros muy pequeño, incluso inexistentes
en algunos casos. Las posibilidades de la VNS para la innovación están amplia-
mente corroborada con los resultados obtenidos con el programa AutoGraphiX
AGX [13] [2] de descubrimiento cient́ıfico asistido por ordenador que está basado
en VNS y del que ya se han publicado gran cantidad de resultados bajo el t́ıtulo
común Variable Neighborhood Search for Extremal Graphs.

Las ĺıneas futuras tienen que ir por las mejoras necesarias para poder resolver
eficientemente problemas dif́ıciles y muy grandes. El tamaño de los problemas
abordados se limita en la práctica por las herramientas disponibles para resolverlos
más que por la necesidad de los potenciales usuarios de estas herramientas.
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borhood search for nurse rostering. In MIC’2001, pages 755-760, Porto. 2001.

[9] E.K. Burke, P. Cowling, R. Keuthen . Effective local and guided variable
neighborhood search methods for the asymmetric travelling salesman pro-
blem. Lecture Notes in Computer Science, 2037:203-212. 2001.

[10] S. Canuto, M. Resende, C. Ribeiro. Local search with perturbations for the
prize-collecting Steiner tree problem in graphs. Networks, 38:50-58. 2001.
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[47] P.Hansen, N.Mladenović. Variable neighbourhood search. In Panos M. Par-
dalos, Mauricio G.C. Resende (eds.), Handbook of Applied Optimization.
2002.

Rect@ Monográfico 3 (2007)
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[59] B. Melián Batista, J.A. Moreno Pérez, J.M. Moreno Vega. Metaheuŕısticas:
una visión global. Inteligencia Artificial. Revista Iberamericna de Inteligencia
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Minmax VRP∗
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1 Introducción

El problema de rutas de veh́ıculos, VRP, es sin lugar a dudas uno de los pro-
blemas de optimización combinatoria más estudiados y tratados en la literatura.
Sin entrar en más detalle y de forma muy genérica el problema consiste en diseñar
rutas que visiten una serie de de puntos distribuidos geográficamente de forma
que se minimice la distancia total recorrida. En cada punto se debe recoger una
cantidad conocida de mercanćıa. Cada punto debe ser visitado una vez (i.e., por
un solo veh́ıculo), las rutas deben empezar y acabar en un depósito central y se
deben respetar las restricciones de capacidad del veh́ıculo. Seŕıa prolijo enumerar
los trabajos importantes y conocidos que han tratado este modelo y sus variantes,
generalizaciones o casos particulares: VRPTW (problema de rutas con ventanas
de tiempo), PVRP (Periodic VRP), el conocid́ısimo TSP, MDVRP (MultiDepot
VRP), etc.

*Los autores de este trabajo agradecen la ayuda del Ministerio de Educación y Ciencia por
la subvención económica para la realización de este trabajo a través del Plan Nacional de I+D,
(Proyecto SEJ- 2005 08923/ECON), aśı como a la Junta de Castilla y León (“Consejeria de
Educación” – Project BU008A06).
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Cómo es conocido el VRP es un problema NP-Hard, y aunque hay conocidos
técnicas para su resolución de forma exacta como Fisher (1994) o Toth and Vigo
(2001), es mucho más extensa la literatura sobre técnicas heuŕısticas. Desde el
clásico algoritmo “saving” de Clarke and Wrigth, (1964), el algoritmo “swap”
de Gillet and Miller (1974), o el interesante algoritmo de Fisher y Jailkumar
(1981), etc, hasta el desarrollo de técnicas metaheuŕısticas más modernas, como
los Algoritmos Genéticos (Potvin and Bengio, 1994; Thangiah, Osman and Sun,
1994), Temple Simulado (Osman, 1993), Búsqueda Tabú (Gendreau et al., 1994;,
Rochat and Taillard, 1995; Taillard et al., 1997; Cordeau, Laporte and Mercier,
2001), GRASP, Kontoravdis and Bard (1995) Búsqueda Local Guiada (Vondouris
and Tsang, 1999), Colonias de Hormigas (Gambardella, Taillard, and Agazzi,
1999) o Variable Neigbourhood Search (Bräysy, 2003).

Un elemento importante para el buen funcionamiento de muchos de estas
técnicas heuŕısticas y metaheuŕısticas es la definición de movimientos o entornos
o vecindarios, que permitan pasar de una solución a otra cercana en el espacio de
búsqueda. Estos movimientos vecinales deben tener las siguientes buenas carac-
teŕısticas: cada vecindario debe contener un gran número de soluciones vecinas
y estas deben ser fáciles o rápidas de evaluar. De otra forma la exploración del
espacio de soluciones puede no ser eficaz. Tradicionalmente en los problemas de
rutas de veh́ıculos los movimientos vecinales pueden ser “intrarutas”, es decir,
modificaciones de cada ruta independiente de las demás (cambio de orden de los
puntos de visita de esa ruta), o “entrerutas”, es decir, modificaciones que afectan
a mas de una ruta (pasar elementos de una ruta a otra, o intercambio de elemen-
tos entre rutas). Entre los primero destacan los conocidos intercambios r-óptimos
(Lin, 1965; Lin and Kernighan, 1973) y entre los segundos los propuestos por Van
Breedam (1995), o Taillard et al. (1997) que generalizan las usadas anteriormente
por Gendreau et al. (1994).

Existen trabajos recientes que usan un mecanismo para generar soluciones
de forma diferente. Este mecanismo se basa en el método de “Ejection Chains”
(“cadenas de expulsiones”) concebido por Glover (1992), en el contexto del TSP.
Tiene las siguientes caracteŕısticas básicas que lo distinguen de los movimientos
clásicos: el movimiento de una solución a otra no es simple, es decir no se pasa
de una solución a otra vecina como tradicionalmente, sino que antes de realizarse
el cambio se genera una cadena de movimientos y la nueva solución se elige entre
las que aparecen en esa cadena. La segunda caracteŕıstica es que estas cadenas
no operan directamente sobre soluciones sino sobre estructuras similares a una
solución que se denominan “estructuras de referencia”. Por tanto para generar es-
tas cadenas de movimientos tipo “Ejection Chains” se ha de disponer una serie de
reglas para crear estas estructuras desde una solución, para pasar de una estruc-
tura de referencia a otra (reglas de transición), y para crear soluciones factibles a
partir de una estructura de referencia. Como se señala en Glover (1996), estas ca-
denas “pueden contener cantidades exponenciales de soluciones, pero cuyo mejor
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elemento puede identificarse en tiempo polinomial”. Implementaciones de Ejec-
tion Chains han producido buenos resultados en problemas de rutas de veh́ıculos
incluso con complicadas restricciones como en Cao and Glover (1997), Pesch and
Glover, (1997), Rego and Roucairol (1996), Rego, (1998a y 2001).

En este trabajo se trata el Minmax VRP, una variante del VRP en el que
la función objetivo no es minimizar la distancia total recorrida, sino la duración
de la ruta mas larga. Este problema no ha sido muy estudiado en la literatura
sin embargo han aparecido instancias reales de este modelo en el contexto del
transporte escolar en áreas rurales y que han sido estudiadas en Delgado and
Pacheco (2001), Corberán et al. (2002), Delgado (2002) o Pacheco and Mart́ı
(2006). En estos trabajos se usaban metaheuŕısticos basados en Búsqueda Tabú
y Búsqueda Dispersa y se usaban movimientos vecinales clásicos o simples. Una
caracteŕıstica en estas instancias reales de transporte escolar rural es que cada
ruta empieza en el primer punto de visita y no en el origen (es decir, son rutas
abiertas).

En este trabajo se propone el diseño y uso de movimientos basados en Ejec-
tion Chains adaptados a este problema. Para ello se propone un nuevo tipo de
estructura de referencia y se crean reglas para generar las correspondientes Ejec-
tion Chains. La eficacia de estos nuevos movimientos se contrastan con instancias
reales de transporte escolar. Los resultados obtenidos muestran que este nuevo
tipo de movimiento mejora significativamente los movimientos más clásicos usados
para este problema en las anteriores referencias.

El trabajo se estructura de la siguiente manera: en las dos siguientes secciones
se describen los movimientos vecinales clásicos “intrarutas” y “entrerutas”; en la
sección cuarta se describe el funcionamiento de las Ejection Chains, aśı como
algunas de las ejemplos más importantes de este métodos en problemas de rutas;
en la 5 se describe el método Ejection Chains propuesto para este problema, y en
la sexta se muestran los resultados computacionales.

A continuación se fija la notación de variables y parámetros usada en este
trabajo: {1, 2, . . . , n} el conjunto de puntos del problema, donde 1 es el colegio o
destino final, y {2, . . . , n} los puntos de recogida de estudiantes; qi el número de
niños que se recogen en cada punto, i = 2, . . . , n; tij el tiempo de recorrido entre
los puntos i y j, i, j = 1, . . . , n; Q capacidad de los veh́ıculos y m el tamaño de la
flota. Finalmente se denota por tmax la duración de la ruta más larga, es decir,
la función objetivo.
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2 Movimientos “Intra rutas”

2.1 Intercambios r-óptimos.

Fueron desarrollados por Lin (1965) y Lin y Kernighan (1973) para el TSP
simétrico. Consisten en eliminar r arcos y reconectar las r cadenas1 restantes (r+1
si la ruta no es cerrada). Usualmente se emplean 2-intercambios y 3-intercambios.

Figura 1.- Intercambio 2-Optimo

Figura 2.- Intercambio 2-Optimo

Figura 3.- Intercambio 3-Optimo

Obsérvese que algunos de ellos llevan impĺıcito un cambio de sentido en el
recorrido de alguna cadena. Esto puede ser un inconveniente o una ventaja de-
pendiendo del problema concreto.

1Cadena: secuencia de puntos consecutivos
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2.2 Intercambios de Or

Variante del método anterior, los intercambios de Or (1976) consisten en reco-
locaciones de cadenas de puntos en la misma ruta. Se suele limitar el tamaño de
las cadenas a intercambiar (2 nodos, 3 nodos, etc...). Son por tanto intercambios
3-óptimos. En la figura se recoloca la cadena [i, i+ 1] después del nodo j.

Figura 4.- intercambio de Or (cadena con dos nodos).

2.3 Intercambios IOPT

Variante del método anterior introducido por Braysy, (2003). Son similares a
los intercambios de Or, pero en los IOPT intercambios se invierte la orientación
de la cadena recolocada.

i i+1 j

Figura 5.- Intercambio IOPT (cadena con dos nodos).

3 Movimientos “Entre rutas”

3.1 Recolocación de cadenas (String relocation)

Fueron propuestos por Van Breedam (1995). Una cadena de puntos se mueven
de una ruta a otra manteniendo el orden original. El caso más simple consiste
en mover un punto de una ruta a otra; este tipo de movimientos aparecen en
Gendreau et al. (1994).
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Figura 6.- Movimiento relocate simple

Figura 7: Relocate con 2 nodos

3.2 Intercambio de cadenas (String Exchange)

También propuestos en Van Breedam (1995). De una ruta se env́ıa una cadena
de puntos a otra, y de esta última una cadena a la primera. En el caso más
simple el movimiento exchange intercambia dos puntos pertenecientes a 2 rutas
diferentes; este caso particular aparece también en Gendreau et al. (1994).

Figura 8.- Movimiento Exchange (caso simple y otro con cadenas de dos y un
nodo)

3.3 CROSS intercambios

Propuestos en Taillard et al. (1997). Suponen una generalización de los movi-
mientos entre pares de rutas. Son cambios entre pares de cadenas correspondientes
a rutas diferentes.
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Figura 9.- CROSS Intercambio

Se caracterizan porque mantienen el sentido (dirección) de los clientes en las
rutas seleccionadas. Se suele limitar el tamaño de las cadenas a intercambiar.
Como ya hemos comentado generalizan los movimientos anteriores: Si k = k′ = 1,
se tiene un String exchange; si k = 1 y k′ = 0 un String relocation; si i+ k + 1 e
i′ + k′ + 1 coinciden con el final de la ruta se tiene un cruce de rutas
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Figura 10.- Casos particulares de CROSS intercambios.

3.4 ICROSS intercambios

Fueron introducidos por Braysy (2003). Son similares a los CROSS intercam-
bio pero en los ICROSS intercambios se invierte la orientación de las cadenas
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intercambiadas.

