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Prefacio

Los métodos descritos en este volumen reciben el nombre de algoritmos heuris-
ticos, metaheuristicos o sencillamente heuristicos. Este término deriva de la pala-
bra griega heuriskein que significa encontrar o descubrir y se usa en el ambito de
la optimizacién para describir una clase de algoritmos de resolucién de problemas.

En el lenguaje coloquial, optimizar significa poco mas que mejorar; sin em-
bargo, en el contexto cientifico la optimizacion es el proceso de tratar de encontrar
la mejor solucién posible para un determinado problema. En un problema de op-
timizacién existen diferentes soluciones, un criterio para discriminar entre ellas
y el objetivo es encontrar la mejor. De forma mds precisa, estos problemas se
pueden expresar como encontrar el valor de unas variables de decisiéon para los
que una determinada funcién objetivo alcanza su valor maximo o minimo. El
valor de las variables en ocasiones esta sujeto a unas restricciones.

La existencia de una gran cantidad y variedad de problemas dificiles de optimi-
zacidn que aparecen en la practica y que necesitan ser resueltos de forma eficiente,
ha impulsado el desarrollo de procedimientos eficientes para encontrar buenas so-
luciones. Estos métodos, en los que la rapidez del proceso es tan importante como
la calidad de la solucién obtenida, se denominan heuristicos o aproximados.

En los dltimos anos se ha acunado el término metaheuristico, introducido por
Fred Glover en 1986 y apoyado por diferentes eventos cientificos de caracter inter-
nacional, como el congreso Metaheuristic International Conference, o la revista
Journal of Heuristics. El término metaheuristico establece una diferencia con-
ceptual entre el conjunto de reglas que permiten disenar un procedimiento de
resoluciéon heuristico y el propio procedimiento de resoluciéon. En este sentido el
prefijo meta indica un mayor nivel de abstraccién, en cuanto que las propias reglas,
denominadas procedimiento metaheuristico, no estan ligadas a ningtin problema
especifico.

Una bisqueda en internet puede darnos una medida del gran desarrollo e
impacto que estan teniendo estos métodos. Podemos considerar una de las me-
todologias més populares, los algoritmos genéticos, para realizar una prueba sen-
cilla. Utilizando el conocido motor de bisqueda Google sobre el literal “genetic
algorithms optimization”, obtenemos mas de un millén de paginas relacionadas.
Esta misma btisqueda proporcionaba apenas 120.000 resultados hace cuatro anos.
Este simple ejercicio nos muestra el desarrollo extraordinario de los procedimien-
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tos heuristicos en estos tltimos anos.

El desarrollo de los métodos heuristicos es tal, incluyendo la aparicion de
nuevas metodologias casi a diario, que excede de las posibilidades de este volumen
el ofrecer una revisién exhaustiva de todos ellos. A modo de catdlogo, podemos
enumerar como los més establecidos los que figuran en la siguiente lista con 15
métodos (mantenemos la acepcién en inglés y el acrénimo):

e Estimation Distribution Algorithms (EDA)

e Evolutionary Algorithms(EA)

e Fuzzy Adaptive Neighborhood Search (FANS)
e Genetic Algorithms (GA)

e Greedy Randomized Adaptive Search Procedure (GRASP)
e Guided Local Search (GLS)

e Heuristic Concentration (HC)

e Memetic Algorithms (MA)

e Multi-Objective Search (MOS)

e Multi-Start Methods (MSM)

e Path Relinking (PR)

e Scatter Search (SS)

e Simulated Annealing (SA)

e Tabu Search (TS)

e Variable Neighborhood Search (VNS)

En este volumen proponemos una revision de algunos de los principales proce-
dimientos metaheuristicos. Comenzando con una introduccién a la optimizacién
en general y los diferentes enfoques de resolucién, pasamos después a revisar la
busqueda tabt, los métodos GRASP, la programacién multiobjetivo, los algorit-
mos meméticos y la busqueda multiarranque. Finalmente terminamos con algunas
aplicaciones de estas metodologias.

Esperamos que encontréis esta recopilaciéon interesante y os anime a entrar o
a proseguir en el fascinante mundo de la optimizacién heuristica.

Valencia, abril de 2007

ENRIC CRESPO, RAFAEL MARTI, JOAQUIN PACHECO
Coordinadores

Rect@ Monografico 3 (2007)



Primera parte

Introduccion






Introduccion a los
metaheuristicos™

M. Laguna® y C. Delgado?

#University of Colorado, Boulder,
Leeds School of Business
P Universidad de Burgos,
Departamento de economia Aplicada (Métodos Cuantitativos para la Economia)

1 Problemas de optimizacion dificiles

Optimizar es tratar de encontrar la mejor solucién posible para un determi-
nado problema. En todo proceso de optimizacion existen diferentes soluciones y
un criterio para discriminar entre ellas. Tratamos de encontrar el valor de unas
variables denominadas variables de decision para los que la funciéon objetivo al-
canza su valor 6ptimo. El valor de dichas variables suele estar sujeto a unas
restricciones.

Podemos encontrar una gran cantidad de problemas de optimizaciéon en la
industria, en la empresa, en la economia, en la ciencia, ... Como ejemplos de
problemas tipicos de optimizacién tenemos los de localizacién (de servicios o ac-
tividades peligrosas), los de asignacién (de personas a lugares de trabajo o simi-
lares), los de confeccién de calendarios (de horarios, de turnos de trabajo...), los
problemas de circuitos y de distribuciéon en planta, los de particién o cubrimiento
de un conjunto (instalacién de agencias de servicios que cubran una zona deter-
minada), | os de rutas de vehiculos... y otros méds actuales como por ejemplo los
de ingenieria y re-ingeniaria de software.

*Los autores de este trabajo agradecen la ayuda del Ministerio de Educacién y Ciencia por
la subvencién econémica para la realizacién de este trabajo a través del Plan Nacional de I+D,
(Proyecto SEJ- 2005 08923/ECON), asi como a la Junta de Castilla y Leén (“Consejeria de
Educacién” — Project BUOOSAQG).
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4 Introduccion a los metaheuristicos

Algunos de estos problemas son relativamente faciles de resolver mediante di-
ferentes métodos contrastados. Este es el caso de los problemas lineales para los
que en 1947 Dantzig elaboré un método de resolucién denominado método del
simplex. Sin embargo la mayoria de los problemas de optimizacién que pode-
mos encontrar en la practica no se resuelven tan facilmente. Este es el caso de
los problemas de optimizacién combinatoria, optimizaciéon no lineal en variables
continuas, optimizaciéon multiobjetivo y optimizacion de simulaciones, problemas
que se comentan a continuacién.

1.1 Optimizacién Combinatoria y Concepto NP

Dentro de los problemas de optimizacién son muy frecuentes aquellos en los
que las variables sélo pueden tomar valores discretos, enteros o incluso binarios.
En estos casos diremos que estamos ante problemas de optimizacién discreta y
que, en general, se pueden formular como problemas de optimizacién combinato-
ria, expresién en la cual podemos incluir la mayoria de los problemas que tienen
un numero finito o numerable de soluciones alternativas.

Mas concretamente, un problema de optimizacién combinatoria esta definido
por un conjunto de soluciones factibles S (habitualmente muy numeroso), y una
funcion f : S — R. Generalmente se representan como:

Minimizar (o maximizar)  f(s)
sujeto a: s € S.

La importancia de los modelos de optimizacién combinatoria, ademas del gran
numero de aplicaciones, estriba en que “contiene los dos elementos que hacen
atractivo un problema a los cientificos: planteamiento sencillo y dificultad de
resolucion”, (Garfinkel, (1985)).

Resolver un problema de Optimizacion Combinatoria, segin Papadimitriou
y Steiglitz (1982, p. 2), consiste en “encontrar la ‘mejor’ solucién o solucion
‘optima’ entre un conjunto finito o numerable de soluciones alternativas facti-
bles”. Se ha empleado mucho esfuerzo en investigar y desarrollar métodos para
obtener soluciones éptimas o aproximadas en problemas de Optimizaciéon Combi-
natoria: unos basados en Programacion Entera, Lineal o No Lineal, Programacién
Dindmica, etc. En los trabajos de Lawler (1976), Lawler, Lenstra, Rinnooy Kan
and Shmoys (1985) o de Schrijver (1986) se realizan revisiones histéricas del des-
arrollo de los diferentes métodos de solucion.

A lo largo de los anos se ha demostrado que muchos problemas de optimi-
zacién combinatoria pertenecen a la clase de Problemas NP-completos, es decir,
la solucién éptima se obtiene utilizando algoritmos que emplean un tiempo de
computacién que crece de forma superpolinomial (normalmente exponencial) en
el tamano del problema. Por consiguiente, en muchos casos, la solucién 6ptima
no se puede obtener en un tiempo razonable (una gran variedad de este tipo de
problemas se puede ver en el trabajo de Garey and Johnson (1979)).

Rect@ Monografico 3 (2007)



M. Laguna, C. Delgado 5

1.2 Optimizacién No Lineal en Variables Continuas

Estamos ante problemas de Optimizacién No Lineal cuando las funciones que
representan la funcién objetivo y las restricciones no son siempre lineales y los
valores de las variables, valores no negativos, estan sujetos a un conjunto de
restricciones de desigualdad; esto es:

Max f(x)
sa. g(z)<b
x>0

En el caso de que las funciones F' y g¢; sean continuamente diferenciables
el Teorema de Kuhn-Tucker nos permite obtener las condiciones necesarias de
Optimo. Béasicamente, estas condiciones establecen que el gradiente de la funcién
objetivo en z* para que sea solucién 6ptima, debe poderse expresar como una
combinacién lineal no negativa de los gradientes de las restricciones saturadas
en dicho punto. Las condiciones de Kuhn-Tucker son condiciones necesarias y
suficientes de 6ptimo local sélo para programas convexos.

Para generalizar las condiciones de Kuhn-Tucker a Programas No Diferen-
ciables ha sido necesario desarrollar otras condiciones de optimalidad, como las
condiciones de punto de silla lagrangiano. Tales condiciones son necesarias para
casi cualquier programa matemaético, y al igual que en el caso anterior son también
suficientes sélo si dicho programa es convexo. Cuando el programa es diferencia-
ble, estas condiciones mas generales, como es de esperar, coinciden con las de
Kuhn-Tucker.

1.3 Optimizacién Multiobjetivo

En la practica real se da con frecuencia el caso de miltiples objetivos o criterios
que se pretenden optimizar o satisfacer simultaneamente, por lo que usualmente
entran en conflicto; dicho de otra manera, cuando nos aproximamos al 6ptimo
de un objetivo, nos alejamos del mismo para otro objetivo. El estudio y analisis
de estas situaciones ha dado origen a técnicas que se denominan Programacién
Multiobjetivo.

Todos los autores que tratan estas cuestiones reconocen como primer antece-
dente, desde un punto de vista conceptual, la aportacién conocida como éptimo de
Pareto, debida a dicho autor en 1896, como una parte de la Teoria del Bienestar.
Sin embargo, esta idea de 6ptimo, tenia un cardcter fundamentalmente teérico sin
aplicacién préactica en la toma de decisiones. Es con la obra de Charnes y Cooper
(1961), cuando realmente comienza el desarrollo de las técnicas de Programacion
Multiobjetivo, en concreto, con el método espiral y el método de programacion
por objetivos. A partir de 1972, ano en que se celebra la Primera Conferencia
Internacional sobre la toma de Decisiones Multicriterio, Cochrane y Zeleny (Eds.)
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6 Introduccion a los metaheuristicos

(1973), tanto las reuniones cientificas sobre la materia, como las publicaciones en
revistas especializadas, no han dejado de producirse hasta nuestros dias.
El planteamiento mas general del problema es el siguiente:

max Fi(z) i=1,2,...,k
res

donde x es un vector de n componentes que son las variables a las que desig-
naremos con el término instrumentos; S es el conjunto de oportunidades y k es
el nimero de objetivos que deseamos maximizar y que vienen reflejados en las
funciones F.

En cuanto al proceso de decisiéon multicriterio, existen varios modelos, quiza el
mas conocido sea el de Chakong y Haimes, que distingue una fase de iniciacion, la
formulacion del problema, modelizacién, andlisis y evaluacion, e implementacién.
La caracteristica de estos modelos es que tanto en las fases de formulacién, como
de evaluacion, intervienen frecuentemente elementos subjetivos.

Entre los multiples criterios que pueden darse a la hora de clasificar las técnicas
multiobjetivo, escogemos la que hace referencia a la relacién entre el analista y el
decisor; segin sea esa relacion se originan distintas técnicas de solucién:

1. Técnicas generadoras: Se generan un conjunto de alternativas eficientes
siendo el flujo de informacion del analista al decisor.

2. Técnicas con informacién a priori: La direccién de la informacion es del
decisor al analista; la mas conocida es la Programacion por Objetivos.

3. Técnicas interactivas: El flujo de informacién va en ambas direcciones.

Entre los algoritmos de resolucion los mas sencillos son los basados en la
representacién de las metas multiples mediante una sola funciéon objetivo. En el
método de ponderacién, se forma una sola funcién objetivo como la suma de los
valores asignados de las funciones que representan las metas del problema. En el
método por prioridades se empieza por determinar las prioridades de las metas
en orden de importancia; el modelo es entonces optimizado utilizando una meta a
la vez y de tal manera que el valor 6ptimo de una meta de prioridad mas elevada
no se degrade por una meta de prioridad méas baja.

Rect@ Monografico 3 (2007)



M. Laguna, C. Delgado 7

1.4 Optimizaciéon de Simulaciones

La simulacién es una técnica que ensena a construir el modelo de una situacién
real permitiéndonos a su vez la realizacién de experimentos con ese modelo.

En concreto “simulacion es una técnica numérica para conducir experimentos
en una computadora digital, los cuales requieren ciertos tipos de modelos logicos
y matemdticos, que describen el comportamiento de un negocio o de otros tipos
de sistemas en periodos extensos de tiempo” (Naylor y otros, 1982).

La utilizacion de modelos de simulacién ha sido una técnica muy empleada
para aproximarnos a problemas muy complicados de tratar analiticamente. En
los modelos de simulacién, habitualmente, no se puede obtener la funcién objetivo
en funcién de las variables o parametros de entrada de forma explicita mediante
una férmula cerrada. La falta de una funcién objetivo de forma explicita que rela-
cione el objetivo (costes, tiempos) a optimizar con los pardmetros de entrada hace
que sea necesario ejecutar la simulaciéon para cada combinaciéon de parametros;
a poco complejo que sea el problema el niimero de combinaciones posibles de
los parametros puede ser elevado y el tiempo de computacién excesivo. Ademads
si, como suele pasar en muchos casos, existen componentes aleatorios en el mo-
delo, entonces se debe replicar varias veces la simulacién para obtener una esti-
macién aproximada de la funcién objetivo, lo que supone un incremento notable
del tiempo de computacién.

La optimizacién de simulaciones es una técnica que trata de buscar los valores
optimos o cercanos al éptimo de los parametros de entrada. Esta técnica es
relativamente nueva, y a pesar de los inconvenientes de su implementacién, parece
que tendra un impacto considerable en la practica de la simulacién en el futuro,
particularmente cuando los ordenadores lleguen a ser més rapidos.

2 Enfoques Basicos de Solucion

Como ya se ha comentado muchos problemas de Optimizacién Combinatoria
pertenecen a la clase de Problemas NP-Hard, es decir, para encontrar el 6ptimo
necesitan un tiempo de computacién que crece de forma (al menos) exponencial
en el tamano del problema. En estos casos debemos decidir entre encontrar la
solucién éptima a costa de emplear un tiempo de computacién muy elevado o
encontrar una buena solucién en un tiempo de computacién razonable.

En el primer caso se han de utilizar algoritmos Optimos o Exactos, mientras
que en el segundo se utilizardan algoritmos de Aproximacién o Heuristicos, como
los de biisqueda local, algoritmos constructivos, btisqueda incompleta, etc.

Por otro lado existen situaciones en las que puede ser conveniente encontrar
una buena solucién en lugar de la mejor de ellas. Las mas evidentes son las
siguientes:

Rect@ Monografico 3 (2007)



8 Introduccion a los metaheuristicos

e En muchos problemas reales los datos no son exactos sino sélo una buena
aproximacion. Es evidente que insistir aqui en un costoso procedimiento
exacto carece de sentido.

e Existen modelos, muy frecuentemente, en los cuales es imposible incluir
todas las consideraciones que afectan al problema ya que algunas de ellas
son dificilmente objetivizables y modelizables. En estos casos mas que una
solucién exacta lo que necesita el decisor son varias buenas soluciones entre
las que optar en funcién de sus propios criterios.

e Cuando hay que tomar decisiones en tiempo real, caso de autématas o
programaciones de trabajo sobre la marcha, lo que interesa es una buena
decisién pero inmediata.

Todos estos casos justifican la utilizacién de métodos aproximados si éstos
roporcionan buenas soluciones en un tiempo razonable. Por lo general los algo-
ritmos heuristicos tienen la ventaja anadida de que pueden ser mas facilmente
adaptables para solucionar modelos mas complejos. Hay que senalar que los di-
ferentes tipos de algoritmos dependen de cada problema concreto, ya que en su
diseno se intentan aprovechar las caracteristicas especificas de dichos problemas.

2.1 Métodos Exactos

Como ya se ha comentado permiten encontrar la solucién 6ptima a un pro-
blema. La enumeracion explicita de todo el conjunto de soluciones, aunque esté
acotado, suele ser excesiva, ya que este puede ser de gran tamano incluso en
problemas con pocas variables; por tanto se aplican métodos que abrevian dicha
busqueda. La mayoria de los algoritmos estdn basados en procesos de Ramifi-
cacion y Acotamiento (Branch & Bound) consistentes en lo siguiente:

e Inicialmente, partir del conjunto de todas las soluciones; dividir dicho con-
junto en dos subconjuntos o ramas; calcular y asignar para cada rama una
cota inferior, si estamos minimizando (superior si estamos maximizando),
del valor de la funcién objetivo en ese conjunto de soluciones.

e Elegir una de las ramas o subconjuntos seguin algin criterio y realizar de
nuevo el paso anterior. Repetir este proceso hasta llegar a una tnica so-
lucién.

e Continuar el proceso en las ramas que queden sin explorar si la cota inferior
asociada es menor que el valor de la mejor solucién encontrada hasta ese
momento. De esta forma se evita realizar exploraciones innecesarias.

Los criterios de ramificacién y elecciéon de la siguiente rama o subconjunto que
se explora, y la forma de determinar las cotas, dependen de la estructura y carac-
teristicas propias de cada problema concreto, y son importantes para aumentar la
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eficacia de estos algoritmos. El valor de la solucién de la relajacién continua del
problema, en el conjunto de soluciones correspondiente, se utiliza habitualmente
como cota inferior. Los conjuntos de soluciones se dividen segun los valores de
una determinada variable, y se elige como nueva rama a explorar la de menor
cota inferior.

Menos eficiente es la resolucién usando exclusivamente técnicas de Progra-
macién Dinamica, sin embargo éstas pueden ser tutiles para hallar cotas que
después sean introducidas en algoritmos de tipo Branch & Bound.

Otros métodos desarrollados son el algoritmo de Plano de Corte de Gomory,
muy aceptado para determinados problemas o el de Descomposicion de Benders.
Veamos como funciona el primero de ellos. Al igual que en los procesos de Rami-
ficacién y Acotamiento en el algoritmo de Plano de Corte de Gomory se utiliza la
solucién continua éptima de PL. En este caso se modifica el espacio de la solucion
anadiendo sucesivamente restricciones especialmente construidas llamadas cortes.
En la tabla éptima del simplex del problema relajado se anade el corte generado
a partir de un renglén elegido de forma arbitraria, de entre aquellos cuya variable
no es entera. A partir de dicha tabla se calcula la solucién 6ptima factible, y se
repite el proceso hasta que todas las variables sean enteras.

La idea gréfica del algoritmo de Plano de Corte de Gomory se muestra en las
figuras 1 y 2. Los cortes anadidos no eliminan ninguno de los puntos factibles
pero deben atravesar por lo menos un punto entero factible o no factible.

\(4 5,35)
Max 7x, + 10x,

sa -x;+3x,< 6
Tx, +x, <35
X, ¥y x,= 0y enteras

Fig. 2 Cortes realizados y solucién asociada en cada caso
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En cualquier caso, el tiempo de computacién utilizado, suele ser alto. Por
esta razén se da mucha importancia, especialmente en problemas combinatorios,
al diseno y uso de algoritmos heuristicos, esto es, algoritmos que no garantizan la
obtencién de la solucién éptima, pero si una buena solucién en un tiempo mucho
menor.

2.2 Heuristicos de Construccion

Existen diferentes tipos de heuristicos, segun el modo en que buscan y constru-
yen sus soluciones. En los heuristicos de construccién se van anadiendo paulatina-
mente componentes individuales a la solucion, hasta que se obtiene una solucién
factible.

El més popular de estos métodos lo constituyen los algoritmos golosos o de-
voradores (greedy), que construyen la solucién seleccionando en cada paso la
mejor opcion. Otras versiones escogen de forma totalmente aleatoria en cada
paso el componente que se anadird a la soluciéon. Las versiones que en general
han demostrado dar mejores resultados son las que introducen sélo cierto grado
de aleatoriedad: primero seleccionan un conjunto de buenas opciones; posterior-
mente escogen el siguiente componente de la solucion de forma aleatoria en dicho
conjunto.

2.3 Busqueda Local

Dentro de los métodos aproximados son de uso muy frecuente en la optimi-
zacién combinatoria los métodos de Biisqueda Local. Dichos métodos se basan en
la idea de explorar las soluciones ‘vecinas’ de aquella que tenemos en un momento
dado. Por tanto para disenar un procedimiento de busqueda local, es necesario
previamente definir un vencidario o entorno N(s), Vs € S, es decir:

N(s) = Conjunto de soluciones vecinas de s (a las que se llega por un
pequeno movimiento o cambio en s)

Se trata sencillamente de pasar de una solucién a otra vecina que sea mejor.
El proceso se acaba cuando no hay mejora posible en el conjunto de soluciones
vecinas. Estas técnicas pueden ser més sencillas o mas sofisticadas dependiendo
de la estructura vecinal que se defina.

El siguiente procedimiento describe este proceso:

Seleccionar una solucién inicial sg € S.

Repetir
Seleccionar s € N(sg) tal que f(s) < f(so) por un método preestablecido
Reemplazar sy por s

hasta que f(s) > f(so), s € N(so).
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Las formas mas usuales de seleccionar la solucién vecina son explorar en todo
el vecindario y tomar la mejor solucién segun el valor de la funcién objetivo
(mayor descenso), o buscar y seleccionar la primera que mejora la solucién actual
(primer descenso).

El inconveniente de esta estrategia siempre descendente es que en la mayoria
de los casos se convergen a minimos locales que no son globales, y ademaés suelen
estar muy lejos del éptimo global. Para ilustrar este problema considérese la
siguiente grafica:

o P
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Fig. 3 Ejemplo de estrategia descendente

En esta figura se muestra un sencillo ejemplo de una funcién en la que para
cada solucién se consideran dos soluciones vecinas, representadas por el punto
que tiene a la izquierda y el que tiene a la derecha. Una estrategia descendente
siempre se dirige hacia el fondo del valle que contiene al punto de salida. Por
ejemplo, si la solucién inicial es P, siempre se finalizara en el punto Q.

Para evitar este problema, se han sugerido algunas posibles soluciones: repetir
el algoritmo con diferentes puntos de partida, o aumentar el wvecindario. Por
desgracia, ninguna de estas variantes ha resultado ser totalmente satisfactoria. En
la figura anterior se observa que para evitar que la bisqueda se quede atrapada en
minimos locales de mala calidad, se deberia permitir algunos movimientos hacia
arriba, de forma controlada, aunque empeoren momentaneamente el valor de la
solucién actual. De esta forma se podrian visitar 6ptimos locales de mejor calidad
e incluso el 6ptimo global.

En definitiva la busqueda local, como tal, es una busqueda ciega ya que el
dnico criterio para aceptar una solucién es que reduzca el valor de la funcién
objetivo. Por tanto no utiliza ninguna informacién recogida durante la ejecucion
del algoritmo y depende de una manera muy estrecha de la solucion inicial y del
mecanismo de generacién de entornos. Para evitar quedar atrapado en un 6ptimo
local y poder continuar buscando soluciones mejores en todo el espacio es por lo
que se han creado diversas estrategias incluidas en los metaheuristicos.
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3 Metaheuristicos

Los metaheuristicos son el desarrollo mas reciente, entre los métodos apro-
ximados, para resolver complejos problemas de optimizacién combinatoria que
aparecen en la empresa, la economia, la industria, la ingenieria y muchas otras
areas. Se han desarrollado vertiginosamente desde principios de los 80 para re-
solver una gama muy variada de problemas.

Una definicién de Metaheuristico dada por Osman y Kelly (1996) es la si-
guiente:

“Un metaheuristico es un procedimiento iterativo, con una estruc-
tura y una reglas generales de funcionamiento que lo caracterizan,
que guia un método (normalmente un heuristico) subordinado combi-
nando inteligentemente diversos conceptos para explorar los espacios
de busqueda utilizando estrategias aprendidas para conseguir solucio-
nes quasi- optimas de manera eficiente”.

Segtin Glover y Laguna (1997):

Metaheuristica se refiere a una estrategia maestra que guia y modifica
otras heuristicas para producir soluciones mdas alld de aquellas que
normalmente se generan en una busqueda de optimos locales.”

Utilizan conceptos derivados de la inteligencia artificial, la biologia, las ma-
tematicas... para mejorar su eficacia. En general, tratan de explotar una coleccion
de ideas sensatas para ir mejorando la calidad de las soluciones.

Son procedimientos iterativos que disponen de mecanismos de parada fijados
por el usuario como pueden ser la cantidad de iteraciones efectuadas, el nimero
de iteraciones sin mejorar o haberse acercado suficientemente al 6ptimo (si se
dispone de una cota del mismo), etc. Los criterios de parada son absolutamente
necesarios en este tipo de procedimientos ya que contintian la exploraciéon después
de haber obtenido un éptimo local, y sin ellos el proceso seria interminable.

Aunque es posible encontrar convergencias teéricas al 6ptimo global para al-
gunos metaheuristicos bajo determinadas hipotesis, estas hipdtesis no se verifican
en la mayoria de las aplicaciones practicas. Por tanto, aunque pierden la posi-
bilidad de garantizar soluciones 6ptimas, los metaheuristicos han obtenido éxitos
a la hora de conseguir buenas soluciones en una amplia gama de aplicaciones en
muy diversas areas.

Ademas tienen otra gran ventaja. Dada la sencillez de sus elementos bésicos y
la importancia de sus aspectos intuitivos pueden ser implementados y utilizados
por personas sin una formacién especifica en mateméticas de alto nivel. Aunque
hay que tener en cuenta que a mayor conocimiento de técnicas de investigacion
operativa, mayor capacidad de recursos para abordar los problemas.
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A la hora de describir un metaheuristico las caracteristicas principales que se
han de comentar son las siguientes:

e Algoritmos deterministicos

Algoritmos aleatorios

Uso de memoria

Algoritmos poblacionales

Uso de movimientos por entornos

Basados en procesos fisicos, bioldgicos, inteligencia artificial, ..

Tradicionalmente, dos de estas caracteristicas se solian utilizar para dividir
los metaheuristicos, en general, en dos grandes grupos: metaheuristicos basados
en Poblacién o Algoritmos Evolutivos, y metaheuristicos basados en Busqueda
por Entornos. Sin embargo en la actualidad la mayoria de los métodos que se
implementan hoy en dia son hibridos, de forma que los métodos basados en po-
blaciones incluyen busquedas locales que por definicién se realizan por medio de
entornos. En los dos puntos siguientes (3.2 y 3.3) se comenta su funcionamiento
y se explican algunos de estos metaheuristicos.

También se puede hablar de métodos que utilizan decisiones sistemédticas (mu-
chas veces basados en memoria) y métodos basados en decisiones aleatorias. Al
igual que en el caso anterior es dificil encontrar implementaciones “puras” ya que
la mayorfa de los procedimientos incluyen ambos tipos de estrategias (sistemdticas
y aleatorias o pseudos aleatorias). En el punto 3.4 se estudia el funcionamiento
bésico de tres metaheuristicos basados en muestreo aleatorio. En este caso, nos
centramos en metaheuristicos que no utilizan memoria. Sus decisiones son to-
das al azar sin tener en cuenta las caracteristicas del problema que trata o los
resultados obtenidos con anterioridad.

Recientemente se han desarrollado estrategias heuristicas que eligen entre
heuristicos para resolver problemas de optimizacion. Estos métodos se denomi-
nan hiperheuristicos y su objetivo principal es el de disenar estrategias de progra-
macién generales que puedan ser aplicadas a diferentes problemas. Habitualmente
los algoritmos metaheuristicos suelen funcionar bien para los problemas para los
que se han disenado, pero no para todo tipo de problemas. Cuando se preten-
den aplicar a un tipo de problema diferente hay que realizar modificaciones en el
método, a menudo numerosas y costosas. En el caso de los hiperheuristicos esto
no seria necesario. Otra caracteristica propia de los hiperheuristicos es que mien-
tras un metaheuristico modifica las soluciones directamente, un hiperheuristico lo
hace indirectamente, por medio de un operador (un heuristico de bajo nivel). Por
supuesto los hiperheuristicos pueden ser metaheuristicos y de hecho normalmente
lo son.
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3.1 Meétodos Basados en Busqueda por Entornos

La Biusqueda por Entornos trata de superar los inconvenientes de la Bisqueda
Local: dependencia de la solucién inicial y convergencia a minimos locales que no
son globales. Para salir de esos minimos locales deberian permitirse movimientos
que empeoren momentaneamente la solucién actual. Como se verd mas adelante,
algunos métodos heuristicos, permiten estos movimientos “hacia arriba” de forma
controlada, mejordandose en muchos casos el valor de la solucion final. Otros
repiten el algoritmo con diferentes puntos de partida o consideran una estructura
vecinal mas compleja (modifican el vecindario).

Tabu Search (TS)

1

Segtin Glover F. (1996) la palabra Tabu se refiere a: “..un tipo de inhibicidn
por connotaciones culturales o historicas que puede ser superado en determinadas
condiciones. .. ”.

Tabu Search (Busqueda Tabi) dada a conocer por Glover F. (1989) y (1990-
a), es un procedimiento metaheuristico utilizado con el fin de guiar un algoritmo
heuristico de busqueda local para explorar el espacio de soluciones mas alla de
la simple optimalidad local y obtener soluciones cercanas al éptimo. Se han
publicado numerosos articulos y libros para difundir el conocimiento tedrico del
procedimiento; en Glover F. y Laguna M. (1997) y (2002) pueden encontrarse
amplios tutoriales sobre Bisqueda Tabtu que incluyen todo tipo de aplicaciones.

Al igual que la bisqueda local, la biisqueda tabu en su disefio basico, cons-
tituye una forma agresiva de busqueda del mejor de los movimientos posibles a
cada paso; sin embargo, también permite movimientos hacia soluciones del en-
torno aunque no sean tan buenas como la actual, de forma que se pueda escapar

de 6ptimos locales y continuar la biisqueda de soluciones atin mejores (ver figura
4).

f: funcién objetivo 1 s gueda T abu

« P
T .:‘ R\‘ ..I

Fig. 4 Procedimiento de Buisqueda Tabii.
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Simultaneamente para evitar ciclos, los ultimos movimientos realizados son
declarados tabti durante un determinado ntmero de iteraciones, utilizando las
denominadas restricciones tabi. Dicha condiciéon tabd puede ser ignorada bajo
determinadas circunstancias dando lugar a los llamados criterios de aspiracion.
De esta forma se introduce cierta flexibilidad en la bisqueda.

Variable Neighborhood Search (VINS)

Variable Neighborhood Search (Busqueda en Entorno Variable) es una técnica
metaheuristica propuesta y descrita en los trabajos de Mladenovic (1995), Mlade-
novic y Hansen (1997) y Hansen y Mladenovic (1998). La idea bédsica es combinar
la aplicacién de un procedimiento de buisqueda local con un cambio sistemético del
entorno de busqueda. El algoritmo aplica la bisqueda local en alguna solucion
del entrono de la mejor solucién obtenida hasta el momento (solucién actual).
Si no se consigue mejorar esta solucién actual se considera un entorno mayor.
Cuando se obtiene una solucién mejor se reinicia el proceso. Intenta explotar la
idea de que los minimos locales tienden a concentrarse en unas pocas regiones.
Un tutorial més recientes se encuentran en Hansen y Mladenovic (2003).

3.2 Meétodos Basados en Poblaciones

Los Algoritmos Evolutivos o algoritmos basados en poblaciones se inspiran
en los principios béasicos de la evolucién de los seres vivos, y modifican dichos
principios para obtener sistemas eficientes para la resoluciéon de diferentes pro-
blemas. Un Algoritmo Evolutivo es un proceso estocastico e iterativo que opera
sobre un conjunto P de individuos que constituyen lo que se denomina poblacion;
cada individuo contiene uno o més cromosomas que le permiten representar una
posible solucién al problema, la cual se obtiene gracias a un proceso de codifi-
cacién/decodificaciéon. La poblacién inicial es generada aleatoriamente o con la
ayuda de algun heuristico de construccién. Cada individuo es evaluado a través
de una funcién de adecuacion (fitness). Estas evaluaciones se usan para predispo-
ner la seleccién de cromosomas de forma que los superiores (aquellos con mayor
evaluacion) se reproduzcan mds a menudo que los inferiores.

El algoritmo se estructura en tres fases principales que se repiten de forma
iterativa, lo que constituye el ciclo reproductivo bdsico o generacion. Dichas fases
son: seleccién, reproduccién y reemplazo.

Genetic Algorithms (GA)

A finales de los 60 y principios de los 70 distintos investigadores trataron
de trasladar los principios de la Evolucién al campo de la algoritmia, dando
lugar a lo que tradicionalmente se conocia como Evolutionary Computation 'y que
ahora se llama FEwvolutionary Algorithms. Como resultado de esta investigacion
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se originaron diferentes modelos que pueden agruparse en tres grandes familias:
Evolutionary Programming (Programacion Evolutiva), Evolutions Strategies (EE,
Estrategias de Fvolucién) y Genetic Algorithms (GA, Algoritmos Genéticos).

Filoséficamente los tres métodos sélo difieren en el nivel de detalle en que
simulan la evoluciéon. A nivel algoritmico difieren en la forma en que represen-
tan las soluciones y los operadores que usan para modificarlas. La Programacion
Evolutiva tiene su origen en el trabajo de Fogel L.J. y otros (1966), y ponen un
especial énfasis en la adaptacién de los individuos mas que en la evoluciéon del ma-
terial genético de éstos. Las Estrategias de Evolucion comenzaron a desarrollarse
en Alemania. Su objetivo inicial era servir de herramienta para la optimizacién
de pardametros en problemas de ingenieria. Al igual que la Programacién Evolu-
tiva con la que se halla estrechamente emparentada, basa su funcionamiento en
el empleo de un operador de reproduccién asexual o de mutacién, especialmente
disefiado para trabajar con nimeros reales. En cuanto a los Algoritmos Genéticos
son probablemente el representante mas conocido de los algoritmos evolutivos, y
aquellos cuyo uso estd més extendido. Fueron concebidas originalmente por John
Holland y descritas en el ya clasico Adaptation in Natural and Artificial Systems
(Holland J. (1975)). Funcionan mediante la creacién en una computadora, de una
poblacién de individuos representados por los cromosomas, que son en esencia un
conjunto de cadenas de caracteres analogos a los cromosomas de cuatro bases de
nuestro ADN.

Histéricamente, el término evolutivo se ha asociado con algoritmos que usa-
ban solamente seleccién y mutacion, mientras que el término genético ha sido
asociado a algoritmos que usan seleccion, mutacién, cruce y una variedad de
otros mecanismos inspirados en la naturaleza (Goldberg D.E. (1994)). La prin-
cipal caracteristica de los GAs es el uso del operador de recombinacién o cruce
como mecanismo principal de busqueda: construye descendientes que poseen ca-
racteristicas de los cromosomas que se cruzan. Su utilidad viene dada por la
suposicién de que diferentes partes de la solucion éptima pueden ser descubiertas
independientemente y luego ser combinadas para formar mejores soluciones. Adi-
cionalmente se emplea un operador de mutacién cuyo uso se considera importante
como responsable del mantenimiento de la diversidad.

La premisa que guia los GAs es que pueden resolverse problemas complejos
simulando la evolucién en un algoritmo programado por ordenador. La con-
cepcién de John Holland es que esto ocurre mediante algoritmos que manipulan
strings binarios llamados cromosomas. Como en la evolucion biolégica, la evo-
lucién simulada tiene el objetivo de encontrar buenos cromosomas mediante una
manipulacién ciega de sus contenidos. El término ciego se refiere al hecho de que
el proceso no tiene informacion sobre el problema que intenta resolver.

Los primeros disenos de Holland fueron simples, pero probaron ser efectivos
para solucionar problemas considerados dificiles en aquel tiempo. El campo de
los GAs se ha desarrollado desde entonces, principalmente como resultado de las
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innovaciones en 1980 al incorporar més disenos elaborados con el propdsito de
resolver problemas en un amplio rango de escenarios practicos.

Los componentes que han de considerarse a la hora de implementar un GA
son los siguientes:

e Una representacion, en términos de “cromosomas”, de las configuraciones
de cada problema: método de codificacién del espacio de soluciones en cro-
mosomas.

e Una manera de crear las configuraciones de la poblacion inicial.

e Una funcién de evaluacién que permita ordenar los cromosomas de acuerdo
con la funcion objetivo: medida de la bondad o funcién fitness.

e Operadores genéticos que permitan alterar la composicion de los nuevos
cromosomas generados por los padres durante la reproduccion.

e Valores de los pardmetros que el algoritmo genético usa (tamano de la
poblacién, probabilidades asociadas con la aplicacién de los operadores
genéticos).

Scatter Search (SS)

Scatter Search (Biusqueda Dispersa) se caracteriza por el uso de un conjunto
de soluciones, denominado Conjunto de Referencia, que es actualizado durante
el proceso. El modo en el que combina soluciones y actualiza el conjunto de so-
luciones de referencia usadas para combinar conjuntos, aparta esta metodologia
de otros enfoques basados en poblacién. Quizés el método mas cercano a SS
dentro del area de Evolutionary Algorithms es Evolution Strategies ya que di-
chos métodos utilizan un esquema determinista de seleccién y una representacion
de soluciones que es natural al problema en lugar de la representacién genética
para cada individuo. Estas estrategias, en contraste con los GA’s, no simulan la
evolucion al nivel genético.

Como se comenta en los trabajos de Glover F. (1998) y Campos V. y otros
(2001) el enfoque de combinacién de soluciones para crear nuevas soluciones se
originé en los 60. La estrategia combinatoria se disené con la confianza de que la
informacién seria explotada mas efectivamente de forma integrada que tratandola
aisladamente (Crowston W.B. y otros (1963); Fisher H. y Thompson G.L. (1963)).

Scatter Search opera en un conjunto de referencia (reference set, RS) combi-
nando soluciones para crear unas nuevas. El conjunto de referencia puede evolu-
cionar como se ilustra en la figura 5, cuando se crean nuevas soluciones de una
combinacién lineal de otras dos o mas soluciones. Esta figura asume que el con-
junto de referencia original de soluciones consta de los circulos etiquetados como
A, By C. Después, una combinacién no convexa de las soluciones de referencia
Ay B crea la solucién 1. En concreto se crean un nimero de soluciones en el
segmento definido por A y B; sin embargo s6lo la solucién 1 se introduce en el
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conjunto de referencia. De modo similar, las combinaciones convexas y no conve-
xas del conjunto de referencia original y la solucién recién creada, crea los puntos
2, 3 y 4. El conjunto de referencia completo mostrado en dicha figura consta de
7 soluciones.

Fig. 5 Conjunto de Referencia (tomado de Laguna M. (2002)).