Figura 11.- ICROSS intercambio

4 Concatenación de movimientos simples: “Ejec-
tion chains”

Los métodos de Ejection Chains fueron concebidos por Glover (1992) en el
contexto del TSP para generar movimientos complejos en el espacio de búsqueda
a partir de movimientos simples, modificando un número variable de componentes
de la solución.

En los métodos de Ejection Chains se genera una secuencia de movimientos,
que va conduciendo de una solución a otra. En los pasos sucesivos cambios en cier-
tos elementos causan que otros elementos sean expulsados de su estado, posición
o valor actual.

Habitualmente las Ejection Chains están relacionadas con las restricciones;
el término inglés “ejection” significa expulsión, salida, y alude a que al hacerse
cambios en ciertos elementos se causa que otros elementos sean “expulsados” de
su estado actual, debido a que en caso contrario se produciŕıa una infactibilidad.
En alguna de las referencias relacionadas con el TSP o el VRP las Ejection Chains
se realizan mediante expulsión o salida de nodos y en otras mediante salida de
trayectos o arcos.

Los procedimientos basados en Ejection Chains trabajan de forma expĺıcita
sobre estructura llamada estructura de referencia. Esta estructura es similar,
pero ligeramente diferente de una solución. Por medio de un conjunto de reglas
(denominadas “de transición”) se va pasando de una estructura a otra. También
existen reglas que permiten pasar de una estructura de referencia a soluciones
factibles del problema (soluciones prueba o Test Solutions). Al final la concate-
nación de movimientos consiste en pasar de una solución de partida a la mejor
solución prueba de todas las obtenidas.

Un esquema del funcionamiento de las “Ejection Chains” viene dado el la
Figura 12. S indica la solución inicial, ER las estructuras de referencia visitadas
y TS las soluciones pruebas obtenidas a partir de las estructuras de referencias
visitadas.

Rect@ Monográfico 3 (2007)
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Figura 12.- Esquema de funcionamiento de las “Ejection Chains”

Veamos algunos trabajos en que métodos basados en Ejection Chains han
conseguido buenos resultados.

4.1 “Stem-and-cycle”, SC

Rego (1998-a), en el contexto del TSP, diseña Ejection Chains que se basan en
la salida de arcos; para ello utiliza una estructura de referencia, que se representa
en la figura 13, llamada “stem-and- cycle” (tallo y ciclo). El tallo va desde t,
o punta, hasta r, ráız o nodo común con el ciclo, a los nodos, pertenecientes al
ciclo, que están al lado de la ráız se les denomina subráıces (s1 y s2 en la Figura
13). Los nodos t y r tienen un número impar de conexiones. Esta estructura se
dice que está degenerada si el tallo se reduce a un solo nodo (se trata entonces de
una solución factible).

Figura 13.- Estructura “stem-and-cycle“
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A partir de estas estructuras, mediante dos reglas diferentes, se irán obte-
niendo los siguientes eslabones de la cadena (ver figura 14). La primera regla
consiste en añadir un arco que va desde la punta hasta un nodo dentro del ciclo y
en eliminar alguno de los dos arcos que parten de ese nodo. La segunda consiste
en añadir un arco que va desde la punta hasta un nodo del tallo y en eliminar el
arco adecuado de los dos que parten de ese nodo.

Figura 14.- Dos reglas para que obtener nuevas estructuras.

A medida que se vayan recorriendo eslabones en una cadena, en un determi-
nado nivel puede ocurrir que la “stem-and-cycle” degenere, y en cualquier caso
siempre se pueden obtener las llamadas soluciones prueba (que son ciclos factibles)
de la Figura 15.-

Figura 15.- Soluciones “prueba”

En resumen, se puede observar que las Ejection Chains dan lugar a unos
vecindarios que incluyen los vecindarios de movimientos simples para a partir de
ellos crear movimientos más complejos y poderosos. Los vecindarios definidos
por Ejection Chains posibilitan movimientos de mayor poder sin un incremento
significativo del esfuerzo computacional.
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4.2 Estructura Double Routed (DR)

La podemos observar en la figura 16. Se parece a la anterior pero posee dos
nodos “ráız”. Glover (1996) muestra que esta estructura tiene varias ventajas
sobre la anterior.

Figura 16.- Ejemplo de Double Routed

4.3 Estructura en flor

Es una generalización de la estructura SC, presentada también por Rego,
(1998b). Esta estructura muestra su utilidad en el VRP sin ventanas de tiempo.

Figura 17.- Estructura en flor

4.4 Estructura Constrained Doubly Rooted, CDR

Sontrop et al. (2006) contribuyen con una nueva estructura de referencia que
generaliza estructuras utilizadas previamente. La estructura de referencia que
presentan llamada Constrained Doubly Rooted, CDR, es la que se muestra en la
imagen.
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Figura 18.- Estructura Constrained Doubly Rooted

Tiene dos ráıces. Se llama restringida porque el corazón, donde se sitúa el
depósito siempre es una de las ráıces.

5 Nuevas “Ejection Chains” para el Minmax VRP

En esta sección se describe el nuevo método tipo “Ejection Chains” que se
propone en este trabajo. Para ello se describe primero la estructura de referencia y
las diferentes reglas de transición en que se basan; es decir: para pasar de solución
inicial a estructura, de estructura a estructura y de estructura a soluciones prueba.
La estructura que se propone se describe en la figura 19. Es similar al a la
estructura en flor descrita en la subsección 4.3, pero con arcos en vez de arista
(es decir se trata de un grafo dirigido).

Figura 19.- Estructura de referencia propuesta, m rutas completas (Rj) y una
ruta parcial incompleta o huérfana RP
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Básicamente la estructura incluye todos los puntos del problema y consta de m
rutas completas (en la figura 19 R1, R2 y Rm), es decir que empiezan y finalizan
en el origen 1, y una ruta incompleta o parcial (“huérfana”, RP ), que también
finaliza en el origen pero comienza en otro punto diferente.

Hay 2 formas de generar estas estructuras a partir de una solución. La primera,
más sencilla, se ilustra en la figura 20: en una ruta se elimina un arco (en la figura
el (y, z)) y se enlaza el primer punto de ese arco con el origen (se añade el arco
(y, 1))

Figura 20.- Forma sencilla de crear una ruta parcial RP

En la segunda forma, se eliminan dos arcos en dos rutas diferentes, y se enlaza
la primera parte de la primera ruta con la segunda parte de la segunda. La primera
parte de la segunda ruta se enlaza con el origen 1. De esta manera como ruta
parcial o “huérfana” la segunda parte de la primera ruta. La figura 21 ilustra este
proceso.

Figura 21.- Otra forma de crear una ruta parcial

La forma de pasar de una estructura a otra es la siguiente: se elimina un arco
de una ruta y se enlaza la primera parte de esa ruta con la ruta parcial actual.
De esta manera queda la segunda parte de la ruta como nueva ruta parcial. La
figura 22 ilustra este proceso.

Rect@ Monográfico 3 (2007)
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Figura 22.- Paso de una estructura a otra

Finalmente para generar soluciones prueba a partir de una estructura, se in-
serta la ruta parcial entre los dos últimos puntos de una ruta (i.e el penúltimo
punto, y el origen). Por tanto se generan m soluciones prueba, tantas como rutas.
La figura 23 ilustra este proceso.

Figura 23.- Obtención de soluciones prueba

La transición de una estructura de referencia a otra debe evitar la creación de
rutas parciales degeneradas, es decir, con solo un punto, (el destino final 1). La
razón es que una estructura con ruta parcial degenerada da lugar a solo una so-
lución prueba y además esta ya esta incluida entre las soluciones prueba obtenidas
de la estructura anterior. Por otra parte para evitar ciclos, se ha de impedir las
transiciones entre estructuras que supongan la incorporación de arcos eliminados
en transiciones anteriores o en la creación de la primera estructura inicial.

Por tanto el procedimiento Ejection Chain trabaja de la forma siguiente:

• A partir de la solución inicial se crean todas las estructuras de referencia,
ER, como se ha indicado anteriormente, y para cada una de ellas se generan
las soluciones prueba ST correspondientes
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• Entre todas ellas se identifica la mejor solución, según la función objetivo
y su correspondiente estructura de referencia; se toma esta como primera
estructura de referencia actual

• En los pasos siguientes se actúa de forma similar: desde la estructura de
referencia actual se generan todas las estructuras de referencia posibles y
sus correspondientes soluciones prueba; se toma como nueva estructura de
referencia actual la correspondiente a la mejor solución

• El proceso finaliza cuando se han ejecutado un número predeterminado
de pasos, aunque se pueden establecer otros criterios. La solución final
obtenida (el output del proceso) es la mejor solución prueba visitada en
todo el proceso.

Hay que hacer las siguientes consideraciones al proceso descrito anteriormente:

• En nuestro caso la función objetivo es la duración de la ruta más larga; en
caso de “empate” se observaŕıa cual es la segunda ruta más larga de cada
solución; y si se mantuviera el empate la tercera y aśı sucesivamente

• La mejor solución se busca siempre entre las soluciones factibles, en otras
palabras se prefiere siempre una solución factible que otra infactible. Si en
algún paso no hubiera soluciones prueba factibles se elegiŕıa como mejor
solución aquella con menor grado de infactibilidad. Como en este problema
las soluciones prueba solamente pueden violar las restricciones de capacidad,
se elegiŕıa como mejor solución aquella que menos exceda esta restricción
en el conjunto de las rutas

6 Resultados Computacionales

A continuación, para contrastar la eficacia de estos movimientos tipo Ejec-
tion Chains, se van a realizar una serie de pruebas con las instancias reales de
transporte escolar antes mencionadas. Para estas instancias se ejecutan sendos
procedimientos de búsqueda local: uno que usa movimientos simples basados en
CROSS intercambios (ver sección 3.3), y el segundo en el que el paso de una
solución a otra se basa en el proceso de Ejection Chain descrito en el apartado
anterior, con un número de pasos igual a 5. Los CROSS intercambios han sido
usados con éxito para este problema y con estas instancias en Delgado y Pacheco
(2001), Delgado (2002) y Pacheco y Mart́ı (2006). En ambos procedimientos de
Búsqueda Local tras cada movimiento las rutas de la nueva solución obtenida se
mejoran con intercambios de Or (ver sección 2.2).

Las instancias reales se refieren a la recogida de alumnos de secundaria y
su traslado a 16 institutos de secundaria en la provincia de Burgos; los datos
para cada instituto (número de puntos de recogida, número de alumnos en cada
punto matrices de distancia y tiempos) son descritas exhaustivamente en Delgado
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(2002), además están disponibles en las páginas web de Rafael Mart́ı y Joaqúın
Pacheco. Para cada instituto se han considerado diferentes números de autobuses
m, variando desde nvr − 1, hasta nvr + 3, siendo nvr el número de veh́ıculos
usados en la realidad por las autoridades.

Las soluciones iniciales de las que parten ambos procedimientos de búsqueda
local se generan con la adaptación del algoritmo de Fisher y Jaikumar (1981)
propuesta en Pacheco y Mart́ı, (2006). En la tabla 1 se muestran los resultados
de ambos algoritmos de búsqueda local (BL CROSS búsqueda local basada en
CROSS intercambios y BL EC basado en Ejection Chains), aśı como la función
objetivo de la solución usada por las autoridades (Sol.Real).

BL CROSS BL EC
Pr. Sol.Real M m

nvr/tmax nvr−1 nvr nvr+1 nvr+2 nvr+3 nvr−1 nvr nvr+1 nvr+2 nvr+3

S1 12/70 57 52 48 47 48 55 52 48 47 48
S2 5/45 47 44 32 32 47 42 33 32
S3 6/60 54 45 43 39 54 45 43 39
S4 3/70 57 41 38 36 55 41 38 34
S5 4/60 59 47 39 59 47 39
S6 4/80 90 66 54 50 48 90 66 55 50 43
S7 6/60 54 45 37 36 51 45 37 36
S8 9/75 61 58 50 49 45 60 58 50 47 44
S9 5/90 91 65 57 51 47 93 65 55 50 47
S10 6/60 48 44 40 47 43 40
S11 4/60 67 51 45 39 65 48 43 39
S12 2/25 15 14 9 15 14 9
S13 6/45 40 36 29 29 40 36 29 29
S14 5/60 53 46 38 53 46 37
S15 7/50 50 45 44 40 50 44 42 40
S16 2/60 84 51 40 35 84 51 40 35

Tabla 1: Resultados obtenidos por ambos procedimientos de búsqueda local (en minu-
tos)

De la tabla 1 que muestra los resultados computacionales se pueden extraer
las siguientes conclusiones:

• Los resultados obtenidos por ambas estrategias mejoran los resultados que
se usaron en la realidad. Esta mejora es significativa en casi todos los casos;
solamente en S2 la diferencia no es muy grande (1 y 3 minutos).