El conjunto de referencia de soluciones en busqueda dispersa tiende a ser pe-
queno, a diferencia de la poblacién de los algoritmos genéticos. En algoritmos
genéticos se eligen aleatoriamente dos individuos de la poblacién y se aplica un
mecanismo de cruce o combinacién para generar uno o mas hijos. Un tamano
de poblacion tipico en algoritmos genéticos consta de 100 elementos, que son
probados aleatoriamente para crear combinaciones. En contraste, SS elige dos o
mas elementos del conjunto de referencia de forma sistematica con el propdsito
de crear nuevas soluciones. Ya que el proceso de combinacion considera al menos
todos los pares de soluciones del conjunto de referencia, en la practica se necesita
trabajar con conjuntos de pocos elementos. Normalmente el conjunto de referen-
cia en busqueda dispersa tiene 20 soluciones o menos. En general, si el conjunto
de referencia consta de b soluciones, el procedimiento examina aproximadamente
(3b — 7)b/2 combinaciones de cuatro tipos diferentes (Glover F. (1998)). El tipo
bésico consta de combinaciones de dos soluciones; el siguiente tipo combina tres
soluciones y asi seguimos con cuatro o mas soluciones dependiendo del problema.
La limitacion del campo de busqueda a un grupo selectivo de tipos de combi-
nacion puede usarse como un mecanismo de control del niimero de combinaciones
posibles en un conjunto de referencia dado.

Las soluciones en SS no solo se pueden combinar utilizando combinaciones
lineales. Asi una extensién natural del método es utilizar Path Relinking (Re-
encadenamiento de Trayectorias) para combinar soluciones. El Re-encadenamiento
de Trayectorias se basa en el hecho de que entre dos soluciones se puede trazar
un camino que las una, de modo que las soluciones en dicho camino contengan
atributos de las iniciales. Para generar los caminos es necesario seleccionar movi-
mientos que cumplan los siguientes objetivos: empezando por una solucion inicial
z’, los movimientos deben introducir progresivamente los atributos de la solucién
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gufa 2’ (o reducir la distancia entre los atributos de estas soluciones). Los pape-
les de ambas soluciones son intercambiables; ademas cada solucién puede moverse
hacia la otra como una manera de generar combinaciones.

A

Fig. 6 Trayectoria Path Relinking (- - -) con solucién mejor

Utilizando PR se genera por lo tanto un camino que une dos soluciones selec-
cionadas =’ y 2’ produciendo una secuencia de soluciones

/

¥ =x(1),2(2),...,2(r) =2".

En este camino es posible por ejemplo encontrar soluciones mejores que las solu-
ciones inicial y guia (figura 6) y ademads estos caminos son habitualmente “mas
directos” que los encontrados por otras estrategias para unir dichas soluciones

(figura 7).

Fig. 7 Trayectoria Path Relinking (- - -) con camino mds corto

Particle Swarm Optimization (PSO)

PSO originalmente fue concebido para simular de un sistema social simplifi-
cado; sin embargo se vio que el modelo podia ser usado como optimizador. PSO
es una técnica de optimizacion estocastica poblacional desarrollada por Kennedy
J. y Eberhart R. (1995), e inspirada en el comportamiento de organismos tales
como las bandadas de pédjaros. Comparte algunas similitudes con Algoritmos
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Evolutivos tales como los Algoritmos Genéticos. Comienza con un conjunto de
soluciones aleatorias y busca la solucién éptima actualizando generaciones. Sin
embargo a diferencia de los GA, PSO no utiliza operadores evolutivos como el
cruce o la mutacién.

PSO imita el comportamiento de una bandada de p&jaros en busca de ali-
mentos. Un grupo de pajaros busca comida en un determinado drea. Se supone
que sélo hay una pieza de comida en el area de btsqueda. Los pdjaros no saben
donde se encuentra la comida, pero si saben en cada iteracién a qué distancia
estd. La estrategia sera seguir al pdjaro que mas cerca se encuentre de la comida.
De esta forma, las posibles soluciones de PSO (los péjaros) llamadas particulas
“yuelan” a través del espacio de soluciones cambiando su posicién y velocidad en
funcién de su propia experiencia y de la experiencia de las vecinas. La “veloci-
dad” de cada particula se ve modificada por una férmula muy sencilla que tiene
dos elementos: uno que impulsa a la particula hacia la mejor posicién (solucién
al problema) en la que esa particula ha estado durante la biisqueda y otro que
impulsa a la particula hacia la mejor posiciéon encontrada por todas las particulas
en la busqueda. La implementacién es muy sencilla ya que cada particula sélo
tiene que recordar cudl es la mejor posicion en la que ha estado y cudl es la mejor
posicién encontrada por todas las particulas.

PSO y Path Relinking son muy parecidos en el aspecto de que las soluciones
guias en PR juegan el mismo papel que las posiciones hacia las cuales las particulas
son impulsadas en cada paso del PSO. Si lo comparamos con los GA, POS es mas
facil de implementar y hay pocos pardmetros que ajustar.

Ant Colony Optimization (ACO)

Este método propuesto por Dorigo M. y otros (1996) es un ejemplo, como
el Temple Simulado, Redes Neuronales y otros, del afortunado uso de metéforas
naturales para disenar un algoritmo de optimizacién. En este caso se aprecia con
claridad como las soluciones generadas previamente afectan a las soluciones que
se generan en el futuro.

Las hormigas reales son capaces de encontrar el camino mas corto desde una
fuente de comida al hormiguero sin usar senales visuales. También son capaces de
adaptarse a cambios del entorno, por ejemplo, encontrando un nuevo camino mas
corto cuando el anterior ya no es factible debido a un obstéculo interpuesto. Las
hormigas se mueven en linea recta que conecta la fuente de comida con su hormi-
guero. El medio basico que tienen para formar y mantener la linea es un reguero de
pheromone; al caminar depositan determinada cantidad de esta sustancia y cada
hormiga prefiere (probabilisticamente) seguir una direccién rica en pheromone.
Cuando aparece de forma imprevista un obstaculo no esperado que interrumpe el
camino inicial, aquellas hormigas que estdn justo en frente del obstaculo no pue-
den continuar siguiendo el reguero de pheromone: tienen que elegir entre girar
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a la izquierda o a la derecha. En esta situacién podemos esperar que la mitad
de las hormigas elijan una cosa y la otra mitad otra. Una situacién muy simi-
lar puede encontrarse en el otro lado del obstaculo. Es interesante destacar que
aquellas hormigas que eligen por casualidad el camino corto, reconstruyen mas
rapidamente el reguero de pheromone interrumpido, en comparacién con aquellas
que eligen el camino largo. Asi que el camino corto recibird més cantidad de
pheromone por unidad de tiempo y en cada turno un mayor niimero de hormigas
elegird el camino corto. Debido a este proceso retroalimentado positivo, todas las
hormigas elegiran rapidamente el camino mas corto.

Dorigo M. y Gambardella L.M. (1997) han aplicado esta técnica al TSP
basandose en las ideas que se comentan a continuacién. Una hormiga artificial es
un agente que se mueve de una ciudad a otra en un grafo de TSP. Elige la ciudad a
la que moverse (o arco que afiade a su ruta) con una probabilidad proporcional al
reguero acumulado y la distancia del arco que se anade. Las hormigas artificiales
prefieren probabilisticamente ciudades que estdn conectadas por arcos con mucho
reguero de pheromone y que estdn préximas. Inicialmente, m hormigas artificiales
se colocan en ciudades seleccionadas aleatoriamente. En cada iteracién se mue-
ven a nuevas ciudades y modifican el reguero de pheromone de los arcos usados -
esto se denomina actualizacion de reguero local. Cuando todas las hormigas han
completado una ruta, la hormiga que hace la ruta mé&s corta modifica los arcos
pertenecientes a su ruta - se denomina actualizacion de requero global- anadiendo
una cantidad de reguero de pheromone que es inversamente proporcional a la
longitud de la ruta.

Hay tres ideas de la conducta de las hormigas que se transfieren a la colonia
de hormigas artificiales:

1. la preferencia por caminos con alto nivel de pheromone,

2. el alto ratio de crecimiento de la cantidad de pheromone en los caminos
cortos, y

3. el reguero mediador de comunicacion entre las hormigas.

Se ha dado a las hormigas artificiales algunas capacidades que no tienen sus
colegas naturales pero que se ha observado que son aptas para su aplicacion al
TSP: las hormigas artificiales pueden determinar la distancia a la que estén las
ciudades y estan dotadas con una memoria de trabajo M) usada para memorizar
las ciudades ya visitadas (la memoria de trabajo estd vacfa al comienzo de cada
nueva ruta y se actualiza después de cada paso de tiempo anadiendo las nuevas
ciudades visitadas).

Con el fin de evitar que un arco muy atractivo sea elegido por todas las
hormigas se realiza la actualizacién local del reguero: cada vez que un arco es
elegido por una hormiga su cantidad de pheromone se cambia aplicando la férmula
de actualizacion local. La evaporacion del reguero de pheromone en el mundo de
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las hormigas reales se traslada a la colonia de hormigas artificiales en forma de
actualizacion local del reguero.

3.3 Métodos basados en muestreo aleatorio
Simulated Annealing (SA)

Kirkpatrick S. y otros (1983), e independientemente Cerny V. (1985), propo-
nen un procedimiento para obtener soluciones aproximadas llamado Simulated
Annealing (Temple Simulado o Recocido Simulado). Se pueden considerar como
una variante de los métodos de busqueda local, en la que se permite empeora-
mientos en la solucién actual aunque de forma controlada.

Los autores mencionados introdujeron el concepto de templado en optimizacién
combinatoria. Este concepto esta basado en una estrecha analogia entre el proceso
fisico de templado y los problemas combinatorios. La idea original que dio lugar
a esta metaheuristica es el denominado “algoritmo de Metropolis”, Metropolis y
otros (1953), bien conocido en el mundo de la Quimica-Fisica. Para estudiar las
propiedades de equilibrio, Metropolis utilizé el “método de Montecarlo”, que es el
mas usado en Mecéanica Estadistica para estudiar el comportamiento microscépico
de los cuerpos.

Las moléculas de una sustancia pueden tener distintos niveles de energia. El
menor de estos niveles es el llamado “estado fundamental”, . A una temperatura
de 09 K todas las moléculas estan en su estado fundamental, pero se sabe que un
trozo de sustancia a alta temperatura probablemente posea un estado de energia
mas alto que otro idéntico a temperatura menor.

Cada una de las maneras en que las moléculas pueden estar distribuidas entre
los distintos niveles de energia recibe el nombre de microestado. Se denomina
Q) al conjunto de todos los posibles microestados y numero de ocupacion, n;, al
nimero de particulas en el nivel de energia i. El nimero de moléculas en los
estados superiores decrece para una temperatura 7" fija.

Para reducir la energia de la sustancia al menor valor posible, bajar simple-
mente la temperatura al cero absoluto no asegura necesariamente que la sustancia
alcance su configuracién energética mas baja posible. En fisica termodindmica, se
conoce como templado a un proceso termal para obtener los estados de mas baja
energia de un sélido en un recipiente. Para ello hay que elevar la temperatura del
recipiente, al menos hasta conseguir que el sélido se funda y posteriormente bajar
la temperatura del recipiente muy suavemente hasta que las particulas se estabi-
licen, es decir, hasta llegar al estado sélido; entonces se dice que se ha producido
la congelacion.

Simulacién Termodindmica Optimizacién Combinatoria Estados del material
Soluciones factibles S Energia Funcién f Estados surgidos por mecanismo de per-
turbacién Soluciones vecinas Estados metaestables Minimo local Estado de con-
gelacién Solucién final
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Simulacién Optimizadon

Termodinamica Combinatoria
Estados del material SdudonesfadiblesS
Energa Funaénf
Estadc_ssurgidos par Sdudonesvednas
mecarismo deperturbacion
Estadcs metaestables Minimo locd
Estadode congladén Sdudoénfind

Fig. 8 Correspondencia entre los elementos de simulacién termodinamica y
optimizaciéon combinatoria.

Durante la fase liquida, todas las particulas del material se mueven de forma
aleatoria. Cuando se llega al estado sélido, las particulas estan ordenadas en una
estructura enrejada con energia minima. Esta estructura se consigue solamente si
la temperatura inicial es suficientemente alta, y el enfriamiento se hace de forma
suficientemente lenta; de lo contrario, el material alcanza una estructura meta-
estable con mayor valor energético. La correspondencia entre los elementos de
simulacién termodindmica y la optimizacién combinatoria es la que aparece en la

figura 8.

GRASP

GRASP son las iniciales en inglés de Greedy Randomize Adaptive Search
Procedures (Procedimientos de Biisqueda basados en funciones Avidas, Aleatorias
y Adaptativas); se dieron a conocer a finales de los ochenta en el trabajo de Feo
T.A. y Resende M.G.C. (1989), pero han tenido un desarrollo més reciente que los
otros metaheuristicos. Una amplia descripcién se puede encontrar en un trabajo
posterior de los mismos autores Feo T.A. y Resende M.G.C. (1995).

GRASP es una técnica simple aleatoria e iterativa, en la que cada iteracién
provee una solucién al problema que se esté tratando. La mejor solucion de todas
las iteraciones GRASP se guarda como resultado final. Hay dos fases en cada
iteraciéon GRASP: la primera construye secuencial e inteligentemente una solucién
inicial por medio de una funcién avida, aleatoria y adaptativa; en la segunda se
fase aplica un procedimiento de bisqueda local a la solucién construida, con la
esperanza de encontrar una mejora.

En la fase de construccion se va anadiendo en cada paso un elemento, hasta
obtener la solucién completa. En cada iteracion, la eleccion del préximo elemento
para ser anadido a la solucién parcial, viene determinado por una funcién dvida
(greedy). Esta funcién mide el beneficio, segin la funcién objetivo, de anadir cada
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uno de los elementos y elige la mejor opcidon. Esta medida es miope, en el sentido
de que no tiene en cuenta qué ocurrird en iteraciones sucesivas al realizar una
eleccion, sino inicamente lo que pasa en esa iteracién.

El heuristico es adaptativo, ya que los beneficios asociados con cada elemento
se actualizan en cada iteracién de la fase de construccion, para reflejar los cambios
producidos por la selecciéon de elementos previos.

GRASP es aleatorizado porque no selecciona el mejor candidato segin la
funcién avida adaptada. Con los mejores elementos a anadir se construye una
lista denominada Lista Restringida de Candidatos (RCL en inglés), y se elige de
forma aleatoria uno de los mejores candidatos de dicha lista, que no sera nece-
sariamente el mejor. La aleatoriedad sirve como mecanismo de diversificacién en
GRASP.

No se garantiza que la solucién generada por la fase de construccion de GRASP
sea un Optimo local respecto a una definicion simple de vecindario. Por ello se
aplica busqueda local para mejorar cada solucién construida. La fase de bisqueda
local finaliza cuando no se encuentra una solucién mejor en el vecindario de la
solucion actual. GRASP se basa en realizar multiples iteraciones y quedarse con
la mejor, por lo que no es especialmente beneficioso para el método el detenerse
demasiado en mejorar una solucién dada. El éxito de esta segunda fase viene
determinado por la acertada eleccion de la estructura del vecindario, técnicas
eficientes de busqueda en vecindarios, y la solucién inicial.

GRASP, al igual que otros metaheuristicos, se ha combinado también con
Path Relinking, estrategia comentada en el punto 3.3.2. La idea es encadenar las
soluciones que se obtienen al final de la segunda fase, utilizando una para iniciar
la bisqueda y otra como guia.

Cross-Entropy

Los precedentes de CE los encontramos en Rubinstein R. (1997). CE es un
método para resolver problemas de optimizacién combinatoria, optimizacién con-
tinua con multiples extremos y simulacién de eventos poco frecuentes. Se basa en
la idea de transformar el problema de optimizacién determinista original en un
problema estocastico asociado y afrontar dicho problema asociado utilizando un
algoritmo adaptativo. Se construye una serie aleatoria de soluciones que conver-
gen probabilisticamente al éptimo o cerca del 6ptimo. Tras definir el problema
estocdstico asociado CE emplea dos fases: 1. Generacion de un conjunto de datos
aleatorios (trayectorias, vectores,..) segin un mecanismo aleatorio especifico. 2.
Actualizacién de los pardametros del mecanismo aleatorio, en base a los datos para
producir una mejor muestra en la siguiente iteracién.

La importancia de este método es que define una meticulosa estructura ma-
temdatica para obtener rapidamente normas de aprendizaje y actualizacién en
cierta forma “6ptimas” basadas en teoria de simulacién avanzada. Hay que re-
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saltar que CE puede ser aplicado satisfactoriamente tanto a problemas deter-
ministicos como aleatorios.
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1 Introduccion

El término Busqueda Tabu (Tabu Search - TS) fue introducido en 1986 por
Fred Glover en el mismo articulo que introdujo el término metaheuristica [5].
Los principios fundamentales de la busqueda fueron elaborados en una serie de
articulos de finales de los anios 80 y principios de los 90, que fueron luego unificados
en el libro “Tabu Search” en 1997 [8]. El destacado éxito de la busqueda tabui
para resolver problemas de optimizacién duros, especialmente aquellos que surgen
en aplicaciones del mundo real, ha causado una explosién de nuevas aplicaciones
durante los ultimos anos, que aparecen resumidas en [9].

La biisqueda tabi es una metaheuristica que guia un procedimiento heuristico
de busqueda local en la bisqueda de optimalidad global. Su filosofia se basa en
derivar y explotar una coleccion de estrategias inteligentes para la resolucion de
problemas, basadas en procedimientos implicitos y explicitos de aprendizaje. El
marco de memoria adaptativa de la bisqueda tabii no sélo explota la historia
del proceso de resolucién del problema, sino que también exige la creaciéon de

“Este trabajo ha sido parcialmente financiado por el Ministerio de Ciencia y Tecnologia
(proyecto TIN2005-08404-C04-03 (70% son fondos FEDER)) y por el Gobierno de Canarias
(proyecto P1042004/088). La actividad desarrollada se enmarca dentro de los objetivos de la
red RedHeur (proyectoTIN2004-20061-E).
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estructuras para hacer posible tal explotacién. De esta forma, los elementos
prohibidos en la busqueda tabtu reciben este estatus por la confianza en una
memoria evolutiva, que permite alterar este estado en funcién del tiempo y las
circunstancias. En este sentido es posible asumir que la busqueda tabd esta
basada en determinados conceptos que unen los campos de inteligencia artificial
y optimizacién.

Mas particularmente, la btisqueda tabt esta basada en la premisa de que para
clasificar un procedimiento de resolucién como inteligente, es necesario que éste
incorpore memoria adaptativa y exploracion responsiva. La memoria adaptativa
en btisqueda tabt permite la implementacién de procedimientos capaces de rea-
lizar la busqueda en el espacio de soluciones eficaz y eficientemente. Dado que
las decisiones locales estan por tanto guiadas por informacion obtenida a lo largo
del proceso de busqueda, la busqueda tabt contrasta con disenos que por contra
confian en procesos semialeatorios, que implementan una forma de muestreo. La
memoria adaptativa también contrasta con los tipicos disenos de memoria rigidos
tales como las estrategias de ramificacion y acotacién.

El énfasis en la exploracion responsiva considerada en la busqueda tabu deriva
de la suposicién de que una mala eleccién estratégica puede proporcionar més
informacién que una buena eleccién realizada al azar, dado que una eleccién
estratégica mala puede proporcionar pistas ttiles sobre como guiar la bisqueda
hacia zonas prometedoras. Por lo tanto, la exploracién responsiva integra los
principios basicos de la busqueda inteligente; explota las caracteristicas de las
soluciones buenas a la vez que explora nuevas regiones prometedoras.

2 La estructura de la Bisqueda Tabi

2.1 Uso de memoria

Las estructuras de memoria de la busqueda tabi funcionan mediante referencia
a cuatro dimensiones principales, consistentes en la propiedad de ser reciente, en
frecuencia, en calidad, y en influencia. Las memorias basadas en lo reciente
y en frecuencia se complementan la una a la otra para lograr el balance entre
intensificacion y diversificacién que todo proceso de busqueda heuristica debe
poseer. Discutiremos con mas detalle los aspectos referentes a estas dos primeras
dimensiones de memoria a lo largo de este capitulo. La dimension de calidad hace
referencia a la habilidad para diferenciar la bondad de las soluciones visitadas a lo
largo del proceso de busqueda. De esta forma, la memoria puede ser utilizada para
la identificacién de elementos comunes a soluciones buenas o a ciertos caminos
que conducen a ellas. La calidad constituye un fundamento para el aprendizaje
basado en incentivos, donde se refuerzan las acciones que conducen a buenas
soluciones y se penalizan aquellas que, por contra, conducen a soluciones pobres.
La flexibilidad de las estructuras de memoria mencionadas hasta el momento
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permiten guiar la biisqueda en un entorno multi-objetivo, dado que se determina
la bondad de una direccién de bisqueda particular mediante méas de una funcion.
Por 1ltimo, la cuarta dimensiéon de memoria, referida a la influencia, considera
el impacto de las decisiones tomadas durante la btisqueda, no sélo en lo referente
a la calidad de las soluciones, sino también en lo referente a la estructura de
las mismas. Este ultimo uso de memoria es una caracteristica importante de la
bisqueda tabu que con frecuencia se olvida, pero que deberia ser considerada
incluso en los disenos mas simples como veremos a lo largo de este capitulo.

El uso de memoria en la busqueda tabu es tanto ezplicita como implicita.
En el primer caso, se almacenan en memoria soluciones completas, generalmente
soluciones élite visitadas durante la biisqueda, mientras que en el segundo caso, se
almacena informacién sobre determinados atributos de las soluciones que cambian
al pasar de una solucién a otra. Aunque, en algunos casos, la memoria explicita
es usada para evitar visitar soluciones mas de una vez, esta aplicacién es limitada
dado que es necesario la implementacion de estructuras de memoria muy eficientes
para evitar requerimientos de memoria excesivos. De cualquier manera, estos dos
tipos de memoria son complementarios, puesto que la memoria explicita permite
expandir los entornos de busqueda usados durante un proceso de btisqueda local
mediante la inclusiéon de soluciones élite, mientras que la memoria basada en
atributos los reduce prohibiendo determinados movimientos.

2.2 Intensificacién y Diversificacion

Las estrategias de intensificacion y diversificacién constituyen dos elementos
altamente importantes en un proceso de busqueda tabi. Las estrategias de in-
tensificacién se basan en la modificacion de reglas de seleccién para favorecer la
eleccién de buenas combinaciones de movimientos y carateristicas de soluciones
encontradas. Esto implica que es necesario identificar un conjunto de soluciones
élite cuyos buenos atributos puedan ser incorporados a nuevas soluciones crea-
das. La pertenencia al conjunto de soluciones élite se determina generalmente
atendiendo a los valores de la funcién objetivo comparados con la mejor solucién
obtenida hasta el momento.

Por otro lado, las estrategias de diversificacién tratan de conducir la busqueda
a zonas del espacio de soluciones no visitadas anteriormente y generar nuevas
soluciones que difieran significativamente de las ya evaluadas.

2.3 Un ejemplo ilustrativo

Los problemas de permutaciones son una clase importante de problemas en
optimizacién, y ofrecen un modo muy tutil para demostrar algunas de las con-
sideraciones que deben ser tratadas en el dominio combinatorio. Las instancias
clasicas de problemas de permutaciones incluyen los problemas del viajante de
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comercio, asignacion cuadratica, secuenciacion de la produccion, y una variedad
de problemas de diseno. Como base para la ilustracién, consideremos el problema
de secuenciacion de tareas en una tnica maquina. El objetivo de este problema es
encontrar un orden para secuenciar las tareas en la maquina de tal forma que se
minimice el retraso total en la ejecucion de las tareas. Cada tarea j,j7 =1,2,....n,
tiene asignados un tiempo de procesamiento p; y un dia de finalizacién d;. De
forma adicional, se podria considerar un valor de penalizacién por retardo en la
finalizacién de las tareas que dependeria de la tarea considerada, w;. Por tanto,
la funcién a minimizar se expresa como

F=> wlC;—d;]",
j=1

donde Cj es el tiempo de finalizacién de la tarea j y [C; —d,;]T = max{0,C; —d,}.
El tiempo de finalizacién de una tarea j, Cj, es igual al tiempo de procesamiento
de la tarea 7 més la suma de los tiempos de procesamiento de todas las tareas
que se realizan antes que j.

El problema consiste en determinar el orden de secuenciacion de las tareas
que minimiza el valor de la funcién objetivo F'. Una secuenciacion de las tareas,
que constituye una permutacién, define completamente a una solucién.

Nos centramos, por tanto, en el problema de secuenciacién de tareas en
una unica maquina para introducir e ilustrar los componentes bésicos de la
buisqueda tabti. Supongamos que se consideran 6 tareas para su secuenciacién
en la maquina. A modo de ilustracién, supongamos que este problema de 6
tareas tiene tiempos de procesamiento dados por (5, 8, 2, 6, 10, 3), dfas de termi-
nacién especificados por (9, 10, 16, 7, 20, 23), y penalizaciones por retraso w; = 1
para j =1,2,...,6. Deseamos disenar un método capaz de encontrar una solucion
optima o cercana a la 6ptima explorando sélo un pequeno subconjunto de todas
las permutaciones posibles.

Primero asumimos que puede construirse una solucién inicial para este pro-
blema de alguna manera inteligente, es decir, tomando ventaja de la estructura
especifica del problema. Supongamos que la solucién inicial de nuestro problema
es la que aparece en la Figura 1.

Tareas

[1]2]3[4]5]6]

Figura 1: Permutacién inicial

La ordenacién de la Figura 1 especifica que la tarea 1 se realiza en primer
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Tareas
i J F valor del movimiento abs(d; — dj)
1 2 40 1 9
1 3 42 3 7
1 4 38 -1 2
1 5 64 25 11
1 6 47 8 14
2 3 41 2 6
2 4 37 -2 3
2 5 49 10 10
2 6 39 0 13
3 4 42 3 9
3 5 54 15 4
3 6 48 9 7
4 5 43 4 13
4 6 38 -1 16
5 6 32 -7 3

Tabla 1: Entorno de Intercambios

lugar, seguida por la tarea 2, etc. El valor de la funcién objetivo para esta
solucién es 39. Los métodos TS operan bajo el supuesto de que se puede construir
un entorno para identificar “soluciones adyacentes” que puedan ser alcanzadas
desde la solucion actual. Los intercambios por pares son frecuentemente usados
para definir entornos en problemas de permutaciones, identificando movimientos
que conducen una solucién a la siguiente. En nuestro problema, un intercambio
cambia la posicién de dos tareas como se ilustra en la Figura 2. Por tanto, el
entorno completo de una solucién en nuestro ejemplo ilustrativo estd formado por
15 soluciones adyacentes que pueden ser obtenidas a partir de estos intercambios
tal como muestra el Cuadro 1.

CIEIEIEEIN

Figura 2: Intercambio de las tareas 1y 6

Tal como observamos en el Cuadro 1, asociado a cada intercambio hay un
valor de movimiento, que representa el cambio sobre el valor de la funciéon ob-
jetivo como resultado del intercambio realizado. Los valores de los movimientos
generalmente proporcionan una base fundamental para evaluar la calidad de los
mismos, aunque también pueden ser importantes otros criterios. Un mecanismo
principal para explotar la memoria en la bisqueda tabu es clasificar un subcon-
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junto de movimientos en un entorno como prohibidos (o tabi). La clasificacién
depende de la historia de la busqueda, determinada mediante lo reciente o fre-
cuente que ciertos movimientos o componentes de soluciones, llamados atributos,
han participado en la generacién de soluciones pasadas. Por ejemplo, un atributo
de un movimiento es la identidad del par de elementos que cambian posiciones
(en este caso, las dos tareas intercambiadas). Como base para evitar la bisqueda
desde combinaciones de intercambio repetidas usadas en el pasado reciente, in-
virtiendo potencialmente los efectos de movimientos anteriores por intercambios
que podrian devolver a posiciones previas, clasificaremos como tabu todos los
intercambios compuestos por cualquiera de los pares de tareas més recientes; en
este caso, para propositos ilustrativos, las tres mas recientes. Esto significa que
un par de tareas serd tabu durante un periodo de 3 iteraciones. Dado que inter-
cambiar las tareas 2 y 5 es lo mismo que intercambiar las tareas 5 y 2, ambos
intercambios pueden ser representados por el par (2,5). Por lo tanto, se puede
usar una estructura de datos como la usada en la Figura 3.

2 3 4 5 6
1
2
3 |7
Periodo tabu res- 4
tante para el par 5
de tareas (2,5) —

Figura 3: Estructura de Datos Tabt

Cada celda de la estructura de la Figura 3 contiene el nimero de iteraciones
restantes hasta que las capas correspondientes puedan nuevamente intercambiar
posiciones. Por tanto, si la celda (2,5) tuviera un valor de cero, entonces las
tareas 2 y 5 estarian disponibles para intercambiar posiciones. Por otro lado, si la
celda tuviera un valor de 2, entonces las tareas no podrian intercambiar posiciones
durante las dos iteraciones siguientes (es decir, un intercambio que cambia estas
tareas es clasificado como tabu).

Para implementar restricciones tabt, debe tenerse en cuenta una excepcién
importante: las restricciones tabi no son inviolables bajo cualquier circunstan-
cia. Cuando un movimiento tabu resultara en una solucién mejor que cualquiera
visitada hasta ese momento, su clasificacién tabu podria ser reemplazada. Una
condiciéon que permite que ocurra tal reemplazo se llama criterio de aspiracion.
A continuaciéon se muestran 7 iteraciones del procedimiento de busqueda tabu
bésico, que usa la restriccién tabti de tareas emparejadas.
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Solucién Estructura Primeros 5
actual tabu candidatos
. Valor de
1 2 3 4 5 6 movimiento
2 1 5,6 |—T7|*
3 2 2,4 -2
4 3 1,4(-1
5 4 4,6 |—1
6 5 2,60
— F =39 —

Figura 4: Iteracion 0

La solucién de partida de la Figura 4 tiene un valor de la funcién objetivo
F = 39, y la estructura de los datos tabu estd inicialmente vacia, es decir, esta
llena de ceros, indicando que ningtin movimiento esta clasificado como tabu al
comienzo de la busqueda. Después de evaluar los movimientos de intercambio
de candidatos, se muestran en la tabla para la iteracion O los cinco primeros
movimientos (en términos de valores de movimiento). Para minimizar localmente
el retraso total en la ejecucion de las tareas, intercambiamos las posiciones de las
tareas 5 y 6, como se indica a través del asterisco en la Figura 4. El decremento
total de este movimiento es igual a 7 unidades, con lo que el valor de la funcién
objetivo pasa a ser F' = 32.

Solucién Estructura Primeros 5
tabu tabu candidatos
. Valor de

1 2 3 4 5 6 movimiento

2 1 2,4 |—2| *

3 2 1,4(-1

4 3 1,2

6 4 2,3

5 513 4,6 2
— F =32 —

Figura 5: Iteracién 1

La nueva solucién actual tiene un valor de funcién objetivo F' = 32 (es decir,
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el retraso total anterior més el valor del movimiento seleccionado). La estructura
tabt de la Figura 5 ahora muestra que el intercambio de las posiciones de las
tareas 5 y 6 se prohibe durante 3 iteraciones. El movimiento que proporciona la
mayor mejora en este paso es el intercambio de las tareas 2 y 4 con un decremento
de 2 unidades.

Solucién Estructura Primeros 5
actual tabt candidatos
i Valor de

1 2 3 4 5 6 movimiento
4 1 1,4 | -2/ *
3 2 3 1,3] 1

2 3 3,41 2

6 4 2,41 2 |T
5 512 2,62
—— F =30 —

Figura 6: Iteracién 2

La nueva solucién actual tiene un retraso en la ejecucion de las tareas de 30. En
esta iteracion se clasifican como tabt dos intercambios como se indica mediante
las entradas distintas de cero en la estructura tabu de la Figura 6. Note que la
entrada (5, 6) ha disminuido de 3 a 2, indicando que su periodo tabu original de 3
ahora tiene 2 iteraciones restantes. En este momento, el intercambio de las tareas
1y 4 conduce a una nueva mejora en el valor de la funcién objetivo, disminuyendo
en dos unidades. La Figura 7 muestra ahora 3 movimientos clasificados como
tabu.

En este momento, ninguno de los candidatos tiene un valor de movimiento
negativo. Por lo tanto, se realiza un movimiento de no mejora. Dado que el primer
movimiento de no mejora es el inverso del movimiento ejecutado en la iteracion
anterior, que estd clasificado como tabu (indicado por T'), este movimiento no se
selecciona. Entonces se elige el intercambio de las tareas 1 y 3, como se indica en
la Figura 7.

Siguiendo el mismo procedimiento indicado hasta este momento, se realizarian
las siguientes iteraciones mostradas en las Figuras 8 a 11. En estas tltimas
iteraciones observamos que se realizan movimientos de no mejora para escapar de
la solucién con valor objetivo F' = 28, que parece ser un 6ptimo local.

Si durante el proceso explicado hubiera habido algin movimiento clasificado
como tabti que condujera a una solucién con un retraso en la finalizacién de las
tareas menor que el de la mejor solucién encontrada hasta el momento, se podria
haber usado un criterio de aspiraciéon. En este caso, hubiéramos usado el criterio
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Solucién Estructura Primeros 5
actual tabu candidatos
T Valor de
4 2 3 4 5 6 movimiento
1 1 3 L4 2|T
3 2 2 1,3] 2 |*
2 3 2,6 2
6 4 1,2] 3
5 511 2,31 3
— F =28 —

Figura 7: Iteracion 3

Solucién Estructura Primeros 5
actual tabu candidatos
T Valor de

4 2 3 4 5 6 movimiento
3 1 312 1,3(|-2|T
1 2 1 3,401 |
2 3 1,4 2|T
6 4 2,60 2
5 5 1,2]3
— F =30 —

Figura 8: Iteracién 4

de aspiracién por objetivo, que selecciona como solucién actual la que tenga un
menor valor objetivo, independientemente de que los movimientos requeridos para
alcanzarla sean tabu.

En algunas situaciones, puede ser deseable incrementar el porcentaje de mo-
vimientos disponibles que reciben una clasificacién tabi. Ademads, a pesar del
tipo de restriccion seleccionado, a menudo se obtienen mejores resultados por los
plazos tabi que varian dindmicamente, como se describe con posterioridad en este
capitulo.

Valores de Movimiento y Estrategia de Lista de Candidatos. Dado que la
biisqueda tabt selecciona agresivamente los mejores movimientos admisibles (donde
el significado de mejor es afectado por la clasificacién tabu y otros elementos a
ser indicados), debe examinar y comparar un nimero de opciones de movimiento.
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Solucién Estructura Primeros 5

actual taba candidatos
— Valor de

3 2 3 4 5 6 movimiento

4 1 211 3,4 |-1T

1 2 1,3 |—-1|T

2 313 1,41 11|T

6 4 2,6 2|
5 5 1,2 3

— F =231 —

Figura 9: Iteracién 5

Solucién Estructura Primeros 5

actua tabu candidatos
— Valor de

3 2 3 4 5 6 movimiento

4 1 1 2,6 |—2|T

1 2 3 3,4 |-1T

6 3|2 1,3|-1|T

2 1,4 1 |*
5 5 3,6 2

— F =33 —

Figura 10: Iteracion 6

Para muchos problemas, sélo una porcién de los valores de movimiento cambia
de una iteracién a otra, y a menudo estos valores cambiados pueden ser separa-
dos y actualizados muy rapidamente. Este elemento de mantener actualizaciones
eficientes es muy importante y en ocasiones ignorado. Por ejemplo, en la presente
ilustracién puede ser 1til almacenar una tabla valor_movimiento(7,k), que alma-
cena el actual valor del movimiento para intercambiar las tareas j y k. Entonces
cuando se ejecuta un movimiento, una parte relativamente pequena de esta ta-
bla (formada por los valores que cambian) puede ser modificada rdapidamente,
y la tabla actualizada puede ser consultada para identificar movimientos que se
convierten en los nuevos candidatos superiores.

Si atendemos al Cuadro 1, observamos claramente que hay una variaciéon muy
grande en la calidad de cada intercambio en el entorno definido para una solucion.
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Solucién Estructura Primeros 5

actual tabu candidatos
T Valor de

3 2 3 4 5 6 movimiento

1 1 3 3,4 |—-4|T

4 2 2 2,6 |=2|T

6 311 1,4|-1T

2 4 1,310 |=*
5 5 3,6 1

— F =34 —

Figura 11: Iteracion 7

Por lo tanto, parece ttil eliminar algunas soluciones de calidad baja antes de
evaluar su valor de movimiento mediante un filtro. En nuestro ejemplo ilustrativo
de secuenciaciéon de tareas en una maquina, podemos implementar una regla que
elimine aquellos movimientos para los que el valor absoluto de la diferencia de
los dias de terminacién sea mayor que 3. De esta forma, en los datos del Cuadro
1, evaluariamos tan sélo 3 movimientos en vez de 15, generando asi una lista de
candidatos.

Estructuras de Memoria Tabiu Complementarias.

El complemento de memoria basada en lo reciente a la memoria basada en
frecuencia anade una componente que tipicamente opera sobre un horizonte més
largo. En nuestro ejemplo ilustrativo, si continuamos con la traza anterior uti-
lizando tnicamente informacién basada en las 3 iteraciones mas recientes, ob-
servamos que se produce un ciclado de las soluciones. Para ilustrar una de las
aplicaciones ttiles de largo periodo de memoria basada en frecuencia, suponemos
que han sido ejecutadas 14 iteraciones TS, y que el ntimero de veces que cada
par de tareas ha sido intercambiado se guarda en una estructura de datos tabu
expandida (Figura 12). La diagonal inferior de esta estructura ahora contiene los
contadores de frecuencia.

En la iteracién actual (iteracién 15), la memoria basada en lo reciente in-
dica que los tltimos tres pares de tareas intercambiados fueron (1,4), (2,6), y
(3,4). Los contadores de frecuencia muestran la distribucién de movimientos a
través de las 14 primeras iteraciones. Usamos estos contadores para diversificar
la busqueda, conduciéndola a nuevas regiones y rompiendo el ciclado. Nuestro
uso de informacién de frecuencia penalizard movimientos de no mejora mediante
la asignacién de una penalizacién mayor a intercambios de pares de tareas con
mayores contadores de frecuencia. (Tipicamente, estos contadores serfan norma-
lizados, por ejemplo mediante la divisién por el niimero total de iteraciones o su
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Estructura
Solucién taba Primeros 5
actual . candidatos
. (Reciente)
3 1 2 3 4 5 6 Valor
111 3 3,4]—4| — |T
41 2 2 2,61-2|—|T
6133 1 1,41 —|T
214131113 1.3l0(3
5| 5 3,611 (1=
6 3 1 Valor
Penalizado
F =34 (Frecuente)

Figura 12: Iteracion 15

méximo valor). Esto se ilustra en el ejemplo presente simplemente sumando el
valor de frecuencia al valor del movimiento asociado.

La lista de candidatos superiores para la iteracién 15 muestra que el movi-
miento de méxima mejora es el intercambio (3,4), pero dado que este par tiene
un periodo tabu residual, es clasificado tabi. Lo mismo sucede con los movi-
mientos (2,6) y (1,4). El movimiento (1,3) tiene un valor de 0, y pudiera ser
en otro caso el siguiente preferido, excepto si sus tareas asociadas han sido in-
tercambiadas frecuentemente durante la historia de la busqueda (de hecho, mds
frecuentemente que cualquier otro par de tareas). Por lo tanto, el movimiento es
penalizado fuertemente y pierde su atractivo. El intercambio de las tareas 3 y 6
es, por tanto, seleccionado como el mejor movimiento en la iteraciéon actual.

La estrategia de imponer penalizaciones bajo condiciones particulares se usa
para preservar la agresividad de la busqueda. Las funciones de penalizacién en
general se disenan para justificar no sélo frecuencias sino también valores de
movimientos y ciertas medidas de influencia.

Ademas, las frecuencias definidas sobre diferentes subconjuntos de soluciones
anteriores, particularmente subconjuntos de soluciones élite formados por 6ptimos
locales de alta calidad, dan lugar a estrategias complementarias llamadas estra-
tegias de intensificacién. Las estrategias de intensificacion y diversificacion inte-
ractian para proporcionar puntos de apoyo fundamentales de memoria de largo
plazo en busqueda tabd. El modo en el que tales elementos son capaces de crear
métodos realzados de la busqueda, extendiendo el enfoque simplificado del ejem-
plo precedente, se elabora en las siguientes secciones.
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3 Fundamentos de la Bisqueda Tabui: Memoria
a Corto Plazo

Antes de comenzar a detallar los fundamentos de la bisqueda tabi, es ne-
cesario disponer de algunas definiciones y convenciones bésicas. Expresemos un
problema de optimizacién matematica de la siguiente forma:

min ¢(x)
Sujeto a z € X

La funcién objetivo ¢(x) puede ser lineal o no lineal, y la condicién € X
resume las restricciones impuestas sobre el vector x. Estas restricciones pueden
incluir desigualdades lineales o no lineales, y pueden forzar a algunas o a todas
las componentes de = a tomar valores discretos.