• Los resultados obtenidos por ambas estrategias son iguales en la mayoŕıa de
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las instancias 43 de 64; en muchos de estos 43 casos la solución final coincide
con la mejor solución reportada hasta la fecha

• En el resto de los 21 instancias las Ejection Chains obtienen mejor resultado
en 18 casos y los CROSS intercambios en 3

• Además las Ejection Chains mejoran significativamente en algunos casos
(S6 m = 7 en 5 minutos; S11 m = 4, en 3 unidades, y varios casos en
2 minutos); mientras que los CROSS intercambios simples mejoran en 1
minuto en 2 casos (S2 m = 6; y S9 m = 4) y en 2 minutos en 1 caso (S6
m = 5).

Por tanto es claro que aunque no muestren una superioridad aplastante las Ejec-
tion Chains propuestas en este trabajo dan ligera pero significativamente mejores
resultados que los movimientos simples propuestos en anteriores trabajos para
este problema.

7 Conclusiones

En este trabajo se diseñan movimientos basados en Ejection Chains para pro-
blemas de rutas, concretamente para el Minmax VRP. Nuestras Ejection Chains
se basan en estructuras de referencia y reglas de transición relativamente sencillas,
fáciles de programar y con una complejidad polinomial en el tamaño del problema
(θ(n2)): m rutas completas y una ruta parcial que en cada paso va reinsertándose
en una ruta completa dando lugar a otra ruta parcial. Los movimientos vecinales
a que dan lugar estas Ejection Chains mejoran significativamente los movimientos
simples usados para este problema en las instancias reales de transporte escolar en
referencias recientes. Hay que indicar que al menos en un contexto de búsqueda
local. Es de esperar que este tipo de movimientos mejoren aún más sus resulta-
dos insertados en estrategias heuŕısticas más sofisticadas que una búsqueda local.
Además las estructuras y reglas usadas podŕıan sofisticarse más para dar lugar a
movimientos más potentes y adaptarse fácilmente a otros modelos de rutas.
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1 Introducción

En este trabajo se presenta un sistema de apoyo a la gestión y control de la
producción de una pequeña empresa de contrachapado de la Comunidad Valen-
ciana. La producción de la empresa se gestionaba de manera intuitiva, basándose
únicamente en la experiencia de los directivos. El alto grado de incumplimiento
de las fechas de entrega de los pedidos señalaba la ineficiencia de su gestión y la
necesidad de instalar un sistema de gestión integral de la producción.

La producción en esta empresa es un proceso continuo con dos fases bien di-
ferenciadas en cuanto a la incertidumbre de sus procesos. La primera de ellas es
la que contiene mayor grado de incertidumbre, por la influencia de factores exter-
nos no controlables. La segunda es más determinista y por ello su planificación
es susceptible de ser automatizada. Al final de esta segunda fase, se detectó un
cuello de botella que limitaba el ritmo de trabajo previo.

A partir de un análisis exhaustivo de la empresa se decidieron dos tipos de
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actuaciones para mejorar la eficiencia del sistema productivo. Primero, desarro-
llar un procedimiento matemático para resolver de forma eficiente el problema
originado por el cuello de botella. En segundo lugar, diseñar una aplicación que
integrase todos los datos del sistema productivo (clientes, proveedores, stocks,
pedidos, subproductos generados, horas utilizadas, desperdicio de materia prima)
junto con el algoritmo matemático. Finalmente, deb́ıa proveerse al gestor de di-
ferentes informes que le permitiesen planificar de manera más eficiente la parte
del sistema productivo no susceptible de ser automatizada. Estos informes pro-
porcionan información sobre el estado de los pedidos, rendimiento de las distintas
secciones, estados de stocks, calidad de la materia prima por proveedor, etc.

En los siguientes eṕıgrafes se describe la empresa y su proceso productivo; el
sistema de información desarrollado (GESPLAN) y sus componentes principales:
el algoritmo heuŕıstico para la automatización de la planificación y la base de
datos que gestiona toda la información. Finalmente se exponen las conclusiones.

2 Descripción del proceso productivo

La empresa se dedica a la elaboración de tablero contrachapado, destinado
mayoritariamente a la obtención de los componentes utilizados por los fabricantes
de envases de madera. También produce tablero para la fabricación de mueble
escolar y de esqúıs. Su principal actividad consiste, pues, en la transformación
de troncos de chopo en tableros de contrachapado, que posteriormente se cortan
a la medida solicitada por el cliente. La producción se realiza contra pedido y
también para stock.

En el proceso de transformación (Figura 1), la madera pasa secuencialmente
por 4 secciones: desenrollo, secado, prensado y corte. En la primera sección, los
troncos de chopo se desenrollan y cortan en hojas de chapa cuadradas o rectangu-
lares de diferentes medidas y grosores. El aprovechamiento depende de diversos
factores como la forma del tronco, el grado de humedad, el grosor de la corteza,. . .
La eliminación de la humedad de la madera, en la sección de secado, se realiza
bien en una máquina o bien en el secadero exterior al aire libre. Las hojas se-
cas se clasifican en tres grupos según su calidad (primera, segunda y tercera).
A continuación, estas hojas de chapa clasificadas pasan a la sección de pren-
sado, en donde se agrupan y encolan varias hojas y se introducen en las prensas
obteniéndose el tablero contrachapado. Los tableros de idénticas caracteŕısticas
se apilan formando los lotes, que se etiquetan con la medida, cantidad, fecha y
prensa utilizada. En la sección de corte, los tableros son lijados y cortados para
obtener el producto final solicitado por el cliente. Cada tablero pasa secuencial-
mente por dos máquinas. La primera (macro) procesa los tableros uno a uno y
realiza simultáneamente varios cortes longitudinales para obtener piezas con el
ancho indicado en el pedido. Las piezas aśı obtenidas se apilan y se cortan en la
retestadora a la medida del largo solicitado para el producto final. Esta máquina
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puede realizar también varios cortes simultáneos. La empresa dispone de dos
macros y una retestadora. En todas ellas, las sierras laterales cortan una medida
fija de cada lado que no se aprovecha.

La producción es por tanto un proceso lineal y continuo en el que se diferencian
dos fases en función de la incertidumbre de los datos que intervienen en el proceso.
La primera fase (secciones de desenrollo y secado) es la que mayor grado de
incertidumbre posee. En estas secciones no se conocen con precisión la duración
del proceso ni la calidad del producto obtenido (hojas de primera, segunda o
tercera calidad), ya que son numerosos los factores externos que influyen en él:
calidad de la madera recibida, situación climatológica, pues de ésta dependen los
tiempos de secado exterior,. . . La segunda fase (secciones de prensado y corte)
puede ser planificada de forma automática pues los datos son deterministas y
conocidos. El objetivo de la planificación será satisfacer las fechas de entrega
de los pedidos y optimizar la utilización de los recursos productivos. Una vez
planificada esta segunda fase, el gestor puede planificar de manera más eficiente
la parte del sistema productivo no susceptible de ser automatizada.

El estudio de equilibrado del flujo de la producción ha permitido identificar
el cuello de botella en la sección de corte. Concretamente, las principales limi-
taciones se producen en la máquina que realiza los últimos cortes en el tablero
(retestadora). El tiempo de preparación de esta máquina para ajustar las sierras
cuando se cambia la medida del producto es muy elevado, pues los cambios y
mediciones se realizan manualmente. Por otra parte, la capacidad productiva de
las prensas es suficiente para alimentar la sección de corte.

Figura 1: Esquema de producción de la empresa de contrachapado
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3 Sistema de información para la gestión integral
GESPLAN

Con el objetivo de mejorar la gestión integral de la empresa, se ha desarrollado
el sistema de información, GESPLAN, que a continuación se describe. En él se
integra una base de datos con los procedimientos automatizados de planificación,
que se alimentan mutuamente. La información global resultante permite al gestor
planificar de manera más eficiente la parte del sistema productivo no susceptible
de ser automatizada. Además, facilita la elaboración de informes para los encarga-
dos de las distintas secciones y de los documentos administrativos habitualmente
necesarios.

El objetivo principal del sistema de planificación es satisfacer las fechas de
entrega de los pedidos de los clientes, optimizando la utilización de los elementos
productivos. Para ello, dado que la retestadora es un cuello de botella, el sistema
comienza elaborando un plan de corte para dicha máquina. Con la información
residente en la base de datos relativa a los pedidos pendientes y al stock almace-
nado, se ejecuta el algoritmo heuŕıstico que se describe en el eṕıgrafe siguiente.
Como resultado, se obtiene las dimensiones y el número de los tableros a cortar,
el patrón de corte de cada tablero (número de sierras y distancia entre ellas en
cada máquina de corte) y el orden en que deben pasar los lotes de tableros por
la sección de corte. También se indica lo más tarde que se debe cortar cada lote
para que se puedan cumplir las fechas de entrega. Además del objetivo general
del sistema, el algoritmo también persigue minimizar desperdicios y minimizar el
tiempo total de proceso.

Con el fin de poder llevar a cabo el plan de corte generado por el algoritmo,
debe organizarse el trabajo de las tres secciones previas para que los lotes de
tableros que salen de las prensas alimenten de manera adecuada la sección de
corte. Para ello, a partir de los resultados del algoritmo, GESPLAN construye
también un plan para cada una de las secciones anteriores.

El plan de prensado indica las dimensiones y cantidad de tableros de los lotes
y el orden en que han de ser prensados, aśı como lo más tarde que debe comenzar
el proceso de cada lote para satisfacer las fechas de entrega. El plan de troceado
de troncos y de secado indica el número de hojas necesarias de cada calidad, las
dimensiones de las hojas y el orden de corte y secado. No se puede indicar con
precisión cuántas hojas hay que cortar ni cuántos troncos hay que trocear, aunque
śı se puede hacer una estimación.

Toda la información generada se vierte en la base de datos, facilitando aśı el
posterior análisis por parte la empresa. Esta información se extrae mediante in-
formes ya programados en la base de datos. Estos informes están parametrizados,
permitiendo variar fechas, proveedores, clientes, etc. El beneficio es doble, por
una parte GESPLAN permite elaborar automáticamente albaranes, facturas, in-
formación sobre pedidos no completos, etc. y por otra planificar automáticamente
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la producción de la segunda fase del proceso y controlar la producción no sus-
ceptible de ser planificada de manera automática. La comunicación entre los dos
componentes principales del sistema, base de datos y algoritmo, es por tanto bi-
direccional. La base de datos ha sido creada con el programa Microsoft Access c©
con procedimientos para exportar e importar datos a la segunda componente del
software. El algoritmo diseñado para planificar la producción es un algoritmo
heuŕıstico espećıficamente desarrollado para esta aplicación.

4 Algoritmo heuŕıstico para la planificación de la

máquina de corte

El algoritmo heuŕıstico desarrollado calcula las dimensiones de las hojas que
hay que desenrollar e intenta encontrar una secuencia de paso por la retestadora
que permita satisfacer las fechas de entrega pactadas con los clientes.

El algoritmo resuelve el problema de planificar la máquina de corte en tres
etapas. En la primera (apartado 4.1) decide los lotes de tableros que se tienen que
procesar para realizar todos los pedidos. En segundo lugar (apartado 4.2) opti-
miza el orden en que dichos lotes pasan por la retestadora. Por último (apartado
4.3), la solución calculada se propaga al resto de máquinas.

4.1 Elección de los lotes para atender a los pedidos

Definimos un pedido de manera que todas las piezas sean exactamente del
mismo tipo, con las mismas caracteŕısticas. En general, será necesario dividir
las peticiones reales de un cliente en diversos pedidos para que se cumpla esta
premisa. En esta primera etapa del algoritmo se determina el número de tableros
que debe ser procesado y las medidas de los mismos para obtener las piezas
demandadas en los pedidos, intentando minimizar el residuo generado (parte del
tablero que se desperdicia). De cada tablero van a surgir piezas de cómo máximo
dos pedidos, A (principal) y B (residual). Definimos un lote como un conjunto de
tableros que serán cortados de la misma manera, dando lugar cada tablero a n1

piezas de las mismas medidas para el pedido A y, si procede, n2 piezas de otras
medidas para el pedido A o para stock. Por lo tanto, cada lote queda determinado
por el número de tableros, las dimensiones de los mismos, el tipo de acabado, el
número de sierras en las distintas máquinas de corte y la distancia entre ellas.
Además, a cada lote se le asigna la fecha de entrega del pedido principal asociado.