En muchas aplicaciones de optimizacién combinatoria, el problema de interés
no es explicitamente formulado como lo hemos mostrado. En estos casos, esta
formulaciéon puede ser concebida como un cédigo para otra formulacién. El re-
querimiento x € X, por ejemplo, puede especificar condiciones légicas o inter-
conexiones que seria dificil formular matematicamente, y que es mejor dejarlas
como estipulaciones verbales (por ejemplo, en forma de reglas). En ocasiones, en
estas instancias, las variables son simplemente cédigos para condiciones o asigna-
ciones que reciben un valor de uno para codificar la asignacién de un elemento u
a una posicion v, y que recibe un valor de cero para indicar que no se produce tal
asignacion.

3.1 Busqueda por entorno

La busqueda tabu puede ser caracterizada mediante referencia a la busqueda
por entornos, aunque es importante destacar que la bisqueda en el entorno tiene
un significado mas amplio en busqueda tabi que en algunas otras estrategias de
la literatura de las metaheuristicas. Una representacién de btisqueda por entorno
identifica, para cada solucién z € X, un conjunto asociado de vecinos, N(z) C X,
llamado entorno de z. En busqueda tabu, los entornos normalmente se asumen
simétricos, es decir, 2’ es un vecino de x si y sélo si x es un vecino de z’. Los
pasos en la busqueda por entorno se muestran en la Figura 13.

3.2 Memoria y Clasificaciones Tabu

La idea de explotar ciertas formas de memoria adaptativa para controlar el
proceso de la buisqueda es el tema central subyacente en la busqueda tabti. Una
diferencia importante que surge en bisqueda tabt es la distincién entre memoria
a corto plazo y memoria a largo plazo. Cada uno de estos tipos de memoria va
acompanado de sus propias estrategias especiales. Sin embargo, el efecto de ambos
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Método de Busqueda en el Entorno:
Paso 1 (Inicializacién).

(A) Seleccionar una solucién de arranque xActual € X.
(B) Almacenar la mejor solucién actual conocida haciendo zMejor =

xActual y definiendo MejorCoste = c(xMejor).
Paso 2 (Eleccién y finalizacién).

Elegir una solucién xSiguiente € N(xActual). Si los criterios de eleccion
empleados no pueden ser satisfechos por ningiin miembro de N(zActual),
o si se aplican otros criterios de parada, entonces el método para.

Paso 3 (Actualizacién).

Rehacer xActual = xSiguiente, y si c¢(xActual) < MejorCoste, ejecutar el
paso 1(B). Volver al paso 2.

Figura 13: Método de Bisqueda en el Entorno.

tipos de memoria puede verse como la modificacién de la estructura de entorno
de la solucién actual. El efecto de tal memoria puede ser previsto estipulando que
la busqueda tabii mantiene una historia selectiva H de los estados encontrados
durante la busqueda, y reemplaza N(xActual) por un entorno modificado que
puede ser denotado como N(H,xzActual). La historia determina, por tanto, qué
soluciones pueden ser alcanzadas por un movimiento desde la solucién actual,
seleccionando xSiguiente de N (H, xActual).

En las estrategias T'S basadas en consideraciones de periodo corto o memoria
a corto plazo, N (H, zActual) es generalmente un subconjunto de N(xActual), y
la clasificacién tabi sirve para identificar elementos de N (xActual) excluidos de
N(H, zActual). En las estrategias de periodo intermedio y largo, N (H, zActual)
puede contener soluciones que no estén en N(xActual), generalmente solucio-
nes élite seleccionadas (6ptimos locales de alta calidad), encontradas durante el
proceso de busqueda. Estas soluciones élite se identifican tipicamente como ele-
mentos de un grupo local en estrategias de intensificaciéon de periodo intermedio,
y como elementos de diferentes grupos en estrategias de diversificaciéon de periodo
largo o largo plazo. Ademads, las componentes de las soluciones élite, en contraste
con las soluciones en si mismas, se incluyen entre los elementos que pueden ser
conservados e integrados para proporcionar entradas al proceso de busqueda.

Un proceso de busqueda local basado tinicamente en estrategias a corto plazo
puede permitir que una solucién sea visitada méas de una vez, pero es probable
que el entorno reducido sea diferente en cada una de las exploraciones. Cuando
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la memoria a corto plazo va acompanada de memoria a largo plazo, se reduce en
gran medida la probabilidad de tomar decisiones que visiten repetidamente sélo
un subconjunto limitado del espacio de soluciones.

La busqueda tabu también usa historia para generar una funcién de evaluacién
modificada de las soluciones accesibles. Formalmente, podemos expresarlo di-
ciendo que TS reemplaza la funcién objetivo ¢(z) por una funcién ¢(H,x), que
tiene el propdsito de evaluar la calidad relativa de las soluciones accesibles actual-
mente, en funcién de la historia del proceso. Esta funcién modificada es relevante
porque TS usa criterios de decisién agresivos que buscan un mejor xSiguiente, es
decir, que proporcionan un mejor valor de ¢(H, zSiguiente), sobre un conjunto
candidato de N(H,zAhora).

Para problemas grandes, donde N (H, zActual) puede tener muchos elemen-
tos, o para problemas donde estos elementos pueden ser costosos de examinar, la
orientacion de eleccién agresiva de T'S hace altamente importante aislar un sub-
conjunto candidato del entorno, y examinar este subconjunto en vez del entorno
completo. Esto puede realizarse en etapas, permitiendo que el subconjunto can-
didato se extienda si no se encuentran alternativas que satisfagan los niveles de
aspiracion. Debido a la importancia del papel del subconjunto candidato, nos refe-
rimos a este subconjunto explicitamente por la notacién Candidato_N (zActual).
Entonces, el procedimiento de bisqueda tabi puede ser expresado como se mues-
tra en la Figura 14.

Método de Busqueda Tabu:

Paso 1 (Inicializacién).
Comenzar con la misma inicializacion usada para la Busqueda por
Entorno, y empezar con el expediente de la historia H vacio.

Paso 2 (Eleccién y finalizacion).
Determinar  Candidato_N (xActual) como un  subconjunto  de
N(H, zActual). Seleccionar xSiguiente de Candidato_N (xActual)
para minimizar c¢(H,x) sobre este conjunto (xSiguiente es llamado
elemento de evaluacién mayor de Candidato_N(xzActual) ). Terminar
mediante un criterio de parada seleccionado.

Paso 3 (Actualizacién).

Ejecutar la actualizacién por el Método de Busqueda en el Entorno, y ac-
tualizar el expediente de la historia H.

Figura 14: Método de Busqueda Tab.

La esencia del método de busqueda tabu depende de como se defina y uti-
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lice la historia almacenada H, y de cémo se determinen el entorno candidato
Candidato_N (xActual) y la funcién evaluacion ¢(H, z). En los casos més simples,
que suponen gran parte de las implementaciones que aparecen en la literatura,
podemos considerar que Candidato-N (xActual) constituye todo N(H, zActual),
y que ¢(H,z) = ¢(x), ignorando enfoques de investigacién del entorno y la me-
moria a largo plazo que introduce soluciones élite en la determinacién de los
movimientos. Sin embargo, las estrategias de listas de candidatos que reducen
el espacio de movimientos considerados son enormemente importantes para una
implementacién efectiva [8].

Las funciones de memoria a corto plazo constituyen uno de los elementos maés
importantes de la metodologia de busqueda tabi. Estas funciones aportan a la
bisqueda la oportunidad de continuar mas alld de la optimalidad local permi-
tiendo la ejecucién de movimientos de no mejora ligados a la modificaciéon de
la estructura de entorno de las siguientes soluciones. Sin embargo, en vez de
almacenar soluciones completas, como en el enfoque de memoria explicita, es-
tas estructuras de memoria generalmente estan basadas en el almacenamiento de
atributos (memoria atributiva). Ademds, la memoria a corto plazo suele estar
basada en la historia reciente de la trayectoria de biisqueda.

Memoria Atributiva

Un atributo de un movimiento de xActual a xSiguiente, o de un movimiento
ensayo de xActual a una solucién tentativa xzFEnsayo, puede abarcar cualquier
aspecto que cambie como resultado del movimiento. Algunos tipos naturales de
atributos aparecen en la Figura 15.

Atributos de Movimiento Ilustrativos

para un Movimiento xActual a xFEnsayo:

(A1) Cambio de una variable seleccionada x; de 0 a 1.
(A2) Cambio de una variable seleccionada zj de 1 a 0.
(A3) El cambio combinado de (Al) y (A2) tomados juntos.

(A4) Cambio de una funcién g(zActual) a g(zEnsayo) (donde g puede repre-
sentar una funcién que ocurre naturalmente en la formulacién del problema
o una funcién que es creada estratégicamente).

Figura 15: Atributos de Movimiento Ilustrativos.

Un movimiento simple evidentemente puede dar lugar a atributos muiltiples.
Por ejemplo, un movimiento que cambia los valores de dos variables simultaneamente
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puede dar lugar a cada uno de los tres atributos (A1), (A2), y (A3), ademds de
otros atributos de la forma indicada.

Cuando nos referimos a asignar valores alternativos a una variable seleccio-
nada z; de z, y particularmente a asignar valores 0 y 1 a una variable binaria,
entenderemos que esto puede referirse a una variedad de operaciones tales como
anadir o eliminar aristas de un grafo, asignar o eliminar un servicio de una locali-
zacion particular, cambiar la posicién de procesamiento de un trabajo sobre una
maquina, y asi sucesivamente.

Los atributos de movimientos almacenados son a menudo usados en busqueda
tabu para imponer restricciones, que evitan que sean elegidos ciertos movimientos
que invertirian los cambios representados por estos atributos. Méas precisamente,
cuando se ejecuta un movimiento de zActual a xSiguiente que contiene un atri-
buto e, se mantiene un registro para el atributo inverso que denotamos por e,
para prevenir que ocurra un movimiento que contenga algtin subconjunto de tales
atributos inversos. En la Figura 16 se muestran algunos tipos de restricciones
tabu empleadas frecuentemente.

Restricciones Tabt Ilustrativas.

Un movimiento es tabu si:

(R1) x; cambia de 1 a 0 (donde z; cambié previamente de 0 a 1).
(R2) z cambia de 0 a 1 (donde xj, cambié previamente de 1 a 0).

(R3) Ocurre al menos una de las restricciones (R1) y (R2). (Esta condicién es
més restrictiva que (R1) o (R2) separadamente, es decir, hace mas movi-
mientos tabi).

(R4) Ocurren (R1) y (R2). (Esta condicién es menos restrictiva que (R1) o (R2)
por separado, es decir, hace menos movimientos tabu).

Figura 16: Restricciones Tabt Ilustrativas.

3.3 Memoria basada en lo Reciente

La memoria a corto plazo més utilizada generalmente en la literatura almacena
los atributos de las soluciones que han cambiado en el pasado reciente. Este tipo
de memoria a corto plazo se denomina memoria basada en lo reciente. La forma
més habitual de explotar este tipo de memoria es etiquetando los atributos selec-
cionados de soluciones visitadas recientemente como tabi-activos. Se considera
que un atributo es tabu-activo cuando su atributo inverso asociado ha ocurrido
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dentro de un intervalo estipulado de lo reciente. Un atributo que no es tabu-
activo se llama tabu-inactivo. De este forma, aquellas soluciones que contengan
atributos tabt-activos, o combinaciones particulares de los mismos, se convierten
en soluciones tabt o prohibidas. Tal como hemos mencionado anteriormente, esto
impide que se visiten soluciones ya evaluadas en el pasado reciente.

La condiciéon de ser tabu-activo o tabu-inactivo se llama el estado tabd de
un atributo. En algunas ocasiones un atributo se llama tabti o no tabu para
indicar que es tabt-activo o tabu-inactivo. Es importante tener en cuenta que un
movimiento puede contener atributos tabi-activos, pero no ser tabi en si mismo
si estos atributos no son del ntimero o clase correctas para activar una restriccion
tabu.

Aunque las restricciones tabi mas comunes, cuyos atributos son los inversos
de aquellos que definen las restricciones, tienen generalmente el objetivo de pre-
venir el ciclado, es necesario precisar que el objetivo final de la bisqueda tabu no
es evitar ciclos. Es importante tener en cuenta que en algunas instancias, un buen
camino de busqueda resultara en volver a visitar una solucién encontrada ante-
riormente. El objetivo méas general es continuar estimulando el descubrimiento
de nuevas soluciones de alta calidad.

3.4 Periodo Tabu

El uso de la memoria basada en lo reciente que aparece en la literatura
con mayor frecuencia se gestiona mediante la creacion de una o varias listas
tabu. Estas listas almacenan los atributos tabu-activos e identifican, explicita
o implicitamente, estados tabu actuales. El periodo tabi puede ser diferente para
diferentes tipos o combinaciones de atributos, y con un mayor nivel de desarrollo,
pueden variar también sobre diferentes estados del proceso de busqueda. Estas
variaciones del perido tabu de los atributos hace posible crear diferentes formas
de balance entre las estrategias de memoria a corto y a largo plazo.

Por lo tanto, para determinar cudndo son aplicables determinadas restric-
ciones tabu, obtenidas a partir de los estados tabu de deteminados atributos,
es necesario disponer de funciones de memoria que permitan almacenarlos efi-
caz y eficientemente. Dos ejemplos de funciones de memoria basadas en lo re-
ciente, usadas frecuentemente en la literatura, se especifican mediante los vectores
ComienzoTabu(e) y FinTabu(e), donde e varia sobre atributos relevantes a una
aplicacién particular. Estos vectores identifican, respectivamente, las iteraciones
de comienzo y finalizacién del periodo tabu para el atributo e, acotando asi el
periodo durante el cual e es tabt-activo.

La regla para identificar valores apropiados para ComienzoTabu(e) y
FinTabu(e) resulta de mantener los atributos en cada iteracién que son compo-
nentes del movimiento actual. En particular, en la iteracién ¢, si e es un atributo
del movimiento actual, se define un estado tabu para evitar inversiones. Enton-
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ces ComienzoTabu(e) = i + 1, indicando que el atributo inverso € comienza su
estado tabu-activo al comienzo de la siguiente iteraciéon. El atributo e mantendra
este estado a lo largo de su periodo tabi, que denotamos por t. Esto produce
FinTabu(e) = i+ t, tal que el perfodo para € se extiende sobre las ¢ iteraciones
dei+1ai-+t.

Como resultado, es facil comprobar si un atributo arbitrario es activo, simple-
mente controlando si FinTabu(e) > IteracionActual. Inicializando FinTabu(e) =
0 para todos los atributos nos aseguramos de que FinTabu(e) < IteracionActual,
y por lo tanto que el atributo e es tabu-inactivo, hasta que se realice la ac-
tualizacion especificada previamente. Esto sugiere que necesitamos mantener
s6lo un tnico vector FinTabu(e) para proporcionar informacién sobre el es-
tado tabu. Sin embargo, veremos que surgen situaciones en las que es valioso
mantener ComienzoT abu(e), e inferir FinTabu(e) anadiendo un valor apropiado
de t (computado actualmente, o preferiblemente extraido de una secuencia pre-
almacenada), o mantener FinTabu(e) como un vector separado.

Independientemente de la estructura de datos usada, la cuestién clave para
crear el estado tabt usando memoria basada en lo reciente es determinar un “buen
valor” de t o periodo tabi. Se ha demostrado empiricamente que un buen valor
de periodo tabui depende del tamano del ejemplo de problema que se aborda.
Sin embargo, no se ha disenado ninguna regla estdndar que determine un periodo
tabu efectivo para todas las clases de problemas, en parte porque un periodo tabt
apropiado depende de la regla de activacion tabu usada. Para una determinada
clase de problemas es relativamente sencillo determinar periodos tabd y reglas
de activacién adecuadas mediante experimentacion. Es posible reconocer que un
periodo tabi es muy pequeno para una clase de problemas cuando se detectan
repetitivos valores de la funcién objetivo, lo cual sugiere la aparicién de ciclado
en el proceso de busqueda. De la misma forma, se detecta que un periodo tabu
es muy grande cuando se produce un deterioro en la calidad de las soluciones
encontradas. Es posible, por tanto, establecer un rango de periodos intermedios
para obtener un buen comportamiento de la busqueda. Una vez obtenido este
rango de periodos tabu, un modo de proceder es seleccionar diferentes valores del
rango en iteraciones diferentes.

Los elementos de la memoria a corto plazo mencionados hasta el momento,
combinados con consideraciones de memoria a largo plazo, que se discutiran con
més detalle en la siguiente seccién, hacen de la busqueda tabi un método con
gran poder. Sin embargo, tal como podemos comprobar a partir de muchas de las
aplicaciones que aparecen en la literatura, el enfoque inicial de memoria a corto
plazo por si mismo es capaz de generar soluciones de alta calidad.

Las reglas para determinar el periodo tabu, ¢, se clasifican en estaticas y
dindmicas (Figura 17). Las reglas estdticas eligen un valor para t que se mantiene
fijo a lo largo de la busqueda. Las reglas dinamicas permiten que el valor de ¢
varie. La variacion del periodo tabti durante el proceso de buiisqueda proporciona
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un método efectivo para inducir un balance entre examinar una region en detalle
y mover la busqueda hacia regiones del espacio diferentes.

Reglas Ilustrativas para Crear Periodo Tabu (Basado en lo Reciente)

Reglas Estaticas Elegir ¢t como una constante tal que t =7 o t = \/n, donde n
es una medida de la dimensién del problema.

Reglas Dinamicas

Dindmico Simple: Elegir ¢ para variar (aleatoriamente o mediante un
patrén sistemadtico) entre cotas tymin ¥V tmaz, tal que tymin =5 Y tmax = 7 0
tmin = -9V Y tmae = 1.13/n.

Dinamico Atributo Dependiente: Elegir ¢ como en la regla dindmica
simple, pero determinar t,,;, vV tmaee Para ser mayores para aquellos atri-
butos que son mas atractivos; por ejemplo, basados en consideraciones de
calidad o de influencia.

Figura 17: Reglas Ilustrativas para Crear Periodo Tabu.

Los valores indicados, tales como 7'y y/n, son sdlo para propésitos ilustrativos,
y representan parametros cuyos valores preferidos deberian ser establecidos me-
diante experimentacion para una clase particular de problemas, tal como hemos
indicado anteriormente. En ocasiones, es apropiado permitir que diferentes tipos
de atributos definiendo una restriccion tabu tengan diferentes valores de periodo
tabi. Por ejemplo, algunos atributos pueden contribuir més fuertemente a una
restriccién tabi que otros, y deberia asignarseles un periodo tabid mas pequeno
para impedir hacer la restriccion demasiado severa.

Para ilustrarlo, consideremos el problema de identificar un subconjunto 6ptimo
de m items de un conjunto mucho mayor de n items. Supongamos que cada
movimiento consiste en intercambiar uno o un nimero pequeno de items en el
subconjunto con un numero igual fuera del subconjunto, para crear un nuevo
subconjunto de m items. Ademds de esto, supongamos también que se usa una
restriccién tabu para prohibir un movimiento si contiene un item anadido reciente-
mente o recientemente eliminado, donde el periodo tabu proporciona el significado
de recientemente.

Si el periodo para items anadidos o eliminados es el mismo, la restriccién
anterior puede ser muy ladeada. En particular, cuando otros factores son iguales,
evitar eliminar {tems del subconjunto es mucho mas restrictivo que evitar que sean
anadidos items que no estan en el mismo, dado que hay menos contenido que en el
subconjunto exterior. Ademads, evitar que elementos anadidos al subconjunto sean
eliminados por un tiempo relativamente largo puede inhibir significativamente
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las opciones disponibles y, por lo tanto, el periodo para estos elementos deberia
ser pequeno en comparacion al periodo para evitar que sean anadidos elementos
eliminados del subconjunto, usando reglas estaticas o dinamicas.

3.5 Criterios de Aspiracién

Otro de los elementos fundamentales que permite al método de busqueda
tabtu alcanzar sus mejores niveles de ejecucion es la introduccion de los criterios
de aspiracién durante el proceso de busqueda. Los criterios de aspiracién se
introducen para determinar cudndo se pueden reemplazar las restricciones tabu,
eliminando asi la clasificacién tabi aplicada a un movimiento. Aunque gran parte
de las aplicaciones que encontramos en la literatura emplean tnicamente un tipo
simple de criterio de aspiraciéon, que consiste en eliminar una clasificacion tabu
de un movimiento de ensayo cuando el movimiento conduce a una solucién mejor
que la mejor obtenida hasta ahora, hay otros criterios de aspiracion efectivos para
mejorar la busqueda.

Una base para uno de estos criterios surge al introducir el concepto de in-
fluencia, que mide el grado de cambio inducido en la estructura de la solucién o
en la factibilidad. Esta nocién puede ser ilustrada para el problema de distribuir
objetos desigualmente pesados entre cajas, donde el objetivo es dar a cada caja
aproximadamente el mismo peso. Un movimiento de alta influencia, que cambia
significativamente la estructura de la solucién actual, se ejemplifica mediante un
movimiento que transfiera un objeto muy pesado de una caja a otra. Tal movi-
miento puede no mejorar la solucién actual, siendo menos probable conducir a una
mejora cuando la solucién actual sea relativamente buena. Se realizardn movi-
mientos de baja influencia mientras existan posibilidades de mejora significantes.
En el momento en el que se carezca de movimientos de mejora, los criterios de as-
piracién cambian para dar un mayor peso a los movimientos influyentes. Ademas,
una vez que se ha realizado un movimiento influyente, cabe pensar que nos hemos
desplazado a una regién diferente del espacio de busqueda y, por tanto, deberian
eliminarse las restricciones tabt establecidas previamente para movimientos me-
nos influyentes. Estas consideraciones de influencia de movimiento interactian
con consideraciones de region y direccion de busqueda.

Distinguimos entre aspiraciones de movimiento y aspiraciones de atributo.
Cuando se satisface una aspiracion de movimiento, se revoca la clasificacién tabu
del movimiento. De la misma forma, cuando se sastisface una aspiracién de atri-
buto, se revoca el estado tabu-activo del atributo. En el dltimo caso el movimiento
principal puede no cambiar su clasificacién tabu, dependiendo de si la restriccion
tabt se activa a partir de méas de un atributo.

Los siguientes criterios determinan la admisibilidad de una solucién ensayo,
rEnsayo, como un candidato a ser considerado, donde xEnsayo es generado por
un movimiento que ordinariamente seria clasificado tabn.
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Criterios de Aspiraciéon Ilustrativos

Aspiracion por Defecto: Sitodos los movimientos disponibles estan cla-
sificados tabt, y no se han hecho admisibles mediante algunos otros
cirterios de aspiracién, entonces se selecciona el movimiento “menos
tabu”. (Por ejemplo, seleccionamos un movimiento que pierda su cla-
sificacién tabu por el menor incremento en el valor de [teracionActual,
o por una aproximacién a esta condicién).

Aspiracién por objetivo:
Forma Global: Se satisface una aspiracién de movimiento, permitiendo

que xEnsayo sea un candidato para la seleccién, si c(zEnsayo) <
MejorCoste.

Forma Regional: Subdividimos el espacio de busqueda en regiones R C
X, identificadas mediante cotas sobre los valores de funciones g(x) (o
por intervalos de tiempo de bisqueda). Denotemos por MejorCoste(R)
el minimo ¢(x) encontrado en R. Entonces para zEnsayo € R, se sa-
tisface una aspiracién de movimiento (para moverse hacia zEnsayo)
si c(xEnsayo) < MejorCoste(R).

Aspiracién por Direccién de Busqueda: Sea direccion(e) = mejora
si el movimiento mas reciente conteniendo a e fue un movimiento de
mejora, y direccion(e) = nomejora, en otro caso. (direccion(e) y
FinTabu(e) se fijan a sus valores actuales en la misma iteracién). Se
satisface una aspiracién de atributo para e (haciendo a e tabu-inactivo)
si direccion(e) = mejora y el movimiento ensayo actual es un movi-
miento de mejora, es decir, si c(zEnsayo) < c(xActual).

Aspiracién por Influencia: Sea influencia(e) = 0 6 1 segin si el movi-
miento que establece el valor de ComienzoT abu(e) es un movimiento
de baja influencia o un movimiento de alta influencia. (influencia(e)
se fija a la vez que ComienzoTabu(e)). Ademds, sea Ultima(L), para
L =061, igual a la iteraciéon més reciente en la que fue realizado un
movimiento de nivel de influencia L. Entonces una aspiracién de atri-
buto para e se satisface si influencia(e) = 0y ComienzoT abu(e) <
Ultima(1). Para multiples niveles de influencia L = 0,1,2,..., la
aspiracién para e se satisface si hay un L > influencia(e) tal que
ComienzoT abu(e) < Ultima(L).

Las aspiraciones por Direccion de la Bisqueda y por Influencia proporcionan
aspiraciones de atributos en vez de aspiraciones de movimientos. En la mayoria
de los casos, las aspiraciones de atributos y movimientos son equivalentes. Sin
embargo, se emplean diversos medios para probar estas dos clases de aspiraciones.
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Refinamientos de los Criterios de Aspiracién

Algunas mejoras de los criterios ilustrados anteriormente proporcionan una
oportunidad para realzar la potencia de la bisqueda tabu para aplicaciones que
son mas complejas, o que ofrecen una recompensa por soluciones de muy alta
calidad. En lo que sigue identificamos algunas de las posibilidades para alcanzar
esto.

La creacién de un estado tabt que varie por grados, mas que simplemente
senalar un atributo para ser tabu-activo o tabu-inactivo, conduce a un refina-
miento adicional de Aspiracién por Direccion de Busqueda y Aspiracién por In-
fluencia. El estado tabu graduado esta implicito en las variantes probabilisticas
de la busqueda tabu, donde el estado se expresa como una funcién de como un
atributo se ha convertido recientemente o frecuentemente en tabui-activo y tabu-
inactivo. Sin embargo, para emplear esta idea de realzar los criterios de aspiracion
precedentes, creamos un unico estado tabu intermedio que cae entre los dos es-
tados de tabu-activo y tabt-inactivo. En particular, cuando se satisface una
aspiracion para un atributo que en otro caso es tabu-activo, lo llamamos atributo
tabu pendiente.

Un movimiento que seria clasificado tabu si sus atributos tabi pendientes
fueran tratados como tabu-activos, pero que no seria clasificado tabi en otro caso,
es llamado movimiento tabi pendiente. Un movimiento tabi pendiente puede ser
tratado en uno de dos modos. En el enfoque menos restrictivo, tal movimiento
no se previene de ser seleccionado, pero su estado cambia de tal manera que sélo
es candidato para seleccion si no existen movimientos de mejora excepto aquellos
que son tabu. En el enfoque més moderado, un movimiento tabui pendiente debe
ser, ademds, un movimiento de mejora para ser calificado para seleccién.

Aspiracion por Admisibilidad Fuerte. Las nociones precedentes conducen a
un tipo adicional de aspiracién. Definimos un movimiento como fuertemente
admisible si:

(1) es admisible para ser seleccionado y no confia en criterios de aspiracién para
calificar para admisibilidad, o

(2) califica para admisibilidad basado en la Aspiracién Global por Objetivo, sa-
tisfaciendo
c(xEnsayo) < MejorCoste.

La desigualdad UltimaNomejora < UltimaFuertementeAdmisible de la
condicion de aspiracién precedente implica, por un lado, que se ha realizado un
movimiento de mejora fuertemente admisible desde el ultimo movimiento de no
mejora y, por otro lado, que actualmente la biisqueda esta generando una secuen-
cia de mejora.

Este tipo de aspiracion asegura que el método siempre procederd a un éptimo
local siempre que se cree una secuencia de mejora que contenga al menos un
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Aspiracion por Admisibilidad Fuerte: Sea UltimaNomejora igual a la ite-
racién mas reciente en la que fue realizado un movimiento de no mejora,
y sea UltimaFuertemente Admisible igual a la iteracién més reciente en
la que fue realizado un movimiento fuertemente admisible. FEntonces, si
UltimaNomejora < UltimaFuertementeAdmisible, re-clasificamos cada
movimiento tabii de no mejora como un movimiento tabt pendiente (per-
mitiendo por tanto que sea un candidato para selecciéon si no existe otro
movimiento de mejora).

movimiento fuertemente admisible. De hecho, la condicién (2) que define un
movimiento fuertemente admisible puede ser eliminada sin alterar este efecto,
dado que una vez que se usa el criterio c(xEnsayo) < MejorCoste para justificar
una seleccién de movimiento, entonces continuard siendo satisfecho por todos
los movimientos de mejora en iteraciones subsiguientes hasta que se alcance un
o6ptimo local.

Consideraciones Especiales para la Aspiracién por Influencia

El criterio de Aspiracién por Influencia puede ser modificado para crear un
impacto considerable sobre su efectividad para ciertos tipos de aplicaciones. La
afirmacion de esta aspiraciéon deriva de la observacién de que un movimiento
caracteristicamente es influyente en virtud de contener uno o mas atributos in-
fluyentes. Bajo tales condiciones, es apropiado considerar niveles de influencia
definidos sobre los atributos, expresado por influencia(e). En otros casos, sin
embargo, un movimiento puede derivar su influencia de la combinacién tnica de
los atributos involucrados, y entonces la Aspiracién por Influencia preferiblemente
transforma una aspiracién de movimiento en vez de una aspiracién de atributo.

Mas significativamente, en muchas aplicaciones, la influencia depende de una
forma de conectividad, haciendo a sus efectos ser expresados principalmente sobre
un rango particular. Llamaremos a este rango esfera de influencia del movimiento
o atributo asociado. Por ejemplo, en el problema de distribuciéon de objetos entre
cajas, un movimiento que intercambia objetos entre dos cajas tiene una esfera
de influencia relativamente estrecha, afectando sélo a aquellos movimientos fu-
turos que transfieran un objeto dentro o fuera de una de estas dos cajas. Por
consiguiente, bajo tales circunstancias, la Aspiracién por Influencia deberia estar
limitada a modificar el estado tabu de atributos o la clasificacién tabu de los
movimientos que caen dentro de una esfera de influencia asociada. En el ejemplo
de intercambiar objetos entre cajas, los atributos hechos tabu-inactivo deberian
ser restringidos a DesdeAtributos, asociados con mover un objeto fuera de una
de las dos cajas y HaciaAtributos, asociados con mover un objeto dentro de una
de estas cajas. El cambio del estado tabt continia dependiendo de las condi-
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ciones conocidas previamente. La influencia del atributo (o movimiento que lo
contenga) debe ser menor que la de un movimiento anterior, y la iteracién para
el atributo debe preceder a la iteracién sobre la cual ocurrié el movimiento influ-
yente anterior. Estas condiciones pueden ser registradas colocando un indicador
para ComienzoT abu(e) cuando se ejecuta el movimiento influyente, sin tener que
comprobar otra vez para ver si e es afectado por tal movimiento. Cuando a
ComienzoTabu(e) se le reasigna un nuevo valor, el indicador es eliminado.

Como sugieren las observaciones precedentes, son extremadamente importan-
tes las medidas de la influencia del movimiento y las caracterizaciones asociadas
de esferas de influencia. Ademads, deberia notarse que la influencia puede ser
expresada como una funcién de los componentes de la memoria de la bisqueda
tabi, como cuando un movimiento que contiene atributos que no han sido ni
frecuentemente ni recientemente tabui-activos puede ser clasificado como mas al-
tamente influyente (porque ejecutar el movimiento cambiara el estado tabi de
estos atributos mas radicalmente). Esto fomenta una definicién dindmica de la
influencia, la cual varia segin el estado actual de la busqueda.

4 Fundamentos de la Busqueda Tabii: Memoria
a largo plazo

En algunas aplicaciones, los componentes de la memoria a corto plazo son su-
ficientes para producir soluciones de alta calidad. Sin embargo, tal como hemos
mencionado anteriormente, la inclusién de la memoria a largo plazo, asi como de
las estrategias asociadas a la misma hacen de la bisqueda tabii una estrategia
més fuerte. En las estrategias de memoria a largo plazo, los entornos modifi-
cados de las soluciones actuales pueden contener soluciones que no estén en el
entorno original. Generalmente, se incluyen soluciones élite encontradas durante
el proceso de busqueda.

4.1 Memoria Basada en Frecuencia

La memoria basada en frecuencia proporciona un tipo de informaciéon que
complementa la informacion proporcionada por la memoria basada en lo reciente,
ampliando la base para seleccionar movimientos preferidos. Al igual que sucede
en la memoria basada en lo reciente, la frecuencia a menudo esta ponderada o
descompuesta en subclases teniendo en cuenta las dimensiones de calidad de la
solucién e influencia del movimiento.

Concebimos medidas de frecuencia como proporciones, cuyos numeradores re-
presentan contadores del ndmero de ocurrencias de un evento particular (por
ejemplo, el nimero de veces que un atributo particular pertenece a una soluciéon
o movimiento) y cuyos denominadores generalmente representan uno de cuatro
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tipos de valores: (1) el ntimero total de ocurrencias de todos los eventos represen-
tados por los numeradores (tal como el nimero de iteraciones asociadas), (2) la
suma de los numeradores, (3) el méximo valor del numerador, y (4) la media del
valor del numerador. Los denominadores (3) y (4) dan lugar a lo que se puede
llamar frecuencias relativas. En los casos en los que los numeradores representan
cuentas ponderadas, algunas de las cuales pueden ser negativas, los denominado-
res (3) v (4) se expresan como valores absolutos y el denominador (2) se expresa
como una suma de valores absolutos.

En el ejemplo de intercambiar objetos entre cajas, tal como indicamos an-
teriormente, los atributos DesdeAtributos estan asociados con mover un objeto
fuera de una de las dos cajas y los atributos HaciaAtributos estan asociados con
mover un objeto dentro de una de estas cajas.

Denotemos por z(1),x(2),...,xz(IteracionActual) la secuencia de soluciones
generadas en el momento presente del proceso de busqueda, y denotemos por S
una subsecuencia de esta secuencia de soluciones. Tomamos la libertad de tratar
S como un conjunto ademas de como una secuencia ordenada. Los elementos
de S no son necesariamente elementos consecutivos de la secuencia de solucién
completa.

A modo de notacién, denotemos por S(z; = p) el conjunto de soluciones en S
para las cuales z; = p, y denotemos por #S(x; = p) la cardinalidad de este con-
junto (el nimero de veces que x; recibe el valor p sobre x € S). Andlogamente,
denotemos por S(z; = p a x; = ¢) el conjunto de soluciones en S que resultan
por un movimiento que cambia x; = p a x; = ¢. Finalmente, denotemos por
S(de z; = p) y S(a x; = q) los conjuntos de soluciones en S que contienen res-
pectivamente x; = p como un DesdeAtributo o x; = g como un HaciaAtributo.
En general, si AtributoSolucion representa cualquier atributo de una solucién
que puede tomar el papel de un DesdeAtributo o un HaciaAtributo para un
movimiento, y si MovimientoAtributo representa un atributo de movimiento ar-
bitrario denotado por (DesdeAtributo, HaciaAtributo), entonces

S(SolucionAtributo) = {x € S: x contiene AtributoSolucion}.

S(MovimientoAtributo) = {x € S: x resulta de un movimiento que contiene
MovimientoAtributo}.

S(DesdeAtributo) = {x € S: x inicia un movimiento a DesdeAtributo}.

S(HaciaAtributo) = {x € S: x resulta de un movimiento que contiene a
HaciaAtributo}.

La cantidad #S(x; = p) constituye una medida de residencia, dado que iden-
tifica el niimero de veces que el atributo z; = p reside en las soluciones de S.
Correspondientemente, llamamos a la frecuencia que resulta de dividir tal me-
dida por uno de los denominadores de (1) a (4) una frecuencia de residencia.
Para el numerador #S(z; = p), los denominadores (1) y (2) corresponden ambos
a #S5, mientras que los denominadores (3) y (4) son dados respectivamente por
Max(#S(zr = q) : todo k,q) y por Media(#S(zr =q) : V k, q).
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Las cantidades #S(z; = p a x; = q), #S(de z; = p) y #S(a z; = q)
constituyen medidas de transicién, dado que identifican el nimero de veces que
x; cambia de y/o a valores especificados. Asimismo, las frecuencias basadas en
tales medidas son llamadas frecuencias de transicion. Los denominadores para
crear tales frecuencias de las medidas precedentes incluyen #.5S, el ntimero total
de veces que los cambios indicados ocurren sobre S para diferentes valores j, p
y/o q, y cantidades Max y Media asociadas.

Las frecuencias de residencia y transicién en ocasiones transmiten informacién
relacionada. Sin embargo, aunque a veces son confundidas en la literatura, en
general tienen implicaciones diferentes. Una distincién significativa es que las
medidas de residencia, en contraste con las medidas de transicién, no se refieren
a si un atributo de solucién particular de un elemento x(i) en la secuencia S es
un DesdeAtributo o un HaciaAtributo, o incluso si es un atributo que cambia en
movimiento de (i) a x(i+1) o de x(i —1) a (7). Sélo es relevante que el atributo
puede ser un DesdeAtributo o un HaciaAtributo en algin movimiento futuro.
Tales medidas pueden conducir a diferentes tipos de implicaciones dependiendo
de la eleccién de la subsecuencia de S.

Una frecuencia de residencia alta, por ejemplo, puede indicar que un atributo
es altamente atractivo si S es una subsecuencia de soluciones de alta calidad, o
puede indicar lo contrario si S es una subsecuencia de soluciones de baja calidad.
Por otro lado, una frecuencia de residencia que es alta (baja) cuando S contiene
tanto soluciones de alta como de baja calidad puede apuntar a atributo fortalecido
(o excluido) que restringe al espacio de bisqueda, y que necesita ser desechado
(o incorporado) para permitir diversidad.

Desde el punto de vista de la simplificacion del computo, cuando S estéd for-
mado por todas las soluciones generadas después de una iteracion especificada,
entonces puede mantenerse una medida de residencia actual y actualizada por re-
ferencia a valores del vector ComienzoT abu, sin la necesidad de incrementar un
conjunto de contadores en cada iteracién. Para un conjunto S cuyas soluciones
no vienen de iteraciones secuenciales, sin embargo, las medidas de residencia se
calculan simplemente poniendo una etiqueta sobre los elementos de S.

Las medidas de transicion son generalmente bastante faciles de mantener
ejecutando actualizaciones durante el proceso de generacién de soluciones (asu-
miendo que las condiciones que definen S, y los atributos cuyas medidas de tran-
sicién son buscadas, se especifican con anterioridad). Esto resulta del hecho de
que tipicamente sélo se consideran relevantes unos pocos tipos de cambios de atri-
butos para detectar cudndo una solucién se reemplaza por la siguiente, y éstos
pueden aislarse y registrados facilmente. Las frecuencias del ejemplo de la seccion
2.3 constituyen una instancia de frecuencias de transicién que fueron mantenidas
en esta manera simple. Su uso en este ejemplo, sin embargo, alentaba la diversi-
dad aproximando el tipo de papel que las frecuencias de residencia son usualmente
mejor satisfechas para ser tomadas.
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Como una distincion final, una frecuencia de transicién alta, en contraste con
una frecuencia de residencia alta, puede indicar que un atributo asociado es un
“llenador excelente”, que cambia dentro y fuera de la solucién para ejecutar una
funciéon de buen ajuste. Tal atributo puede ser interpretado como el opuesto
de un atributo influyente, como se consideré anteriormente en la discusién de
Aspiracion de Influencia. En este contexto, una frecuencia de transicién puede
ser interpretada como una medida de volatilidad.

Ejemplos de Usos de Medidas de Frecuencia. A continuacién se muestran ilus-
traciones de frecuencias de residencia y de transicién. (Sélo se indican los numera-
dores, entendiendo que los denominadores son proporcionados por las condiciones

(1) a (4)).

Ejemplos de Medidas de Frecuencia

(Numeradores)

(F1) #5(x; = p)
(F2) #S(z; = p para algin z;)
(F3) #5(a z; =p)

(F4) #S(z; cambia), es decir, #S(z; # p a z; = p)

(F5) Yaes(o,—n @)/ #5(; = p)

(F6) Reemplazar S(z; = p) en (F5) con S(z; #p ax; =p)

(F7) Reemplazar ¢(z) en (F6) con una medida de la influencia S(x; # p a

z; =Dp)

La medida (F5) puede ser interpretada como el valor medio ¢(x) sobre S
cuando x; = p. Esta cantidad puede ser directamente comparada con otras
medias o puede ser pasada a una medida de frecuencia usando denominadores
tales como la suma o el maximo de estas medias.