La empresa trabaja con una serie de medidas estándar de tablero. Los pedidos
se ordenan por fecha de entrega creciente y para cada pedido A se busca aquella
longitud de tablero que se pueda convertir en piezas del pedido de manera que
el desperdicio sea mı́nimo. Después, se calcula la parte sobrante de tablero, des-
contados los márgenes, para ver si de ella se puede obtener alguna pieza de otro
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pedido B que requiera el mismo acabado o, en su defecto, alguna pieza para stock.
Obviamente esto reduce significativamente el número de pedidos que pueden uti-
lizarse como pedidos residuales. Por último, se calcula el número de tableros
necesario de la longitud escogida de manera que sirvamos por completo al pedido
A o al B. Si con los tableros que componen el lote no servimos completamente al
pedido A, calcularemos otro lote para las piezas restantes.

Por lo tanto, cada lote tiene asociados como máximo dos pedidos y cada pedido
puede requerir más de un lote.

4.2 Optimización del orden de los lotes

Una vez decididos los lotes que vamos a procesar, debemos escoger el orden en
que van a ser atendidos por la retestadora. Para evaluar la bondad de un orden
concreto tenemos en cuenta dos factores. El primero y más importante es si los
pedidos van a poder ser entregados a tiempo. Para calcular esto sólo tenemos
en cuenta el tiempo empleado por la retestadora, ya que según la experiencia ese
tiempo va a ser mayor que el utilizado en el resto de secciones de la empresa. Cada
pedido entregado fuera de tiempo lleva asociada una penalización dependiente de
su importancia y de la tardanza en entregarlo. El segundo factor que tenemos
en cuenta, con mucho menos peso que el primero, es el tiempo necesario para los
cambios de sierra en la retestadora. El problema es por tanto encontrar el orden
de los lotes que minimice esta función de penalización. Veamos el modelo que
corresponde con este problema de optimización. Para simplificar la formulación
supondremos que cada lote sirve a un único pedido, aunque śı permitiremos varios
lotes por pedido.

Modelo Partimos de la definición de los n lotes, l1, . . . , ln. Cada pedido Ph, h =
1, . . . , p, lleva asociados nh lotes necesarios para terminar el pedido, Ph =
{lPh(1), . . . , lPh(nh)}.

Definimos xi, i = 1, . . . , n, como el instante en que el lote i-ésimo comienza
a ser tratado por la retestadora. Entonces xi + di es el instante de finalización
del lote, donde di denota el tiempo necesario para cortar todos los tableros del
lote con la retestadora, una vez sus sierras están en la posición adecuada. Esta
duración del lote es conocida y constante (una vez definidos los lotes). La fecha de
finalización del pedido Ph es por tanto fh = max{xPh(i) + dPh(i), i = 1, . . . , nh}.
Nuestro principal objetivo es entregar los pedidos antes de su fecha de entrega
ddh. Una tardanza de un pedido conlleva una penalización ch dependiente de la
importancia del mismo. El primer y más importante factor de la función objetivo
es por tanto

p
∑

h=1

ch(fh − ddh)+
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Según la información proveniente de la empresa existe una gran diferencia
en los tiempos necesarios para el cambio de sierras entre dos lotes, dependiendo
del tamaño de los tableros de ambos lotes y las sierras que se deban emplear.
Es por tanto importante intentar minimizar el tiempo total de cambio de sierras.
Dado que este tiempo depende del orden concreto de lotes que escojamos, estamos
trabajando con un recurso con tiempo de preparación dependiente de la secuencia.
Los tiempos de preparación son t́ıpicos en los procesos industriales, donde las
unidades de proceso como reactores o filtros tienen que ser limpiados después
de la finalización de ciertas actividades. En general, el tiempo de limpieza será
mayor para pasar de un producto de baja calidad a uno de alta que viceversa. En
nuestro caso el tiempo de preparación depende de si es necesario mover, añadir
o quitar sierras. Para profundizar en la literatura sobre tiempos de preparación,
consultar [1]o [8, Sec. 3]. La definición de lotes nos permite calcular la matriz
cambio(), cuya elemento ij contiene el tiempo de preparación de la retestadora
entre los lotes i y j.

Para modelizar las restricciones del modelo necesitamos conocer el orden en
que los lotes son procesados. Concretamente, definimos para cada par de lotes
(i, j), i 6= j, la variable binaria yij , que es 1 si el lote i se procesa inmediatamente
antes que el j, 0 en caso contrario. Si un lote j se procesa justo después del i la
restricción correspondiente es xj = xi+di+cambio(i, j), dado que empezaremos a
procesar el lote j cuando se hayan efectuado los cambios de sierra correspondientes
después de acabar el lote i. Esta igualdad se consigue añadiendo 2 restricciones
por cada pareja de lotes i y j, siendo M una constante muy grande, por ejemplo

M =

n
∑

i=1

di +

n
∑

i=1

n
∑

j=1,j 6=i

cambio(i, j):

xj ≥ xi + di + cambio(i, j)yij −M(1− yij) (1)

xj ≤ xi + di + cambio(i, j)yij +M(1− yij) (2)

Un valor de 1 en yij nos lleva a la igualdad deseada, mientras que un valor
de 0 nos ofrece dos desigualdades triviales. Estas variables nos ayudan además
a modelizar la segunda parte de la función objetivo, minimizar el tiempo inver-
tido en cambio de sierras,

∑n

i=1

∑n

j=1,j 6=i cambio(i, j)yij . Como éste juega un
papel secundario, lo multiplicamos por una constante β mucho menor que α, la
constante por la que multiplicamos el primer factor. El modelo de programación
lineal entera queda resumido en la Figura 2.
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Min α

p
∑

h=1

ch(fh − ddh)+ + β

n
∑

i=1

n
∑

j=1,j 6=i

cambio(i, j)yij

s.a. xj ≥ xi + di + cambio(i, j)yij −M(1− yij) i, j = 1, . . . , n, i 6= j
xj ≤ xi + di + cambio(i, j)yij +M(1− yij) i, j = 1, . . . , n, i 6= j
fh ≥ xPh(i) + dPh(i) i = 1, . . . , nh

h = 1, . . . , p
xi ≥ 0 i = 1, . . . , n
yij ∈ {0, 1} i, j = 1, . . . , n, i 6= j

n
∑

j=1,j 6=i

yij = 1 i = 1, . . . , n

Figura 2. Modelo matemático

Este problema es NP-duro, al reducirse al problema del agente viajero (TSP)
cuando α = 0 y β = 1. Cuando α = 1 y β = 0 y ch = 1, obtenemos el problema
de minimización de la suma de tardanzas en una máquina, también NP-duro [3].
En ambos caso hemos supuesto que tenemos un único lote por pedido.

Se ha diseñado un algoritmo heuŕıstico para obtener una solución de este
problema. Sin embargo, no vamos a intentar encontrar una solución óptima
global para el mismo. Nuestras estimaciones sobre el tiempo empleado para cada
acción son muy aproximadas. Además, el ı́ndice de percances que puede ocurrir
es alto. Por tanto, no podemos controlar con completa seguridad si un pedido lo
podemos entregar a tiempo o no, i.e., la función objetivo (primer factor) no es
completamente fiable, tiene demasiada incertidumbre. Para paliar esta carencia
vamos a restringir el espacio de búsqueda de soluciones, limitándonos a aquellas
donde los pedidos sigan un orden aproximado acorde con la fecha de entrega,
permitiéndonos variaciones para tener en cuenta la importancia de los pedidos y
poder mejorar la segunda parte de la función objetivo entre aquellos subórdenes
que conduzcan a entregar los pedidos a tiempo. Esquema básico del algoritmo.

La Figura 3 muestra el esquema algoŕıtmico básico compuesto por dos meta-
heuŕısticos, el primero de ellos es un GRASP y el segundo un algoritmo genético.
Los algoritmos genéticos (GAs) fueron introducidos en [7] y simulan la evolución
biológica. Trabajan con conjuntos de soluciones denominados poblaciones que
van cambiando o evolucionando a lo largo del tiempo. La calidad de una solución
le ayuda a sobrevivir las distintas generaciones o ser reemplazada por nuevas
soluciones mejores (supervivencia del más fuerte), calculadas a partir de viejos
individuos mediante combinación y mutación. Para una introducción en los GAs
consultar [5].
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1. Definir lotes. Sea n el número de lotes.

2. POB = GRASP(npob).

3. SOLUCIN = GA(POB, npob, nIter).

4. Propagar SOLUCIN al resto de secciones.

Figura 3. Esquema algoŕıtmico GRASP + GA(npob, nIter)

El algoritmo desarrollado comienza calculando una población inicial POB
que contiene npob individuos. A partir de entonces se repite el mismo proceso un
número prefijado de veces nIter (ver Figura 4). La población se divide aleatoria-
mente en parejas de miembros. Cada pareja de individuos (padres) se combina
o cruza, dando lugar a dos nuevas soluciones (hijos). Posteriormente, los hijos
son sometidos a un proceso de mutación, tras lo cual se determina su calidad me-
diante la función objetivo. Al igual que en algunos algoritmos genéticos h́ıbridos
(ver [9]), y al contrario que en los genéticos puros, aplicamos una búsqueda local,
DOSOPT, a cada uno de los hijos para mejorar su calidad (ver Figura 4). Por
último, los añadimos a la población, obteniendo una población aumentada de
2npob individuos una vez hemos combinado todas las parejas formadas. Al elimi-
nar los npob peores individuos retornamos al tamaño original y podemos repetir
el procedimiento.

1. Desde i = 1, . . . , nIter:

1.1 Dividir la población en pares de individuos

1.2 Combinar cada par de individuos y generar otros dos indivi-
duos con el operador de cruce

Para cada individuo λ obtenido en 1.2, hacer:

λ = MUTACIN(λ)

λ = DOSOPT (λ)

POB = POB ∪ {λ}
Eliminar de POB los peores nPob individuos, desempatando
aleatoriamente

2. Devolver la mejor solución

Figura 4. Esquema algoŕıtmico GA(POB, npob, nIter)

Individuos, calidad, cruce y mutación Un individuo I viene dado por una
permutación de los lotes I = (lI1, . . . , l

I
n), que determina el orden en que los lotes

Rect@ Monográfico 3 (2007)
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pasarán por la retestadora. La calidad de un individuo se calcula atendiendo a la
función objetivo descrita en el modelo (Figura 2) y siguiendo este orden, donde
el inicio del lote lIi es el final del lIi−1 más cambio(lIi−1, l

I
i ). El final del lote lIi es

el inicio más su duración, que al ser constante sólo se calcula una vez al inicio
del algoritmo. El segundo factor de la función objetivo nos ayuda a desempatar
entre (sub)permutaciones de lotes que lleven a las mismas tardanzas.

El cruce utilizado en el GA propuesto es el denominado de dos puntos para
permutaciones [6] que a partir de dos individuos (madre y padre) genera dos
nuevos individuos (hijo e hija) del siguiente modo: se escogen 2 enteros q1 y q2
con 1 ≤ q1 < q2 ≤ n. La hija Ha se determina tomando los lotes de las posiciones
1, . . . , q1 de la madre M, lHa

i := lMi . Las posiciones i = q1 + 1, . . . , q2 se obtienen
del padre P, lHa

i := lPk , donde k es el mı́nimo ı́ndice tal que lPk /∈ {lHa
1 , . . . , lHa

i−1}.
Las posiciones restantes i = q2 + 1, . . . , n se obtienen de nuevo de la madre,
lHa
i := lMk , donde k es el mı́nimo ı́ndice tal que lMk /∈ {lHa

1 , . . . , lHa
i−1}. El hijo

se obtiene de forma simétrica intercambiando los roles de la madre y el padre.
Este operador de cruce ha resultado efectivo en varios problemas de secuenciación
(ver por ejemplo [6] o [2]). La motivación para seleccionar este operador ha sido
doble. En primer lugar, si ambas soluciones contienen un determinado lote en sus
primeras posiciones, esta caracteŕıstica la heredarán ambos hijos. Esto es útil para
aquellos lotes con fecha de entrega temprana, los cuales estarán en general en las
posiciones delanteras en las buenas soluciones. En segundo lugar, la hija hereda
con este operador muchos de los emparejamientos de la madre. Es decir, si dos
lotes están en posiciones consecutivas en la madre (al menos en la primera parte,
la anterior a q1), también lo estarán en la hija. Esto es importante para el segundo
miembro de la función objetivo, porque se conserva el tiempo de preparación de
la retestadora.