Los atributos que tienen mayores medidas de frecuencia, como aquellos que
tienen mayores medidas de lo reciente (es decir, que ocurrieron en soluciones o
movimientos mas cercanos al presente), pueden iniciar un estado tabud-activo si
S estd formado por soluciones consecutivas que finalizan con la solucién actual.
Sin embargo, la memoria basada en frecuencia tipicamente encuentra su uso mas
productivo como parte de una estrategia de periodo méas largo, la cual emplea
incentivos ademas de restricciones para determinar qué movimientos son selec-
cionados. En tal estrategia, las restricciones se convierten en penalizaciones de
evaluacién, y los incentivos se convierten en mejoras de la evaluacion, para alterar
la base para calificar movimientos como atractivos o no atractivos.

Para ilustrarlo, a un atributo tal como x; = p con una frecuencia de residencia
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alta le puede ser asignado un incentivo fuerte (“beneficio”) para servir como
un DesdeAtributo, resultando por tanto en la eleccién de un movimiento que
produce x; # p. Tal incentivo es particularmente relevante en el caso donde
ComienzoTabu(x; # p) es pequeno, dado que este valor identifica la dltima
iteracion en que x; # p sirvié como un DesdeAtributo, y por tanto descubre que
x; = p ha sido un atributo de cada solucién desde entonces.

La memoria basada en frecuencia por tanto es usualmente aplicada intro-
duciendo estados tabt graduados, como un fundamento para definir valores de
penalizacién e incentivos para modificar la evaluacién de los movimientos. Existe
una conexién natural entre este enfoque y el enfoque de memoria basada en lo
reciente que crea estados tabi como una condicién todo-o-ninguno. Si el periodo
de un atributo en memoria basada en lo reciente estd concebida como un umbral
condicional para aplicar una penalizacién muy grande, entonces las clasificaciones
tabu producidas por tal memoria pueden ser interpretadas como el resultado de
una evaluaciéon que se convierte fuertemente inferior cuando las penalizaciones
estan activadas. Es razonable anticipar que los umbrales condicionales deberian
también ser relevantes para determinar los valores de penalizaciones y los incenti-
vos en estrategias de periodo largo. La mayoria de las aplicaciones en el presente,
sin embargo, usan un multiplo lineal simple de una medida de frecuencia para
crear un término de penalizacién o de incentivo.

4.2 Estrategias de Intensificacién y Diversificacién Simples

Las funciones de intensificacién y diversificacién en la bisqueda tabu ya estan
implicitas en muchas de las prescripciones anteriores, pero se convierten espe-
cialmente relevantes en procesos de busqueda de periodo largo. Las estrategias
de intensificacién crean soluciones agresivamente estimulando la incorporacién de
“atributos buenos”. En el periodo corto esto consiste en incorporar atributos que
han recibido las mayores evaluaciones por los enfoques y criterios descritos ante-
riormente, mientras que en el intermedio a largo periodo consiste en incorporar
atributos de soluciones de subconjuntos élite seleccionados. Por otro lado, las
estrategias de diversificacion generan soluciones que incorporan composiciones de
atributos significativamente diferentes a los encontrados previamente durante la
busqueda. Estos dos tipos de estrategias se contrapesan y refuerzan mutuamente
de varias formas.

Examinamos formas simples de enfoques de intensificacion y diversificacién
que hacen uso de memoria basada en frecuencia. Estos enfoques seran ilustrados
por referencia a medidas de frecuencia de residencia, pero algunas observaciones
similares se aplican al uso de medidas de transicion, teniendo en cuenta carac-
teristicas contrastantes notadas previamente.

Para una estrategia de diversificacién elegimos S como un subconjunto sig-
nificativo de la secuencia de solucién completa; por ejemplo, la secuencia en-
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tera empezando con el primer 6ptimo local, o la subsecuencia formada por todos
los 6ptimos locales. (Para ciertas estrategias basadas en medidas de transicién,
S puede estar formado por la subsecuencia que contiene cada sucesion intacta
maxima de movimientos de no-mejora que inmediatamente siguen un 6ptimo lo-
cal, concentrandose en S(HaciaAtributo) para estos movimientos).

Para una estrategia de intensificacion elegimos S como un subconjunto pe-
queiio de soluciones élite (6ptimos locales de alta calidad) que comparten un gran
nimero de atributos comunes, y en segundo lugar cuyos miembros pueden al-
canzarse uno de otro mediante niimeros de movimientos relativamente pequenos,
independientes de si estas soluciones caen cerca la una de la otra en la secuencia
de la soluciéon. Por ejemplo, las colecciones de tales subconjuntos S pueden ser
generadas por procedimientos de agrupamiento, seguido del uso de un enfoque de
procesamiento paralelo para tratar cada S seleccionado por separado.

Para propdésitos ilustrativos, supongamos que un movimiento actualmente bajo
consideracion incluye dos atributos de movimiento, denotados por e y f, los cua-
les pueden ser expresados como e = (eDesde,eHacia) y f = (fDesde, f Hacia).
Proporcionamos reglas para generar una funcién de penalizacién o incentivo, PI,
basada en medidas de frecuencia de los atributos e y f, las cuales se aplican igual-
mente a estrategias de intensificacion y diversificacién. Sin embargo, la funcién Pl
crea una penalizacién para una estrategia (intensificacién o diversificacién) si y
sélo si crea un incentivo para la otra. Para describir esta funcién, denotemos por
f(eDesde) y f(eHacia), etc., la medida de frecuencia para los DesdeAtributos
vy HaciaAtributos indicados, y denotemos por T'1,7T2,...,T6 umbrales positivos
seleccionados, cuyos valores dependen del caso considerado.

Funciones PI Ilustrativas de Penalizacién e Incentivo para
HaciaAtributos.

Elegir PI como una funciéon mondtona no decreciente de una de las siguien-
tes cantidades, donde PI es positiva cuando la cantidad es positiva, y es
0 en otro caso. (PI proporciona una penalizacién en una estrategia de
diversificacién y un incentivo en una estrategia de intensificacién).

(1) Min{f(eHacia), f(fHacia)} — Ty

(2) Max{f(eHacia), f(fHacia)} — T
(3) Media{f(eHacia), f(fHacia)} —Ts

Las condiciones precedentes para definir PI estan relacionadas con las ilus-
tradas previamente para identificar condiciones en las cuales los atributos se con-
vierten en tabu-activos. Por ejemplo, especificando que (1) debe ser positivo
para hacer PI positivo corresponde a introducir una penalizacién tabt (o un in-
centivo) cuando ambas medidas exceden sus umbrales comunes. Si una medida
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Funciones PI Ilustrativas de Penalizacién e Incentivo para
DesdeAtributos.

Elegir PI como una funcién mondétona no decreciente de una de las siguien-
tes cantidades, donde P1I es positiva cuando la cantidad es positiva, y es 0 en
otro caso. (PI proporciona un incentivo en una estrategia de diversificacién
y una penalizacién en una estrategia de intensificacién).

(1) Min{f(eDesde), f(fDesde)} — Ty
(2) Max{f(eDesde), f(fDesde)} —Ts
(3) Media{ f(eDesde), f(fDesde)} — T

es expresada como la duraciéon desde que un atributo fue el méds recientemente
hecho tabt-activo, y si el umbral representa un limite comin para el periodo
tab, entonces (1) puede expresar una restriccién basada en lo reciente para de-
terminar una clasificacién tabi. La asignacién de diferentes umbrales a atributos
diferentes en (1) corresponde a establecer periodos tabu atributo-dependientes.
Andlogamente, los restantes valores de (2) a (6) pueden ser interpretados como
analogos a los valores que definen medidas basadas en lo reciente para establecer
una clasificacién tabt, implementada en este caso a través de una penalizacion.

De estas observaciones se concluye que la medida de frecuencia F' puede ex-
tenderse para representar medidas combinadas de lo reciente y de lo frecuente.
Note que la memoria basada en lo reciente, almacenando datos de ComienzoT abu,
puede también referirse a cambios que han ocurrido més lejos en el pasado ademas
de aquellos que han ocurrido més recientemente. Aunque estas medidas estan ya
implicitamente combinadas cuando se unen las penalizaciones y los incentivos ba-
sados en medidas de frecuencia con clasificaciones tabi basadas en medidas de lo
reciente, como un fundamento para seleccionar movimientos actuales, es posible
que otras formas de combinacién sean superiores.

4.3 Aspectos mas avanzados de Intensificacién y Diversifi-
cacién

Los métodos de intensificacion y diversificacion que utilizan penalizaciones e
incentivos representan solo una clase de tales estrategias. Una coleccién mayor
surge de la consideracion directa de los objetivos de intensificacién y diversifi-
cacion. Examinamos diversos métodos que se han demostrado ttiles en aplicacio-
nes previas, e indicamos métodos que consideramos prometedores en aplicaciones
futuras. Para empezar hacemos una distincion importante entre diversificacion y
aleatorizacion.

Diversificacion frente a aleatorizacion. Cuando la busqueda tabu busca una
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coleccion de soluciones diversas, es muy diferente de cuando busca una coleccion
de soluciones aleatorias. En general, estamos interesados no sélo en coleccio-
nes diversas sino en secuencias diversas, dado que frecuentemente el orden en el
que se examinan los elementos es importante en TS. Esto ocurre, por ejemplo,
cuando buscamos identificar una secuencia de nuevas soluciones de forma que
cada soluciéon sucesiva sea mazimalmente diversa en relacién a todas las solucio-
nes previamente generadas. Esto incluye posibles referencias a un conjunto base
de soluciones, tales como = € S, que da prioridad al objetivo de diversificacién
(es decir, donde el primer objetivo es establecer diversificacién con respecto a S,
y después con respecto a otras soluciones generadas). El concepto de diversifi-
cacién se aplica también a la generacién de una secuencia diversa de nimeros
o a un conjunto diverso de puntos entre los vértices del hipercubo unidad. Sea
Z(k) = (2(1),2(2), ..., 2(k)) una secuencia de puntos del conjunto Z. Por ejemplo,
Z puede ser un intervalo lineal si los puntos son escalares. Tomamos z(1) como
punto semilla de la secuencia. Entonces definimos Z (k) como una secuencia dis-
persa relativa a una métrica de distancia d elegida sobre Z requiriendo que cada
subsecuencia Z(h) de Z(k), h < k, en todo punto asociado z = z(h + 1) satisfaga
las siguientes condiciones jerarquicas:

(A) z maximiza la distancia minima d(z, z(7)) para i < h;

(B) sujeto a (A), z maximiza la distancia minima d(z, z(¢)) para 1 < i < h, para
2 < i < h, etc. (en orden de prioridad estricto);

(C) sujeto a (A) y (B), z maximiza la distancia minima d(z, z(¢)) para i = h,
para i = h — 1,..., y finalemte para ¢ = 1. (Los empates pueden resolverse
arbitrariamente.)

Para tratar la diversificacién relativa a un conjunto base inicial Z* (tal como un
conjunto de soluciones z € ), la jerarquia precedente de condiciones se precede
por una condicién que estipula que z primero maximiza la minima distancia
d(z,z*) para z* € Z*. Una variante (mds débil) ttil de esta condicién trata
simplemente puntos de Z* como si fueran los ultimos elementos de la secuencia
Z(h).

Algunas variaciones sobre (A), (B) y (C), incluso profundizando en la je-
rarquia anterior (desempates arbitrarios), son evidentemente posibles. Ademas,
computacionalmente demandan ser satisfechas. Incluso omitiendo (B), y mante-
niendo sélo (A) y (C), si los elementos z(i) se refieren a puntos del hipercubo
unidad, entonces segiin nuestro conocimiento actual, la inica manera de generar
una secuencia diversa de mas de unos pocos puntos es ejecutar una enumeracién
comparativa. (No obstante, una secuencia dispersa de puntos en un intervalo
lineal, particularmente si z(1) es un extremo o el punto medio del intervalo, se
puede generar sin mucha dificultad). Con una visién mas amplia, el esfuerzo que
requiere la generacion de secuencias dispersas puede llevarse acabo previamente
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e independientemente de los esfuerzos para resolver el problema, con lo que tales
secuencias estan precalculadas y disponibles cuando se necesiten.

Refuerzo por restriccion. Uno de los primeros tipos de estrategias de intensifi-
cacion, caracterizada en términos de explotar variables fuertemente determinadas
y consistentes en [4], comienza seleccionando un conjunto S como indicado para
determinar una penalizacién y una funciéon de incentivo, es decir, un conjunto
formado por soluciones élite agrupadas a través de una medida de clasificacion.
En vez de (o ademds de) crear penalizaciones e incentivos, con el objetivo de
incorporar atributos a la solucién actual que tenga altas medidas de frecuencia
sobre S, el método de refuerzo por restriccién opera estrechando el rango de posi-
bilidades permitidas anadiendo y quitando tales atributos. Por ejemplo si z; = p
tiene una alta frecuencia sobre S sélo para un pequeno numero de valores de p,
entonces los movimientos se restringen permitiendo a x; tomar sélo uno de estos
atributos en la definicion de un HaciaAtributo. Por tanto, si z; es una variable
0-1 con una medida de frecuencia alta sobre S para uno de sus valores, entonces
este valor se hard fijo una vez que exista un movimiento admisible que permita
que se asigne dicho valor. Otras asignaciones pueden permitirse, por una variante
de Aspiracién por Defecto, si el conjunto actual de alternativas restringidas es
inaceptable.

La consideracién inicial sugiere que este método de restriccién no ofrece nada
més alla de las opciones disponibles por penalizaciones e incentivos. No obs-
tante, el método puede conseguir mas que esto por dos motivos. Primero, las
restricciones explicitas pueden acelerar substancialmente la ejecucién de los pasos
de eleccién reduciendo el ntimero de alternativas examinadas. Segundo, y mas
significativamente, muchos problemas se simplifican y colapsan una vez que se in-
troducen un ntimero de restricciones explicitas, permitiendo que las implicaciones
estructurales salgan a la superficie, permitiendo que estos problemas se resuelvan
més facilmente.

El refuerzo por restriccién no se limita a crear un efecto de intensificacién.
Dados energia y tiempo finitos para explorar alternativas, imponer restricciones
a algunos atributos permite examinar mas variantes de los restantes atributos
que de otra manera. Por tanto, la intensificacién con respecto a los elementos
seleccionados puede realzar la diversificacion sobre otros elementos, creando una
forma de diversificacién selectiva. Tal diversificacion puede contrastarse con di-
versificacion exhaustiva creada por las estructuras de memoria mas rigidas de
ramificacion y acotacién. En un ambiente donde el aspecto finito del esfuerzo
de busqueda disponible es proporcionado por el niimero de alternativas a ser ex-
ploradas exhaustivamente, la diversificacién selectiva puede ser una contribucion
significativa a la busqueda efectiva.

Reencadenamiento de camino. El reencadenamiento de camino (PR, path re-
linking) se inicia seleccionando dos soluciones z’ y 2" de una coleccién de solu-
ciones élite producidas durante las fases de busqueda. Se genera un camino desde

Rect@ Monografico 3 (2007)



62 Introduccion a la Bisqueda Tabi

z’ a x', produciendo una secuencia de soluciones o’ = a/(1),2'(2), ...,2'(r) = 2"
donde /(i + 1) se crea a partir de /(i) en cada paso eligiendo un movimiento
que deja el menor niimero de movimientos restantes hasta alcanzar z”. Final-
mente, una vez que el camino esté completo, una o més de las soluciones z/(z) se
seleccionan como soluciones para iniciar una nueva fase de bisqueda

Este método proporciona un medio fundamental para perseguir el objetivo de
intensificacion y diversificaciéon cuando sus pasos se implementan para explotar
variantes estratégicas de reglas de eleccién. Un niimero de movimientos alternati-
vos tipicamente calificardn para producir la siguiente solucién a partir de 2/(z) por
el critero del “menor nimero de movimientos restantes”, permitiendo consecuen-
temente una variedad de caminos posibles de 2’ a z”. Seleccionar movimientos
no atractivos relativos a c(x) en cada paso tenderd a producir una serie final de
movimientos de fuerte mejora, mientras que seleccionar movimientos atractivos
tenderd a producir movimientos de menor calidad al final. (El tltimo movimiento,
no obstante, mejorara, o dejard c(z) sin cambiar, ya que =’ es un minimo local.)
Por tanto, elegir el mejor, peor o movimiento medio, usando un criterio de as-
piraciéon para anular las elecciones en los dos tltimos casos si estd disponible
una soluciéon suficientemente atractiva, proporciona opciones que producen efec-
tos contrastantes en la generacion de la secuencia indicada. (Existen argumentos
a favor de seleccionar el mejor movimiento en cada paso, y entonces repetir el
proceso intercambiando o’ y 2”.)

La cuestion de una aspiracion apropiada mas amplia es relevante para seleccio-
nar una ' (i) preferida para lanzar una nueva fase de bisqueda, y para terminar
la secuencia mds pronto. La eleccién de una o més soluciones z’(z) para lanzar
una nueva fase de buisqueda debe depender preferiblemente no sélo de ¢(2/(#)) sino
también de los valores de c(x) de aquellas soluciones - que pueden alcanzarse por
un movimiento a partir de z’(i). En particular, cuando 2'(#) se examina para
moverse a z’(i + 1), se presentard un nimero de candidatos para x = /(i + 1)
para su consideracion.

Sea z* (i) un vecino de &’ (i) que proporciona un minimo valor de ¢(z) durante
un paso de evaluacién, excluyendo z*(i) = 2/(i 4+ 1). (Si las reglas de eleccién no
eliminan automdaticamente la posibilidad z*(7) = 2’(h) para h < i, entonces una
simple restriccién tabii puede usarse para esto). Entonces el método selecciona
una solucién z* (i) que da el valor minimo para ¢(z*(¢)) como un nuevo punto
para lanzar la bisqueda. Si sélo se examina un conjunto limitado de vecinos de
' (1) para identificar z*(i), entonces se puede seleccionar en su lugar un z’(i) de
coste minimo superior, excluyendo z’ y z”. Una terminacién temprana puede ser
elegida al encontrar un z* (i) que de c¢(x*(i)) < min{c(z’), c(x”), c(z’(p))}, donde
2'(p) es el 2/(h) de minimo coste para todo h < i. (El procedimiento continia
sin parar si 2/(7), en cotraste con z*(4), da un valor ¢(z) menor que 2’ y 2", ya
que ' (i) adopta efectivamente el papel de z’).

Variaciones y Tuneles. Una variante del método PR empieza desde ambos ex-
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tremos z’ y z” simultdneamente, produciendo dos secuencias ' = 2/(1),...,2'(r)
ya” =a”(1),...,27(s). Las elecciones se disefian para provocar que z’(r) = z”(s)
para los valores finales de r y s. Para progresar hacia este resultado cuando
a'(r) # 2'(s), se selecciona a'(r) para crear a’(r + 1), mediante el criterio de
minimizar el nimero de movimientos restantes hasta alcanzar z”(s), o se selec-
ciona x'’(s) para crear 2’(s + 1), mediante el criterio de minimizar el nimero de
movimientos restantes hasta alcanzar z/(r). De estas opciones se selecciona la
que produzca el menor valor ¢(x), determinando también si r o s se incrementa
en el paso siguiente.

El método de re-encadenamiento de camino se puede beneficiar de un proce-
dimiento de efecto “tunel” que permita usar una estructura de entornos diferente
que la de la fase de bisqueda estandar. En particular, frecuentemente es deseable
permitir periédicamente movimientos para el reenlace de camino que normal-
mente se excluirian por crear infactibilidad. Esta practica es menos susceptible
de llegar a perderse en una regién no factible que otras formas de permitir infac-
tibilidad periddica, ya que evidentemente la factibilidad se vuelve a recuperar al
llegar a 2", El efecto tiinel creado ofrece la oportunidad para alcanzar soluciones
que de otra forma se pasarian por alto. En la variante que empieza desde z’ y
2", algunas de las soluciones de z'(r) o 2’(s) deben mantenerse factibles.

El re-encadenamiento de camino se puede organizar para poner mas énfasis
en la intensificacién o diversificaciéon optando por que 2’ y z” compartan méas o
menos atributos. Andlogamente la eleccién de 2’ y 2" de un conjunto clasificado
de soluciones élite estimulard la intensificacién, mientras que elegirlas de conjuntos
ampliamente separados estimulara la diversificacion.

Re-encadenamiento extrapolado. Una extension del método del re-encadena-
miento de camino, que llamamos re-encadenamiento extrapolado, va mas alla del
punto extremo z’ (o alternativamente '), para obtener soluciones que se expan-
den a una regién mayor. La habilidad para continuar mas alld de este extremo
resulta de un método para aproximarse al criterio de seleccién de movimientos,
especificado por el método estandar del re-encadenamiento de camino, que busca
la préxima solucién que deja el menor nimero de movimientos restantes para
alcanzar x”/. Especificamente, sea A(z) el conjunto de atributos de solucién en z,
y sea Agrop €l conjunto de atributos de solucién que se sacan por los movimientos
ejecutados para alcanzar la solucién actual z’(i), es decir, los atributos que han
servido como DesdeAtributos en estos movimientos. Entonces buscamos un movi-
miento en cada paso que maximice el nimero de HaciaAtributos que pertenecen
a A(z")— A(2/(i)), y sujeto a ello que minimice el nimero de los que pertenecen a
Agrop — A(z"). Tal regla generalmente puede implementarse muy eficientemente,
a través de estructuras de datos limitando el examen de movimientos a aque-
llos que contienen HaciaAtributos de A(z") — A(2/(7)) (o permitiendo que estos
movimientos se examinen antes que otros).

Una vez que se alcanza a/(r) = 2”7, el proceso contintia modificando la regla
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de eleccion de la siguiente forma. El criterio ahora selecciona un movimiento para
maximizar el nimero de HaciaAtributos fuera de Ag,op menos el nimero de sus
HaciaAtributos que estan en Agyop, v sujeto a esto minimizar el nimero de sus
DesdeAtributos que pertenecen a A(z”). El camino entonces se detiene donde
no quede eleccién que permita que el criterio de maximizacién sea positivo.

Para entornos que permitan eleccién de movimientos relativamente no res-
tringida, este método produce una extensién més alld de z” que introduce nuevos
atributos, sin reincorporar ningin antiguo atributo hasta que no quede ningun
movimiento que satisfaga esta condicién. La habilidad para ir més alld de los
extremos x’ y z’ crea una forma de diversificacién que no es accesible desde el
camino que queda entre estos extremos. Al mismo tiempo, los puntos exteriores
estan influidos por la trayectoria que enlaza =’ y z”.

Soluciones evaluadas, pero no visitadas. Las estrategias de intensificacion y
diversificacion pueden beneficiarse del hecho de que un proceso de bisqueda ge-
nera informacién no sélo sobre las soluciones realmente visitadas, sino también
acerca de soluciones adicionales evaluadas durante el examen de los movimientos
no adoptados. Una manifestacién de esto es explotada en referencia a las solu-
ciones z*(i) en el método de re-encadenamiento de camino. Desde un punto de
vista diferente, sea S* un subconjunto de soluciones evaluadas, pero no visitadas
(es decir, tomadas de la secuencia x(1), ..., z(iteracionactual) cuyos elementos x
dan valores ¢(z) dentro de una banda de atraccién elegida). Es relativamente
facil mantener un contador tal como #S5*(a z; = p), que identifica el nimero de
veces que x; = p es un HaciaAtributo de un intento de movimiento que lleva a
una solucién de S*. Tal contador puede diferenciarse atin mas estipulando que el
movimiento probado debe ser de mejora, y de alta calidad relativa a otros movi-
mientos examinados en la misma iteracion. Entonces a un atributo que alcanza
una frecuencia relativamente alta sobre S*, pero que tiene una baja frecuencia
de residencia sobre las soluciones realmente visitadas, se le da un incentivo para
incorporarlo a futuros movimientos, sirviendo simultdaneamente para los objeti-
vos de intensificacién y diversificacién. Lo reciente y lo frecuente interactian
en este método separando el incentivo si el atributo ha sido seleccionado en un
movimiento reciente.

Penalizaciones e incentivos especificos de intervalo. Un ajuste ttil de las ideas
precedentes extiende la filosofia de la Aspiracion por Direccién de Buisqueda y As-
piracién por Admisibilidad Fuerte. Por estos criterios de aspiracién, los movimien-
tos de mejora se pueden escapar de la clasificacién tabu bajo ciertas condiciones,
pero con el resultado de rebajar su estado de tal manera que sean tratados como
movimientos de mejora inferiores. Una extensién de esto preserva la distincion
mejora/no-mejora cuando se introducen las penalizaciones e incentivos que no se
pretende que sean preventivos. Para esta extension, las evaluaciones vuelven a
dividirse en intervalos de mejora y no mejora. Las penalizaciones y los incentivos
se dan con alcance limitado, degradando o realzando las evaluaciones dentro de un
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intervalo, pero sin alterar la relacién entre las evaluaciones que caen en intervalos
diferentes.

Los incentivos concedidos en base a la similitud de influencia se hacen sujetos a
este desplazamiento restringido de las evaluaciones. Dado que un movimiento in-
fluyente usualmente no es de mejora en el entorno de un 6ptimo local, mantener la
relacién entre evaluaciones de diferentes intervalos implica que tales movimientos
se seleccionaran sélo cuando no existan otros movimientos de mejora que los cla-
sificados tabtu. Pero los movimientos influyentes también tienen un efecto basado
en lo reciente. Solo la ejecucién de un movimiento de alta influencia puede can-
celar la clasificacion tabi de un movimiento de menor influencia sobre una serie
de iteraciones, por lo que deberia reducir o cancelar el incentivo para seleccionar
otros movimientos influyentes por una duracién correspondiente.

Procedimientos de Listas de Candidatos. Anteriormente, ya se ha destacado
la importancia de los procedimientos para aislar un conjunto de movimientos can-
didatos de un entorno grande, para evitar el gasto computacional de evaluar todo
el entorno. Algunos procedimientos de este tipo han sido utilizados en métodos
de optimizacién desde que el tema de la reduccion de los esfuerzos computacio-
nales se ha tomado en serio (desde al menos los anos 50 y probablemente antes).
Alguna de las formas més estratégicas de estos problemas vienen del campo de la
optimizacién de redes [14]. En tales métodos, el subconjunto de movimientos se
referencia mediante una lista que identifca sus elementos definitorios (tales como
indices de variables, nodos y arcos), y por tanto estos métodos han adquirido el
nombre de estrategias de listas de candidatos.

Una forma simple de estrategia de lista de candidatos es construir una lista
simple de elementos muestreando el entorno al azar, y repetir el proceso si el
resultado se estima inaceptable. Este es el fundamento de los métodos de Monte
Carlo. Sin embargo, algunos estudios de optimizacién de redes, sugieren que los
procedimientos basados en disenos mas sisteméaticos producen resultados superio-
res. Generalmente, éstos incluyen la descomposicién del entorno en subconjuntos
criticos, y el uso de una regla que asegure que los subconjuntos no examinados en
una iteracion se planifiquen para ser examinados en iteraciones siguientes. Para
los subconjuntos apropiadamente determinados, los mejores resultados se obtie-
nen seleccionando los movimientos de maxima calidad de estos subconjuntos, bien
examinando explicitamente todas las alternativas o usando un umbral adaptativo
para identificar tales movimientos.

Otra clase de estrategias de listas de candidatos examina periédicamente por-
ciones mas grandes del entorno, creando una lista maestra de algiin ntimero de
las mejores alternativas encontradas. La lista maestra se consulta entonces para
identificar movimientos (derivados o relacionados con los almacenados) para ite-
raciones adicionales hasta que un umbral de aceptabilidad dispara la creacién de
una nueva lista maestra.

Las estrategias de listas de candidatos implicitamente tienen una influencia
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diversificante motivando que diferentes partes del espacio de entorno se examinen
en diferentes iteraciones. Esto sugiere que debe beneficiarse de coordinar tales
estrategias con otras estrategias de diversificacién, un area que permanece abierta
a la investigacion. Las estrategias de listas de candidatos también son muy na-
turales para procesos de paralelizacién, donde se examinan en paralelo formas
de descomposicion de entornos a examinar de forma secuencial. Los movimien-
tos pueden seleccionarse eligiendo el mejor candidato por varios procesos, o en
su lugar cada proceso puede ejecutar sus propios movimientos preferidos, gene-
rando trayectorias de soluciones paralelas que son periédicamente coordinadas a
un nivel superior. Estos ultimos procedimientos se mantienen considerablemente
prometedores.

Entornos compuestos. La identificacion de un entorno efectivo para definir los
movimientos desde una soluciéon a otra puede ser extremadamente importante.
Por ejemplo, un intento de resolver un problema de programacién lineal eligiendo
los movimientos que incrementan o decrementan variables del problema, frente a
elegir movimientos que usan procesos de pivotaje o direcciones de busqueda, ob-
viamente puede provocar una diferencia sustancial en la calidad de la solucién final
obtenida. Las innovaciones que han hecho a la programacién lineal una potente
herramienta de optimizacién dependen significativamente del descubrimiento de
entornos efectivos para hacer los movimientos.

Para aplicaciones combinatorias donde las posibilidades para crear entornos
estan ampliamente confinadas a varios procesos constructivos o destructivos, o a
intercambios, mejoran frecuentemente los resultados combinando entornos para
crear movimientos. Por ejemplo, en aplicaciones de secuenciaciéon generalmente
es preferible combinar entornos consistentes en movimientos de insercién y mo-
vimientos de intercambio, permitiendo considerar ambos tipos de movimientos
en cada paso. Otra forma de combinar entornos es generar movimientos combi-
natorios, donde una secuencia de movimientos simples es tratada como un solo
movimiento mas complejo.

Un tipo especial de método para crear movimientos compuestos resulta de
una sucesién de pasos en los que un elemento es asignado a un nuevo estado,
con la consecuencia de expulsion de algiin otro elemento de su estado actual.
El elemento expulsado se asigna a su vez a un nuevo estado, expulsando a otro
elemento, y asi sucesivamente, creando una cadena de tales operaciones. Por
ejemplo, tales procesos ocurren en un problema de secuenciacion de tareas al
mover una tarea a una nueva posicién ocupada por otra tarea, expulsando esta
tarea de su posicién. La segunda tarea entonces se mueve a una nueva posicion
expulsando atn otra tarea, y asi sucesivamente. Finalmente se acaba por insertar
la ultima tarea entre dos tareas que son actualmente adyacentes. Este tipo de
método llamado, estrategia de expulsiones en cadena, incluye la expulsién de
enlaces entre elementos (tales como tareas) mds que expulsar los elementos en
si, y también se aplica a elementos agregados y a enlaces. Las estrategias de
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expulsiones en cadena tienen aplicaciones ttiles en problemas de muchos tipos,
particularmente en conexién con planificacién, rutas, clasificacién y particién [1],
[10].

Oscilacion Estratégica. El método de oscilacién estratégica estd estrechamente
relacionado con los origenes de la bisqueda tabt, y proporciona una técnica efec-
tiva entre intensificacion y diversificacion para medio a largo plazo. La oscilacion
estratégica opera moviendo hasta chocar con una frontera, representada por la
factibilidad o una etapa de construccién, que normalmente representaria un punto
donde el método se pararia. En vez de parar, sin embargo, la definicién de entorno
se extiende o el criterio de evaluacion para seleccionar movimientos se modifica
para permitir que la frontera se cruce. El método entonces contintia por una
profundidad especificada mas alla de la frontera y luego vuelve. En este punto
se vuelve a aproximar a la frontera y se cruza, esta vez en direcciéon opuesta,
procediendo a un nuevo punto de giro. El proceso de acercarse repetidamente y
cruzar la frontera desde diferentes direcciones crea una forma de oscilacion que
da al método su nombre. El control sobre esta oscilacién se establece generando
evaluaciones modificadas y reglas de movimiento, dependiendo de la region en la
que se esta actualmente navegando y de la direccién de buisqueda. La posibilidad
de recorrer de nuevo una trayectoria anterior se evita con los mecanismos tabi
estandares.

Un ejemplo de este método ocurre para el problema de la mochila multidi-
mensional, donde los valores de las variables 0-1 se cambian de 0 a 1 hasta que
se alcanza la frontera de factibilidad. El método entonces continia dentro de
la regién no factible usando el mismo tipo de cambios, pero con un evaluador
modificado. Después de un ntmero seleccionado de pasos, la direccién se invierte
cambiando variables de 1 a 0. El criterio de evaluaciéon conduce hacia la mejor
variacién (o la de menor empeoramiento) de acuerdo a si el movimiento es de
mds a menos o de menos a més factible (o no factible), y se acompania por las
restricciones asociadas sobre los cambios admisibles de valores en las variables.
Una implementacién de tal método de [2], [3] ha generado soluciones particulares
de alta calidad para el problema de la mochila multidimensional.

Un tipo algo diferente de aplicacion ocurre para el problema de encontrar un
arbol generador 6ptimo sujeto a restricciones de desigualdad en un conjunto de
aristas ponderadas. Un tipo de método de oscilacién estratégica para este pro-
blema resulta de un proceso constructivo de anadir aristas a un arbol que crece
hasta que es generador, y entonces continta anadiendo aristas para cruzar la fron-
tera definida por la construccién del drbol. Un grafo diferente se obtiene cuando
la solucién actual no es un arbol, y por tanto se requiere un entorno diferente,
produciendo reglas modificadas de selecciéon de movimientos. Las reglas cambian
otra vez para proceder en la direccién contraria, quitando aristas hasta conse-
guir otra vez un arbol. En tales problemas, el esfuerzo requerido por diferentes
reglas puede hacer preferible cruzar la frontera con diferente profundidad por
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diferentes sitios. Una opcion es aproximarse y retirarse de la frontera mientras
permanece a un solo lado, sin cruzar (es decir, eligiendo cruzar con profundidad
0). En este ejemplo, se pueden considerar otros tipos de frontera, derivados de
las restricciones de desigualdad.

El uso de oscilacién estratégica en aplicaciones que alternan procesos cons-
tructivos y destructivos puede acompanarse de movimientos de intercambio que
mantienen la construcciéon a un determinado nivel. Un principio de optimalidad
aproximada, que establece aproximadamente que buenas construcciones a un nivel
son mas probables de estar cerca de buenas construcciones a otro nivel, motiva
una estrategia de aplicar intercambios a distintos niveles, a cada lado de una es-
tructura blanco o diana tal como el arbol generador, para obtener construcciones
refinadas antes de pasar a niveles adyacentes.

Finalmente, remarcamos que la frontera incorporada en la oscilacién estraté-
gica no necesita definirse en términos de factibilidad o estructura, pero puede
definirse en términos de una regién donde la bisqueda parece gravitar. La osci-
lacién entonces consiste en obligar a la buisqueda a salir de esta regién y permitirle
volver.

Apéndice. Elementos a considerar al implementar
una Busqueda Tabu.

Durante el proceso de diseno de un método de buisqueda tabt para una apli-
cacion particular, puede resultar de utilidad plantearse algunas de las cuestiones
que se listan en este apéndice. Durante la presentacién de estas cuestiones ha-
remos referencia, como bibliografia adicional al presente capitulo, a diversas sec-
ciones del libro “Tabu Search” (TS) [8], escrito por los profesores Fred Glover y
Manuel Laguna en el ano 1997. Para hacer alusién a sus capitulos, por ejemplo al
capitulo 3, usaremos la notacién TS(3). De la misma forma, para hacer alusion,
por ejemplo a la seccién 2 del capitulo 3, mostraremos TS(3.2).

Independientemente del método de busqueda utilizado para resolver un pro-
blema particular, hay cuatro elementos comunes a todos ellos: (i) la represen-
tacion de la solucién, la cual permite generar estructuras de entorno adecuadas
para el problema, (i) un objetivo, (iii) una funcién de evaluacién, y (iv) un me-
canismo de movimiento, proporcionado por el método usado; busqueda tabt en
nuestro caso. En lo que sigue, mostramos la lista de cuestiones que es conveniente
plantearse antes de comenzar el diseno de una bisqueda tabu.

1. El tipo de entorno usado. ;jHay mas de una posible estructura de entorno
que pueda ser potencialmente relevante? Cuando la respuesta a la pregunta
anterior es positiva, {pueden combinarse o alternarse los entornos de forma
conveniente? ;Es posible (y deseable) usar entornos que hayan surgido de la
resolucion de forma éptima de problemas relacionados o ralajados? ;Puede
un entorno asociarse mas libremente a la soluciéon de un problema auxiliar
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o relajado? ;En qué medida puede la estructura del problema actual ser
explotada por la definicién del entorno? (Ver TS(10.5), 351-352)

2. Indentificar los atributos de las soluciones. Estos atributos, que se derivan
de los movimientos determinados por las estructuras de entorno seleccio-
nadas, en ocasiones toman la forma de “variables del problema”. Pueden
ser acciones, decisiones, elementos asignados a determinadas localizaciones
o periodos de tiempo, cantidades de articulos comprados o adquiridos, y asi
sucesivamente.

Referente a la memoria a corto plazo basada en lo reciente

3. Definicion de los estados tabu relacionados con los atributos identificados
en el punto 2. Para aquellos movimientos que involucran el cambio de mas
de un atributo al mismo tiempo, cada atributo componente tiene asignado
un estado tabu (por ejemplo, tal como hemos mencionado anteriormente en
este capitulo, tabi-activo o tabi-inactivo). El nimero de iteraciones usadas
para determinar la duracién de un estado tabt-activo puede despender del
atributo considerado, tal como se ha explicitado en el ejemplo de los dos
ultimos parrafos de la seccién 3.4 de este capitulo.

4. La naturaleza del periodo tabu para los atributos de las soluciones (fija
o dindmica), y la regla de decisién para inicializar o actualizar el periodo
(aleatoria o sistemética) explicados en la seccién 3.4 son otros dos de los
elementos fundamentales en el diseno de la bisqueda tabu. El “Método
de Ciclo Tabi”, descrito en TS(7.3.3) 241-244, constituye un ejemplo de
estrategia dindmica, cuya eficacia ha sido demostrada recientemente.

5. Determinar el uso de los criterios de aspiracién usados para eliminar estados
tabu, explicados en la seccién 3.5 de este capitulo. Para obtener informacion
mé&s completa sobre los mismos, se recomienda revisar TS(2.6) 50-54.

Referente a la memoria a largo plazo

6. Las estructuras y los usos hechos de la memoria basada en frecuencia. Por
ejemplo, ;qué tipos de soluciones o movimientos proporcionan la base para
aplicar esta memoria? ;Almacena el proceso la frecuencia con la que apa-
recen determinados atributos en soluciones o movimientos élite? ;Consti-
tuye la memoria de frecuencia de transicién, tal como aquella que cuenta
Unicamente el nimero de veces que un atributo fue anadido para crear una
solucién élite, o es una frecuencia de residencia, que cuenta el nimero de
soluciones (o soluciones élite) en las que ha estado presente un atributo?
De forma similar, ;hace uso el método de frecuencias relativas a soluciones
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mediocres o malas? Por ltimo, ;tiene la memoria basada en frecuencia un
uso a corto plazo al igual que en su uso a largo plazo? Para obtener mas in-
formacién que permite dar respuesta a estas preguntas, véase TS(4.1) 94-94
y TS(4.7) 117-121.

7. Estrategias usadas para la intensificacion. ;Realiza el método un almace-
namiento explicito de las soluciones élite y busca periédicamente explorar
otras soluciones cercanas a éstas, o confia sobre todo en reforzar la eleccién
de atributos que tienen una alta frecuencia por aparecer en soluciones bue-
nas, tal como se determinaba en el punto 67 Para encontrar la respuesta a
esta preguntas se puede consultar ademés TS(4.2) 96-98.

8. Estrategias usadas para la diversificacion. jUsa el método una estrategia
de multi-arranque para obtener diversificacion, o usa periédicamente mo-
vimientos que guian la busqueda hacia zonas alejadas de las regiones ya
visitadas? Véase T'S(4.3) 98-102 y las primeras partes de TS(5).

9. Uso de algunas estrategias fundamentales tales como oscilacién estratégica,
re-encadenamiento de caminos, proyeccion de memoria adaptativa, etc. ;Se
usa alguno de estos métodos como espina dorsal de la bisqueda? ;Son invo-
cados periédicamente en un papel combinado de intensificacién/diversifica-
cién?

10. ;Qué estructuras de datos pueden usarse para facillitar los elementos an-
teriores, incluyendo estructuras que almacenen informacién suficiente para
permitir la rapida actualizacién de las evaluaciones de los movimientos en
vez de recalcular las soluciones completamente? (TS(3.1) 59-61.)

11. Las estrategias de listas de candidatos, que porporcionan un modo para
enfocar las reglas de decision y reducir la computacion global, constituyen
también un elemento fundamental de la busqueda tabi (TS(3.2) 61-67).
Véase también el ejemplo completo de la seccién 2.3 de este capitulo.

Nota: En algunos problemas relacionados con la planificacién, los entornos
que parecen ser los mas faciles y naturales son aquellos basados en procesos cons-
tructivos y destructivos, construyendo un plan paso a paso. FEn este caso, a
menudo es 1til un enfoque de busqueda tabd multi-arranque para generar una
nueva solucién en cada paso. Sin embargo, en muchas aplicaciones en las que
un procedimiento constructivo o destructivo puede que no proporcione el enfo-
que mas simple, pudiera resultar valioso el uso de otras estructuras de entorno,
siguiendo las consideraciones del punto 1. (En los articulos 294 y 302 que apa-
recen en “Publications” de la pdgina web http://spot.colorado.edu/~glover, se
encuentran referencias sobre métodos de busqueda tabti multi-arranque).
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1 Introduccion

Consideremos un problema de optimizaciéon combinatoria definido por un con-
junto base finito E = {1, ..., n}, un conjunto de soluciones factibles F' C 2, y
una funcién objetivo f : 2 — R. En la versién de minimizacién, buscamos una
solucién 6ptima S* € F tal que f(S*) < f(S); VS € F. El conjunto base F, la
funcién de coste f, asi como el conjunto de soluciones factibles F' se definen para
cada problema especifico. Por ejemplo, en el caso del problema del agente viajero,
el conjunto base E consta de todas las aristas que conectan las ciudades a ser vi-
sitadas, f(S) es la suma de los costes de todas las aristas e € S, y F estd formado
por todos los subconjuntos de aristas que determinan un ciclo Hamiltoniano.

Un procedimiento de biisqueda miope aleatorizado y adaptativo (GRASP por
sus siglas en inglés) [42, 43] es una metaheuristica para encontrar soluciones apro-
ximadas (i.e. sub-6ptimas de buena calidad, pero no necesariamente 6ptimas) a
problemas de optimizaciéon combinatoria. Se basa en la premisa de que soluciones
iniciales diversas y de buena calidad juegan un papel importante en el éxito de
métodos locales de btisqueda.

“El autor agradece el apoyo recibido por el Tecnolégico de Monterrey a través de la catedra
CATO025 para la preparacion de este manuscrito.
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Un GRASP es un método multi-arranque, en el cual cada iteracion GRASP
consiste en la construccién de una solucion miope aleatorizada seguida de una
busqueda local usando la solucién construida como el punto inicial de la buisqueda
local. Este procedimiento se repite varias veces y la mejor solucién encontrada
sobre todas las iteraciones GRASP se devuelve como la solucién aproximada. El
seudo-cédigo en la Figura 1 ilustra un GRASP bésico para minimizacién.

procedure GRASP
Jreoo
for i < imaz do
x «— GreedyRandomized();
x « LocalSearch(x);
if f(z) < f* then
e o)
¥ — x;
end if
1—1+1
end for
return z*

Figura 1.

En este capitulo, nos centraremos primero en las dos componentes mas im-
portantes de GRASP. A saber, construcciéon y busqueda local. Después exami-
naremos cémo el reencadenamiento de trayectorias puede ser usado en GRASP
como un mecanismo de memoria e intensificacién. El trabajo termina con una
lista parcial de aplicaciones exitosas de GRASP.

Resenas recientes de GRASP pueden encontrarse en [102, 93], una extensa
bibliografia comentada estd en [50] y una actualizacién en el URL

http://graspheuristic.org/annotated.

2 Construcciones GRASP

En esta secciéon describimos varios mecanismos de construcciones miopes alea-
torizadas. Estos procedimientos mezclan miopia con aleatorizacién de diferentes
formas. Todos los mecanismos de construccién considerados construyen una so-
lucién incorporando un elemento a la vez. En cada paso del proceso de cons-
truccion, se tiene a la mano una solucién parcial. Un elemento que pueda selec-
cionarse como parte de una solucién parcial se llama elemento candidato. Con-
sideremos un problema de cubrimiento de conjuntos, donde se tiene una matriz
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A = [ai;] de ceros y unos, un coste ¢; para cada columna j, y se quiere de-
terminar un conjunto J de columnas con el menor coste total > jes G tal que
para cada renglén ¢, al menos una columna j del conjunto tenga una entrada
a;; = 1. En este problema, una solucién parcial es un conjunto de columnas que
no necesariamente forman un cubrimiento. Cualquier columna que no se haya
seleccionado previamente es un elemento candidato. El conjunto solucién .J se
construye incorporando un elemento (columna) a la vez hasta que el conjunto J
sea un cubrimiento.

Para determinar qué elemento candidato seleccionar enseguida para incluirse
en la solucion, generalmente se hace uso de una funciéon miope. Una funcién
miope mide la contribucién local de cada elemento a la solucién parcial. En el
caso del cubrimiento de conjuntos, una funcién miope plausible es la razén entre
el nimero p; de filas sin cubrir, que quedarfan cubiertas si la columna j se elige
y la contribucién c; al coste total de elegir la columna j para la solucién, esto es
pj/cj. La eleccién miope serfa agregar la columna con el mejor valor de la funcién
miope.

Procedure Construcciéon-C
Input: k, E, ¢(_);
x — 0
C «— F,;
while C # () do
Calcular el costo miope c(e); Ve € C;
RCL « {k elementos e € C' con el menor c(e)};
Seleccionar un elemento s de RCL al azar;
x—aU{sh
Actualizar el conjunto candidato C'
end while
return x;

Figura 2

Existen varias formas posibles de introducir aleatoridad a este procedimiento.
Una de las primeras ideas fue el uso de una lista restringida de candidatos (RCL)
[42]. Tal lista contiene un conjunto de elementos candidatos con los mejores va-
lores de la funcién miope. El siguiente candidato a ser agregado a la solucion se
selecciona al azar de la lista restringida de candidatos. Dicha lista puede consistir
de un nimero fijo de elementos (restriccién por cardinalidad) o elementos con
los valores de la funciéon miope dentro de un rango dado. La Figura 2 muestra
un seudo-cédigo para un procedimiento de construccion GRASP basado en res-
tricciéon por cardinalidad. Por ejemplo, denotemos por ¢* y c,, respectivamente,
los valores mayor y menor de la funcién miope para los elementos candidatos, y
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sea o un numero real tal que 0 < o < 1. En una lista restringida de candidatos
basada en el valor, la RCL consiste en todos los elementos candidatos e cuyo valor
de funcién miope c(e) es tal que c(e) < ¢, + ac* — c¢.). Ndétese que si a = 0,
entonces este esquema de seleccién es un algoritmo miope, mientras que si a« = 1,
entonces es totalmente aleatorio. La Figura 3 muestra un seudo- cédigo para
un procedimiento de construccion GRASP basado en el valor. Mas tarde sera
discutida la forma de determinar valores para a.

procedure Construccion-V
Input: o, F, c(.);
x «—
C — F;
while C # () do
Calcular el costo miope c¢(e); Ve € C;
¢m =min{c(e) | e € C};
M =max{c(e) | e € C};
RCL « {e € C|c(e) < cm+ al(cM —cp)};
Seleccionar un elemento s de RCL al azar;
x—axU{s}
Actualizar el conjunto candidato C;
end while
return z;

Figura 3

Se puede también mezclar una construcciéon al azar con una construccién
miope de la siguiente manera. Elegir secuencialmente un conjunto parcial de
elementos candidato al azar y después completar la soluciéon usando un algoritmo
miope [95]. La Figura 4 muestra un seudo-cédigo para tal procedimiento de cons-
truccion.
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procedure Construccion-RG
input: k, E, ¢( );
x — 0
C—FEfori=1,2,..kdo
if C' # () then
Elegir el elemento e al azar de C}
x—zU{e};
Actualizar el conjunto de candidatos C;
end if
end for
while C' # () do
Calcular el costo miope c(e); Ve € C
ey < argmin{c(e) | e € C'};
x—azU{er};
Actualizar el conjunto de candidatos C
Calcular el costo miope c¢(e);Ve € C;
end while
return z;

Figura 4

Otro enfoque es mediante perturbacion de costes. Aqui, los datos de costes
se perturban aleatoriamente y se aplica un algoritmo miope [27]. La Figura 5
muestra un seudo-codigo para este procedimiento de construccién.

procedure Construccion-PG
input: E, ¢(-);
x «— 0;
C — L
Perturbar aleatoriamente los datos del problema;
while C — F; do
Calcular el costo miope perturbado ¢(e); Ve € C;
e* « argmin{c(e) | e € C};
x—axU{e'};
Actualizar el conjunto de candidatos C'
end while
return z;

Figura 5

Un ejemplo final de un procedimiento de construccion de GRASP es una
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variacién sobre el enfoque de RCL basado en el valor. En este procedimiento,
llamado funcién de sesgo [25], en vez de seleccionar el elemento de la RCL al
azar con iguales probabilidades asignadas a cada elemento, se asignan diferentes
probabilidades, favoreciendo elementos bien evaluados. Los elementos de la RCL
se ordenan de acuerdo a los valores de la funcién miope.

La probabilidad 7(r(e)) de seleccionar el elemento e es

(r(e)) — sesgo(r(e))
(r(e)) > eercr sesgo(r(e))’

donde r(e) es la posiciéon del elemento e en la RCL. Se han propuesto varias
alternativas para asignar sesgos a los elementos. Por ejemplo,

e sesgo aleatorio: sesgo(r) = 1;
e sesgo lineal: sesgo(r) = 1/r;

e sesgo exponencial: sesgo(r) =e~".

En la siguiente seccion, discutimos como determinar el valor de « para usarse
en los esquemas basados en RCL anteriormente discutidos. Recordemos que si
a = 0, entonces estos esquemas de seleccién se convierten en un algoritmo miope,
mientras que si & = 1, son totalmente aleatorios.

3 Biusqueda local

Un algoritmo de busqueda local explora repetidamente la vecindad de una
solucion en busca de una mejor solucién. Cuando no se encuentra una solucion
que mejora la actual, se dice que la solucién es localmente 6ptima. La Figura 6
muestra un seudo-cédigo para un procedimiento de biisqueda local.

procedure Busquedal.ocal

input: o, N(2), f();

T — Xo;

while z no es localmente éptimo con respecto a N(z) do
Sea y € N(z) tal que f(y) < f(x);
T —y;

end while

return z;

Figura 6

La busqueda local juega un papel importante en GRASP ya que sirve para
buscar soluciones localmente 6ptimas en regiones prometedoras del espacio de
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soluciones. Esta es la diferenciaciéon de GRASP con respecto del algoritmo semi-
miope de Hart y Shogan [55]. Por definicién su desempefio nunca serd peor que
semi-miope, y casi siempre producird mejores soluciones en menos tiempo.

Aunque los algoritmos miopes pueden producir buenas soluciones razonables,
su principal desventaja como generador de soluciones iniciales para busquedas lo-
cales es su falta de diversidad. Aplicando repetidamente un algoritmo miope, una
sola o muy pocas soluciones pueden generarse. Por otra parte, un algoritmo total-
mente aleatorio produce una gran cantidad de soluciones diversas. Sin embargo,
la calidad de estas soluciones generalmente es muy pobre y usarlas como solu-
ciones iniciales para bisquedas locales generalmente conduce a una convergencia
lenta hacia un minimo local.

Para beneficiarse de la convergencia réapida del algoritmo miope y de la gran
diversidad del algoritmo aleatorio, se acostumbra usar un valor de « estrictamente
contenido en el interior del rango [0; 1]. Ya que no se conoce a priori qué valor usar,
se han propuesto diferentes esquemas. La primera referencia en la literatura en la
cual se propone una variacién del pardmetro « fue [66]. Los autores proponen un
valor inicial del parametro, & = 1, con este valor se efectian las construcciones,
una vez que han transcurrido un cierto ntimero de iteraciones sin que se haya
construido una solucién mejor, este valor se disminuye en una cantidad Ac, esto
es &« = a — Aa. Esto se repite mientras el parametro «, no sea negativo. Otra
estrategia razonable es seleccionar al azar un valor diferente en cada iteracion
GRASP. Esto puede hacerse usando una probabilidad uniforme [92] o usando el
esquema de GRASP reactivo [88].

En el esquema de GRASP reactivo, sea ¥ = {aj,...,q,} el conjunto de
valores posibles para a. Las probabilidades asociadas con la eleccién de cada
valor se fijan todas inicialmente iguales a p; = 1/m; i = 1;:::;;m. Més adn, sea
z* el valor de la solucién incumbente, esto es, la mejor solucién encontrada hasta
el momento, y sea A; el valor promedio de todas las soluciones halladas usando
a = «; © = 1;:::;m. Las probabilidades de seleccion se reevaliian peridodicamente
tomando p : i = ¢;/ Ej:l,...,m qj, con q; = z*/A; para i = 1;::;;m. El valor de
q; serd mayor para valores de o = «a; que produzcan las mejores soluciones en
promedio. Mayores valores de g; corresponden a valores del pardmetro o mas
adecuados. Las probabilidades asociadas con estos valores mas apropiados se
incrementaran cuando sean reevaluadas.

En el contexto de GRASP, se han usado esquemas de busqueda local maés
elaborados. Por ejemplo, bisqueda tabt [66, 35, 1, 101], recocido simulado [70],
vecindades variables [28, 49], y vecindades extendidas [3].
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4 Estructuras de memoria en GRASP

Quizds una de las principales desventajas del planteamiento original de GRASP
es su falta de estructuras de memoria. Las iteraciones de GRASP son indepen-
dientes y no utilizan las observaciones hechas durante iteraciones previas. Una
consecuencia de esto es el hecho de que una soluciéon previamente construida
puede aparecer nuevamente, ya que esta situacién es equivalente a un muestreo
con reemplazo, invirtiendo tiempo de cémputo en construir soluciones repetidas.

Un remedio ha sido sugerido por Fleurent y Glover [51] quienes usan un disefio
de memoria adaptativo tal como se propone en bisqueda tabu con el fin de retener
y analizar caracteristicas de ciertas soluciones seleccionadas y almacenadas en un
conjunto élite S, y proporcionar una base para mejorar las ejecuciones futuras
dentro del proceso constructivo.

Para esto definen una funcién de evaluacion E(e) = F(valor(e), intensidad(e)),
para cada candidato en la lista C'. F' es una funcién monétona no decreciente en
sus argumentos, donde valor(e) estd asociada con la funcién objetivo. Mayores
valores de esta funcién corresponden a mejores elecciones (asi, en un problema de
minimizacién, valor(e) se incrementa si el cambio en el coste disminuye). Mien-
tras que intensidad(e), se vuelve mds grande cuando e aparece con mds frecuencia
en los mejores miembros del conjunto élite S.

Esta funcién es utilizada entonces para determinar las probabilidades de elec-
cién de cada miembro de la lista C, p(e) = E(e)/ > . cc E(e’). La funcién de
evaluaciéon generalmente tiene la forma E(e) = Avalor(e) + intensidad(e)). Va-
lores mayores de A\ dan mas énfasis a valor, que a intensidad, esto es deseable al
inicio de la busqueda, ya que no se cuenta con informacién suficiente para que
el factor intensidad pueda ser significativo. A medida que avanza la bisqueda y
se tiene informacion dentro del conjunto de soluciones élite, el valor de \ puede
disminuirse. Ya que la intensificaciéon de alguna manera enfatiza la calidad de
las soluciones a costa de la aleatorizacién, generalmente se acompana con una
componente de diversificacion que peridédicamente conduce la busqueda hacia la
exploracién de diferentes regiones del espacio de bisqueda. En este caso, la diver-
sificacién se puede lograr incrementando A, lo cual se hace cuando la diversidad
de las soluciones generadas es muy baja.

Otra alternativa es el uso del reencadenamiento de trayectorias (path relin-
king) con GRASP. El reencadenamiento de trayectorias fue propuesto original-
mente por Glover [53] como una forma de explorar las trayectorias entre soluciones
élite obtenidas por busqueda tabd o busqueda dispersa. Usando una o mas solu-
ciones élite, se exploran las trayectorias en el espacio de soluciones que conducen
a otras soluciones élite para buscar mejores soluciones. Para generar trayectorias,
los movimientos se seleccionan para introducir atributos en la solucién actual que
estén presentes en la solucién élite guia.
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El reencadenamiento de trayectorias en el contexto de GRASP fue introducido
por Laguna y Mart{ [70]. Desde entonces han aparecido numerosas extensiones,
mejoras, y aplicaciones exitosas [5, 27, 94, 97, 95, 49]. Ha sido usado como un
esquema de intensificacién, en el que las soluciones generadas en cada iteracion
de GRASP se reencadenan con una o mas soluciones de un conjunto élite de
soluciones, o como en una fase de post-optimizacion, donde se reencadenan pares
de soluciones del conjunto élite.

Consideremos dos soluciones s y x; en las cuales queremos aplicar reencade-
namiento de trayectorias desde zs hacia x;. La Figura 7 ilustra el procedimiento
de reencadenamiento de trayectorias mediante su seudo-cédigo. El procedimiento
se inicia calculando la diferencia simétrica A(xs; ;) entre las dos soluciones, i.e.
el conjunto de movimientos necesarios para alcanzar x; desde zs. Se genera enton-
ces una trayectoria de soluciones encadenando a zs con z;. El algoritmo devuelve
la mejor solucién encontrada en esta trayectoria. En cada paso, el procedimiento
examina todos los movimientos m € A(z;xz;) desde la solucién actual z y elige
aquel que resulta en la solucién menos costosa, i.e. aquel que minimiza f(x®m),
donde = & m es la solucién resultante de aplicar el movimiento m a la solucién
x. Se efectia el mejor movimiento m™ produciendo = & m* y el movimiento m*
se elimina de la diferencia simétrica de A(z @ m;z;). En caso necesario, la me-

jor solucién z* se actualiza. El procedimiento termina cuando se alcanza xi, i.e.
cuando A(z; ) = 0.

procedure PR

input: xs,

Calcular la diferencia simétrica A(zs,x¢);

T — zg;

[T min{f(xs), f(ze)};

2 — argmin{ f(z,), f(z0)};

while A(zs,2:) # 0; do
m* «— argmin{ f(z @ m);Vm € A(z,x;)};
Al(x ®m*, xy) — Az, z) \ {m*};
r—xdm*;

if f(z) < f* then

£ = fl);
¥ —
end if
end while
return z*;
Figura 7

La figura 8 ilustra el reencadenamiento de trayectorias.En el grafo de esta
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figura, los nodos corresponden a soluciones, y los arcos corresponden a movimien-
tos que permiten que una solucién se alcance a partir de otra. Supodngase que
dos soluciones, A y D, se reencadenan. Sea A la solucidén inicial y D la solucién
meta, y supéngase que la diferencia simétrica A(A; D) = 3. Existen tres posibles
movimientos partiendo de A. Se elige el mejor movimiento, el cual produce la
solucién B. En este punto, la diferencia simétrica A(B; D) = 2 y por lo tanto
existen dos movimientos posibles. De nuevo, se elige el mejor movimiento, el cual
produce la solucién C. Finalmente, en este punto hay un solo movimiento posi-
ble, el cual conduce a la solucién meta D. Este esquema de reencadenamiento de
trayectorias produjo una “trayectoria” A — B — C — D la cual puede ahora ser
evaluada.

Figura 8

El reencadenamiento de trayectorias mantiene un conjunto P de soluciones
élite halladas durante la optimizacién [51]. Las primeras |P| soluciones distintas
que se encuentran se insertan en el conjunto élite. Después de eso, una solucién
candidato x* se agrega a P si su costo es menor que el costo de todas las soluciones
del conjunto élite, o si su costo es mayor que el mejor, pero menor que la peor
solucién élite y es suficientemente diferente de todas las soluciones del conjunto
élite. Si se acepta su entrada al conjunto élite, la nueva solucién reemplaza a
la solucién mas similar a ella entre el conjunto de soluciones élite con un costo
peor que ella [95]. El conjunto élite puede ser renovado periddicamente [4] si
no se observan cambios en el conjunto élite durante un nimero especificado de
iteraciones GRASP. Una forma de hacer esto es fijar en infinito los valores de la
funcién objetivo de la peor mitad del conjunto élite. De esta forma se crearan
nuevas soluciones del conjunto élite.

Se han propuesto varios esquemas alternativos para el reencadenamiento de
trayectorias. Ya que este procedimiento puede ser demandante en recursos com-
putacionales, no necesita ser aplicado después de cada iteracion GRASP. Es mas
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conveniente hacerlo periédicamente. Usualmente las trayectorias desde x5 hasta
x; y desde x; hasta x, son diferentes y ambas pueden explorarse. Ya que las
trayectorias pueden ser largas, no es necesario seguir la trayectoria completa. Se
puede restringir siguiendo una trayectoria truncada que inicie en zs y otra que
inicie en xy.

5 GRASP Continuo

Recientemente Hirsch et al [57, 58, 59, 60|, introdujeron un método de opti-
mizacién global el cual extiende GRASP del dominio de la optimizacién discreta
al de la optimizacion global continua. El dominio de la funcién se supone inmerso
en un hiper-rectangulo de dimensiéon n, donde n es el nimero de variables. En
el inicio de cada iteracion GRASP, se genera de forma aleatoria una solucién x
dentro del rectangulo. La fase de construccion se inicia con esta solucién dejando
en libertad de variar todas sus coordenadas, en cada una de las coordenadas libres
i se lleva a cabo una busqueda lineal manteniendo las otras n — 1 coordenadas
de x en sus valores actuales. El valor de z; de la i-ésima coordenada, que mini-
mice el valor de la funcién objetivo, asi como el valor de la funcién objetivo g; se
almacenan. Una vez que se ha llevado a cabo para cada una de las coordenadas
libres la buisqueda local, se forma una lista restringida de candidatos (LRC) la
cual contiene la coordenadas libres ¢ cuyos valores g; son menores o iguales a
amax + (1 — a)min, donde max y min son, respectivamente los valores méximo y
minimo de g; sobre todas las coordenadas libres de z, y o € [0;1]. De la LRC se
elige una coordenada al azar, digamos j € LRC, y z; se fija a z;, quedando n — 1
variables libres. Eligiendo una coordenada de esta manera se asegura la aleatorei-
dad en la fase de construccion. Se continta con el procedimiento anteriormente
descrito hasta que todas las n coordenadas de = se hayan fijado. En este punto
se ha obtenido = de la fase de construcciéon. Para la fase de post-procesamiento
la cual consiste en una buisqueda local, iniciando desde un punto = € R™, el algo-
ritmo genera un conjunto de direcciones y determina en qué direccién, si es que
hay una, mejora la funcién objetivo. Es facil ver que existen 3™ — 1 direcciones
posibles y aun para valores moderados de n este nimero puede ser muy grande.
Es por esto que se fija un cierto nimero maximo de direcciones a explorar, Ndir,
y se construyen al azar este maximo ntmero de direcciones. Una vez construida
la direccién d, se genera el punto de prueba x* + hd donde h es un parametro de
discretizacién. Si el punto de prueba z es factible y es mejor que x*, entonces a *
se le asigna el valor de x y el proceso vuelve a comenzar con z* como la solucién
inicial. Es importante notar que el conjunto de direcciones puede cambiar cada
vez durante el proceso, asi como el orden en el cual estas direcciones se conside-
ran. Una vez que se encuentra un punto con f(x*) < f(z* + hd) para cada una de
las Ndir d elegidas, se declara a * localmente éptima y el procedimiento regresa
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esta solucién. Esto corresponde a una iteracién de construccién de GRASP, el
procedimiento se repite maziter veces y se regresa la mejor de todas las soluciones
construidas.

6

Aplicaciones

La primera aplicacién de GRASP fue a cubrimientos de conjuntos [42] en 1989,
y, a partir de entonces, ha sido aplicado a un amplio rango de tipos de problemas.
Referimos al lector a Festa y Resende [50] y al URL

http://graspheuristic.org/annotated

para una extensa bibliografia comentada de GRASP. Concluimos este capitulo con
una lista parcial de aplicaciones de GRASP, mostrando su amplia aplicabilidad.

enrutamiento [11, 14, 19, 29, 64];

légica [36, 86, 90, 91];

cubrimiento y particién [11, 12, 42, 52, 54];

localizacién [1, 35, 70, 102, 103];

arbol minimo de Steiner [28, 75, 76, 77, 97];

optimizacién en grafos (2, 44, 65, 84, 89, 93, 96, 48, 65, 32];
asignacion [41, 51, 66, 70, 78, 81, 85, 88, 87, 100, 56;

horarios, programacién, y manufactura [16, 17, 18, 21, 33, 37, 38, 39, 40,
45, 46, 66, 98, 99, 105, 6];

transporte [11, 38, 41, 71, 20];

sistemas de potencia [22, 23, 15];

telecomunicaciones [2, 13, 64, 70, 83, 89, 94, 26, 82, 104, 65, 72[;
disenio de redes [8], [34];

dibujo de grafos y mapas [47, 67, 93, 96, 73, 74, 24];

lenguaje [31];

estadistica [79, 80];

biologia [9];

programacién matematica [83];

empaquetado [30]; y

VLSI [10], entre otras dreas de aplicacion.
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1 Introduccion

La Busqueda Dispersa es un método que fue introducido en 1977 (publicado
en Glover 1998) como un heuristico para la programacién entera, basado en es-
trategias expuestas en el congreso "Management Science and Engineering Mana-
gement” celebrado en Austin, Texas en septiembre de 1967. A pesar de eso SS no
fue aplicado ni debatido hasta 1990, cuando fue presentado en el ” EPFL Seminar
on Operations Research and Artificial Intelligence Search Methods” (Lausanne,
Switzerland). Un articulo basado en esta exposicién fue publicado en 1994 (Glo-
ver 1994), y desde entonces la metodologia de Scatter Search se empezé a aplicar
con mas profusién.

La primera descripcién de SS (Glover, 1977) usa una sucesién de principios
coordinados para generar soluciones. Concretamente los aspectos mas destacados

*Los autores de este trabajo agradecen la ayuda del Ministerio de Educacién y Ciencia por
la subvencién econémica para la realizacién de este trabajo a través del Plan Nacional de I+D,
(Proyecto SEJ- 2005 08923/ECON), asi como la recibida de la Conserjerfa de Educacién de
Castilla y Leén ( Proyecto BUOOSAOG).
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de este trabajo son los siguientes:

e SS realiza una exploracién sistematica sobre una serie de buenas soluciones
llamadas conjunto de referencia teniendo en cuenta las caracteristicas de
diversos elementos de la solucién .

e El método se centra en combinar dos o més soluciones del conjunto de
referencia. La combinacion de més de dos soluciones tiene como objetivo el
generar centroides.

e Generar soluciones en la linea que une dos dadas se considera una forma
reducida del método.

e Al combinar se deben seleccionar pesos apropiados y no tomar valores al
azar.

e Se deben realizar combinaciones “convexas” y “no convexas” de las solucio-
nes.

e La distribucién de los puntos se considera importante y deben tomarse
dispersos.

Béasicamente se trata de que mediante la combinacién de las soluciones que
forman el conjunto de referencia se obtengan nuevas soluciones que mejoren a las
que las originaron. Segun esto, cuando por ejemplo se crean nuevas soluciones
a partir de una combinacién lineal de otras dos o mas, el conjunto de referencia
puede evolucionar segiin se observa en la Figura 1.

Fig.1.- Conjunto de Referencia

Considerando el conjunto de referencia original como el formado por las solu-
ciones etiquetadas como A, B y C, una combinacién no convexa de las soluciones
de referencia A y B crea la solucion 1. En realidad se crean més soluciones en el
segmento definido por A y B, aunque sélo se introduce en el conjunto de referen-
cia la solucién 1 (el criterio usado para seleccionar las soluciones que forman parte
del conjunto de referencia serd tratado mds adelante). De igual forma, mediante
las combinaciones convexas y no convexas de las soluciones del conjunto de refe-
rencia y la recién creada se originan los puntos 2, 3 y 4. El conjunto de referencia
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completo mostrado en la Figura 1 consta de 7 soluciones que posteriormente seran
mejoradas con un procedimiento de bisqueda local.

Historicamente los antecedentes de las estrategias para combinar soluciones
fueron introducidos en el contexto de los métodos de planificacion para obtener
mejoras en las soluciones para “job shop scheduling problems” (Glover 1963). Se
generaron nuevas soluciones mediante la creaciéon de combinaciones numéricamente
ponderadas de las soluciones ya existentes. Esta técnica fue motivada por la su-
posicion de que la informacién estd contenida de diferentes formas en diferentes
soluciones y por ello esta informacion puede ser utilizada de un modo més efectivo
cuando se combina que cuando la tratamos con estrategias estandar de seleccion
de diferentes soluciones sin tener en cuenta el resto.

Ademas, en programacion entera y no lineal, se desarrollaron procedimientos
asociados para combinar restricciones. Hoy en dia son muy conocidos los métodos
para crear nuevas restricciones de desigualdad llamados surrogate constraints (res-
tricciones subrogadas) (Glover 1965 y 1968).

Otros mecanismos de combinacién son aquellos basados en “votos”. En éstos
se definen reglas mediante las que cada solucién “vota” para que sus caracteristicas
aparezcan en la solucién que se estd construyendo. Estos métodos de votos han
sido muy utilizados en las rutinas de combinacién de SS y parece que constituyen
una de las claves de su éxito.

Esta forma de operar de SS combinando soluciones hace que se le enmarque
dentro de los métodos que llamamos “evolutivos” o “basados en poblacién”, es
decir, aquellos que combinan soluciones para crear otras nuevas. De hecho se basa
en el principio de que la informacién sobre la calidad o el atractivo de un conjunto
de soluciones puede ser utilizado mediante la combinacion de éstas. En concreto,
dadas dos soluciones, se puede obtener una nueva mediante su combinacién de
modo que mejore a las que la originaron.

A pesar de que SS sea un método de los que denominamos “evolutivos” existen
algunas diferencias importantes entre los algoritmos genéticos, probablemente
el representante més conocido y extendido de los algoritmos evolutivos, y SS.
Basicamente son las siguientes:

e Mientras que en SS la seleccién de las soluciones se hace de forma sistemética
y estratégica, en los algoritmos genéticos se realiza de forma totalmente
aleatoria.

e SS selecciona las soluciones, para combinarlas posteriormente, de entre un
pequeno conjunto de soluciones denominado conjunto de referencia, mien-
tras que los algoritmos genéticos consideran una poblacién de soluciones
de mayor tamafo. Asi, los algoritmos genéticos suelen considerar una po-
blacién de 100 soluciones mientras que en SS habitualmente se trabaja con
conjuntos de referencia de 10 soluciones.

e Podemos identificar aqui otra diferencia con el resto de métodos evolutivos

Rect@ Monografico 3 (2007)



100 Principios de la Bisqueda Dispersa

en los que con frecuencia se emplean métodos de combinacion independien-
tes del contexto. Es decir que no utilizan ninguna informaciéon o conoci-
miento sobre el problema, como el conocido operador de sobrecruzamiento
(crossover) en los algoritmos genéticos.

Por otro lado, el método SS no sélo consiste en combinar soluciones del con-
junto de referencia sino que va mas alld y a las soluciones obtenidas tras la com-
binacién se les aplica un procedimiento de mejora que habitualmente es un pro-
cedimiento de busqueda local, aunque en disenos avanzados se puede incorporar
al procedimiento de mejora estructuras de memoria. Esta forma de actuar esta
basada en la suposicién de que cuando se combinan soluciones y se aplica un
método de mejora sobre las mismas se obtienen mejores resultados que cuando
se aplica el método de mejora en las soluciones originales sin haberlas combinado
previamente.

En Glover (1998) se recopilan y organizan ideas fundamentales de SS pro-
cedentes de trabajos anteriores dando lugar a una version estdndar del método
mediante un esquema o plantilla. De ahi la gran importancia de la publicacién de
este trabajo en lo que se refiere a la difusién del método. Bésicamente destacamos
las siguientes ideas:

e La informacion til sobre la forma o la situacion de las soluciones 6ptimas
estd normalmente contenida en un conjunto apropiado y diverso de solucio-
nes élite.

e Cuando la combinacion de soluciones se usa como una estrategia para ex-
plotar tal informacién, es importante incorporar mecanismos capaces de
generar combinaciones que vayan mas alla de las regiones abarcadas por
las soluciones consideradas. De un modo similar también es importante
incorporar procesos heuristicos para transformar las soluciones combinadas
en nuevas soluciones. El objetivo de estos mecanismos de combinaciéon es
incorporar diversidad y calidad.

e Si se tienen en cuenta multiples soluciones simultaneamente como base para
crear combinaciones, se intensifica la oportunidad de explotar informacién
contenida en la unién de soluciones élite.

2 Meétodo Basico

Scatter Search trabaja sobre un conjunto pequeno de soluciones, denominado
conjunto de referencia, combinando sus soluciones para crear otras nuevas. A
continuacion se describen los cinco elementos esenciales del método asi como el
funcionamiento de estos elementos dentro del esquema béasico de SS.

1. Método generador de soluciones diversas. Con este método se genera
un conjunto de soluciones diversas que en principio no tienen que ser necesaria-
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mente factibles. El tamano de este conjunto, P, suele estar en torno a 100 aunque
depende de variantes.

2. Conjunto de referencia (Refset). De entre el conjunto de soluciones
diversas generado con el método anterior y una vez aplicado el método de me-
jora, se selecciona el conjunto de referencia, formado por un nimero pequeno de
soluciones, b (alrededor de b = 10). La mitad de éstas soluciones (b/2) seran las
de mayor calidad del conjunto de soluciones diversas y la otra mitad se obtiene
siguiendo el criterio de la diversidad, es decir se seleccionan aquellas que disten
més (segin la medida de diversidad considerada en el problema) respecto a las
ya incluidas en el conjunto de referencia. Las soluciones seleccionadas se ordenan
segin su calidad de mayor a menor.

3. Un método generador de subconjuntos. A través de este método
se generan subconjuntos de soluciones del conjunto de referencia. Las soluciones
de cada uno de estos subconjuntos se combinaran entre si posteriormente. Un
criterio seguido en numerosas ocasiones para obtener los subconjuntos consiste
en considerar todos los pares de soluciones del conjunto de referencia, aunque se
pueden considerar trios o subconjuntos formados por cualquier otro nimero de
soluciones.

4. Un método de combinacién. Con este método se combinan entre si las
soluciones de cada subconjunto obtenido con el método generador de subconjuntos
ya descrito.

5. Método de mejora de soluciones. Este método se usa para tratar
de obtener soluciones de mayor calidad que las de partida, aunque en el caso en
que aparezcan soluciones no factibles su funcién consistird, primero en obtener
una solucion factible y luego intentar mejorarla. Se aplica tanto al conjunto de
soluciones diversas como a aquellas soluciones que se obtienen tras la aplicacion
del método de combinacién a las del conjunto de referencia. Habitualmente como
método de mejora se usa un procedimiento de busqueda local.

El modo de actuaciéon de los elementos descritos anteriormente dentro del
esquema basico del algoritmo de SS se muestra a continuacion.
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Algoritmo de Scatter Search

1. Generacién de un conjunto de P soluciones diversas
2. Mejora de dichas soluciones

3. Construccién del conjunto de referencia con las b mejores soluciones
siguiendo los criterios de calidad y diversidad.

4. Repetir

4.1 Formacién de subconjuntos con las soluciones del conjunto de re-
ferencia.

4.2 Generacion de soluciones nuevas mediante la aplicaciéon del método
de combinacidn a las soluciones de los subconjuntos (para obtener
soluciones distintas a las de partida)

4.3 Mejora de las nuevas soluciones

4.4 Actualizacién del conjunto de referencia. (Las nuevas soluciones ob-
tenidas que sean buenas por calidad o por diversidad se incorporan al
conjunto de referencia)

Hasta que el conjunto de referencia se estabilice (esto ocurre si durante un
ciclo completo no se obtiene ninguna solucién que pueda ser incorporada en
el mismo)

Tal y como se observa en el esquema del algoritmo de SS, de la combinacion de
las soluciones del conjunto de referencia se obtienen nuevas soluciones que una vez
mejoradas pueden pasar a formar parte del conjunto de referencia, actualizando
asi dicho conjunto. Dado que el nimero de soluciones del conjunto de referen-
cia no varia a lo largo de todo procedimiento, la actualizaciéon de este conjunto
se realizard de forma que las nuevas soluciones sustituiran a las que mejoren en
el conjunto de referencia. Es importante destacar que el significado de “mejo-
res” no se restringe a la calidad de la solucién, sino que también se considera
la diversidad que ésta aporta al conjunto. No obstante, aunque la actualizacion
se puede hacer segun el criterio de diversidad se ha comprobado que siguiendo el
criterio de calidad se obtienen mejores resultados (Laguna y Marti 2003). De esta
forma la calidad de las soluciones del conjunto de referencia puede ir mejorando
progresivamente.

Finalmente el algoritmo se detiene cuando el conjunto de referencia se esta-
biliza, es decir, cuando durante un ciclo completo no se obtiene ninguna soluciéon
que pueda pasar a formar parte del conjunto de referencia. Llegado a este punto
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el algoritmo puede reiniciarse volviendo al paso 1 del esquema y repitiendo todo el
procedimiento. Una practica habitual para reiniciar el proceso consiste en obtener
un nuevo conjunto de referencia de la manera siguiente: Partiendo del conjunto
de referencia que se habia estabilizado (no admitia ninguna nueva solucién) se
eliminan la mitad de las soluciones (b/2), manteniéndose la otra mitad. Con-
cretamente se eliminan las de peor calidad. Para obtener la otra mitad de las
soluciones se genera un nuevo conjunto de P soluciones (paso 1 del algoritmo)
considerando como objetivo favorecer la diversidad respecto a las soluciones que
no se han eliminado. De este conjunto, en sucesivos pasos, se selecciona la solucion
més diversa respecto a las que ya forman parte del nuevo conjunto de referencia
hasta que éste llegue a tener b soluciones. Una vez obtenido el nuevo conjunto
de referencia se continta con el paso 4 (4.1, 4.2, 4.3 y 4.4) siguiendo el esquema
del algoritmo. En el grafico de la Figura 2 se muestra el funcionamiento bésico
del algoritmo de SS.

Generar conjunto soluciones diversas

u

Mejorar Soluciones

raW

Calidad Diversidad
Formar Combinar
subconjuntos soluciones

Mejorar Soluciones

i N

Actualizar Refset

Hay nuevas soluciones en el Refset?

2~ N\a

Fig.2.- Funcionamiento del algoritmo de SS

3 Estrategias Avanzadas

Scatter Search puede ser implementado de multiples formas y ofrece alternati-
vas muy diversas para explotar sus ideas fundamentales. De hecho su mecanismo
no esta restringido a un disenio Unico y uniforme, sino que permite diferentes
posibilidades que pueden resultar efectivas segun el caso.
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SS proporciona, por tanto, un marco flexible que permite el desarrollo de
diferentes variantes con diversos grados de complejidad entre las que se pueden
destacar las siguientes propuestas:

1) Dependiendo del momento en que se realice la actualizacién del conjunto
de referencia podemos distinguir dos variantes:

a) Actualizacién Estatica: La actualizacién del conjunto de referencia se realiza
una vez que se han combinado todos los subconjuntos y se han obtenido
todas las nuevas soluciones. De este modo hasta ese momento no se podra
saber si una soluciéon determinada se va a poder incorporar al conjunto
de referencia. Bésicamente su funcionamiento se resume en el siguiente
esquema:

Algoritmo Scatter Search “estatico”

Generar un conjunto inicial P de soluciones diversas

N

Mejorar las soluciones generadas

®

Con estas soluciones construir el conjunto de referencia inicial

=~

Repetir

4.1 Obtener todos los subconjuntos de elementos del conjunto de re-
ferencia

4.2 Combinar las soluciones de cada subconjunto para obtener nuevas
soluciones

4.3 Mejorar las nuevas soluciones obtenidas

4.4 Actualizar el conjunto de referencia con estas nuevas soluciones
hasta que se estabilice (i.e. no se incluyan nuevas soluciones)

b) Actualizacién Dindmica: La actualizacién del conjunto de referencia se rea-
liza cada vez que se genera una nueva soluciéon, de modo que en el momento
en que obtiene una solucién se sabe si ésta va a formar parte del conjunto
de referencia. Esta segunda variante es mas agresiva dado que cada vez
que se genera una soluciéon apta para entrar en el conjunto de referencia
ésta pasa inmediatamente a formar parte de él, en vez de esperar a que se
hayan combinado todos los subconjuntos de soluciones. La ventaja de este
tipo de actualizacién es que en el caso en que el conjunto de referencia con-
tenga soluciones de baja calidad, esas soluciones pueden ser reemplazadas
rapidamente y asi en las siguientes combinaciones intervendran soluciones
de mayor calidad. Sin embargo, el hecho de que el tamano de este con-
junto se deba mantener constante implica que puedan existir soluciones que
salgan del conjunto de referencia sin haber sido combinadas.
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Una vez descritas ambas variantes, observamos cémo implementar la variante
dindmica resulta ser mas complejo que la variante estatica. Ademads, en la va-
riante estatica el orden en el cual tiene lugar la formacién de subconjuntos y
combinacién de soluciones carece de relevancia dado que se generan todos los
subconjuntos y se realizan todas las combinaciones. Sin embargo, en la actua-
lizaciéon dindmica este orden tiene una gran importancia dado que determina la
eliminacion de combinaciones potenciales. Por esto, cuando se actualiza segiin
la variante dindmica, es necesario hacer pruebas siguiendo distintos 6rdenes de
formacién de subconjuntos y combinacién de soluciones.