La mutación es importante para introducir diversidad en la población. Se
ha escogido una mutación similar a la empleada en [6]. Para cada una de las
posiciones del individuo, salvo la última, se decide aleatoriamente si intercambiar
el lote en esa posición con el situado en la siguiente. Debido a la incertidumbre
en la función objetivo, no se permite que el pedido principal asociado al lote que
se adelante tenga una fecha de entrega que supere en una cantidad δ (cuyo valor
es elegido por el usuario) a la del pedido principal asociado al lote que se retrase.
Población inicial y búsqueda local.

La población inicial se crea mediante la técnica GRASP (ver Figura 5). Un
procedimiento de búsqueda miope aleatorizado y adaptativo (GRASP, [4]) es un
proceso iterativo o multi-arranque, en el que cada iteración GRASP consiste en
dos fases y calcula una solución. En general GRASP termina ofreciendo la mejor
solución obtenida, aunque en el algoritmo que se presenta se han introducido
todas las soluciones en la población inicial. En la fase constructiva de un GRASP
se construye una solución posible iterativamente, añadiendo elemento a elemento.
Los elementos se escogen atendiendo a una función greedy (miope o agresiva),

Rect@ Monográfico 3 (2007)



Valls et al. 295

pero teniendo en cuenta la aleatoriedad. En la segunda fase o fase de mejora, se
aplica una búsqueda local en un vecindario de la solución creada anteriormente.

1. Desde i = 1, . . . , nPob

1.1 ELEG = 1, . . . , n

1.2 Desde i = 1, . . . , n

1.2.1 Fecha ent = min{fecha de entrega(j), j ∈ ELEG}

1.2.2 ELEG2 = {j ∈ ELEG/ | fecha de entrega(j)−Fecha ent |< µ}

1.2.3 Calcular tiempo(j), j ∈ ELEG2; donde tiempo(j) = tiempo de
preparación (cambios de sierra) de la máquina si escogiéramos
ahora el lote j

1.2.4 Seleccionar lote k ∈ ELEG2 con muestreo aleatorio sesgado uti-
lizando la función tiempo para calcular las probabilidades

1.2.5 ELEG = ELEG \ {k}; λ(i) = k

1.3 Hacer λ = DOSOPT (λ)

1.4 POB = POB ∪ {λ}

2. Devolver POB

Figura 5. Esquema algoŕıtmico GRASP(nPob) para calcular la población
inicial

En la iteración i-ésima de la primera fase se escoge el lote que asignamos a la
posición i-ésima del individuo. Para ello se restringen los lotes candidatos a ser
seleccionados como aquellos lotes cuya fecha de entrega dista de la mı́nima fecha
de entrega de los lotes elegibles una cantidad menor que un parámetro µ. Esta es
la forma de asegurar que los lotes asociados a pedidos con una fecha de entrega
temprana se sitúen en las primeras posiciones. A cada uno de los lotes candidatos
a ser escogidos se le asigna una prioridad dependiente del tiempo de preparación
necesario (cambios de sierra en la retestadora), teniendo en cuenta el lote escogido
en la iteración anterior. Con estas prioridades se calculan probabilidades, que se
utilizan para escoger el lote que ocupará la posición i-ésima del individuo que
se está generando. De esta forma se cumplen dos caracteŕısticas del GRASP,
que la función que gúıa la selección es adaptativa y aleatorizada. El tiempo de
preparación de la máquina seŕıa la función greedy empleada en este caso.

En la segunda fase se aplica una búsqueda local, DOSOPT, basada en los
dos-intercambios. En concreto, para cada posición i, i = 1, . . . , n− 1, estudiamos
el impacto en la función objetivo producido si intercambiamos el lote lIi con el
siguiente. Este cálculo es más sencillo a medida que aumenta i, dado que las
fechas de finalización de los lotes anteriores se mantienen invariables. nicamente
no estudiamos el intercambio de 2 lotes consecutivos si el pedido principal asociado
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al lote lIi+1 tiene una fecha de entrega que supere en una cantidad δ la del asociado
al lote lIi . La razón es de nuevo la incertidumbre en la función objetivo. Esta
búsqueda local se aplica también después en el genético a cada hijo calculado.

4.3 Propagación de la solución

Una vez decididos los lotes y el orden en que estos van a ser procesados aún
es necesario realizar una serie de decisiones para propagar la solución al resto
de secciones. Para ello ejecutamos un paso hacia atrás con cada uno de los
lotes. En primer lugar, a cada lote le asociamos una de las dos macros existentes.
En general escogeremos siempre la misma para dejar la otra libre, salvo que las
caracteŕısticas de los tableros requieran emplear la segunda. Calculamos cuántos
tableros puede procesar la macro escogida al trabajar simultáneamente junto a
la retestedora, puesto que esto es lo que generalmente se produce en la empresa.
Como la retestadora es más rápida que la macro, a veces se necesitará cortar
algunos tableros con la macro antes de que la retestadora comience con ese lote
(son los que denominamos tableros rebalsados). Éstos se cortarán con la macro
que generalmente está libre. Como disponemos de dos macros para abastecer a
la retestadora, en principio la asignación se produce sin problemas.

El segundo y último paso de propagación consiste en la sección de prensado.
Podemos procesar un lote con una, dos o las tres prensas de las que dispone
la empresa, dependiendo de las caracteŕısticas del lote. Empleamos un algoritmo
totalmente greedy para decidir qué prensas utilizar. Para cada nuevo lote sabemos
cuándo se libera cada prensa. Utilizando esta información estudiamos cuándo se
terminaŕıa de procesar cada lote y cuándo se liberaŕıa cada prensa en cada una
de las posibilidades (empleando una sola prensa, siendo la 1a, 2a ó 3a, empleando
la 1a y la 2a, . . . ). Escogemos aquella combinación con la que el lote salga antes
de las prensas. Desempatamos por el número de prensas, escogiendo primero por
tanto aquellas que antes dejan libre alguna(s) prensa(s).

5 Base de datos

La base de datos desarrollada en Microsoft Access c© es una aplicación con-
cebida para facilitar, mediante un entorno amigable y sencillo de utilizar, tareas
como la actualización de información por el usuario, llamadas al programa de
planificación y generación de informes. Es una base totalmente relacionada para
evitar duplicidades e incoherencias en la información contenida.

El objetivo de la base de datos es doble. En primer lugar, debe de contener
toda la información que requiere el algoritmo para poder obtener una solución.
En segundo lugar, y dado que contiene todos los datos manejados por la empresa,
debe generar automáticamente los informes que habitualmente realiza la empresa
y que proporcionan información sobre facturación, albaranes, rendimiento de la
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madera, etc. Describimos a continuación, presentando alguna de las pantallas, el
contenido de la base de datos.

Desde el menú inicial, mostrado en la figura 6, se permite el acceso a todos
los formularios diseñados para actualizar los datos que vaŕıan continuamente, a
dos nuevos menús donde se encuentran respectivamente accesos a la creación de
informes y formularios para la actualización de los datos permanentes; y por
último, al programa para obtener la solución a partir de los datos referentes a los
pedidos y al stock.

Figura 6 Menú inicial de GESPLAN

La primera columna de la pantalla mostrada en la figura 6 contiene el acceso
a los formularios que se han desarrollado para actualizar toda la información del
proceso productivo, tanto del material comprado (madera) como de los productos
semielaborados que se obtienen a lo largo del proceso. Además, se accede también
a sendos formularios en los que se imputan horas de trabajo en cada sección
para elaborar posteriormente informes que faciliten el análisis del rendimiento del
trabajo en cada una de ellas.

A la derecha de este menú, se observan dos partes separadas por una ĺınea
horizontal. En la parte superior, los accesos a pedidos y albaranes enlazan con
respectivos formularios. En el primero de ellos (pedidos) se completa toda la
información relativa a los pedidos que se reciben, desde el cliente que lo solicita
hasta el detalle pormenorizado de la mercanćıa requerida. Los datos contenidos
en el formulario albaranes están relacionados con los pedidos origen del albarán
(un pedido puede desglosarse en varios albaranes), con los datos de stock, ya que
la mercanćıa puede provenir de stock y con los art́ıculos fabricados para dicho
pedido. Parte de la información contenida en la tabla definida para albaranes
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proporcionará los datos para confeccionar informes de dichos albaranes que serán
enviados junto con el material requerido a los clientes.

Además del enlace para abandonar el sistema, aparecen otros dos (actuali-
zar datos permanentes y generar informes) que conducen a sendos menús. El
primero de ellos accede a los formularios desde los que se actualizan los datos
que poco vaŕıan a lo largo del tiempo (datos de clientes, proveedores, tipos de
productos e información relativa a los tipos de corte y máquinas utilizadas en el
proceso productivo,. . . ). El segundo contiene una serie de informes, diseñados
para proporcionar información de gran utilidad a los gestores (pedidos pendien-
tes de fabricar, pedidos fabricados no servidos, rendimiento de las secciones por
periodo, facturación por cliente, facturación por periodo, stock,. . . ).

La parte inferior del menú mostrado en la figura 6, está destinada a ejecutar
con éxito el algoritmo desarrollado para planificar la sección de corte. Aparecen
accesos a formularios que contienen los datos del stock, que deben de estar ac-
tualizados para obtener una solución correcta. Asimismo, se ofrece la posibilidad
de acceder a informes en los que se muestra, si las hay, incoherencias encontradas
en los datos. La ejecución del algoritmo determinará el plan de corte propuesto.

A continuación se muestran como ejemplo el formulario de los pedidos (fi-
gura 7), un informe que notifica los pedidos o partes de pedidos ya han sido
fabricados y están pendientes de servir (figura 8) y otro que advierte sobre la ren-
tabilidad que se ha obtenido de la madera adquirida, partida por partida (figura
9).
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Figura 7 Formulario introducción de pedidos

Figura 8 Informe ĺıneas de pedido fabricadas y pendientes de servir

Figura 9. Informe sobre el rendimiento de la madera que se ha obtenido en
cada partida

Por último, la figura 10 muestra el informe que recoge la solución proporcio-
nada por el programa de planificación. En concreto, aparece toda la información
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asociada al lote que ocupa el primer lugar en la solución propuesta: número
de tableros, caracteŕısticas, hojas necesarias de cada calidad, pedidos asociados,
número de cortes en la retestadora, tiempo de ejecución en prensa y corte, etc.

Figura 10. Salida del programa

6 Conclusiones

En este trabajo se ha analizado el sistema productivo de una empresa de
contrachapado y se ha propuesto un sistema de información de ayuda a la gestión.
Este sistema se ha diseñado ex profeso para la situación que define a la empresa,
desarrollando algoritmos para la parte del sistema productivo detectada como
determinista y susceptible de ser automatizada. Los algoritmos forman parte
del sistema de planificación que se comunican con la base de datos, donde se
almacenan todos los datos de la empresa. La información necesaria para planificar
es suministrada por la base de datos. Asimismo, la información producida por
los algoritmos de planificación también se almacena en la base de datos. Aśı la
información global permite al gestor planificar, de manera más eficiente, la parte
del sistema productivo no susceptible de ser automatizada.
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Los beneficios obtenidos al planificar la sección de corte y propagar esta in-
formación hacia atrás hasta la sección de desenrollo han sido muy importantes:
disminución del número de los pedidos que se convierten en urgentes por una
inadecuada planificación; consecuentemente, disminución del número de horas
extraordinarias; mayor utilización de la retestadora lo que implica aumentar la
capacidad de producción de la empresa; disminución de desperdicios. . .

Además, para el buen funcionamiento del sistema, es preciso que los datos
estén actualizados en su globalidad, lo que implica la posibilidad de obtener in-
formación válida en todo momento. Todo ello facilita la elaboración de informes
para los encargados de las distintas secciones y de los documentos administrativos
habitualmente necesarios.
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Rect@ Monográfico 3 (2007)





Mejorando las soluciones de
un Strip Packing Problem.
Método de mejora
dependiente del problema∗
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1 Introducción

Muchas técnicas heuŕısticas de resolución de problemas aplican procedimientos
de mejora a soluciones previamente obtenidas. Los procedimientos de mejora más
conocidos son las Búsquedas Locales en las que, una vez definido el concepto de
entorno de una solución, se escoge una solución del mismo que mejore a la solución
inicial. Si esta solución existe, el procedimiento reitera el paso anterior con ella.
En caso contrario, se finaliza la búsqueda. La gran mayoŕıa de los procedimientos
de mejora que pueden aplicarse a una solución son variantes de las Búsquedas
Locales o emplean a éstas como elementos importantes de su diseño.

Frecuentemente, los métodos de mejora son independientes de la solución que
se desea mejorar. Aśı, se aplican por igual a buenas y a malas soluciones. No
realizan un análisis de las soluciones que les permita adaptarse a las caracteŕısticas

*Este trabajo ha sido parcialmente financiado por el Ministerio de Ciencia y Tecnoloǵıa
(proyecto TIN2005-08404-C04-03 (70% son fondos FEDER)) y por el Gobierno de Canarias
(proyecto PI042004/088). La actividad desarrollada se enmarca dentro de los objetivos de la
red RedHeur (proyecto TIN2004-20061-E).
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de las mismas. Como consecuencia, emplean una mayor cantidad de recursos
computacionales. El análisis de las soluciones permite diseñar métodos de mejora
más eficientes y eficaces.

Presentamos un procedimiento alternativo para mejorar la calidad de una
solución del problema del empaquetado rectangular bidimensional no guillotina
(Strip Packing Problem). El procedimiento tiene su origen en el análisis de una
técnica constructiva GRASP [1] previamente propuesta para este problema. Se ha
observado que esta técnica tiende a ubicar de forma incorrecta los rectángulos en
las últimas iteraciones del método constructivo. Por ello, se propone recons-
truir la solución obtenida por el método constructivo extrayendo los últimos
rectángulos de la solución para ubicarlos usando una técnica heuŕıstica. Rea-
lizamos un análisis de la solución obtenida por el método constructivo para de-
terminar qué rectángulos deben extraerse de la solución. Con ello, adaptamos el
procedimiento de mejora al problema y aśı aumentamos la eficiencia del mismo.

El presente trabajo se estructura de la siguiente forma. En la próxima sección
se introduce el Strip Packing Problem. En la sección 3 se expone la técnica
constructiva GRASP y en la sección 4 se describe la particular implementación
que se hace de la misma para el Strip Packing Problem. Además, se describe el
análisis de la solución que da lugar al procedimiento de mejora. Por último, se
muestra la experiencia computacional realizada y se enumeran las conclusiones
que se siguen de los resultados obtenidos.

2 Strip Packing Problem

Los problemas de empaquetado constituyen una amplia clase de problemas
en los que, de forma general, se desea empaquetar un conjunto de items (figuras
geométricas pequeñas) en un objeto geométrico mayor (o conjunto de objetos) de
tal forma que se optimice algún objetivo relativo al empaquetado obtenido.

La importancia de estos problemas en procesos industriales o de gestión fi-
nanciera se refleja en la gran cantidad de trabajos aparecidos en la literatura
cient́ıfica. Algunos trabajos de revisión y clasificación en los que también se enu-
meran aplicaciones son [4] [5] [6] [10] y [11].

Aqúı consideramos el Strip Packing Problem que se formula como sigue. Dado
un objeto rectangular de amplitud fija w y altura infinita, y un conjunto, R =
{R(w1, h1), . . . , R(wn, hn)}, de rectángulos con al menos uno de sus lados, wi,
hi, menor que w, se desea empaquetar el conjunto R en el objeto rectangular
utilizando el menor espacio posible (o lo que es lo mismo, se pretende minimizar
la altura del empaquetado). En este problema se pueden rotar los objetos y los
cortes pueden ser de tipo no guillotina. Un corte es tipo guillotina si atraviesa el
objeto desde un lado hasta el lado opuesto. En un corte no guillotina, lo anterior
no es cierto. En la figura 1(a)) se muestra una solución de un Strip Packing
Problem.
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(b) Contorno superior

3 Greedy Randomized Adaptive Search Proce-

dures

En un método constructivo se añade iterativamente elementos a una estruc-
tura, inicialmente vaćıa, hasta obtener una solución del problema. La elección del
elemento a incluir se basa en una evaluación heuŕıstica, que mide la conveniencia
de considerar este elemento como parte de la solución. La función heuŕıstica es
dependiente del problema y expresa el conocimiento que sobre el mismo se tiene.
Si la evaluación de un elemento depende de los elementos previamente incluidos
en la solución se dice que el método es adaptativo.

Además de la función heuŕıstica, es necesaria una estrategia que indique qué
elemento se escoge. Una de las estrategias más conocidas es la greedy en la que
se selecciona el elemento que optimiza la función heuŕıstica. Esta estrategia suele
dar pobres resultados en la mayoŕıa de los casos. Por ello se han propuesto
estrategias alternativas. Una de ellas consiste en elegir, no el mejor elemento,
sino uno de los mejores al azar. Al conjunto de los mejores elementos se le llama
Lista Restringida de Candidatos (LRC).

GRASP (Greedy Randomized Adaptive Search Procedure) [7][8][9] es un pro-
cedimiento heuŕıstico que consta de varias etapas. A una fase constructiva, en
la que se escoge iterativamente y al azar un elemento de la lista restringida de
candidatos, le sigue una fase de postprocesamiento en la que se mejora la so-
lución obtenida en la fase anterior. Como postprocesamiento suele emplearse una
simple búsqueda local descendente. Los anteriores pasos se reiteran hasta que se
cumpla el criterio de parada. La mejor solución obtenida es la propuesta por el
algoritmo. En ocasiones, se considera una fase de preprocesamiento previa a la
fase constructiva. El propósito de esta fase es acelerar la fase constructiva poste-
rior, incluyendo aquellos elementos que, en base a algún criterio, deben estar en
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la solución. Aśı, pueden incluirse aquellos elementos que necesariamente perte-
necen a la solución óptima del problema, o aquellos elementos que, en base a la
experiencia del decisor o historia pasada de la búsqueda, pertenecen a soluciones
de alta calidad. En [3] se ha propuesto un GRASP para un problema de ruta
de veh́ıculos en el que el usuario incorpora conocimiento al procedimiento en la
forma de soluciones en las que ciertos clientes deben ser servidos por veh́ıculos
espećıficos. En la figura 1 se muestra un pseudocódigo del GRASP.

procedure GRASP;
begin

Solución Inicial := Fase de preprocesamiento;
Solución Actual := Solución Inicial;
Mejor Solución := Solución Actual;
repeat

Solución Actual := Fase Constructiva;
Solución Actual := Fase de Postprocesamiento
If Objetivo(Solución Actual) <

Objetivo(Mejor Solución)
then Mejor Solución := Solución Actual;

until (Criterio de parada);
end

Figura 1: Pseudocódigo descriptivo del GRASP.

Los elementos que determinan completamente la técnica GRASP son: el
método de preprocesamiento, la función heuŕıstica, la forma en que se construye
la lista restringida de candidatos, el método de postprocesamiento y el criterio
de parada. De los anteriores elementos, algunos son totalmente dependientes del
problema y para otros pueden hacerse elecciones dependientes o independientes
del mismo. Aśı, la función heuŕıstica es dependiente del problema, y la regla de
parada puede ser dependiente o independiente del problema. Algunas reglas de
parada independientes del problema son finalizar la búsqueda si se alcanza un
número máximo de iteraciones o se sobrepasa el tiempo máximo de CPU previa-
mente establecido. En [2] se proponen reglas de parada dependientes del problema
que analizan las caracteŕısticas de las soluciones obtenidas para decidir cuando
finalizar la búsqueda.

4 GRASP para el Strip Packing Problem

En la presente sección describimos un GRASP para el Strip Packing Problem.
En [1] se encuentra una descripión detallada de este GRASP junto al análisis de
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amplios resultados experimentales que muestran la eficiencia y eficacia de esta
técnica.

La definición de la lista restringida de candidatos se realiza a partir del con-
cepto de contorno superior.

4.1 Contorno superior

La inclusión de un rectángulo cualquiera en el objeto, determina un contorno
superior rectangular como el que se muestra en la figura 1(b). Además, es posible
que se obtengan áreas no aprovechables, llamadas desperdicios, como el que se
obtiene al incluir el rectángulo 4 en el objeto de la figura 1(b). El contorno, C,
puede representarse por medio del conjunto de segmentos horizontales (tomados
de izquierda a derecha) que lo forman. Es decir:

C = {(y1, x1
1, x

1
2), (y

2, x2
1, x

2
2), . . . , (y

c, xc
1, x

c
2)}

con
yi ≡ altura del i-ésimo segmento
xi

1 ≡ punto inicial del i-ésimo segmento
xi

2 ≡ punto final del i-ésimo segmento
.

Además, en el primer contorno x1
1 = 0 y xc

2 = w. Nótese que, intuitivamente,
es preferible un contorno formado por pocos segmentos. Esto es aśı, ya que,
en general, la posibilidad de obtener desperdicios aumenta con el número de
segmentos.

4.2 Lista restringida de candidatos

Sea t la iteración actual del proceso constructivo y supongamos que R =
R1 ∪ R2, siendo R1 el conjunto de los rectángulos previamente incluidos en el
objeto y R2 = R \ R1. Sea C(t) el contorno determinado por los rectángulos de
R1. Evaluaremos la conveniencia de incluir un rectángulo de R2 en el objeto por
la forma que tendrá el contorno C(t) tras su inclusión.

Lista restringida de candidatos: sea dado α ∈ [0, 1] y supongamos que el
segmento del contorno con menor altura es (yi, xi

1, x
i
2). La lista restringida

de candidatos se construye como sigue:

LRC = {R(wj , hj) ∈ R2 : (0 ≤ xi
2−xi

1−wj ≤ α)∨ (0 ≤ xi
2−xi

1−hj ≤ α)}.

Es decir, la lista está formada por aquellos rectángulos que mejor se ajustan
al ancho del segmento inferior del contorno. El ajuste viene determinado
por el valor de α.
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Para que la anterior definición tenga sentido, debe haber, al menos, un rectángulo
de R2, digamos R(wr, hr), tal que (0 ≤ xi

2−xi
1−wr ≤ α)∨(0 ≤ xi

2−xi
1−hr ≤ α).

Si ningún elemento de R2 cumple la anterior condición, se escoge el rectángulo que
mejor se ajusta a xi

2−xi
1, y se reconstruye el contorno. Si no existe tal rectángulo,

se reconstruye el contorno eliminando, convenientemente, el segmento (yi, xi
1, x

i
2).

4.3 Fase de postprocesamiento

Una de las situaciones anómalas que puede presentarse al aplicar los métodos
constructivos anteriores se muestra en la figura 2. Consideremos la ubicación del
rectángulo 6. Cualquiera de los métodos anteriores lo ubicaŕıa según se indica en
la figura 2(b). La bondad de esta nueva situación depende del instante en que
se produce. En las primeras iteraciones del método, la situación es aconsejable.
No obstante, en las últimas iteraciones puede producir soluciones de baja calidad.
En particular, si nos encontramos en la última iteración, seŕıa preferible ubicarlo
como se muestra en la figura 2(c).

El anterior comportamiento es caracteŕıstico del método constructivo que em-
pleamos. Por ello, en [1] se propońıa el procedimiento de mejora consistente en
extraer los últimos rectángulos de la solución y ubicarlos de la mejor manera po-
sible. Para ello, se consideran todas las ordenaciones posibles de los rectángulos
extráıdos y, para cada una de ellas, se colocan, según el orden establecido en la
ordenación, los rectángulos en la posición, y con la orientación, que alcanza una
menor altura relativa.

A pesar de que la anterior fase de postprocesamiento mejora la calidad de las
soluciones obtenidas en la fase constructiva (ver [1]), tiene dos inconvenientes.

1. Valores limitados del parámetro m: dado que se realiza una búsqueda ex-
haustiva entre todas las posibles combinaciones de los últimosm rectángulos,
hay que limitar esta búsqueda a valores peque nos de m.

2. Obligación de fijar a priori el valor de m: soluciones diferentes requerirán,
posiblemente, reconstruir desde puntos distintos. Fijar a priori el valor de
m impide que la fase de postprocesamiento se adapte a la solución obtenida
en la fase constructiva.