A continuacion se describe el esquema bésico de funcionamiento de la variante
“dinamica” de SS :

Algoritmo Scatter Search “dinamico”

1. Generacién de un conjunto P de soluciones diversas
2. Mejorar las soluciones generadas

3. Construir el conjunto de referencia inicial Refset

4. Repetir

4.1 Siguiendo el orden establecido de formacién de subconjuntos, hacer:

4.1.1 Obtener el subconjunto de elementos que corresponda

4.1.2 Combinar las soluciones de este subconjunto para obtener una
nueva solucién

4.1.3 Mejorar esta nueva solucién

4.1.4 Actualizar el conjunto de referencia: la solucién mejorada se incor-
pora al Refset si es mejor que la peor en él. hasta que se estabilice
el conjunto de referencia (i.e. ninguna nueva solucién pueda ser
incluida en el Refset)

2) Se pueden implementar diferentes disefios en funcién del ntimero de ele-
mentos que integran los subconjuntos de soluciones que se obtienen del conjunto
de referencia. Lo més comin y que permite obtener los mejores resultados es
que estén formados por dos elementos (se suelen considerar todos los pares de
soluciones posibles). De hecho, en el experimento presentado en Campos y otros
(2001) se muestra como al menos el 80% de las soluciones que son admitidas en el
conjunto de referencia provienen de combinaciones de subconjuntos formados por
dos elementos. No obstante los subconjuntos pueden estar formados por cualquier
otro numero de elementos o soluciones (por ejemplo subconjuntos de 3 elementos,
de cuatro, etc.)
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Un procedimiento practico para generar subconjuntos que permite pasar de
subconjuntos de dos elementos a otros formados por un nimero mayor, teniendo
siempre controlado el niimero de subconjuntos que se van a generar, consiste en
crearlos de la siguiente forma propuesta en Glover (1998):

e Subconjuntos de dos elementos: formados por todos los pares de soluciones
posibles.

e Subconjuntos de tres elementos: derivados de los subconjuntos de dos ele-
mentos anadiendo a cada uno de ellos la mejor solucién encontrada que no
pertenezca al subconjunto.

e Subconjuntos de cuatro elementos: derivados de los subconjuntos de tres
elementos anadiendo a cada uno de ellos la mejor solucién encontrada que
no pertenezca al subconjunto .

e Subconjuntos formados por los i mejores elementos, desde ¢ = 5 hasta b.

3 ) Segun la forma de actualizar el conjunto de referencia: Este conjunto
inicialmente se forma siguiendo los criterios de calidad y diversidad, de modo
que generalmente aproximadamente la mitad de los elementos lo constituyan las
soluciones de mayor calidad y el resto se obtengan segun el criterio de maxima
distancia. Sin embargo a la hora de actualizarlo lo mas habitual es hacerlo sélo
siguiendo el criterio de calidad. De hecho tal y como se ha comentado ante-
riormente, se ha probado cémo actualizando el conjunto de referencia sélo por
diversidad se obtienen peores resultados que considerando sélo el criterio de cali-
dad (Laguna y Mart{ 2003).

Ademsds, otros aspectos clave del método de SS sobre los cuales se sigue estu-
diando y que permiten implementarlo segtin diversas alternativas son los siguien-
tes:

e Control de la diversidad cuando se forma el conjunto de referencia: Para
garantizar la diversidad cuando se seleccionan las b/2 soluciones de mayor
calidad de entre las P soluciones generadas por el método generador se puede
establecer un umbral de distancia entre estas soluciones de alta calidad, de
forma que una solucién candidata solo puedan entrar a formar parte del
conjunto de referencia si la distancia minima entre esta solucion y las que
ya estan en el conjunto de referencia sea igual o mayor que ese umbral
establecido.

e La incorporacion del uso de memoria en el algoritmo:

— Para generar soluciones: ademdas de poder generar el conjunto de P
soluciones diversas (paso 1 del algoritmo) de forma aleatoria, se puede
generar desarrollando algiin método que use la memoria basada en la
frecuencia con que aparecen los distintos elementos en las soluciones
con objeto de evitar la repeticion de soluciones similares y favorecer
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asi la diversidad. Es importante destacar que desde sus origenes, SS,
se basa en obtener diversidad de un modo determinista pre-establecido
en lugar de recurrir a la aleatoriedad.

— Para su uso en el método de mejora: Cuando se anaden estructuras
de memoria al método de mejora, éste deja de ser un simple procedi-
miento de busqueda local (procedimiento heuristico) y se transforma
en una estrategia metaheuristica, es decir, una estrategia maestra que
guia y modifica otras heuristicas para producir soluciones mas alla de
aquellas que normalmente se generan en una busqueda de 6ptimos lo-
cales (Glover y Laguna 1997). El resultado es un método hibrido que
combina dos estrategias metaheuristicas: Scatter Search y el método
Tabu Search usado para mejorar las soluciones.

e Bisqueda de un equilibrio entre diversificacion e intensificacién: se
trata de estudiar como se va a distribuir el tiempo total de computacion, es
decir, qué porcentaje del tiempo se dedica a generar las soluciones y cuédl es
el que se dedica a combinarlas.

e Buscar el tamano éptimo del conjunto de referencia: Se debe estudiar
si b debe ser un niimero pequeno tal y como se suele aconsejar o si por el
contrario se obtendrian mejores resultados aumentando este nimero. Asi-
mismo existe la posibilidad de considerar que b varie en funcién del estado
de la busqueda.

e Probar con diversos métodos de combinacién: En Campos y otros (2005)
se analizan distintos métodos de combinaciéon de soluciones, algunos con
elementos aleatorios y otros deterministas, de forma que el algoritmo se-
lecciona el método de combinacién probabilisticamente, de acuerdo con los
éxitos obtenidos por éste.

e Determinar a qué soluciones se debe aplicar el método de mejora: La
aplicacién del método de mejora a todas las soluciones generadas y com-
binadas no garantiza mejores resultados. En este sentido segin Ugray y
otros (2001) serfa conveniente establecer umbrales de calidad para excluir
de la aplicacion del método de mejora a aquellas soluciones que dificilmente
puedan llegar a ser la mejor solucion.

e Formar el conjunto de referencia inicial con la mitad de soluciones
obtenidas segtn el criterio de calidad y la otra mitad segin el de diversidad.
Se han hecho pruebas considerando otras proporciones (véase Laguna y
Marti, 2003 ) pero en principio parece ser que ésta es la que permite obtener
mejores resultados.
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4 Aplicacion de SS a un Problema de Locali-
zacion

Scatter search se ha aplicado a la resolucién de una gran variedad de problemas
de optimizacién. En este caso concreto vamos a usar un SS propuesto en Pacheco
y Casado (2005) para resolver un problema de localizacién, concretamente el
problema de los p-centros.

El problema de los p-centros es un problema de localizaciéon bien conocido
que consiste en colocar p servicios como colegios, hospitales o similar y asignar
clientes a dichos servicios de forma que se minimice la maxima distancia entre un
cliente y su servicio. Se trata de un problema NP-hard tal y como se demostré
en Kariv y Hakimi (1979).

Sea U = {uj,ug,...,uy} un conjunto de usuarios y V. = {vi,ve,...,v,}
un conjunto de localizaciones donde colocar servicios. Considérese conocida la
distancia d;; entre cada cliente u; y la localizacién v, el problema consiste en
encontrar un subconjunto X de p localizaciones de forma que se minimice

max { min dij}
i=1,...,m |v;ex
El problema se puede formular de forma lineal como sigue

Minimizar =z

sujeto ar Y.y @i =1, i=1...m; (1)
Tij < Yj, i=1...m;5=1...n; (2)
Zj:L..,,n Yj = D; (3)
Zj:l,...,n dijxij S z 1=1.. .mjy ( )
zij,y; € {0,1} i=1..myj=1...n; (5)

donde y; = 1 indica que se ha colocado un servicio en v; (0 en caso contrario);
z;; = 1 indica que al usuario u; se le ha asignado el servicio v; (0 en caso contra-
rio). Este modelo es usado por ejemplo en localizacién de estaciones de bomberos,
policia o ambulancias, unidades de urgencias, etc.

Para resolver este problema de localizacién se ha disenado una versiéon que
podriamos denominar ‘estatica’ de Scatter Search. La descripcion en seudocodigo
de forma general es la siguiente:

Algoritmo Scatter Search “estético”

1. Generar un conjunto inicial de P soluciones con un método Generador-
Diversificador

2. Mejorar estas soluciones con un método de mejora

Rect@ Monografico 3 (2007)



S. Casado, R. Marti 109

3. Con estas soluciones construir el conjunto de referencia inicial
4. Repetir

4.1 Obtener todos los subconjuntos de pares del conjunto de referencia
4.2 Combinar estos subconjuntos para obtener nuevas soluciones

4.3 Mejorar estas nuevas soluciones con el método de mejora

4.4 Actualizar el conjunto de referencia con estas nuevas soluciones hasta

que se estabilice (i.e. no se incluyan nuevas soluciones)

5. Si han trascurrido max_iter iteraciones (pasos 1-4) sin mejora finalizar; sino
volver al paso 1 (Reiniciar)

Denotamos por X la solucién, total o parcial, en cada momento, es decir, las
localizaciones (indices) donde se han colocado servicios, y f el valor de la funcién
objetivo correspondiente a X.

Para formar el conjunto de Referencia, (paso 3) se comienza seleccionando
las b/2 soluciones de mayor calidad segun la funcién objetivo. A este ndmero
de soluciones de mayor calidad que forman el conjunto de Referencia, b/2, le
denominamos Tam_Refl. Posteriormente para anadir la otra mitad de soluciones
se usa la siguiente funcién o criterio que mide la ‘diversidad’ de una solucién
candidata X a entrar con respecto a los que ya estan en Refset

Difmin(X, Refset) = min{dif(X,X') | X' € Refset};

donde dif (X, X') = | X — X'|, es decir el nimero de elementos (localizaciones) de
la solucién X que no estdn en X'.

La actualizacién de Refset (paso 4.4.) se realiza considerando la calidad de
las soluciones. Es decir, se incorporan aquellas nuevas soluciones que mejoren la
funcién objetivo de alguna de las soluciones existentes en Refset. A continuacion
se describen el método Generador-Diversificador, el método de mejora y el de
combinacién.

4.1 Método Generador-Diversificador

Nuestro método diversificador esta basado en constructivos tipo GRASP.
GRASP (greedy randomized adaptive search procedure), es un método heuristico
que construye soluciones usando una funcion voraz y aleatoriedad controlada. La
mayoria de las implementaciones GRASP incluyen un procedimiento de biisqueda
local para mejorar las soluciones generadas. GRASP fue originalmente propuesto
en el contexto de problemas de cubrimientos de conjuntos (Feo y Resende 1989).
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Un tutorial cldsico se puede encontrar en Feo y Resende (1995) y mds reciente-
mente en Pitsoulis y Resende (2002).

En nuestro caso la evaluaciéon proporcionada por la funcién voraz A; en cada
paso es el valor de la funcién objetivo que se obtendria si se anadiera un servicio
a j. El método diversificador consta de los siguientes pasos:

Procedimiento Avido-Aleatorio
Hacer X =0
Mientras | X| < p hacer

e Determinar Vj € V' \ X el valor A; de f si se anadiera j a X

e Determinar Amazr = maz{A; | j € V\ L} y Amin = min{A; |j € V\ L}
Construir L={j e V\L|A; <a-Amin+ (1 —«a)- Amax}

Elegir j* € L aleatoriamente

Hacer X = X U {j*}

El pardmetro a (0 < o < 1) controla el nivel de aleatoriedad. A mayor
valor de a menor nivel de aleatoriedad. Con este uso de aleatoriedad controlada
se consigue una muestra de soluciones en la que normalmente la mejor de ellas
supera a la encontrada con una eleccién totalmente deterministica, (con a = 1).
Una seleccién adecuada de a permite un equilibrio entre diversificacion y calidad
de las soluciones.

La primera vez que se emplea el método generador-diversificador (paso 1)
no hay ‘historia’ acerca de cuantas veces un elemento ha formado parte de las
soluciones del conjunto de referencia. Sin embargo, esta informacion puede ser
utilizable cuando el método se usa para reiniciar el proceso. La informacién se
registra en el siguiente vector

freq(j) = Nuumero de veces que cada localidad j de V' ha pertenecido
a las soluciones del conjunto de referencia

La informacién registrada en freq(j) se usa para modificar los valores A; en el
método diversificador de la siguiente manera

freq(s)
A/' =A; - Amami
e fregmaz

donde fregmazr = max{freq(j) : Vj}. Con los valores modificados A’; se calculan

ALy ALy se ejecuta el método diversificador con estos valores para construir
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la lista de candidatos L. Obsérvese que con S = 0, el método diversificador
modificado coincide con el original. Altos valores de § fuerzan a la seleccion de
elementos que menos han aparecido. El uso de informacion dada por la frecuencia
en el método diversificador estd inspirada en Campos y otros (2005). Hay que
destacar que la incorporaciéon de memoria a la construccién, hace que ésta ya no
sea de tipo GRASP en sentido estricto, pues el muestreo del espacio de soluciones
ya no es aleatorio e independiente.

4.2 Método de Mejora

El método de mejora usado tiene su origen en Mladenovic y otros (2001) donde
se hacen adaptaciones al problema de los p-centros de 3 heuristicos clasicos para
el problema de las p-medianas tomados de Mulvey and Beck (1984). Uno de estos
tres heuristicos, el procedimiento “Alternate”, es el que hemos seleccionado como
método de mejora y se describe a continuacion:

Procedimiento Alternate
Repetir

e Para cada servicio 7 de X, determinar el subconjunto de los puntos de U
que tienen a j como servicio més cercano

e Para cada uno de estos subconjuntos de usuarios resolver el problema del
1-centro

e Hacer X’ el conjunto de soluciones de estos p problemas, y f’ su valor
e Sif/f<fhacer X =X"y f=[

hasta que no haya cambios en X

4.3 Método de Combinacion

e obtienen nuevas soluciones combinando pares del conjunto de referencia
(paso 4.2). El ntimero de soluciones generadas de cada par depende de la relativa
calidad de las soluciones que son combinadas. Considérese x* y 29 las soluciones
del conjunto de referencia que son combinadas, donde t < ¢. Se asume que el
conjunto de referencia est ordenado de forma que z' es la mejor solucién y z° la
peor; entonces el nimero de soluciones generadas de cada combinacion es:

tres sit <Tam_Refly qg<Tam_Ref1
dossit <Tam_Refly q>Tam_Refl
uno si t > Tam_Refly q > Tam_Ref1.
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Cada par de soluciones del conjunto de referencia se usa para generar nuevas
soluciones. Para ello se usa la estrategia denominada Path Relinking. La idea
bésica es construir un camino que una las dos soluciones. Algunas de las soluciones
intermedias en dicho camino se utilizan como puntos iniciales a los que se les aplica
la fase de mejora tal y como muestra la Figura 3.

o—0—0—0—0—0—0
X x4
P {
. x* . X

Fig. 3.- Generacién de nuevas soluciones usando Path Relinking

El camino que une dos soluciones dadas, x! y 29, se construye como sigue.
Inicialmente se hace = zt. En los siguientes pasos se afiade a 2 un elemento de
9 que no esté en x y se elimina un elemento que no esté en z9. De esta forma
la solucion intermedia x en cada paso tiene un elemento mas en comin con z?
. En cada paso se elige el mejor entre estos posibles cambios. Path Relinking es
una estrategia tradicionalmente asociada a Tabu Search. La idea que subyace es
que en el camino entre dos buenas soluciones, se espera que haya soluciones de
parecida calidad (incluso en algin caso mejor). Para una mayor ilustracién ver
Glover, Laguna y Mart{ (2000).

4.4 Resultados Computacionales

Inicialmente, para mostrar el funcionamiento de SS se han hecho una serie
de pruebas usando los ejemplos de la libreria OR-Lib correspondientes a valores
de p < 10. Los valores de los parametros que ha usado SS en este caso son:
P=12,0=6, a = (8 = 0,8 y maz_iter = 5. En estos ejemplos U = V', es decir
las localizaciones donde colocar las facilidades coinciden con los usuarios. En la
Tabla 1 se muestran los resultados.

Ademas, se han hecho pruebas con problemas reales. Los datos de los proble-
mas reales se refieren a diversas provincias en el norte de Espana, concretamente
vila, Ledn, Salamanca, Segovia y Burgos. Con estas experiencias se quiere ana-
lizar para cada provincia dénde situar una serie de unidades de diabetes entre
las diferentes localidades que pueden acoger las mismas (por tener algin tipo de
instalacién que pueda considerarse adecuada). Los valores de p considerados son
siempre menores o iguales a 10. Esto se debe a que las autoridades sanitarias
correspondientes establecieron que, por diversas restricciones presupuestarias, el
nimero maximo de unidades de diabetes que se podian abrir era diez.

En cada caso se ha considerado la matriz de tiempos (en minutos) entre todas
las poblaciones origen, y las poblaciones que, potencialmente, pueden ser destinos.
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n p  Scatter TiempoMejor

Search Solucion
100 53 121 0,98
100 10 98 1,16
100 10 93 1,25
200 5 82 4,39
200 10 63 4,75
300 5 57 6,88
300 10 49 10,69
400 5 45 10,7
400 10 39 16,64
500 5 40 16,91
500 10 37 27,2
600 5 38 23,42
600 10 32 34,78
700 5 30 31,77
700 10 28 45,52
800 5 39 60,94
800 10 27 76,11
900 5 28 54,86
900 10 24 73,91

Tabla 1: Resultados para ejemplos de OR-Lib, con p < 10

Para hallar estos tiempos de recorrido se ha usado la informacién sobre carreteras
suministrada por el CNIG (Centro Nacional de Informacién Geogréfica), consi-
derando diferentes velocidades segin el tipo de tramo (Nacionales, Autonémicas,
Provinciales etc. .. ). Con esta informacion sobre la red de carreteras se ha calcu-
lado la matriz de tiempos usando el conocido algoritmo de Djikstra.

Estos problemas reales se han resuelto, ademés de con el SS descrito ante-
riormente, con un algoritmo basado en la estrategia metaheuristica Bisqueda en
Entornos Variables (VNS) tomado de Mladenovic y otros (2001). El criterio de
parada que se ha considerado para ambas estrategias es un tiempo de compu-
tacién méximo de 400 segundos. En estos ejemplos U # V' y los valores de m y
n para cada provincia se muestran en la Tabla 2 junto con los resultados que se
obtienen.

Si observamos los resultados obtenidos por ambos algoritmos vemos como
aunque VNS obtiene en practicamente todos los casos las mismas soluciones que
SS, éste ultimo alcanza sus soluciones en un tiempo considerablemente inferior al
que emplea VNS.
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Tiempo Tiempo
M n P VNS mejorsol SS mejorsol
vila 248 156 5 36 4,12 36 0,08
248 156 10 25 106,4 23 3,72
Burgos 452 152 5 61 0,22 61 0,05
452 152 10 41 7,20 41 0,05
Leén 211 184 5 47 13,4 47 2,84
211 184 10 33 4,64 33 4,44
Salamanca 362 150 5 45 0,8 45 0,36
362 150 10 31 227,68 31 5,68
Segovia 209 119 5 31 35,4 31 1
209 119 10 22 87,88 22 2

Tabla 2: Resultados para ejemplos de diversas provincias del norte de Espana (p < 10)

5 Conclusiones

La Busqueda Dispersa es una estrategia metaheuristica que tiene su origen en
los anos setenta y se ha aplicado con éxito a la resolucién de numerosos problemas
de optimizacién. Aunque se trate de un método evolutivo presenta diferencias res-
pecto a los algoritmos genéticos, probablemente el representante mas conocido y
extendido de los algoritmos evolutivos. En este trabajo se introducen los aspec-
tos basicos de Busqueda Dispersa, asi como las multiples alternativas que ofrece
para explotar sus ideas fundamentales. Ademadas se muestra una aplicacién a la
resolucién de un conocido problema de localizacién.
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1 Introduccion

A la hora de encarar la resolucion de un gran nimero de problemas de optimi-
zacion correspondientes a situaciones reales, los métodos clasicos de resolucién se
encuentran muy a menudo con grandes dificultades que impiden abordar con ga-
rantias su resolucién. Asi, encontramos numerosas aplicaciones reales en campos
como la Economia, la Ingenieria y la ciencia donde con métodos con un amplio
soporte tedrico matematico (que asegura la obtencién de una solucién ptima en
condiciones “ideales”) no se puede esperar obtener una solucién o no se puede es-
perar obtener esta solucién en un horizonte temporal razonable. Como ejemplo,
podemos encontrar en Garey y Johnson [27] problemas cuyos tiempos estimados
de resolucién son del orden de 2 - 108 siglos, o numerosos problemas de optimi-
zacién combinatoria donde siquiera encontrar un punto factible con un método
tradicional es una tarea intratable.

*Los autores desean agradecer a los editores del presente volumen su amable invitacién a
colaborar con el presente trabajo. Asimismo, desean agradecer a los evaluadores anénimos su
aportacién a la mejora del presente trabajo. Este trabajo se ha realizado bajo la financiacién
del Ministerio de Educacién y Ciencia, y de la Consejeria de Innovacién, Ciencia y Empresa de
la Junta de Andalucia.
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Por este motivo, a finales de los 50, Simon y Newell [63], y principios de los 60,
Glover [28], comenzaron a aparecer una serie de métodos que proporcionaban en
un tiempo computacional razonable soluciones factibles con un valor cercano al
6ptimo. Este tipo de estrategias se denominaron métodos heuristicos (del griego
heuriskein: encontrar o descubrir). Asi, Zanakis y Evans [74] definen un heuristico
como “un procedimiento simple, a menudo basado en el sentido comtn, que ofrece
una buena solucién (aunque no necesariamente la éptima) a problemas dificiles
de un modo fécil y rapido”. Enseguida comenzaron a utilizarse ampliamente este
tipo de métodos para la resolucién de problemas hasta el momento intratables
o de resolucién demasiado costosa, tal y como se puede observar en el trabajo
de Zanakis y otros [75] donde clasifican 442 articulos en revistas internacionales
relacionados con heuristicos en el periodo 1975-1986. El éxito de este tipo de
estrategias produjo un enorme interés en su estudio y desarrollo dando lugar a
su evolucion en los métodos metaheuristicos. Asi, el término metaheuristico fue
introducido por Glover en [29] para definir una estrategia superior que gufa y
modifica otros heuristicos para obtener mejores soluciones que las que obtendrian
estos heuristicos en solitario. El éxito de este tipo de técnicas fue inmediato, como
se puede observar en el informe del Committee on the Next Decade of Operations
Research (CONDOR 1988), donde tres de los més utilizados metaheuristicos en
la literatura, el Temple Simulado, los Algoritmos Genéticos y la Busqueda Tab,
fueron evaluados como “extremadamente prometedores”. El desarrollo de los
metaheuristicos en los ultimos diez a nos ha sido enorme, dando lugar incluso a la
aparicién de revistas especializadas como Journal of Heuristics (Kluwer Academic
Press) o Evolutionary Computation (MIT Press). En su forma moderna este
tipo de técnicas engloba una enorme variedad de lo que se considera busquedas
inteligentes. Sin embargo, una clasificacion rigurosa de los metaheuristicos no es
una tarea sencilla.

Una de las dreas de investigacion emergentes en la cual los Algoritmos Meta-
heuristicos estdn alcanzando mayor popularidad es en el campo la Optimizacién
Multiobjetivo. En un problema de optimizacién multiobjetivo tenemos dos o
mas funciones objetivo a optimizar simultdneamente en lugar de una sola. Como
consecuencia, los problemas de optimizacion multiobjetivo no tienen en general
una tdnica solucion sino todo un conjunto de soluciones que reflejan el trade-off
existente entre dichos objetivos. El desarrollo de las diversas técnicas de Progra-
macién Multiobjetivo ha conducido a su utilizacién para la resoluciéon de un gran
nimero de casos reales donde, ademas de las dificultades habituales al enfrentarse
a un problema real, como es la complejidad del modelo, en lo relativo a tamafio del
problema (ntmero de variables, restricciones...), o a la naturaleza de las funcio-
nes (no linealidad, no diferenciabilidad...) o de las variables (enteras, binarias...),
nos encontramos con la dificultad adicional que representa la multiplicidad de
objetivos y el hecho de que hemos de encontrar un conjunto de soluciones y no
un unico punto. Por estos motivos, aunque el enfoque multiobjetivo aplicado
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sea correcto desde el punto de vista tedrico, una implementacién computacional
puede no resultar valida algoritmicamente por carecer de herramientas para re-
solver el problema. Por estos motivos, resulta obvia la potencialidad del empleo
de técnicas metaheuristicas en combinacion con los diversos enfoques de progra-
macién multiobjetivo, que permitan abordar con garantias un amplio abanico de
problemas reales. En este trabajo intentaremos recorrer los diferentes enfoques
en la literatura a la hora de abordar este tipo de problemas mediante algoritmos
metaheuristicos.

Asi, en la siguiente seccién comenzamos definiendo formalmente lo que se
entiende por un problema de optimizacién multiobjetivo y otras definiciones aso-
ciadas. En la Seccion 3 clasificamos los principales metaheuristicos para concluir
en la Seccién 4 con algunos comentarios sobre las aplicaciones reales de este tipo
de técnicas, las lineas futuras y algunas conclusiones.

2 Problemas Multiobjetivo

Entendemos por Problema de Optimizacién Multiobjetivo (MOP) a aquellos
de la forma:

manimizar [fi1(x), fo(z), ..., frx(z)]

sujeto a m restricciones de desigualdad:
gi(z) <0, i=1,2,..,m

y p restricciones de igualdad:

donde k es el nimero de funciones objetivo y n el nimero de variables de decisién
del problema. Asi, denotaremos por z = (z1, 2, ..., 7,,)" al vector de variables de
decision.

Normalmente, los objetivos del problema estan en conflicto unos con otros y
por ello raramente se da el caso en el que un solo vector optimiza simultaneamente
a todas las funciones objetivo (en este caso ademds el problema no seria realmente
multiobjetivo). Por tanto, la definicién de optimalidad es diferente a la usual de
los problemas mono-objetivo. La nocién de optimalidad comtinmente aceptada
para problemas multiobjetivo es la conocida como optimalidad de Pareto [54]:

Diremos que un vector de variables de decision x* € F es un optimo de Pareto
sino existe otro x € F tal que f;(x) < fi(z*) paratodoi =1,...,ky f;(z) < f;(z*)
para al menos un j.

En otras palabras, * es un 6ptimo de Pareto si no existe otro punto factible
x € F que mejore alguno de los objetivos sin causar simultaneamente un empeo-
ramiento en alguno de los otros criterios. Ahora bien, este concepto casi siempre
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nos proporciona més de una solucién. A este conjunto se le denomina conjunto
de optimos de Pareto. A los vectores x* incluidos en el conjunto de 6ptimos de
Pareto también se les conoce como soluciones no dominadas. A la imagen del
conjunto de 6ptimos de Pareto por las funciones objetivo se le denomina fron-
tera de Pareto. Por tanto, el objetivo es determinar de entre todos los elementos
del conjunto &, formado por todos los vectores que satisfagan las restricciones,
aquellos que constituyen soluciones no dominadas.

Existen en la literatura diferentes procedimientos para convertir un problema
multiobjetivo en uno mono-objetivo. Quizéds el procedimiento mas sencillo es
el uso de combinaciones de éstos (usualmente mediante combinaciones lineales)
para su transformacion en un unico objetivo. Estas técnicas son conocidas como
funciones de agregacion ya que se combinan o agregan todos los objetivos en uno
solo. Un ejemplo de este procedimiento es mediante la combinacién lineal

k
min Z w; fi(x)
i=1

donde w; > 0 son los pesos que representan las importancia relativa de cada uno
de los k objetivos de nuestro problema. Es usual suponer que

k
Zwi =1.
=0

Las funciones de agregacion pueden ser lineales (como en el ejemplo ante-
rior) o no lineales (cuando por ejemplo se utilizan distancias de tipo no-lineal).
Ambos tipos de funciones de agregacién han sido utilizadas con algoritmos me-
taheuristicos, obteniéndose un éxito relativo.

Las funciones de agregaciéon han sido en gran parte subestimadas por los
investigadores debido a las limitaciones que poseen principalmente las funciones
de agregacién lineales (no pueden generar porciones no convexas de la frontera
de Pareto a pesar del uso de combinaciones de pesos [15]). No obstante, las
funciones de agregacién no lineales no necesariamente presentan esta limitacion
[8]. De hecho, se pueden definir funciones de agregacion lineales con cierto ingenio
capaces de generar fronteras de Pareto no convexas. No obstante, la comunidad
de metaheuristicos tiende a prestar cada vez menos interés en las funciones de
agregacion.

Por otra parte, existe una gran variedad de técnicas multiobjetivo represen-
tando distintas filosofias, que no recurren a la agregacién mediante pesos de
las funciones objetivo, como es la Programacién por Metas, el método de la
e-restricciéon o la Programacién Compromiso. Una descripcién detallada de este
tipo de técnicas puede encontrarse en [65].
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3 Algoritmos Metaheuristicos

La gran cantidad de metaheuristicos existentes hoy en dia para el tratamiento
y la resolucién de problemas de optimizacion multiobjetivo complican enorme-
mente la tarea de clasificarlos. No obstante, a grandes rasgos, podemos afirmar
que existen dos grandes grupos de heuristicas: los basados en biisquedas por
entornos, especialmente disenados para busquedas locales, y los basados en po-
blaciones, cuyo representante mas destacado son los Algoritmos Genéticos.

No obstante, hibridizaciones de estas técnicas y otras mas recientes inspiradas
en la Biologia o Ciencias de la Naturaleza estan siendo también aplicadas con
gran éxito. A continuacién, describimos brevemente el funcionamiento de las
principales heuristicas.

3.1 Basados en Busquedas por Entornos

Estos métodos tienen en comtn utilizar una operacion basica que denomina-
mos movimiento que consiste en la modificacién de caracteristicas o elementos
de una solucién para crear una serie de soluciones posibles que constituyen un
vecindario de dicha solucién, y de entre las cuales se elegird un elemento para
pasar a la siguiente iteracién. Destacamos los siguientes:

e Temple Simulado: En 1983, Kirkpatrick et alt. [47] introdujeron el con-
cepto de Temple Simulado para la optimizacién combinatoria. El nombre
de Temple Simulado se debe a las similitudes que presenta con el proceso
fisico conocido como temple, en el cual un material es calentado hasta el
estado liquido y luego es enfriado lentamente para obtener un refinamiento
del mismo. La principal virtud de este método es su capacidad para escapar
de los 6ptimos locales, lo cual hace que sea ampliamente utilizado en apli-
caciones pricticas en la literatura. Asi, en el trabajo de Vidal [72] podemos
encontrar por ejemplo aplicaciones al Problema del Viajante, al Problema
de Rutas de Vehiculos o al dise no de redes de telecomunicaciones. El Tem-
ple Simulado fue utilizado para la Programacién Multiobjetivo por primera
vez en 1992 en el trabajo de Serafini [62], donde la principal idea para la
adaptacién de este método para problemas con criterios multiples es la uti-
lizaciéon de un criterio de aceptacion de soluciones de peor calidad basado
en la relacién de dominancia entre dos soluciones dadas. Otros trabajos en
los que se ha utilizado Temple Simulado para la Programaciéon Multiobje-
tivo son Ulungu et alt. [68, 69, 70], Teghem et alt. [67] (donde la principal
idea de estos trabajos es utilizar funciones agregativas basadas en pesos e ir
variando adeacuadamente estos pesos) o Czyzak y Jaszkiewicz [13] (donde
la gestion de estos pesos se hace de forma dindmica intentando moverse
en direcciones no exploradas previamente). Las adaptaciones del Temple
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Simulado a problemas multiobjetivo se han mostrado en general muy efi-
cientes y muy robustas, lo cual lo ha hecho muy popular para la resolucién
de problemas reales. Asi, en el trabajo de Hapke et alt. [39] podemos encon-
trar una aplicacion del Temple Simulado al Multicriteria Project Scheduling
Problem. Estos mismos autores en su trabajo de 2000 [40] vuelven a aplicar
con éxito el Temple Simulado a problemas de Programacion Multiobjetivo
Difusa. Ponce y Matos [56] utilizan el Temple Simulado para resolver pro-
blemas multiobjetivo de distribucién y planificacion de redes. Viana y Pino
da Sousa [71] utilizan un Temple Simulado para resolver problemas mul-
tiobjetivo de planificacion de proyectos. Mas detalles acerca de trabajos
relacionados con Temple Simulado y Programaciéon Multiobjetivo pueden
encontrarse en Erhgott y Gandibleux [18] y en Jones et alt. [45].

e Busqueda Tabtu: La busqueda tabu tiene sus origenes en un trabajo de
Glover de 1986 [29]. La biisqueda tabi es el principal metaheurisitco den-
tro de lo que se conoce como Programacién mediante Memoria Adaptativa
(AMP), que se caracterizan por ser métodos de buisqueda por entornos en
los cuales se utiliza informacién acerca de los movimientos realizados con
anterioridad. Los principales atributos de cada solucion visitada son al-
macenados en una lista (lista tabi) durante un determinado niimero de
iteraciones, para evitar que estas soluciones sean revisitadas, es decir, para
evitar ciclos en la bisqueda por entornos. Un elemento del vecindario de la
solucién actual es declarado tabu (es decir, es prohibido) si alguno de sus
atributos esta en la lista tabii. Dentro de un método de busqueda tabu en-
contramos una gran variedad de distintas estrategias destinadas a mejorar
la busqueda, como son, por ejemplo, la intensificacién, que permite con-
centrar la busqueda en aquellas zonas mas prometedoras; la diversificacion,
que permite desplazarse hacia zonas no exploradas; la oscilacién estratégica,
que permite visitar zonas infactibles temporalmente; o el reencadenamiento
de trayectorias, que permite combinar soluciones. Mas detalles acerca de la
bisqueda tabii pueden encontrarse en Glover y Laguna [31]. La biisqueda
tab1 es uno de los metaheuristicos mas utilizados, tal y como se puede obser-
var en [32] donde se citan 70 dreas diferentes donde ha sido aplicado, desde
los problemas de rutas de vehiculos, de distribuciéon de energia eléctrica o
dise no de redes de transporte. En cuanto a los métodos de busqueda tabu
para problemas multiobjetivo, los procedimientos encontrados en la litera-
tura se centran en algun tipo de agregacion de los criterios para transformar
el problema en un problema mono-objetivo que serd resuelto mediante la
busqueda tabii. Asi, en Dahl et alt. [14] se genera una familia de vectores
de pesos para cada uno de los cuales se resuelve el problema mono-objetivo
resultante de agregar los criterios mediante una suma ponderada por este
vector de pesos. En Hertz et alt. [38] se resuelve una serie de problemas
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mono-objetivo considerando por turnos cada una de las funciones objetivo
junto con una funcién de penalizaciéon. En Gandibleux et alt. [24] utili-
zan una funcién escalarizada de logro basada en las funciones objetivo del
problema como guia para la busqueda tabi. Otros trabajos en los que se
encuentran enfoques de btusqueda tabu para problemas multiobjetivo son
los de Hansen [36], Ben Abdelaziz et alt. [5], Gandibleux y Freville [26],
Alves y Climaco [2], Al-Yamani y otros [3], Caballero et alt. [6] o Ehrgott
et alt. [19].

e GRASP: Este método, que aparece por primera vez en el trabajo de Feo
v Resende [21], recibe su nombre de las iniciales en inglés de Procedimiento
de Busqueda basado en funciones Avidas, Adaptativas y Aleatorias.

GRASP es un método iterativo en el que cada iteracién aporta una soluciéon
al problema, siendo la solucién final aportada la mejor de las soluciones en-
contradas. Cada iteracién de un GRASP incluye dos fases: la primera cons-
truye inteligentemente una solucién inicial a través de una funcion avida,
aleatoria y adaptativa; y la segunda aplica un procedimiento de busqueda
local a la solucién construida con idea de encontrar una mejora para esta
solucién.

Una de las ventajas de este método es su sencillez y facilidad de implemen-
tacién, que ha hecho de él uno de los metaheuristicos de mayor desarrollo
actualmente. En cuanto a su utilizaciéon para problemas multiobjetivo en-
contramos los trabajos de Gandibleux et alt. [25] y Higgins et alt. [41].

3.2 Basados en Poblaciones: Algoritmos Evolutivos

Los Algoritmos Evolutivos son heuristicos que utilizan mecanismos de se-
leccién natural como motor de bisqueda para resolver problemas. Ademds, una
de sus principales ventajas por la que son tan utilizados actualmente es por-
que los Algoritmos Evolutivos son capaces de evolucionar a todo un conjunto
de posibles soluciones (también llamada poblacién) que nos permitirdn encontrar
varios miembros del conjunto de Pareto en una ejecucion simple del algoritmo,
en lugar de tener que hacer varias ejecuciones, como ocurria con las técnicas de
programaciéon matematica tradicionales. Ademads, los Algoritmos Evolutivos son
menos sensibles a caracteristicas geométricas de la frontera de Pareto como la
concavidad, convexidad, continuidad, etc.

Concretamente, un Algoritmo Evolutivo es un proceso estocdstico e iterativo
que opera sobre un conjunto P de individuos donde cada uno de estos individuos
contiene una serie de cromosomas que le permiten representar una solucién. Cada
individuo es evaluado a través de una funcién de adecuacién, de forma que se
predispone la selecciéon de aquellos individuos con mejor valor de adecuacién para
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su reproduccién. Dentro de los Algoritmos Evolutivos encontramos tres grandes
familias: la Programacién Evolutiva, las Estrategias de Evolucion y los Algoritmos
Genéticos, aunque en este capitulo nos centraremos Unicamente en esta tultima
familia por ser la técnica evolutiva mas popular en la actualidad y por ser la familia
que concentra las aplicaciones al campo de la Programaciéon Multiobjetivo.

Los Algoritmos Genéticos se han convertido en una herramienta muy utilizada
para optimizacion, aprendizaje de maquinas, problemas de dise no, problemas de
redes neuronales y otros campos de la Matematica y la Ingenieria. En la natu-
raleza, los individuos han de adaptarse a su entorno para sobrevivir mediante el
proceso que denominamos evolucion, en el cual aquellos aspectos o cambios que
favorecen su competitividad son preservados, y aquellos aspectos que debilitan su
adaptacién son eliminados. Estas caracteristicas, favorables o desfavorables, se
almacenan y controlan desde unas unidades llamadas genes, que a su vez se agru-
pan formando unos conjuntos llamados cromosomas. A finales de los 60, John
Holland [43] se interesé en aplicar los principios de la evolucién natural para la re-
solucién de problemas complejos en el campo del aprendizaje de maquinas, dando
lugar a lo que hoy se conoce como algoritmos genéticos. En 1989 Goldberg [33]
publicé un libro en el cual se asentaba una sélida base cientifica para este tipo
de estrategias y en el cual se incluian mas de 70 aplicaciones reales con éxito de
Algoritmos Genéticos. Los primeros intentos de utilizar multiples criterios en un
algoritmo genético se centraban fundamentalmente en el uso de funciones agre-
gativas (para més detalles, véase la Seccién 2). El Método de la Restriccion es
utilizado por Ritzel et alt. [58], dando lugar a mejores aproximaciones de la fron-
tera eficiente, aunque con un coste computacional mayor debido a que se han de
realizar miltiples resoluciones con distintas cotas para las restricciones y distintas
funciones a optimizar. Wilson y Macleod [73] utilizan con éxito un enfoque de
Programacién por Metas Ponderadas para resolver un problema con multiples ob-
jetivos. Sin embargo, desde entonces se han desarrollado otros enfoques distintos
que se basan en la eficiencia de Pareto y en otros tipos de ordenacién.