Para subsanar estos inconvenientes, se propone analizar el contorno superior
que se obtiene en cada iteración del proceso constructivo y determinar de esta
forma el valor de m, y realizar una búsqueda heuŕıstica entre todas las combina-
ciones de los últimos m rectángulos.

Análisis del contorno

La fase constructiva de un GRASP para el problema del empaquetado de
rectángulos bidimensional no guillotina consta de n iteraciones (con n el número
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Figura 2: Procedimiento de mejora

de rectángulos a empaquetar). Sea C(t) el contorno superior que se obtiene al
incluir un rectángulo en la t-ésima iteración.

Asociado al contorno C(t) pueden considerarse varios valores que miden la
suavidad del mismo. Uno de estos valores es la altura media de los segmentos que
se define como

AlturaMedia(C(t)) =
1

c

c
∑

i=1

(y+(C(t)) − yi) t = 1, . . . , n

donde c es el número de segmentos del contorno y

y+(C(t)) = max
i=1,...,c

{yi} t = 1, . . . , n.

Convenimos que AlturaMedia(C(0)) = 0. Sea asimismo

∆AlturaMedia(t) = AlturaMedia(C(t− 1))−AlturaMedia(C(t)), t = 1, . . . , n

el incremento que se produce en la altura media del contorno al incluir el rectángulo
de la t-ésima iteración.

Proponemos el siguiente método para obtener la iteración (o equivalentemente
el número de rectángulos) a partir de la cual aplicar el método de mejora.

Mayor incremento en la altura media. Aplicar el procedimiento de mejora
a partir de la iteración en que se produce un mayor incremento en la altura
media. Es decir, si t∗ es la iteración que maximiza

∆AlturaMedia(t), t = 1, . . . , n,

se extraen los rectángulos empaquetados en las iteraciones que van desde la
t∗ hasta la n. Es decir, se extrae aquel rectángulo que, en base al criterio
anterior, ha sido mal colocado (ha producido un mayor incremento en la
altura media) y todos los que han sido colocados posteriormente.
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Búsqueda heuŕıstica

Nótese que una vez determinada la iteración, t∗, a partir de la cual reconstruir,
se obtiene un nuevo problema de empaquetado de dimensión menor en el que la
frontera inferior del objeto en que se deben incluir los rectángulos viene dada por
el contorno C(t∗). Este nuevo problema puede abordarse por cualquiera de las
técnicas heuŕısticas de resolución de problemas. Hemos experimentado con una
Búsqueda Local Descendente.

Búsqueda Local Descendente. Dada una permutación de los rectángulos y
el movimiento consistente en intercambiar el orden de dos ellos, realizar el
mejor de los movimientos mientras sea posible. Los rectángulos se empa-
quetan, según el orden establecido en la ordenación, en la posición, y con
la orientación, que alcanza una menor altura relativa.

4.4 Criterio de parada

La búsqueda realizada con GRASP finaliza después de un número dado,
niter = 20, de pasadas del bucle Fase Constructiva, Fase de Postprocesamiento.

5 Experiencia computacional

Para evaluar el comportamiento de la propuestas de mejora de las soluciones
obtenidas en la fase constructiva del GRASP, se resolvieron diferentes problemas
generados aleatoriamente. Se implementó un generador de problemas que, dado
el ancho del objeto rectangular, w, el número de rectángulos, n, y el valor objetivo
óptimo, hopt, suministra un conjunto de n rectángulos que pueden ubicarse en un
objeto rectangular de amplitud w utilizando una altura hopt. En la figura 1(a)
se muestra uno de los problemas obtenidos con este generador. Cada problema
fué resuelto 5 veces realizando 20 pasadas del bucle Fase Constructiva, Fase de
Postprocesamiento. El valor que determina el umbral de ajuste en el proceso
constructivo del GRASP se fijó a α = 0.

En la tabla 1 se muestran los resultados obtenidos en la experiencia computa-
cional. Las tres primeras columnas describen el problema: número de rectángulos
(n), ancho del objeto rectangular (w) y altura óptima (hopt).

En las columnas 4 y 5 se recogen el mejor valor objetivo (Obj) y el valor
objetivo medio obtenido en las 20 fases constructivas del GRASP. En las columnas
6 y 8 se muestran estos mismos valores tras la fase de postprocesamiento. Las
columnas 7 y 9 almacenan las mejoras, respecto de la fase constructiva, producidas
tras la fase de postprocesamiento.

Por cada problema se muestran 5 filas de resultados (una por cada una de las
5 ejecuciones del GRASP realizadas) más una que recoge los valores medios de
las mejoras. De los resultados obtenidos podemos concluir lo siguiente.

Rect@ Monográfico 3 (2007)
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Tabla 1: Evaluación experimental del postprocesamiento

Constr. Postproc.

n w hopt Obj Obj Obj Mej. Obj Mej.

50 50 50 51 52.6 51 0 52.45 0.15
52 53.15 51 1 52.95 0.2
52 55.7 51 1 55.15 0.55
52 55.2 51 1 54.9 0.3
52 52.55 52 0 52.45 0.10

0.6 0.26
50 40 60 64 64.2 62 2 63.75 0.45

62 65.55 62 0 63.15 0.85
64 66.3 63 1 64.9 1.4
64 65.9 64 0 64.4 0.4
63 65.45 63 0 64.45 1

0.6 0.82
100 50 50 52 52.55 52 0 52.55 0

52 52 51 1 51.35 0.65
52 52 52 0 52 0
51 51.65 51 0 51.65 0
52 52 51 1 51.35 0.65

0.4 0.26
100 50 75 77 77.35 77 0 77.05 0.3

76 76.75 76 0 76.75 0
77 77.3 77 0 77 0.3
77 77 77 0 77 0
77 77.55 77 0 77.25 0.3

0 0.18
200 100 100 101 101.8 101 0 101.8 0

101 101.8 101 0 101.5 0.3
102 102.2 101 1 102.05 0.15
101 103.85 101 0 102.65 1.2
101 102.2 101 0 102.05 0.15

0.2 0.36
200 120 160 163 164.75 162 1 163.7 1.05

163 166.9 162 1 165.3 1.6
162 169.25 162 0 169.25 0
163 165.55 162 1 165.05 0.5
165 167.1 163 2 165.75 1.35

1 0.9
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1. La fase de postprocesamiento mejora la calidad de las soluciones. La mejora
se produce tanto en el mejor valor objetivo como en el valor objetivo medio.
Aunque la mejora pueda parecer no significativa hay que señalar que las
soluciones generadas en la fase constructiva son, en la gran mayoŕıa de los
casos, de alta calidad. Por ello, el efecto de la mejora puede parecer menor.

2. La técnica GRASP propuesta es eficaz en la resolución del problema. La
distancia que existe entre el mejor valor objetivo encontrado por GRASP
y el valor objetivo óptimo es inferior en todos lo casos a 2 unidades (para
cuatro problemas es inferior a 1 unidad y para los otros dos es inferior a
2 unidades). Este comportamiento ya se observó en la amplia experiencia
computacional desarrollada en [1].
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A.M. Alvarez Socarrása, F. Angel-Bellob, N. Cobos Zaletaa

aUniversidad Autónoma de Nuevo León
b Instituto Tecnológico y de Estudios Superiores de Monterrey,

1 Introducción

El problema de diseño de red óptima se caracteriza por la búsqueda de la
mejor configuración de la red que satisfaga un conjunto dado de requerimientos.
Este problema ha sido estudiado por un buen número de investigadores ya que
su solución es relevante en numerosas aplicaciones y se conoce que pertenece a la
clase NP- completo. Actualmente no existen algoritmos exactos que puedan re-
solver problemas similares en un peŕıodo de tiempo razonable, especialmente para
instancias grandes. De ah́ı que otro tipo de técnicas, tales como las heuŕısticas,
deban emplearse, si bien no para encontrar la solución óptima, śı para encontrar
soluciones de calidad aceptable.

Este tipo de problemas se presentan en muy diversos campos, por ejemplo en
diseños, re-diseños de redes de computadoras o telecomunicación, distribución,
sistemas eléctricos de potencia, de redes de transporte, etc. Una amplia compi-
lación de modelos y aplicaciones puede ser encontrada en la obra de Magnanti y
Wong [10].

En el presente trabajo abordamos el siguiente problema de diseño de redes:
dado un conjunto de nodos y un conjunto de aristas potenciales, se deben selec-
cionar las aristas que formarán parte de la red, de modo que puedan circular por
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ella diversos productos entre ciertos pares origen-destino establecidos, sin exceder
la capacidad de cada arista. Al hacer esto se incurre en dos diferentes tipos de
costos: los costos variables por transportar una unidad de producto y los costos
fijos pagados por la inclusión de las aristas en el diseño de la red. El objetivo es
determinar qué aristas deben considerarse en el diseño de forma que se garantice
la operación de la red y que el costo total en que se incurra (considerando costos
de diseño y de operación) sea el menor posible.

Se puede encontrar una extensa bibliograf́ıa en la versión no capacitada del
problema, pero el caso que considera capacidades finitas en las conexiones no
se encuentra en igual situación. Este tipo de problemas es más realista, pero
también mucho más complejo, y ha sido abordado con diferentes metodoloǵıas
tales como relajación lagrangeana [2], procedimiento de acotamiento [3], Tabu
Search [9], etc.

Sin embargo estos trabajos han sido desarrollados para redes orientadas. Esto
significa que en esas redes puede que entre dos nodos sólo exista un arco en un solo
sentido mientras que en el presente trabajo, siempre que se considere conexión
entre dos nodos se considerarán los arcos en los dos sentidos. Además, en esos
trabajos los arcos dirigidos que unen dos nodos poseen capacidades independien-
tes, una para cada sentido del arco, mientras que en el problema aqúı abordado,
existe una única capacidad para la arista que une dos nodos, es decir, esta capa-
cidad debe ser compartida por todos los productos que circulen por los dos arcos
orientados correspondientes a la arista, sin importar el sentido del flujo. Estas ca-
racteŕısticas impiden cualquier adaptación inmediata de los métodos propuestos
para redes orientadas al problema aqúı abordado.

Para redes no orientadas solo se han reportado resultados obtenidos con el
diseño de una metaheuŕıstica evolutiva, los cuales no son satisfactorios para redes
con ciertas caracteŕısticas [1] y otro trabajo desarrollado por Herrmann [7] que
utiliza un método de ascenso dual para redes tipo malla.

Por todo lo anterior y teniendo en cuenta que Tabú Search resulto efectivo en
un problema similar, pero sobre redes orentadas [9], se ha considerado importante
estudiar la efectividad en este problema de dicha metaheuŕıstica, caracterizada
por una exploración inteligente de estructuras de memoria.

2 Planteamiento del problema

Sea G = (N,A) un grafo que representa una red no orientada con un conjunto
N de nodos y un conjunto A de aristas potenciales. Sea A′ el conjunto de arcos
potenciales asociados a esas aristas. Sea K el conjunto de productos con demanda
dk para el k-ésimo producto. Del conjunto de nodos se distinguirán varias parejas
origen-destino, asociadas cada una de ellas a un producto que circulará por la
red. Sean O(k) y D(k) el nodo origen y nodo destino respectivamente del k-
ésimo producto.
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Por otra parte, a cada arista potencial {i, j} se le asigna un costo fijo Fij por
su utilización o construcción, aśı como costos ckij y ckji por unidad de producto
transportado, el cual depende del tipo de producto de que se trate y del sentido
en que circule por la arista. Cada arista {i, j} tiene asociada una capacidad
finita uij , la cual deberá ser compartida por todos los productos que circulen en
cualquier dirección de la misma.

El modelo tiene dos tipos de variables de decisión. El primer tipo es una
variable binaria que modela las elecciones de diseño y se define como yij = 1, si
la arista {i, j} se incluye en el diseño de la red, o bien, yij = 0, en caso contrario.
El segundo tipo es una variable continua que modela las decisiones de flujo del
producto k que circula por el arco orientado (i, j) y que denotaremos como xk

ij .
Debe señalarse que, una vez que se haya decidido conectar dos nodos i,j (esto

es, la arista{i, j} formará parte del diseño de la red), se permitirá flujo en ambos
sentidos, o sea, se considerarán en la red ambos arcos (i, j) y (j, i).

Para cada producto k ∈ K y cada i ∈ N impondremos las restricciones usuales
de conservación de flujo en redes

∑

{j:(i,j)∈A′}

xk
ij −

∑

{j:(j,i)∈A′}

xk
ji =







dk si i = O(k)
−dk si i = D(k) ∀k ∈ K,

0 en caso contrario ∀i ∈ N
(1)

También consideraremos que el flujo de todos los productos que circulan en
cualquier dirección por cada arista {i, j} no debe exceder la capacidad de dicha
arista.

∑

k∈K

(xk
ij + xk

ji) ≤ uijyij ∀{i, j} ∈ A (2)

Estas restricciones no solo aseguran que sean respetadas las capacidades de las
aristas, sino también fuerzan a que el flujo de cualquier producto xk

ij sea cero si
la arista {i, j} no ha sido seleccionada en el diseño. Por último, exigimos que las
variables continuas sean no negativas y que las variables de diseño sean binarias.

xk
ij ≥ 0 ∀k ∈ K; ∀(i, j) ∈ A′ (3)
yij ∈ {0, 1} ∀{i, j} ∈ A

Nuestro objetivo será minimizar el costo total en que se incurre por diseño y
operación de la red, esto es,

min





∑

k∈K

∑

(i,j)∈A′

ckijx
k
ij +

∑

{i,j}∈A

Fijyij



 (4)

Al problema (1)-(4) lo referiremos como DRCM.
Las decisiones a tomar consisten en la selección de las aristas que deben in-

cluirse en el diseño final de la red esto es, los valores de las variables yij y los

Rect@ Monográfico 3 (2007)
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volúmenes de flujo de cada producto que circularán por cada una de las aristas
incluidas en sus dos direcciones (xk

ij , x
k
ji) para satisfacer las demandas.

Es importante destacar aqúı dos aspectos esenciales del problema:

1. Una vez que una arista ha sido incluida en el diseño de la red, se permitirá
flujo en ambas direcciones, por lo que los costos variables de transportación
asociados a cada arista dependerán no solamente del producto sino también
del sentido en que esté circulando.

2. Cada arista posee una capacidad finita que será compartida por todos los
productos que la usen sin importar la dirección del flujo para esos productos.

La gran dificultad de este problema estriba en dos cosas: un equilibrio entre costos
fijos y variables al construir una solución, y una interacción entre los diferentes
productos que comparten las capacidades de cada arista en la red.

3 Tabu Search

Los oŕıgenes de Búsqueda Tabú (Tabú Search, TS, en inglés) pueden situarse
en diversos trabajos publicados hace alrededor de 20 años. Oficialmente, el nom-
bre y la metodoloǵıa fueron introducidos posteriormente por Fred Glover [6].
Numerosas aplicaciones han aparecido en la literatura, aśı como art́ıculos y libros
para difundir el conocimiento teórico del procedimiento [5].

TS es un procedimiento metaheuŕıstico para resolver problemas de optimi-
zación combinatoria, utilizado para guiar cualquier procedimiento de búsqueda
local, en la exploración del espacio de soluciones más allá de la simple optimalidad
local.

TS se basa en la premisa de que para poder calificar de inteligente la resolución
de un problema, debe incorporar memoria adaptativa y exploración sensible, que
son las caracteŕısticas principales de búsqueda tabú. El éxito de esta metodo-
loǵıa en diversos problemas se debe a sus estructuras de memoria y al uso de
estrategias de intensificación y diversificación. Las estrategias de memoria evitan
retornar a soluciones visitadas anteriormente, permiten guardar atributos de bue-
nas soluciones contribuyendo a identificar regiones de interés y más generalmente
guiar la exploración del espacio de solución. Las estrategias de intensificación y
diversificación permiten avanzar a una solución vecina que es peor que la solución
actual, pero que proporciona la posibilidad de penetrar a un espacio del conjunto
de soluciones factibles que de otro modo no habŕıa sido visitado y que podŕıa
contener una solución óptima global al problema.

Tabú Search distingue dos tipos de memoria: a corto y a largo plazo.

• La memoria a corto plazo, está basada en atributos, es decir almacena atri-
butos de soluciones recientemente visitadas y su objetivo es explorar a fondo
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una región dada del espacio de soluciones. En ocasiones se utilizan estra-
tegias de listas de candidatos para restringir el número de soluciones exa-
minadas en una iteración dada o para mantener un carácter agresivo en la
búsqueda.

• La memoria a largo plazo almacena las frecuencias u ocurrencias de atri-
butos en las soluciones visitadas tratando de identificar o diferenciar regio-
nes. Estas tienen dos estrategias asociadas: Intensificar y Diversificar la
búsqueda. La intensificación consiste en regresar a regiones ya exploradas
para estudiarlas más a fondo. Para ello se favorece la aparición de aque-
llos atributos asociados a buenas soluciones encontradas previamente. La
diversificación consiste en visitar nuevas áreas no exploradas del espacio de
soluciones. Para ello se modifican las reglas de elección para incorporar a
las soluciones atributos que no han sido usados frecuentemente.

4 Metodoloǵıa de Solución

El procedimiento diseñado, el cual está inspirado en un método propuesto por
Crainic et al. para redes orinetadas [9], puede resumirse en los siguientes pasos
que explicaremos más adelante.

1. Obtener una solución inical.

2. Realizar una búsqueda local.

3. Ejecutar movimientos de diversifiación.

4. Repetir pasos 2 y 3 un número predefinido de veces.

4.1 Obtención de la solución inicial

La solución inicial (X,Y ) donde

X = {xk
ij ∀k ∈ K, ∀(i, j) ∈ A′}, Y = {yij ∀{i, j} ∈ A}

se obtiene mediante un procedimiento greedy aleatorizado desarrollado a tal
efecto. El procedimiento que se usa está basado en la técnica heuŕıstica del
GRASP [8]. Por consiguiente, esta solución inicial ya es relativamente buena.

4.2 Búsqueda local

Dada una solución factible (X,Y ) es necesario definir la vecindad donde se
realizará la búsqueda local. Esta vecindad, la cual denominaremos vecindad con-
tinua, consta de todas las soluciones que pueden alcanzarse a partir de la actual
mediante un pivoteo simplex.
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Consecuentemente, un movimiento local corresponde a una transición de una
base del sistema (1) - (3) a una adyacente, o sea, un camino básico es sustituido
por uno de los actualmente no básicos.

Para determinar qué movimiento implementar, se determina, para cada posi-
ble camino a entrar a la base, el correspondiente camino básico a salir y se evalúa
el “valor” de este movimiento potencial (en cuanto a la mejoŕıa de la función
objetivo). Se selecciona e implementa el movimiento “mejor” si no es tabu, o en
caso de serlo, si mejora el criterio de aspiración.

Es bueno señalar aqúı que no todos los caminos están disponibles en cada
iteración, sino que se trabaja con el método de generación de columnas. Para
la generación de caminos se utilizan tres diferentes longitudes de arco, las cuales
tiene en cuenta tanto los costos fijos como variables, aśı como la capacidad de la
arista.

La búsqueda local continúa mientras no se alcance un número predefinido de
generación de caminos para cada producto.

4.3 Fase de diversificación

El objetivo de esta fase es sacar la búsqueda del aparente óptimo local hacia
una región prometedora. Para ello se define la vecindad discreta, en relación a
las variables de diseño y se usa para modificar drásticamente la configuración de
la red y diversificar la búsqueda.

La estrategia de diversificación implementada está basada en la observación
que un número de “buenos” arcos aparecen una y otra vez en los caminos usados
para satisfacer la demanda.

Por lo tanto se implementa una estructura de memoria de largo plazo basada
en frecuencia, que registra por cuantas iteraciones ha estado un arco en la base,
esto es por cuanto tiempo pertenece al menos a un camino básico.

Arcos que tengan puntaje alto en esta memoria usualmente han sido utilizados
en las soluciones ya exploradas anteriormente.

Por ello para diversificar, uno selecciona un número pequeño de estos arcos
y los quita de la base cualquier camino que contenga al menos uno de los arcos
cerrados. Durante la tenencia tabú de estos arcos, ningún camino que los contenga
podrá entrar a la base, a menos que el criterio de aspiración ignore el estatus tabú.

5 Resultados

Para evaluar el desempeño del algoritmo propuesto se generaron aleatoria-
mente 120 problemas, agrupados en las siguientes 4 clases:

Clase I: Costos Fijos altos, holgada en capacidad
Clase II: Costos fijos altos, apretada en capacidad
Clase III: Costos variables altos, holgada en capacidad
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Clase IV: Costos variables altos, apretada en capacidad

Se consideraron también redes de diferentes tamaños: 30 nodos y 350 aristas
(700 arcos), 50 nodos y 975 aristas (1950 arcos). Para cada tamaño se generaron
instancias con 10, 50 y 100 productos. Todos ellos fueron corridos con Cplex 7.1
[4] durante 6 horas y con el algoritmo propuesto en este trabajo.

La tabla 1 muestra los resultados agrupando las instancias según las clases
anteriormente definidas. La columna 1 muestra esta clasificación, la columna 2
muestra el promedio de las diferencias relativas entre la solución entregada por
el algoritmo propuesto y la mejor solución entera entregada por el optimizador
Cplex luego de 6 horas. Los valores negativos indican una mejora a favor del
algoritmo desarrollado en este trabajo. En la tercera columna se ofrece el tiempo
(medido en segundos) que necesitó el algoritmo propuesto.

Clase TS vs Cplex Tiempo-TS
I −2.59% 72.37
II 5.33% 69.30
III −2.23% 75.81
IV −2.30% 66.05
General −0.44% 70.88

Tabla 1: Instancias agrupadas por clase

Como era de esperar las instancias con costos fijos predominantes y capacida-
des muy justas (redes restringidas) obtuvieron los peores resultados.

En la tabla 2 se agrupan las instancias según el tamaño de la red. La primera
columna muestra el número de nodos y productos de la red, la segunda columna
muestra el promedio de la diferencia relativa del resultado obtenido por TS com-
parado contra la mejor solución entera entregada por Cplex. Los guiones indican
que no pudo realizarse la comparación porque el optimizador no encontró ninguna
solución factible en el peŕıodo de 6 horas y al igual que en la tabla anterior los
valores con signo negativo en la segunda columna indican una mejora a favor de
la metaheuŕıstica empleada en este trabajo.

Nd-prod Ts vs Cplex Tiempo-Ts
30–10 1.35% 1.97
30–50 −1.85% 58.85
30–100 6.88% 88.90
50–10 −2.97% 27.40
50–50 - 62.10
50–100 - 117.80

Tabla 2: Instancias agrupadas según sus dimensiones.
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Como puede observarse, para redes pequeñas el optimizador obtiene buenos
resultados, sin embargo, a medida que crece el número de nodos y productos
circulando en la red se justifica plenamente el uso de la metaheuŕıstica.

Por último, se realiza una comparación con los resultados entregados por un
algoritmo basado en Scatter Search . En la tabla 3 se presentan los resultados
para las redes de tamaño grande, donde se hab́ıa detectado que se degradaba el
desempeño de este último [1]. Al igual que en las tablas anteriores los signos
negativos indican una mejoŕıa contra lo que se está comparando.

Nodos- Ts vs SS t-TS t-SS
Productos
50–10 −3.93% 7.76 27.4
50–50 −5.71% 78.1 62.1
50–100 −11.03% 254.455 117.8

Tabla 3: Comparación contra ScatterSearch

Es bueno señalar que para redes más pequeñas el comportamiento de ambas
metaheuŕısticas fue similar.

6 Conclusiones

En este trabajo se presenta un algoritmo que combina la metaheuŕıstica Bús-
queda Tabú con el método Simplex Revisado para producir una búsqueda que
explore el espacio de soluciones (variables de flujo) mediante movimientos que
consisten en pivoteos del simplex revisado. Consideramos que el procedimiento
presentado propone una forma eficiente de encontrar buenas soluciones factibles
al problema de diseño de red multiproducto y constituye una buena adaptación,
al caso no orientado que aqúı se estudia, de desarrollos realizados para otro tipo
de redes.

Por otra parte, consideramos que es posible extender y mejorar este trabajo
para incorporar al TS otras técnicas tales como oscilación estratégica que permi-
tan obtener resultados aún mejores, sobretodo en redes muy restringidas y con
costos fijos predominantes, donde la inclusión o no de una arista puede hacer gran
diferencia.
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