Para evitar las dificultades a la hora de agregar los criterios, muchos de los
esfuerzos en la literatura se han dirigido hacia enfoques basados en rankings. Asi
en 1985 Schaffer [61] desarrollé el método VEGA (Vector Evaluated Genetic Al-
gorithm), cuya tnica diferencia con un algoritmo genético usual es la forma en
que se realiza la seleccién para la reproduccién. En este caso, en cada generacion
la poblacién se agrupa en un cierto nimero de subpoblaciones (tantas como cri-
terios) atendiendo en cada una de ellas al valor de una de las funciones objetivo.
Dentro de cada una de estas poblaciones se realiza la selecciéon atendiendo al valor
de este criterio y luego las poblaciones se mezclan de nuevo para aplicar el ope-
rador de cruce y el operador de mutacion, dando lugar a la siguiente generacion.
VEGA tiene varios problemas entre los cuales destaca su incapacidad para rete-
ner buenas soluciones eficientes (aquellas que no son las mejores en ninguno de
los objetivos pero consiguen un buen compromiso entre todos ellos). Aunque su
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autor sugirié varias mejoras, su mayor desventaja sigue siendo el hecho de no
incorporar directamente una seleccién que incorporase la dominancia de Pareto.

Por otra parte, Fourman [23] utilizé un orden lexicografico para realizar la
seleccién de los individuos a reproducirse, obteniendo muy buenos resultados
puesto que el orden lexicogréafico es un orden total y por tanto siempre se puede
determinar cudndo un individuo estd mejor adaptado que otro, lo cual permite
realizar una seleccién por ranking.

Basados en la Optimalidad de Pareto

A continuacién aparecieron en la literatura lo que se ha denomindo enfoques
basados en el orden de Pareto. Con este tipo de enfoques, el valor de adaptacion
de cada individuo depende no del valor de cada uno de los criterios, sino de
su eficiencia o dominaciéon dentro de cada poblaciéon. La idea es encontrar los
individuos en cada generacién que no estdn dominados por ningtin otro individuo,
asignarles el ranking mas alto y extraerlos de la poblacién. Con el resto de
individuos se repite este proceso hasta que todos ellos tienen asignado una posiciéon
en el ranking segtin este proceso, realizandose entonces una seleccion por ranking.
Este enfoque se ha mostrado superior al enfoque VEGA en algunos casos, como
se puede ver en Hilliard et alt. [42]. Los algoritmos mds representativos de la
primera generacién son:

1. NSGA: Srinivas y Deb [64] evolucionaron la idea del ranking de no-domina-
cién para dar lugar al método NSGA (Non-Dominated Sorting Genetic Al-
gorithm) que se ha mostrado también muy eficiente a la hora de resolver
problemas con multiples criterios. Antes de seleccionar a los individuos,
los puntos son clasificados en funcién de su no-dominacion, esto es, a todos
los puntos no dominados de la poblacién se les asigna un mismo valor de
aptitud proporcional al tama no de la poblacién. Una vez eliminados estos
puntos, se repite el proceso hasta que todos los puntos de la poblacién ini-
cial estén clasificados. Este proceso tiene una doble finalidad. Por una lado,
aquellos puntos con mayor valor de aptitud tiene una mayor probabilidad
para reproducirse en la siguiente poblacién (lo que garantizard seguir explo-
rando en las zonas no dominadas) y, por otro lado, el hecho de que conjuntos
de puntos comparten el mismo valor de la funcién de aptitud garantiza la
diversidad en el conjunto de puntos eficientes.

2. NPGA: NPGA (Niched Pareto Genetic Algorithm) fue propuesto por Horn
y Nafpliotis [44] en 1993. NPGA usa un esquema de seleccién por torneo
basado en la dominancia de Pareto: dos individuos de la poblacién son ele-
gidos aleatoriamente y comparados contra un subconjunto de la poblacién
entera (normalmente el 10% de la poblacién). Si alguno de ellos es domi-
nado (por los individuos aleatoriamente seleccionados de la poblacién) y
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el otro no, entonces el individuo no dominado gana. Cuando ambos com-
petidores son dominados o no dominados el resultado del torneo se decide
a través de fitness sharing o método de proporcién (se pretende lograr la
formacién de subconjuntos de elementos vecinos en la poblacién llamados
nichos, reduciendo la aptitud de los individuos por la presencia de otros
muy parecidos, véase [60]).

MOGA: Fonseca y Fleming [22] profundizan en la idea del ranking de los
individuos en su algoritmo MOGA (Multi Objective Genetic Algorithm).
En dicho algoritmo, el ranking de cierto individuo corresponde al niimero
de cromosomas en la poblacion actual por los cuales es dominado. Consi-
deremos por ejemplo un individuo x; en la generacién t que es dominado

por pz(-t) individuos de la generacién actual. Entonces, el ranking de x; viene

dado por rank(z;,t) = 1+ pgt). Asi, los individuos no dominados poseen
ranking igual a 1 mientras que los dominados son penalizados en funcién de
la densidad de individuos en sus correspondientes regiones de dominancia.

La segunda generacion de los Algoritmos Evolutivos nace con la introduccién
de la nocién de elitismo. En el contexto de la optimizacién multiobjetivo, el
elitismo usualmente se refiere al uso de una poblacién externa (también denomi-
nada poblacién secundaria) para almacenar todos los individuos no dominados
encontrados hasta el momento. No obstante, el uso de un fichero externo plantea
diversas cuestiones tales como la manera en que interactiian las dos poblaciones
o el tama no de la poblacién secundaria.

El elitismo también puede ser introducido a través del uso de (p+ A)-seleccién
en la cual los p padres compiten con sus A hijos y aquellos que son no dominados
son seleccionados para la siguiente generacion.

Los mas representativos de la segunda generacién son los siguientes:

1.

SPEA: El algoritmo Strength Pareto Evolutionary Algorithm (SPEA) fué
desarrollado por Zitzler y Thiele [76] en 1999 sobre la idea de mantener un
archivo externo de soluciones no-dominadas encontradas hasta el momento,
pero incorporando un proceso de tipo cluster (denominado average linkage
method) sobre este archivo para favorecer la diversidad y reducir su tama no
pero sin destruir sus caracteristicas.

SPEA2: Posteriormente aparece SPEA2 [77] el cual posee principalmente
tres diferencias con respecto a su predecesor: (1) incorpora una estrategia
de asignacién de aptitud de “grano fino” (para cada individuo se tiene en
cuenta el nimero de individuos que domina y el nimero de individuos por los
que es dominado); (2) utiliza una técnica para la estimacién de la densidad
de su vecindario que guia la biisqueda méds eficientemente, y finalmente (3)
incorpora un método para truncar el archivo garantizando el matenimiento
de las soluciones extremas.
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3. PAES: Knowles y Corne proponen en 2000 [48] el algoritmo denominado
Pareto Archived Evolution Strategy (PAES), que incorpora una estrategia
evolutiva del tipo (14 1) (un solo padre genera a un solo hijo compitiendo
entre ellos) junto con una busqueda local y la utilizacién de un archivo
histérico para almacenar las soluciones no dominadas que se van encon-
trando a lo largo de la ejecucién del algoritmo. Para mantener la diversidad
apropiada en este archivo histérico se introdujo la idea de una malla adap-
tativa que ofrece ciertas ventajas con respecto a la utilizacién de los nichos
del NPGA.

4. NSGA-II: Deb et alt. [16] solventan muchos de los problemas de la versién
original del algoritmo con el NSGA-II. NSGA-II es mads eficiente (compu-
tacionalmente hablando), usa elitismo y un operador de comparacién (ope-
rador de crowding) en funcién de la proximidad de soluciones alrededor de
cada uno de los puntos de la poblacién. NSGA-II no usa una poblacién
externa como su predecesor pero su mecanismo de selecciéon ahora consiste
en la combinacién de los mejores padres con los mejores hijos obtenidos
(seleccion del tipo (p + ).

5. NPGA2: Erickson et alt. [20] propusieron una versién revisada del NPGA.
Incorporan ranking de Pareto pero mantienen la seleccién mediante tor-
neo. En este caso, no utilizan memoria externa y utilizan un mecanismo de
elitismo similar al adoptado por NSGA-II.

En general, un problema comun a las técnicas de este grupo radica en el
uso de un proceso de jerarquizacién basado en la dominancia de Pareto, siendo
precisamente este proceso el que consume més tiempo en una ejecucién ya que
es un proceso de orden O(kM?) donde k es el niimero de funciones objetivo y
M es el tama no de la poblacién. Adicionalmente a esto, un mecanismo extra es
requerido para preservar la diversidad de la poblacion que, en las formas en que
se realiza en la actualidad, implica el uso de procesos de orden O(M?).

3.3 Nuevas tendencias

Ademis de estos dos grandes grupos de metaheuristicos, basados en Busqueda
por Entornos y Basados en Poblacion, existe actualmente una gran variedad de
métodos combinando ambos enfoques e intentando adaptar otros tipos de meta-
heuristicos que se han mostrado muy eficientes en el campo de la optimizacion
mono-objetivo. A continuacién enumeramos algunos ejemplos.

Bisqueda Dispersa

La Bisqueda Dispersa es un metaheuristico introducido en los setenta en el
trabajo de Glover [30] de 1977 para Programacién Entera. Un procedimiento
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de Busqueda Dispersa esta basado fundamentalmente en la combinacién de las
soluciones de un conjunto de referencia para construir a partir de estos elementos
nuevas soluciones que mejoren los elementos de este conjunto. En este sentido se
puede clasificar este método como un algoritmo evolutivo, puesto que el proce-
dimiento fundamental para encontrar nuevas soluciones es la combinacién de las
soluciones existentes. Sin embargo, en un procedimiento de Busqueda Dispersa
esta combinacion de soluciones se hace de una forma sistemadtica, sin compo-
nentes aleatorios, sobre un conjunto peque no de soluciones de refencia, lo cual
representa una diferencia fundamental con los principios fundamentales de un
algoritmo evolutivo en general, donde la componente aleatoria es fundamental
y donde se recombinan un gran numero de soluciones. En los tultimos a nos
este procedimiento ha sido aplicado con éxito a numerosos problemas complejos
de Programaciéon Matemaética, lo cual ha producido un sensible aumento en el
numero de trabajos utilizando este tipo de metaheuristico, tal y como se puede
apreciar en Laguna y Marti [49]. Sin embargo, hasta el momento las aplicaciones
de la Busqueda Dispersa al campo de la Programaciéon Multiobjetivo han sido
muy escasas. Destacamos los trabajos de Beausoleil [4] y Molina et alt. [51].

Colonias de Hormigas

Los algoritmos ACO (Ant Colony Optimization) son modelos inspirados en
el comportamiento de colonias de hormigas reales. Estudios realizados explican
cémo animales casi ciegos, como son las hormigas, son capaces de seguir la ruta
mas corta en su camino de ida y vuelta entre la colonia y una fuente de abaste-
cimiento. Esto es debido a que las hormigas pueden “transmitirse” informacién
entre ellas gracias a que cada una de ellas, al desplazarse, va dejando un rastro de
una sustancia llamada feromona a lo largo del camino seguido. Asi, mientras una
hormiga aislada se mueve de forma esencialmente aleatoria, los “agentes” de una
colonia de hormigas detectan el rastro de feromona dejado por otras hormigas
y tienden a seguir dicho rastro. Estas a su vez van dejando su propia feromona
a lo largo del camino recorrido y por tanto lo hacen mas atractivo, puesto que
se ha reforzado el rastro de feromona. Sin embargo, la feromona también se va
evaporando con el paso del tiempo provocando que el rastro de feromona sufra,
por otro lado, cierto debilitamiento. En definitiva, puede decirse que el proceso
se caracteriza por una retroalimentacién positiva, en la que la probabilidad con
la que una hormiga escoge un camino aumenta con el niimero de hormigas que
previamente hayan elegido el mismo camino. El primer algoritmo basado en la op-
timizacién mediante colonias de hormigas fue aplicado al Problema del Viajante
(Dorigo et alt. [17]), obteniéndose unos resultados bastante alentadores. A partir
de dicho algoritmo se han desarrollado diversos heuristicos que incluyen varias
mejoras, y han sido aplicados a problemas de rutas [11]. Este método también se
ha adaptado con éxito a la Programacion Multiobjetivo, tal y como puede verse
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en Gravel et alt. [34] o en Guntsch y Middendorf [35], y constituye actualmente
uno de los métodos mas prometedores para la resoluciéon de problemas de rutas
multiobjetivo.

Cuamulo de Particulas (PSO)

Los algoritmos de optimizacién mediante Ctimulo de Particulas (Particle Swarm
Optimization, en adelante PSO) han sido propuestos recientemente por Ken-
nedy y Eberhart [46] motivados por el comportamiento social de las bandadas de
péjaros o los bancos de peces.

PSO, como herramienta de optimizacién, origina un algoritmo basado en po-
blacién en el cual los individuos, denominados particulas, cambian su posicién a
lo largo del tiempo. En un PSO las particulas vuelan en el espacio de busqueda
multidimensional. Durante el vuelo cada particula ajusta su posicion de acuerdo
a su propia experiencia y a la de las particulas més cercanas haciendo uso de
la mejor posicién encontrada por él y por sus vecinos. Asi, se puede interpretar
como un algoritmo hibrido entre un genético y un memético. Recientemente ha
sido adaptado para problemas multiobjetivo en [59].

Evolucién Diferencial

La Evolucién Diferencial (DE) es una heuristica relativamente reciente pro-
puesta por Storn y Price [66] para problemas de optimizaciéon sobre dominios
continuos. En una DE, cada variable de decision se representa en el cromosoma
por un numero real (codificacién real). Como en otros algoritmos evolutivos, la
poblacion inicial de una DE se genera aleatoriamente. Para el proceso de seleccion
se seleccionan tres padres (uno de ellos se designard el padre principal) los cua-
les generaran un tnico hijo (en lugar de dos, como en muchos de los algoritmos
genéticos) que competird con el padre principal. Este hijo se genera sumando al
padre principal la diferencia de los otros dos padres.

Podemos encontrar en la literatura distintas extensiones de la DE para pro-
blemas multiobjetivos. Destacamos, entre otros, PDE [10] (maneja una tnica
poblacion, para la reproduccion toma tinicamente soluciones no dominadas y se
utiliza una métrica de distancia para favorecer a la diversidad), PDEA [50] (com-
bina la DE con distintos elementos del NSGA-II), VEDE [55] (DE con multiples
poblaciones que maneja en paralelo inspirado en VEGA) y DEMORS [37] donde
se combina la evolucién diferencial con el uso de Rough Sets, una herramienta de
Inteligencia Artificial.

Algoritmos Culturales

Los Algoritmos Culturales fueron desarrollados por Robert G. Reynolds [57]
como un complemento a la metafora que usan los algoritmos de Computacion
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Evolutiva, que se habian concentrado en conceptos genéticos, y de seleccién natu-
ral. Los Algoritmos Culturales estan basados en las teorias de algunos sociélogos y
arqueologos que han tratado de modelar la evolucion cultural. Tales investigado-
res indican que la evolucién cultural puede ser vista como un proceso de herencia
en dos niveles: el nivel micro-evolutivo, que consiste en el material genético he-
redado por los padres a sus descendientes, y el nivel macro-evolutivo, que es el
conocimiento adquirido por los individuos a través de las generaciones, y que una
vez codificado y almacenado, sirve para guiar el comportamiento de los indivi-
duos que pertenecen a una poblacién. Reynolds intenta captar ese fenémeno de
herencia doble en los Algoritmos Culturales. El objetivo es incrementar las tasas
de aprendizaje o convergencia, y de esta manera, que el sistema responda mejor
a un gran numero de problemas.

Los Algoritmos Culturales operan en dos espacios. Primero, el espacio de
la poblacién, como en todos los métodos de Computacién Evolutiva, en el que
se tiene un conjunto de individuos. Cada individuo tiene un conjunto de carac-
teristicas independientes de los otros, con las que es posible determinar su apti-
tud. A través del tiempo, tales individuos podran ser reemplazados por algunos
de sus descendientes, obtenidos a partir de un conjunto de operadores aplicados
a la poblacion. El segundo espacio es el de creencias, donde se almacenaran los
conocimientos que han adquirido los individuos en generaciones anteriores. La
informacién contenida en este espacio debe ser accesible a cualquier individuo,
quien puede utilizarla para modificar su comportamiento. La mayoria de los pa-
sos de un algoritmo cultural corresponden con los de los algoritmos tradicionales
de Computacion Evolutiva, y se puede apreciar que las diferencias estan en los
pasos que incluyen al espacio de creencias.

Sistema Inmune Artificial

El sistema inmune ha servido como inspiraciéon para solucionar problemas
complejos de ingenieria y la ciencia con gran éxito, debido principalmente a que
es un sistema de aprendizaje distribuido con interesantes caracteristicas. Una de
las principales tareas del sistema inmune es mantener al organismo sano. Algunos
microorganismos (llamados patégenos) que invaden al organismo pueden resultar
daninos para éste. Los antigenos son moléculas que se encuentran expresadas en
la superficie de los patégenos que pueden ser reconocidos por el sistema inmune
y que ademds son capaces de dar inicio a la respuesta inmune para eliminarlos.
Esta respuesta defensiva del sistema inmune presenta interesantes caracteristicas
desde el punto de vista del procesamiento de informacién. Es por ello que se ha
usado como inspiracién para crear soluciones alternativas a problemas complejos
de ingenieria y la ciencia. Esta es un area relativamente nueva a la cual se le
llama Sistema Inmune Artificial [53].

Las primeros intentos por resolver problemas de optimizacién multiobjetivo
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(con o sin restricciones) usando un sistema inmune artificial basado en el concepto
de optimalidad de Pareto se deben a Coello y Cruz-Cortés [9].

4 Conclusiones

La popularidad que en los ltimos anos han adquirido los Algoritmos Me-
taheuristicos se ha visto también reflejado en el nimero de trabajos publicados
con aplicaciones a problemas multiobjetivo del mundo real (algo que no nos debe
extra nar ya que la mayoria de los problemas reales son de naturaleza multiobje-
tivo). Prueba de ello es la reciente publicacién del libro de Coello y Lamont [10]
dedicado explicitamente a las aplicaciones de los Algoritmos Metaheuristicos y en
especial de los Algoritmos Evolutivos a problemas de optimizaciéon multiobjetivo.
Dichas aplicaciones pueden ser clasificadas en tres grandes grupos: ingenieria,
industria y otras ciencias. Dentro de las aplicaciones a la ingenieria destacamos
las aplicaciones a la ingenieria electrica, hidraulica, aeronautica, robética o con-
trol. Por otro lado, en el grupo de las aplicaciones en la industria destacamos
el los problemas de dise no, logistica, almacenamiento, distribucién o schedu-
ling. Finalmente, las aplicaciones en Fisica, Quimica, Medicina o Ciencias de la
Computacién destacan dentro del tercer grupo.

Hemos de senalar tambien el auge actual del campo de los Metaheuristicos
para la Programacion Multi-objetivo, tal y como refleja la seccién de Nuevas Ten-
dencias, donde se puede ver el esfuerzo en la literatura por extender al caso mul-
tiobjetivo un gran numero de metaheuristicos disenados para problemas mono-
objetivo, constituyendo una garantia de desarrollo de numerosas lineas futuras.

Por otra parte, observamos en la inmensa mayoria de las adaptaciones ac-
tuales de metaheuristicas a la Programacién Multiobjetivo tienen como finalidad
la aproximacion de la frontera eficiente, pero en la metodologia multicriterio y
en especial en las aplicaciones, es necesario encontrar una solucién entre el gran
nimero de soluciones generadas en la aproximacion de la frontera eficiente. En
este sentido, los Métodos Interactivos surgen de manera natural para la obtencion
final de soluciones adaptadas a las preferencias del decisor. Todos estos aspectos
deben ser incorporados en los metaheuristicos implementados, y no son usuales
en la bibliografia existente.

Otra carencia importante en el campo de los metaheuristicos para Progra-
macién Multiobjetivo es el desarrollo de métodos con capacidad eficiente para el
manejo de restricciones. La mayor parte de los métodos encontrados en la lite-
ratura son desarrollados para problemas sin restricciones o con restricciones muy
simples, tal y como se senala en Coello [7]. Sin embargo, no hace falta senialar
que esto puede ser un problema a la hora de resolver problemas de ambito real.
Por este motivo, el uso de técnicas de manejo de restricciones constituye una ne-
cesidad (tal y como se senala también en [7]) y una importante linea futura de
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investigacion en el campo de los metaheuristicos para Programacion Multiobje-

tivo.

Finalmente, a la vista de todo lo anterior podemos concluir que el campo

de los metaheuristicos para la Programaciéon multiobjetivo es un area de gran
actividad actualmente, de una gran aplicabilidad y donde encontramos numerosas
y prometedoras lineas futuras de investigacion.
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1 Introduccion

Uno de los periodos clave en la historia de la Optimizaciéon como disciplina lo
constituyen sin duda alguna las primeras décadas de la segunda mitad del siglo
XX. En un tiempo en el que la concepcién natural de la resolucién de problemas
era la obtencién de la solucién éptima al mismo (o cuanto menos de una solucién
con una garantia de aproximacién al éptimo), empezd a tomar cuerpo una de-
sagradable realidad: existian muchos problemas de utilidad cierta para los que
no sélo resultaba insostenible plantear una resolucién exacta, sino que ni tan si-
quiera un enfoque aproximado con garantias realistas era aceptable en la practica.
Esto abri6 el camino a diferentes lineas de investigacién para dar respuesta a esta
problematica, y que mas adelante desembocarian en lo que hoy se conoce como
metaheuristicas. Entre las mismas, deben destacarse los algoritmos evolutivos
(1,2, 3, 4] (EAs!) por estar intimamente relacionados con el tema que nos ocupa:
los algoritmos meméticos.

A pesar de que estas técnicas fueran consideradas en su momento por parte
de la comunidad cientifica como un “reconocimiento de la derrota”, el tiempo ha
demostrado su utilidad como punta de lanza tecnoldgica en la optimizacién de
problemas reales. Por supuesto, este éxito no es exclusivo de los EAs, sino que

“El autor agradece el apoyo parcial del MCyT a través del contrato TIN2005-08818-C04-01.
1En este y en sucesivos acrénimos se emplears la versién inglesa por motivos de consistencia
con la literatura, y para evitar posibles fuentes de confusiéon o ambigiiedad.
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se extiende a otras técnicas relacionas tales como el recocido simulado [5] (SA),
la busqueda tabu [6] (TS), etc. Parte de la justificacién (y de hecho, del enfoque
metodolégico) de los algoritmos meméticos (MAs) se haya precisamente en el éxito
de métodos de optimizacién tan diversos. En este sentido, debe considerarse que
en ciertos campos se desarrollé una tendencia al purismo algoritmico, esto es, a no
apreciar como caracteristica esencial de estas técnicas su flexibilidad y capacidad
de asimilacién de elementos algoritmicos externos o ad hoc, que pudieran acercar
la técnica de resolucion al problema que resolver en cada momento. No fue hasta
mediados de los noventa cuando la formulacion del asi denominado Teorema de
No Free Lunch por Wolpert and Macready [7] dio pie a una suerte de catarsis,
a partir de la cual quedd definitivamente claro que un algoritmo de busqueda u
optimizacién se comporta en estricta concordancia con la cantidad y calidad del
conocimiento especifico del problema que incorpora. Mirando retrospectivamente
a estos anos nos encontramos con que esta filosoffa que comenzo a imponerse de
manera generalizada a finales del siglo XX ya estaba siendo promulgada de hecho
con anterioridad por diversos investigadores, e.g., Hart and Belew [8], Davis [9], y
Moscato [10]. El paradigma de los MAs surgirfa precisamente a partir del trabajo
de Pablo Moscato [11, 12, 13].

Los MAs son una familia de mataheuristicas que intentan aunar ideas y con-
ceptos de diferentes técnicas de resolucién, como por ejemplo EAs y TS. El ad-
jetivo “memético” viene del término inglés meme, acunado por R. Dawkins [14]
para designar al andlogo del gen en el contexto de la evolucién cultural. Resulta
conveniente resaltar sin embargo que el empleo de esta terminologia no repre-
senta un propédsito de adherirse a una metéfora de funcionamiento concreta (la
evolucién cultural en este caso), sino mds bien lo contrario: hacer explicito que se
difumina la inspiraciéon puramente bioldgica, y se opta por modelos mas genéricos
en los que se manipula, se aprende y se transmite informacién. En relacién con
esto tdltimo y a la forma en la que méds comtinmente un MA puede implementarse,
pueden encontrarse diversos trabajos que hacen uso de nombre alternativos para
referirse a éstos (e.g., EAs hibridos o lamarckianos), o que aun usando el propio
término MA, hacen una interpretacion muy restringida del mismo. Sea como
fuere, puede decirse que un MA es una estrategia de bisqueda en la que una po-
blacién de agentes optimizadores compiten y cooperan de manera sinérgica [10].
Mas aun, estos agentes hacen uso explicito de conocimiento sobre el problema
que se pretende resolver, tal como sugiere tanto la teoria como la practica [15].
La siguiente secciéon proporciona una descripcion algoritmica mas detallada de los
MAs.

2 Un Algoritmo Memético Basico

Los MAs son metaheuristicas basadas en poblacién. Esto quiere decir que
mantienen un conjunto de soluciones candidatas para el problema considerado.
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De acuerdo con la jerga empleada en EAs, cada una de estas soluciones tentativas
es denominada un individuo. Tal como se anticipé anteriormente, la naturaleza de
los MAs sugiere que el término agente es no obstante més apropiado. El motivo
bésico es el hecho de que “individuo” denota un ente pasivo que estd sujeto
a los procesos y reglas evolutivas, mientras que el término “agente” implica la
existencia de un comportamiento activo, dirigido a propdsito a la resolucion de
un cierto problema. Dicho comportamiento activo se ve reflejado en diferentes
constituyentes tipicos del algoritmo, como por ejemplo técnicas de buisqueda local.

La Figura 1 muestra el esquema general de un MA. Como en los EAs, la
poblacion de agentes estd sujeta a los procesos de competicién y cooperacion
mutua. Lo primero se consigue a través de los bien conocidos procedimientos
de seleccién (linea 6) y reemplazo (linea 12): a partir de la informacién que
proporciona una funciéon de guia ad hoc se determina la bondad de los agentes
en pop; acto seguido, se selecciona una parte de los mismos para pasar a la fase
reproductiva atendiendo a dicha bondad. Posteriormente, se vuelve a hacer uso
de esta informacién para determinar qué agentes seran eliminados de la poblacion
para hacer sitio a los nuevos agentes. En ambos casos —selecciéon y reemplazo—
pueden usarse cualesquiera de las estrategias tipicas de los EAs, e.g., torneo,
ranking, elitismo, etc.

En cuanto a la cooperacion, ésta se consigue a través de la reproducciéon. En
esta fase se crean nuevos agentes a partir de los existentes mediante el empleo
de una serie de operadores de reproduccién. Tal como se muestra en la Figura
1, lineas 7-11, pueden considerarse un ntmero arbitrario #op de tales operado-
res, que se aplican secuencialmente a la poblacién de manera segmentada, dando
lugar a varias poblaciones intermedias auzpop|i], 0 < i < #op, donde auzpop|0]
estd inicializada a pop, y auxpop|#op] es la descendencia final. En la préctica,
la situacién mas tipica es la de utilizar simplemente tres operadores: recombi-
nacién, mutacién, y mejora local. Apréciese en la linea 9 del pseudocddigo que
estos operadores reciben no sélo las soluciones sobre las que actian, sino también
la instancia I que se desea resolver. Con esto se ilustra el hecho de que los ope-
radores de un MA son conscientes del problema, y basan su funcionamiento en
el conocimiento que incorporan sobre el mismo (a diferencia de los modelos més
clésicos de EA).

Uno de los procesos reproductivos que mejor encapsula la cooperacion entre
agentes (dos, o més [16]) es la recombinacién. Esto se consigue mediante la cons-
truccion de nuevas soluciones a partir de la informacién relevante contenida en
los agentes cooperantes. Por “relevante” se entiende que los elementos de infor-
macién considerados tienen importancia a la hora de determinar (en un sentido o
en otro) la calidad de las soluciones. Esta es sin duda una nocién interesante que
se aleja de las mas clasicas manipulaciones sintacticas, tipicas de EAs simples.
Volveremos a esto mas adelante, en la préxima seccién.

El otro operador cldsico —la mutacién— cumple el rol de “mantener vivo el
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Algoritmo Memetico

ENTRADA: una instancia I de un problema P.
SALIDA: una solucion sol.

// generar poblacion inicial

1: para j < l:popsize hacer

2: sea ind «— GenerarSolucionHeuristica (1)

3: sea poplj| < MejoraLocal (ind, I)

4: finpara

5: repetir // bucle generacional
// Seleccion

6: sea criadores < SeleccionarDePoblacion (pop)
// Reproduccion segmentada

7: sea auzpop|0] < pop

8: para j <« 1:#op hacer

9: sea auxpop[j] — AplicarOperador (op[j], auzpop[j — 1], I)

10: finpara

11: sea newpop «— auxpop|#op]
// Reemplazo

12: sea pop < ActualizarProblacion (pop, newpop)
// Comprobar convergencia

13: si Convergencia (pop) entonces

14: sea pop «— RefrescarPoblacion (pop, I)

15: finsi

16: hasta CriterioTerminacion (pop, I)
17:  devolver Mejor (pop, I)

Figura 1: Plantilla general de un MA

fuego”, inyectando nueva informacién en la poblacién de manera continua (pero a
ritmo bajo, ya que de lo contrario el algoritmo se degradaria a una pura busqueda
aleatoria). Por supuesto, esta interpretacién es la que proviene del drea de los
algoritmos genéticos [17], y no necesariamente coincide con la otros investigadores
(aquellos del érea de la programacién evolutiva [1] sin ir mds lejos). De hecho,
en ocasiones se ha aducido que la recombinaciéon no es es mds que una macro-
mutation, y ciertamente ese puede ser el caso en numerosas aplicaciones de los
EAs en los que este operador de recombinacién simplemente realiza una mezcla
aleatoria de informacién. Sin embargo, no cabe hacer una apreciacién similar en
el campo de los MAs, ya que en éstos la recombinacién se realiza tipicamente
mediante el empleo de estrategias astutas, y por lo tanto contribuyen de manera
esencial a la busqueda.
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Finalmente, una de las caracteristicas mas distintivas de los MAs es el em-
pleo de estrategias de busqueda local (LS). Estas (ndtese que pueden emplearse
diferentes estrategias de LS en diferentes puntos del algoritmo) constituyen una
de las razones esenciales por las que es apropiado usar el término “agente” en
este contexto: su funcionamiento es local, y en ocasiones incluso auténomo. De
esta manera, un MA puede verse como una coleccion de agentes que realizan una
exploracién auténoma del espacio de buisqueda, cooperando en ocasiones a través
de la recombinacién, y compitiendo por recursos computacionales a través de los
mecanismos de seleccién/reemplazo.

El pseudocddigo de la Figura 1 muestra un componente que merece asimismo
atencién: el procedimiento RefrescarPoblacién (lineas 13-15). Este procedimiento
tiene suma importancia con vistas al aprovechamiento de los recursos computa-
cionales: si en un determinado instante de la ejecucién todos los agentes tienen un
estado similar (esto es, se ha producido convergencia), el avance de la bisqueda
se torna muy complejo. Este tipo de circunstancias puede detectarse a través
del empleo de medidas tales como la entropifa de Shannon [18], fijando un um-
bral minimo por debajo del cual se considera que la poblacién ha degenerado.
Obviamente, dicho umbral depende de la representacién de problema que se esté
usando, y debe decidirse por lo tanto de manera particular en cada caso.

3 Diseno de MAs Efectivos

Atacar un cierto problema de optimizacién con MAs requiere instanciar la
plantilla genérica descrita anteriormente, empleando para ello conocimiento del
problema. Dado que el diseno de un algoritmo de bisqueda efectivo es en general
tan complejo como los propios problemas que se desean resolver, nos encontramos
ante la tesitura de tener que emplear directrices heuristicas para abordar dicho
problema de disefio. A continuacién se consideraran algunas de estas directrices
para algunos de los componentes esenciales de los MAs.

3.1 Representacion

El primer elemento que debe determinarse es la representacion de las solu-
ciones que se va a usar. Es importante en este punto aclarar que representacion
no debe entenderse como meramente codificacion, algo para lo que lo relevante
son consideraciones relativas a consumo de memoria, complejidad de manipu-
lacién, etc. Muy al contrario, la representacién hace referencia a la formulacion
abstracta de las soluciones desde el punto de vista del algoritmo [19]. En este sen-
tido, recuérdese la mencion a informacion relevante que se hizo en la Secccion 2.
Dada una cierta representacién de las soluciones, éstas pueden entenderse como
compuestas de determinadas unidades de informacidn; si los operadores que em-
plea el MA son conscientes del problema atacado, las unidades de informacién que
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identifiquen deben servir para determinar si una solucién es buena/prometedora
o no. La dinamica del sistema debe entonces tender a retener las unidades de
informacién que lleven asociadas un efecto positivo, y a eliminar aquellas que
tengan connotacion negativa.

El siguiente ejemplo puede ayudar a ilustrar este aspecto de la representacién.
Considérese un problema definido sobre un espacio de soluciones compuesto de
todas las permutaciones de n elementos; estas soluciones pueden entenderse como
compuestas por diferentes tipos de informacién [20], e.g.,

e posicional, i.e., el elemento e aparece en la posicién j.
e precedencia, i.e., el elemento e aparece antes/después que el elemento ¢’

e adyacencia, i.e., el elemento e aparece junto al elemento ¢’.

La relevancia de cada tipo de informaciéon dependera obviamente del problema
que se desea resolver. Por ejemplo, la informacion de adyacencia es importante
para el problema del viajante de comercio (TSP), pero no asi la informacién
posicional. Por otra parte, se ha comprobado que esta ultima si es relevante
en problemas de planificacién de cadenas de montaje (flowshop scheduling) (FS)
[21], siendo la informacién de adyacencia menos importante en este caso. Esto
quiere decir que un operador de recombinacién como ER (edge-recombination)
[22] funcionard mejor que un operador basado en informacién posicional como
PMX (partially-mapped crossover) [23] o UCX (uniform cycle crossover) [21] en
el TSP, pero los ultimos funcionaran mejor sobre FS.

No es sorprendete a la vista de lo anterior que la obtencién de métodos o
medidas para cuantificar la bondad de una cierta representacién para un cierto
problema haya sido y sea un tema de gran interés. Ha habido diferentes propues-
tas en este sentido: epistasis (i.e., la influencia no aditiva que sobre la funcién
objetivo tiene la combinacién de varias unidades de informacién) [24, 25|, va-
rianza en la adecuacion de formas (i.e., varianza en los valores que devuelve la
funcién objetivo para soluciones que comparten un cierto conjunto de unidades de
informacién) [26], y correlacidn de adecuacion (correlacién entre los valores de la
funcién objetivo para entre unas soluciones y sus descendientes directos) [27, 28].
Debe resenarse que ademéds de usar una métrica para predecir cudn bueno puede
ser el rendimiento de un cierto operador pre-existente (i.e., andlisis inverso), pue-
den definirse nuevos operadores ad hoc para manipular la mejor representacion
(andlisis directo) [13].

Sea cual fuere la métrica usada para cuantificar la bondad de una represen-
tacion concreta, hay otras consideraciones que también pueden jugar un papel
determinante en el rendimiento final del algoritmo, tales como por ejemplo la
existencia de restricciones en el espacio de busqueda. Esta ultima problematica
puede atacarse de tres maneras: (i) usando funciones de penalizacién que diri-
jan la busqueda hacia regiones factibles, (ii) usando mecanismos de reparacién
que produzcan soluciones factibles a partir de soluciones infactibles, y (iii) usando
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operadores reproductivos que permanezcan siempre dentro de la zona factible. En
los dos primeros casos es posible mantener la complejidad de la representacion a
un nivel mds bajo (aunque légicamente el algoritmo se beneficiard de cualquier
conocimiento que adicional que pudiera usarse aqui). En el tercer caso, es respon-
sabilidad de la representacién o de los operadores el garantizar la factibilidad, y
esto conllevard una complejidad adicional. Asi; es posible definir representaciones
indirectas que mediante el empleo de decodificadores garanticen la factibilidad de
las soluciones representadas. La idea bésica es utilizar un mecanismo sofisticado
para pasar del genotipo al fenotipo, de manera que no sélo se consigan soluciones
factibles, sino que ademas se introduzca conocimiento del problema que facilite
que éstas sean de calidad (e.g., [29, 30, 31] entre otras).

3.2 Operadores Reproductivos

La generacion de nuevas soluciones durante la fase reproductiva se realiza me-
diante la manipulacién de las unidades de informacion relevantes que se han iden-
tificado. A tal fin, puede emplearse cualquiera de las plantillas genéricas definidas
para ello, e.g., RRR (random respectful recombination), RAR (random assorting
recombination), y RTR (random transmitting recombination) entre otras [32]. En
cualquier caso, huelga decir que el rendimiento de algoritmo se vera beneficiado si
en lugar de manipular las unidades de informacién a ciegas, se hace de manera in-
teligente empleando conocimiento del problema. Desde un punto de vista general,
esta inclusién de conocimiento del problema en la manipulacién de las unidades
de informacién tiene dos vertientes: la seleccién de las caracteristicas parenta-
les que seran transmitidas a la descendencia, y la seleccion de las caracteristicas
no-parentales que seran incluidas en la misma.

En relacién a la seleccion de la informacion contenida en los padres que debe
transmitirse a los hijos, la evidencia experimental aconseja conservar aquellas
caracteristicas comunes a ambos padres (e.g., [22, 33]). Una vez hecho esto, el
descendiente puede completarse de diferentes maneras. Asi, Radcliffe y Surry [26]
proponen el empleo de estrategias de buisqueda local o de esquemas de enume-
racion implicitos. Estos ultimos pueden usarse también para encontrar la mejor
combinacién posible de la informacién parental [34, 35, 36, 37] (dependiendo de
las caracteristicas de la representacion, seria posible que esta combinacién no
necesariamente respetara las propiedades comunes). Puede apreciarse ficilmente
que este tipo de recombinaciéon seria mondtono en el sentido de que los hijos serian
siempre al menos tan buenos como los padres.

Hasta cierto punto podria hacerse un andlisis similar del operador de mu-
tacién, si bien es verdad que éste juega un papel bien distinto: introducir nueva
informacién en la poblacién. En principio, esto puede conseguirse mediante la
eliminacién de ciertas unidades de informacion de una solucion, y su substitucion
por informacién puramente aleatoria, o por informacién obtenida por alguno de
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los métodos de completado descritos anteriormente. Sin embargo, hay que re-
saltar que el papel de la mutacién tiene ciertos matices diferenciadores en MAs
frente a los cldsicos EAs. De hecho, es posible incluso que un MA no tenga un ope-
rador de mutacién diferenciado, sino que éste esté simplemente empotrado en la
busqueda local, e.g., véase [38, 39]. Uno de los motivos es el hecho de que los MAs
estdn dotados de mecanismos de reinicio de la poblaciéon (véase la Seccién 3.4), y
en ciertos contextos puede ser mejor dejar converger la poblacién rapidamente y
luego reiniciar, que diversificar constantemente la busqueda. En cualquier caso,
hay situaciones en las que mutacion si adquiere un papel determinante, y en las
que incluso se emplean varios operadores de mutacion. Esto se realiza bien por
el empleo de diferentes vecindades (e.g., [40]), o definiendo mutaciones débiles
y fuertes que introduzcan diferentes niveles de perturbacién (e.g., [41]). Nétese
que en cierto sentido el empleo de diferentes operadores reproductivos implica
de manera implicita la consideracién de diferentes representaciones y/o vecinda-
des durante la ejecucién, muy en la linea de los que se hace en la buisqueda en
vecindades variables [42] (VNS).

Es posible introducir también conocimiento del problema mediante el empleo
de heuristicas constructivas en los operadores de inicializacién usados para la ge-
neracién de la poblacién inicial (Figura 1, linea 2). Por ejemplo, se han empleado
estrategias voraces para este propdsito en [43, 44].

3.3 Busqueda Local

La presencia de componentes de bisqueda local (LS) es —tal como se comento
anteriormente— una de las caracteristicas mas distintivas de los MAs. El hecho
de que la mayoria de los MAs incorporen LS es una de las causas por las que a
veces se pueden encontrar simplificaciones del tipo MA = EA + LS, y que deben
evitarse; véase [11, 12, 13] para mds detalles. De hecho, es posible encontrar
enfoques metaheuristicos con muy similar filosofia a la de los MAs, y que sin
embargo no pueden llamarse evolutivos a no ser que se asuma una definicién tan
amplia del termino que practicamente abarque a cualquier método basado en
poblacién. La técnica de biisqueda dispersa (SS) [45] es un buen ejemplo en este
sentido. Por otra parte, no es extrano encontrar enfoques evolutivos en los que
el conocimiento del problema se concentra mas en el operador de recombinacion
que en el uso de una bisqueda local, e.g., [35, 46]. En cualquier caso, esta claro
que EA + LS € MA, y que el componente LS es tipicamente uno de los que mas
contribuyen al éxito del algoritmo.

Las técnicas de mejorar local pueden modelarse como trayectorias en el espa-
cio de busqueda tal que soluciones vecinas en dicha trayectoria difieren en una
pequena cantidad de unidades de informacién. Esta definicién idealizada puede
requerir no obstante diferentes matizaciones si por ejemplo se emplea TS para
este fin, e.g., [47, 36, 48] entre otras muchas. Asi, es normal que muchas imple-
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mentaciones de TS usen estrategias de intensificacion que hagan que en ciertos
momentos la buisqueda se contintie por ciertas soluciones anteriores de calidad
(asi, mas que a un camino lineal, el recorrido a través del espacio de busqueda
se asemejaria a una trayectoria ramificada). Més atn tanto en TS como en otras
metaheuristicas tales como SA, puede darse que la calidad de las soluciones no
se incremente de manera monétona, sino que en ciertos momentos empeore con
la finalidad de poder escapar de éptimos locales. Por supuesto, al final de la eje-
cucion del procedimiento se conserva la mejor solucién encontrada, y no la tltima
generada.

A la hora de implementar el componente LS es importante determinar el
criterio de terminacién. Si se estd empleando una técnica simple de escalada (HC)
puede tener sentido determinar si la solucion actual es un 6ptimo local y detener el
procedimiento tinicamente en ese caso. Obviamente, esto no es posible si se usa T'S
0 SA, ya que estas técnicas tienen capacidades globales de optimizacion, por lo que
lo més comin es definir un tope computacional méximo (e.g., en forma de nimero
de soluciones exploradas). Légicamente, en este caso la solucién final no tiene por
qué ser un éptimo local (como algunas descripciones erréneas de MAs aseguran).
Ademds, debe encontrarse un equilibrio adecuado entre el esfuerzo computacional
que se realiza durante LS y el que la busqueda poblacional subyacente realiza.
La importancia de este hecho ha dado lugar a la nocién de lamarckismo parcial
[49, 50], esto es, no usar siempre la bisqueda local, sino Gnicamente sobre algunas
soluciones o bien seleccionadas aleatoriamente, o bien en funcién de su calidad, o
bien segun algin otro método (véase también [51]).

Del mismo modo que se pueden definir métricas para cuantificar la bondad
de una representacién (u operador que trabaje sobre la misma), pueden definirse
métricas que ayuden a predecir si una determinada definiciéon de vecindad puede
ser beneficiosa. Por ejemplo, la correlacién entre distancia y adecuacion [52,
53] (FDC) es una de las propuestas. Esencialmente, la distancia mencionada
se entiende como el nimero de movimientos (saltos de vecindad) que hay que
realizar para pasar de un éptimo local al éptimo global. Si el coeficiente de
correlacion entre esta distancia y la calidad de la funcién objetivo es alta, entonces
la calidad de las soluciones tiende a mejorar al acercarse al 6ptimo global, y
la dindmica evolutiva del MA lo llevard a su cercania. Si la correlacion fuera
negativa, el problema seria enganoso para el MA, ya que los 6ptimos locales
mejores se alejarian del éptimo global.

Otro aspecto importante en relacién al paisaje de busqueda es su topologia
global, y mas precisamente si la relaciéon de vecindad es regular o no, y que relacion
guarda con la calidad de las soluciones. Bierwirth et al. [54] han estudiado
esta circunstancia para un problema de planificacién, y han encontrado que las
mejores soluciones tienen una mayor conectividad, lo que las hace més facilmente
alcanzables, incluso por mor de pura deriva genética. No todos los problemas
tienen esta propiedad, y de hecho, Cotta y Fernandez han encontrado que la
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representacién directa para la bisqueda de reglas de Golomb de tamano minimo
tiene precisamente la propiedad opuesta [55].

3.4 Gestion de la Diversidad

Hay diferentes maneras de enfocar la diversidad en algoritmos basados en
poblacién. Por un lado pueden considerarse métodos de preservacién de la diver-
sidad, dentro de los cuales se engloban claramente los operadores de mutacion.
Estos no son los tnicos mecanismos posibles sin embargo. Por ejemplo, pue-
den introducirse soluciones completamente nuevas (los asi llamados “inmigrantes
aleatorios”) [56] en la poblacién, e.g., [57], o pueden emplearse poblaciones con
estructura espacial [58]. En este tltimo caso, se restringe el emparejamiento de
agentes o el reemplazo de los mismos a elementos situados en posiciones vecinas
dentro de la estructura topolégica de la poblaciéon. Esto causa un ralentizamiento
de la propagacion de informacion a través de la poblacion, con lo que se impide
(o al menos dificulta) que algunos super-agentes tomen répidamente control de
la misma y destruyan toda diversidad.

En la literatura se han propuesto diferentes topologias para organizar la po-
blacién, i.e., anillos, rejillas, hipercubos, etc. En relacién con los MAs, una de
las opciones mas exitosas has sido una estructura jerarquica en forma de arbol
ternario [59, 41, 60, 61]. Esta topologia se ha combinado con una estrategia para
organizar la distribucién de las soluciones en funcién de su calidad. Mas con-
cretamente, cada nodo del arbol esta restringido a tener una soluciéon mejor que
cualquiera de los nodos descendientes. Esto implica que cuando un agente tiene
una solucién mejor que la de su antecesor directo en el arbol, las intercambian. De
esta manera, hay un continuo flujo de soluciones de calidad hacia la parte superior
del arbol, lo cual también garantiza que cuando se realiza una recombinacién, las
soluciones que toman parte en ella son de calidad similar.

Como complemento a los mecanismos de preservacién anteriores se pueden
considerar también los mecanismos de restauracién de la diversidad: cuando se
detecta que la diversidad ha caido por debajo de un cierto umbral, o cuando
la dindmica del algoritmo apunta a un estado de degeneracion en la bisqueda
[62] se activa uno de estos mecanismos para relanzarla. Una posibilidad en este
sentido es emplear hipermutacién [63, 41] (cf. mutacién pesada, véase Seccién
3.2). Alternativamente, la poblacién puede refrescarse mediante la llegada masiva
de inmigrantes aleatorios que sustituyan a toda la poblacién, salvo a algunas
soluciones de elite.

4 Aplicaciones de los MA

Uno de los campos mas fructiferos para los MAs es el &mbito de la optimizacién
combinatoria, para el que estas técnicas cuentan con cientos de aplicaciones. Eso
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no es sorprendente si tenemos en consideracion que existen miles de problemas de
optimizacion pertenecientes a la clase NP, donde los MA se han mostrado de gran
valor. De entre todas éstas, y a modo ilustrativo, pueden destacarse las siguien-
tes: problemas de particionado en grafos [64, 65], particién de nidmeros [66, 59],
conjunto independiente de cardinalidad méxima [67, 68], empaquetado [69], colo-
reado de grafos [70, 71], recubrimiento de conjuntos [72], planificacién de tareas
en una maquina con tiempos de “set-up” y fechas de entrega [73, 74|, planificacién
de tareas en varias maquinas [75, 76], problemas de asignacién generalizados [77],
problemas de mochila multidimensional [78, 79|, programacién entera no-lineal
[80], asignacién cuadrética [81, 53], particionado de conjuntos [82], y muy espe-
cialmente el problema del viajante de comercio [83, 53, 84]. Es de destacar que en
una gran parte de estas publicaciones los propios autores destacan que la metodo-
logia constituye el estado del arte para el problema en consideracion, lo que es de
interés debido a que estos son problemas “clasicos” en el area de la optimizacion
combinatoria.

El paradigma fue utilizado en otros problemas menos conocidos, pero sin duda
de igual importancia, como son: emparejamiento parcial de formas geométricas
[85], optimizacién en “paisajes NK” [86], diseno de trayectorias 6ptimas para
naves espaciales [87], asignacién de frecuencias [88], construccién de drboles de
expansiéon minimos con restricciones de grado [89], problemas de emplazamiento
[90, 91], optimizacién de rutas [92], problemas de transporte [93, 94|, isomor-
fismos en grafos [95], problemas de biconexién de vértices [96], agrupamiento
[97], telecomunicaciones [98], biisqueda de regleros de Golomb minimos [99, 100],
bisqueda de patrones estables en autématas celulares [36, 101], identificacién de
sistemas no-lineares [102], programacion de tareas de mantenimiento [103, 104],
open shop scheduling [105, 40], flowshop scheduling [106, 44], planificacién de
proyectos [107, 108], planificacién de almacén [109], planificacién de produccién
[110, 111], confeccién de horarios [112, 113], planificacién de turnos [114, 115],
planificacién de juegos deportivos [116] y planificacién de exdmenes [117, 118].

Los MAs, también han sido citados en la literatura de aprendizaje en maquinas
y robdtica como algoritmos genéticos hibridos. Destacamos algunas aplicaciones
como por ejemplo: entrenamiento de redes neuronales [119, 120], reconocimiento
de caracteristicas [121], clasificacién de caracteristicas [122, 123], andlisis de series
temporales [124], aprendizaje de comportamientos reactivos en agentes moviles
[125], planificacién de trayectorias [126, 127], control éptimo [128], etc.

En las areas de la Electrénica y la Ingenieria podemos destacar: proyectos
de VLSI [129], optimizacién de estructuras [130] y mecédnica de fracturas [131],
modelado de sistemas [132], control de reactores quimicos [133], calibracién de
motores [134], problemas de diseno éptimo en Aerondutica [135, 136], disefio de
sistemas Gpticos [137], control de trafico [138], y planificacién en problemas de
potencia [139] entre otros.

Otras aplicaciones de estas técnicas pueden encontrarse en: Medicina [140,
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141], Economia [142, 143], Oceanografia [144], Matemaéticas [145, 146, 147], Pro-
cesamiento de imdgenes y de voz [148, 149, 150], y un sinntmero de ellas en
Bioinformética ([49, 60, 151, 152] entre otras muchas).

5 Conclusiones

A diferencia de otras técnicas de optimizacién, los MAs fueron explicitamente
concebidos como un paradigma ecléctico y pragmaético, abierto a la integracion
de otras técnicas (metaheuristicas o no). En tltima instancia, esta habilidad para
combinar de manera sinergética diferentes métodos es una de las razones de su
éxito. Los MAs proporcionan un marco de trabajo apropiado para integrar en
un unico motor de busqueda diferentes heuristicas provechosas. En este sentido,
los MAs deben considerarse no como competidores, sino como integradores: alla
donde una metaheuristica pura empiece a alcanzar sus limites, los MAs constitu-
yen el siguiente paso natural.

Aunque existe un importante componente experimental en el disefio de los
MAs, no por ello puede afirmarse que el paradigma se reduce a combinar varias
técnicas y realizar pruebas experimentales para comprobar si es satisfactoria.
Muy al contrario, todo el corpus tedrico disponible tanto para técnicas basadas
en poblacién como para técnicas de biisqueda local es de aplicacién en el disenio de
un MA. Otras estrategias de gran interés en este area son el disefio por analogia, y
el maximo aprovechamiento de los recursos computaciones. Téngase en cuenta en
relacién a esto ultimo que una técnica de busqueda local muy sofisticada puede
proporcionar mejores resultados que un simple HC, pero necesitar mucho mas
tiempo de computo para ello. En problemas en los que el coste de evaluar una
solucion es grande, o en los que los tamanos de las vecindades son considerables,
éste es un problema que debe tenerse muy en cuenta.

Esta claro asimismo que nuestro mundo se esta haciendo cada vez mas com-
plejo a un ritmo acelerado, al menos desde un punto de vista tecnolégico. Los
anos venideros depararan nuevos desafios desde el punto de vista de la optimi-
zacién a los que habra que dar respuesta con metaheuristicas. No sélo habréd
que hacer frente a problemas de optimizacién a gran escala, sino que estos mis-
mos seran cada vez mas complejos per se. Para ello, las técnicas de optimi-
zacion tendran que adaptarse a esta complejidad, dejando de lado los tradicio-
nales enfoques unidimensionales y puramente secuenciales. Asi, algunos de los
aspectos de los MAs que tomaran cada vez mas relevancia son la optimizacién
multi-objetivo [51, 153, 154], la auto-adaptacién [155, 156], y el funcionamiento
auténomo [157, 158]. Como puede apreciarse, ya hay algunas propuestas en este
sentido, siendo posible adema&s aprovechar ideas de técnicas relacionadas tales
como las hiperheuristicas [159, 160]. Otros métodos jugardn también un papel
esencial, e.g., las técnicas de reduccién a un kernel seguro comtinmente empleadas
dentro del campo de la complejidad parametrizada [161]. Dado que el eclecticismo
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es esencial para adaptarse a este nuevo escenario, solo cabe decir que el futuro es
prometedor para los MAs.
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1 Introduccion
Un problema de Optimizacion Combinatoria puede formularse como:
optimizarxesf(X)

donde f : S — R es una funciéon que a cada X € S asocia un nimero real, y S
es un conjunto finito o infinito numerable de puntos. Al conjunto S se le conoce
como espacio de soluciones o region factible y a la funcion f por funcion de costo
o funcion objetivo. Por optimizar se entiende minimizar o maximizar la funcién
objetivo f sobre el espacio solucién. Un problema queda caracterizado por el
espacio de soluciones y por la funcién objetivo, por lo que, a partir de ahora, lo
denotaremos por el par (S, f).

“Este trabajo ha sido parcialmente financiado por el Ministerio de Ciencia y Tecnologia, a
través de los proyectos TIN 2005-08943-C02-02, TIN2006-02696 y TIN2005-08404-C04-03 (70%
son fondos FEDER), y por el Gobierno de Canarias, a través del proyecto P1042004/088. La
actividad desarrollada se enmarca dentro de los objetivos de la red RedHeur (proyecto TIN2004-
20061-E).
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Existen multitud de problemas reales que pueden formularse como un pro-
blema de optimizacién combinatoria. A esta clase pertenecen, por ejemplo, algu-
nos problemas de localizacién de servicios, de determinacién de rutas 6ptimas o
de asignacién de recursos.

Las Busquedas Locales son los procedimientos mas simples para resolver este
tipo de problemas. En una Busqueda Local, dada una solucién inicial del pro-
blema, se realizan movimientos de mejora mientras sea posible. Un movimiento es
una modificacién de una solucién que suministra otra solucién del problema. Las
Busquedas Locales no suministran, en general, la solucién 6ptima del problema.
Para aumentar la probabilidad de encontrar dicha solucién, puede aplicarse una
Busqueda Local a varias soluciones de la region factible. Este método recibe el
nombre de Btsqueda Multiarranque.

En el presente trabajo se presentan los fundamentos de las Busquedas Mul-
tiarranque para problemas combinatorios. Para ello, se describen algunas de las
variantes propuestas para los diferentes elementos que definen estas busquedas:
mecanismo de generacién de soluciones iniciales, método de mejora (busqueda lo-
cal) y regla de parada. El trabajo se estructura como sigue. En la préxima seccién
se introducen las buisquedas locales, en la seccién 3 se describe la Busqueda Mul-
tiarranque y se enumeran algunas de sus variantes y en la seccién 4 se muestran
dos Busquedas Multiarranque para el Problema de la Maxima Diversidad. Por
ultimo, se listan las referencias bibliograficas que aparecen en el texto.

2 Bisqueda Local

En optimizacion real continua, un concepto importante es el de optimo local
de la funcién que se define como cualquier punto x* para el que exista un entorno,
en la topologia usual de R, de tal forma que x* sea 6ptimo en ese entorno. La
importancia radica en que el éptimo global puede definirse como aquel 6ptimo
local con mejor valor de la funcién objetivo. Es decir, se dispone de una condicion
necesaria para encontrar el éptimo global de la funcién. Asi, al menos en teoria,
la dimensién del problema se reduce al tener que buscar la solucién éptima del
problema sélo entre los éptimos locales.

Para intentar usar estas ideas en los problemas discretos que nos ocupan, se
define el entorno de una solucion.

Definicién 1

Dado el problema (S, f), una estructura de entorno es una funcion N : S — 29
que asocia a cada solucion X € S un conjunto N(X) C S de soluciones cercanas
a X en algin sentido. El conjunto N(X) se llama entorno de la solucidn X, y
cada Y € N(X), solucion vecina de X .

La anterior definicién es bastante general y deja a criterio del decisor el establecer
cuando dos soluciones estan cercanas en algiun sentido.
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Una estructura de entorno particularmente importante para problemas com-
binatorios es aquella en la que se sustituyen k elementos presentes en la solucion
por k elementos no presentes en la misma. Esta sustitucion puede implementarse
de varias formas que, basicamente, consisten en cambiar de valor k elementos de
la solucién. Asi puede consistir en cambiar de 1 a 0 k posiciones de la solucién y
de 0 a 1 otras k posiciones distintas, sustituir k aristas presentes en la solucion
por otras k aristas, etc. A continuacién se describe esta estructura de entorno
para el problema de la p-mediana.

Problema de la p-mediana Dado un conjunto de puntos de demanda, D =
{dy,...,dn}, y un conjunto de posibles localizaciones, L = {l1,...,l,}, se pre-
tende determinar la ubicacién éptima de p servicios que minimice la suma de los
costos entre los puntos de demanda y los servicios.

Para formalizar el problema, se considera la existencia de una matriz n X m con
el costo ¢(d;, ;) que supone atender al punto de demanda d; desde la localizacién
l;. La regién factible de este problema estd formada por subconjuntos de £ con
p puntos

S={Xcl:|X|=p}

Sea el costo que supone atender el punto de demanda d; desde la solucién X igual
a

C(di, X) = lInelgl( C(di, ZJ)
J

El problema se formula como

min c(di, X
Xes 4 (di, X)
i=1
Las soluciones del problema de la p-mediana son subconjuntos de £ de tamano
p, formados por los indices de las localizaciones en las que se ubican los servicios.

Ejemplo 1

En la estructura de entorno del k-intercambio, una solucién, X', del problema de
la p-mediana es vecina de otra solucion X, si puede obtenerse de ésta intercam-
biando una localizacion presente en la solucion por otra no presente en la misma.
Asi, sim =5, p =3 yk =1 las soluciones X = {l1,15,l5} y X' = {l1,13,14}
son vecinas, ya que X' puede obtenerse desde X intercambiando ls por ly. En la
tabla 1 se muestran todas las soluciones factibles de un problema de la 3-mediana
cuando m = 5, el valor objetivo de éstas (escogido de forma ficticia para este
ejemplo) y las correspondientes soluciones vecinas si k = 1.

Una Busqueda Local comienza con una Solucion Actual de la region factible con
costo asociado Objetivo(Solucion Actual). A continuacién selecciona, si es posible,
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Solucién Costo Soluciones vecinas
{l1,12,13} 10 {li, 2,1} {li, b2, 05} {ly s, 0a} {ln0s, 05 {2, 08,04} {l2,03,15}
{l1,12,l4} 6 {l1,12,13} {l1,1l2,15} {l1,1l3,14} {l1,l4,15} {la, 13,14} {la,l4l5}
{l1,12,1l5} 8 {l1,1l2,13} {l1,1l2,14} {l1,1l3,15} {l1,l4,15} {l3,12,15} {la, 14,15}
{l1,13,la} 5 {l1,1l2,14} {l1,l4,15} {l1,1l2,13} {l1,13,15} {l1,12,14} {l1,14,1l5}
{l1,13,15} 7 {li, 12,05} Al la,lsy {l,l2, 03} {l, s, lay {l2, 03,05} {ls,la, 15}
{l1,14,15} 6 {li,l2,0a} Al s, lay {lyl2, 05} {l s, 05} {l2,la, 05} {ls,la, 15}
{la, 13,14} 6 {l1,1l2,14} {l2,1l4,15} {l1,1l3,14} {l3,14,15} {l1,12,15} {la,13,1l5}
{la,13,1l5} 8 {l1,1l2,15} {la,1l4,1l5} {l1,13,15} {l3,14,15} {l1,12,15} {la, 13,14}
{la, 14,15} 3 {l1,l4,15} {l3,14,15} {l1,1l2,15} {l2,13,15} {l1,12,14} {la, 13,14}
{l3,14,15} 4 {li,la, 15} A{lo,la,ls}  {li,ls, 05} {le, 3,05} {li,l3,la}  {l2,l3,la}

Tabla 1: Soluciones factibles y vecinas de un problema de la 3-mediana con m = 5
vk=1

procedure Bisqueda Local(Var Solucién Actual);
begin
repeat
Obtener(Solucién Vecina/
Objetivo(Solucién Vecina) < Objetivo(Solucién Actual));
Solucién Actual := Solucién Vecina;
until (Objetivo(Solucién Vecina) > Objetivo(Solucién Actual),
¥ Solucién Vecina);
end

Figura 1: Descripcién general de la Busqueda Local

una Solucion Vecina con coste Objetivo(Solucion Vecina) < Objetivo(Solucion
Actual). Sital solucién existe, el algoritmo continda con Solucion Vecina. En caso
contrario, el procedimiento termina con Solucidn Actual como solucién propuesta

por el algoritmo. El procedimiento puede describirse como aparece en la figura
1.

El principal inconveniente del procedimiento Busqueda Local radica en que,
en general, suministra soluciones localmente éptimas, con respecto a la estructura
de entorno considerada, que pueden estar alejadas de la soluciéon 6ptima global.
Este hecho se pone de manifiesto en el siguiente ejemplo.

Ejemplo 2
Considérese el problema de localizacion la 2-mediana Supdngase que el conjunto
de posibles localizaciones consta de los cuatro puntos del cuadrado unidad:

11 1 3 11 31
ﬁ»—{ll—(ng),lz—(§,Z>7l3—<5,1>,l4—<175)}
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la demanda estd formada por los puntos

35 3 3 5 5 5 1 5 3
D:{dlz (§7§>7d2: (§7§>7d3: (gag)u 4 = (575)7d5: (gag)}

y se pretende encontrar la 2-mediana con distancia euclidea. La matriz de dis-
tancias es la siguiente:

d1 d2 d3 d4 d5

I 1 1 10 3 10
1 32 32 64 3 64

1 1 10 1 5 10
2 3 64 32 64 64
I 10 1 10 5 1
3 64 32 64 64 32

Ee

1 10 10 1 1 10
4 64 64 32 8 64
Si se utiliza la estructura del 1-intercambio, las posibles soluciones del pro-

blema, sus costos respectivos y las soluciones vecinas, asi como los costos de éstas
(entre paréntesis), se recogen en la tabla siguiente.

Solucion Costo Vecinas
X1 ={l1,lo} 1.205 X3(1.205) X35(0.832) X4(0.986) X5(1.05)
Xo={l,l3} 1.205 X;(1.205) X35(0.832) X4(0.986) X6(1 05)
Xs={l1,l4} 0.832 X;(1.205) X2(1.205) X5(1.05) Xg(1.05)
Xy ={lo,l3} 0986 X1(1.205) X2(1.205) X5(1.05) Xg(1.05)
X5 ={lo,l4} 1.050 X;(1.205) X3(0.832) X4(0.986) Xg(1.05)
X6 ={l3,14} 1.050 X3(1.205) X35(0.832) X4(0.986) X5(1.05)

Si la solucion actual del procedimiento busqueda local es X4, el algoritmo acaba
con esta solucion, ya que todas las vecinas de X4 poseen un costo mayor. Sin em-
bargo, X4 no es la solucion optima. El algoritmo se ha estancado en un minimo
local no global. Notese ademds que la solucion propuesta por el algoritmo puede
estar muy alejada de la solucion dptima del problema. En el ejemplo que trata-
mos, la solucion propuesta no posee ninguna localizacion presente en la solucion
optima.

2.1 DMuestreos en el entorno.

En la Busqueda Local, dada la soluciéon actual, se debe generar una nueva
solucion, del entorno de ésta, con coste menor. En muchas ocasiones, se intenta
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una exploracién completa del entorno de la solucién actual en busca de la mejor
vecina. Sin embargo, esta estrategia suele ser muy ineficiente. Por ello, deben
considerarse otros muestreos del entorno.

1. Biusqueda del mejor: se realiza una busqueda exhaustiva por el entorno de
la solucién y se toma la mejor vecina.

Si se aplica una bisqueda local del mejor desde la solucién {l1,l2,13} con
costo 10, el recorrido de la misma (ver cuadro 1) es {ly,ls,13}, {l1,13,14},
{l1,12,14}, {l2,14,15}. Se obtiene la mejor solucién del problema, {ls,4,15},
con costo 3.

2. Busqueda del primer mejor: se recorre en orden el entorno de la solucién
actual hasta encontrar una soluciéon mejor.

Si se aplica una bisqueda local del primer mejor desde la solucién {11, l2, 15}
con costo 10, el recorrido de la misma (ver cuadro 1) es {11, l2, I3}, {l1,12, 14},
{l1,13,14}. Se obtiene la solucién {l1,15,l4} con costo 5.

3. Muestreo aleatorio: se escoge aleatoriamente una solucién del entorno de la
solucion actual. O la mejor de una muestra seleccionada aleatoriamente del
entorno.

Si se aplica una busqueda local con muestreo aleatorio desde la solucién
{l1,12,13} con costo 10, el recorrido de la misma puede ser {ly,ls,l3},
{la, 13,14}, {ls,14,15}, {l2,14,l5}). Se obtiene la mejor solucién del pro-
blema, {l2,14,15}, con costo 3. Nétese que, en este caso, puede obtenerse
un recorrido distinto al comenzar una nueva bisqueda local desde la misma
solucién {ly,12,13}.

4. Muestreo heuristico: se toma aquella solucién (o equivalentemente se realiza
aquel movimiento) que, con base a una evaluacién heuristica, suministre una
solucién mejor que la actual.

5. Muestreo Aspiration Plus: se muestrea el entorno hasta que se alcanza un
valor minimo de la funciéon objetivo establecido previamente. Una vez alcan-
zado este nivel de aspiracién, se analiza un ntiimero adicional de soluciones
en busca de soluciones con mejor calidad. Para controlar el nimero de solu-
ciones evaluadas en el entorno de cualquier solucion, se establece el niimero
minimo y méximo de movimientos que pueden analizarse en cada iteracién.
Este muestreo ha sido propuesto por Glover [17].

3 Multiarranque

El principal inconveniente de las Bisquedas Locales es que, en general, sumi-
nistran soluciones localmente éptimas que pueden estar muy alejadas (en términos
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procedure Busqueda con Arranque Multiple
begin
Generar (Solucién Inicial);
Mejor Solucién := Solucién Inicial;
repeat
Solucién Actual := Busqueda Local(Solucién Inicial);
if Objetivo(Solucién Actual) < Objetivo(Mejor Solucién)
then Mejor Solucién := Solucién Actual;
Generar(Solucién Inicial);
until criterio de parada;
end.

Figura 2: Descripcién de la Busqueda con Arranque Multiple.

de valor objetivo) de la solucién o soluciones 6ptimas globales. Una alternativa
para solventar este inconveniente consiste en aplicar Busquedas Locales desde
varias soluciones de partida. La repeticion de los procesos Generar Solucion Ini-
cial y Busqueda Local constituye el primer Método Multiarranque descrito en la
literatura [6] [28]. Este esquema puede generalizarse para contemplar diferentes
Métodos Multiarranque que consisten en aplicar reiteradamente un optimizador
o método de busqueda desde diferentes soluciones iniciales.

La Figura 2 muestra el esquema general de un Método Multiarranque. Tipica-
mente podemos hablar de dos fases en cada paso. En la primera, se construye
una solucién Solucion Inicial y en la segunda se trata de mejorar mediante la
aplicacién de un método de busqueda, obteniendo la solucién Solucion Actual
(que eventualmente puede ser igual a Solucion Inicial).

En algunas aplicaciones, la fase 1 se limita a la simple generacién aleatoria de
las soluciones, mientras que en otros ejemplos se emplean sofisticados métodos
de construccién que consideran las caracteristicas del problema de optimizacion
para obtener soluciones iniciales de calidad. Algo similar ocurre con el método de
buisqueda de la fase 2. Podemos encontrar algoritmos de Busqueda Local que, a
partir de la solucién inicial, conducen al éptimo local mas cercano mediante una
serie de movimientos de mejora, o elaborados procedimientos metaheuristicos que
realizan una busqueda inteligente del espacio de soluciones y tratan de alcanzar
la solucion éptima del problema, evitando quedar atrapados en un 6ptimo local
de baja calidad. En cuanto a la condicién de parada, se han propuesto desde
criterios simples, como el de parar después de un niimero dado de iteraciones,
hasta criterios que analizan la evolucion de la bisqueda y aseguran, en muchos
casos, la convergencia asintética al éptimo global del problema. Otra cuestién a
considerar es si el método de busqueda de la segunda fase debe aplicarse a todos
los puntos generados o sélo a un subconjunto de dichos puntos. La combinacién de
todos estos elementos (construccién de soluciones iniciales, optimizador o método

Rect@ Monografico 3 (2007)



174 Brusquedas Multiarranque

de mejora, criterio de parada, ...) suministra una gran variedad de procedimientos
hibridos basados en el esquema Multiarranque.

Marti [29] hace una revisién de los métodos multiarranque y propone una
clasificacién basada en el uso o no de memoria y en el grado de reconstruccion
de la solucién de inicio. Schoen [38] hace una revisién personal de tales métodos,
dando una definicion formal de los mismos y subrayando las caracteristicas propias
de estos métodos. En [31] se enumeran algunas de las alternativas propuestas para
los diferentes elementos que definen un Método Multiarranque. En las siguientes
subsecciones, describimos brevemente algunas de las variantes propuestas que
pueden encontrarse en [31] .

3.1 Solucidn inicial.

Los mecanismos de generacién de soluciones iniciales pueden ser dependientes
o independientes del problema considerado. Entre los mecanismos dependientes
del problema destacamos los de generacion aleatoria, deterministica y mixta. A
continuacion se describen estos tres métodos para el problema de la p-mediana.

e Generacion aleatoria. Escoger aleatoriamente p localizaciones y estable-
cer en ellas los servicios.

Para aplicar el mecanismo de generacién aleatoria al ejemplo 2, deben es-
cogerse aleatoriamente dos servicios del conjunto de posibles localizaciones
L = {l1,l2,13,l4}. Asi, una de las soluciones que podrian obtenerse es
X5 = {la, 14}

e Generacion determinista. En primer lugar, establecer un servicio en
la localizaciéon maés cercana al punto medio de los puntos de demanda. A
continuacién, establecer un servicio en la localizacién mas alejada de los
servicios previamente establecidos. Repetir el paso anterior hasta localizar
P servicios.

En el ejemplo 2, el punto medio de los puntos de demanda es (0.525,0.425).
La localizacién mas cercana a este punto es I3, y la localizacion mas ale-
jada de I3 es lo. Por tanto, la soluciéon inicial empleando la generacién
deterministica es X4 = {l2,13}.

e Generacion mixta. En primer lugar, establecer un servicio en la loca-
lizacién méas cercana al punto medio de los puntos de demanda. A conti-
nuacion, escoger aletoriamente el siguiente servicio con probabilidades pro-
porcionales a la distancia a los servicios previamente establecidos. Repetir
el paso anterior hasta localizar p servicios.

En el ejemplo 2, el punto medio de los puntos de demanda es (0.525,0.425).
La localizacién mas cercana a este punto es l3. Teniendo en cuenta la
distancia que separa las localizaciones [, lo v l4 de 3, se sigue que existe
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la misma probabilidad de escoger [; o l4 como nuevo servicio, y que esta
probabilidad es menor que la de escoger lo. El nuevo servicio debe escogerse
usando a estas probabilidades. Si suponemos que se escoge 1, se obtiene la
solucién inicial Xy = {l;,13}.

Boese et al. [8] analizan la relacién entre los éptimos locales de un problema
al tratar de determinar el mejor de todos ellos. Basado en los resultados de
ese estudio, proponen un método multiarranque, llamado Adaptive Multistart
(AMS), en el que los puntos iniciales se generan a partir de los mejores 6ptimos
locales encontrados. En un primer paso, AMS genera r soluciones al azar y les
aplica a todas ellas un procedimiento de biisqueda local greedy para determinar el
conjunto inicial de éptimos locales. En el segundo paso (adaptive) se construyen
las soluciones iniciales a partir del conjunto de 6ptimos locales. A estas soluciones
iniciales se les aplica varias veces el método de mejora. Los autores prueban el
método en la resolucién del problema del viajante de comercio, y muestran que
mejora significativamente a implementaciones previas de métodos multiarranque.

Hagen y Kang [19] proponen un método multiarranque de tipo AMS para el
problema de particién VLSI donde el objetivo es minimizar el nimero de senales
que circulan entre componentes. El método tiene dos fases. En la primera se
genera un conjunto de soluciones aleatorias y se les aplica a todas ellas un al-
goritmo de busqueda local, obteniendo un conjunto de éptimos locales. En la
segunda parte, se construyen soluciones iniciales como los puntos centrales de
los mejores éptimos locales conocidos. Con el objetivo de reducir el tamano del
problema a resolver, se anade una fase de preproceso basada en técnicas de agru-
pamiento. Un estudio empirico permite establecer la superioridad del método
propuesto frente a algoritmos previos para este problema.

Uno de los métodos multiarranque més aplicados actualmente es el denomi-
nado GRASP, debido a Feo y Resende [7] [8]. Como el resto de métodos mul-
tiarranque, GRASP consta de dos fases. La construccién o generacién y la mejora
o busqueda. En cada iteracién de la fase constructiva, GRASP mantiene un con-
junto de elementos candidatos que pueden ser anadidos a la solucién parcial que
se estd construyendo. Todos los elementos candidatos se evaliian usando una
funcién que mide su atractivo. En lugar de seleccionar el mejor de todos los ele-
mentos, se construye la lista restringida de candidatos RCL (restricted candidate
list) con los mejores segiin una cantidad establecida (ésta es la parte greedy del
método). El elemento que finalmente se afiade a la solucién parcial actual, se
escoge al azar del conjunto RCL (ésta es la parte probabilistica). Entonces se
recalcula la lista de elementos candidatos y se realiza una nueva iteracién (ésta es
la parte que se adapta en el método). Estos pasos se reiteran hasta que se obtiene
una solucién del problema. A ésta se le aplica el método de mejora (ésta es la
parte de busqueda del método). A continuacidn, se repiten la fase constructiva y
de mejora hasta que se cumpla el criterio de parada.
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Existen diferentes variantes de este esquema entre las que podemos desta-
car el método heuristico conocido como semi-greedy debido a Hart y Shogan [21].
Este método sigue el esquema multiarranque basado en aleatorizar una evaluacion
greedy en la construccién, pero no tiene una fase de busqueda local o mejora. Ac-
tualmente se estdan implementando versiones de este método denominadas Reac-
tive GRASP en donde el ajuste de los pardmetros necesarios (basicamente los que
determinan la RCL) se realiza de forma dindmica segtin el estado de la bisqueda
[36].

Fleurent y Golver [14] proponen un método multiarranque AMP (Adaptive
Memory Programming) en el que se modifica la funcién de evaluacién usando una
medida de frecuencia para intensificar la busqueda en un procedimiento cons-
tructivo. Los autores aplican su método al problema de asignacién cuadratica y
muestran la ventaja de usar tal estructura de memoria.

Melidn et al. [33] usan informacién sobre las soluciones de inicio y sobre
los optimos locales encontrados para dirigir la busqueda. La técnica se disena
para problemas combinatorios en los que se desea encontrar la mejor seleccién
de un nimero dado de items desde un universo. Sea RefSet el conjunto de
o6ptimos locales encontrados hasta el momento. Para cada x; del conjunto RefSet,
se conoce el porcentaje de busquedas locales que, comenzando en soluciones a
distancia menor o igual que k (k= 1,...) de z,, acaban en x;. Sea k(z;) el valor
de k cuyo porcentaje asociado es mayor que « (pardmetro fijado por el usuario),
y considérese

k* = | max k(a:;)
z,ERefSet

Sea, ademas, w(:z:;) 1 porcentaje de busquedas locales que acaban en a:;, y, para
cada item w,

ww = Y w(),

u€xERefSet

la suma de los porcentajes de aquellos 6ptimos locales que incluyen a w como
parte de la solucion.

Los anteriores valores se emplean para diversificar e intensificar la busqueda.
Para diversificar la misma, se desarrollan busquedas locales desde soluciones a
distancia mayor que k£* de un éptimo local seleccionado aleatoriamente de Re f Set.
Para intensificar la bisqueda, se construye aleatoriamente una solucién en la que
la probabilidad de incluir un elemento u en la misma es proporcional a los valores
w(u).

3.2 Reglas de parada

Como ocurre con cualquier método heuristico para resolver un problema, uno
de los elementos més dificiles de fijar en un Método Multiarranque es el criterio
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de parada. Los principales criterios de parada propuestos analizan tres variables
aleatorias: valores objetivos de los minimos locales, nimero de minimos locales
distintos de la funcién objetivo y niimero de iteraciones necesarias para alcanzar
el minimo global.

Los y Lardinois [28], en uno de los primeros trabajos dedicados a los Métodos
Multiarranque, obtienen reglas de parada a partir de la funcién de distribucién
asintotica del minimo global. El Teorema de Fisher y Tipper establece que esta
distribucién debe ser una de las tres distribuciones de Gumbel: tipo I, tipo II o
tipo III. En particular, se trata de la distribucion asintética tipo IIT o de Wei-
bull. De esta forma, se pueden obtener estimaciones puntuales e intervalos de
confianza para el 6ptimo global, y reglas de parada para el método. El trabajo
analiza varias metodologias para obtener las anteriores estimaciones e intervalos
de confianza y compara experimentalmente las diferentes reglas de parada que,
consecuentemente, se obtienen.

Usando un esquema Bayesiano, Betro y Schoen [3] asumen una distribucién
a priori sobre los valores objetivos de los 6ptimos locales encontrados, y utilizan
ésta para obtener reglas de parada.

Si el nimero de minimos locales, x, de la funcién objetivo fuese conocido,
un criterio de parada obvio seria desarrollar biisquedas locales hasta encontrarlos
todos. Sin embargo, este valor es desconocido. No obstante, el niimero de veces
que aparece cada uno de los minimos encontrados al aplicar las buisquedas locales
suministra informacién sobre k y sobre el tamano de las correspondientes regio-
nes de atraccién. Boender y Rinnooy Kan [5] realizan un estudio detallado de
estos parametros siguiendo la metodologia bayesiana. En ésta se supone que los
parametros son variables aleatorias para las que se asume una distribucién a priori
conocida que luego se modifica por las evidencias muestrales. Asi, obtienen, ini-
cialmente, dos reglas de parada: parar cuando se haya encontrado un ntmero de
minimos locales distintos mayor o igual que el estimador bayesiano entero 6ptimo
de k; parar cuando el estimador del tamano relativo de las regiones de atraccion
muestreadas sea suficientemente grande.

Las reglas obtenidas por Boender y Rinnooy Kan no tienen en cuenta el coste
que supone desarrollar nuevas biisquedas locales. Una metodologia alternativa
para obtener reglas de parada consiste en suponer que cada vez que se finaliza
un método multiarranque se incurre en dos pérdidas: una pérdida de finaliza-
cion, que depende del coste que supone finalizar la busqueda antes de encontrar
el minimo global, y una pérdida de ejecucion, que depende del coste de realizar
nuevas buisquedas locales. Boender y Zielinski [7] y Boender y Rinnooy Kan [4][5]
consideran tres estructuras de pérdida segun el esquema anterior y, para cada una
de ellas, obtienen reglas de parada.

Moreno et al. [34] proponen una regla de parada para el método multiarran-
que basada en el estudio estadistico del ntimero de iteraciones necesarias para
encontrar el éptimo global. Los autores introducen dos variables aleatorias cuya
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combinacién proporciona el nimero de iteraciones necesarias hasta encontrar el
6ptimo global (variable ¥). Estas variables son: el nimero de soluciones iniciales
generadas hasta que la correspondiente biisqueda local alcanza el 6ptimo global
y el niimero de evaluaciones de la funcién objetivo hasta que la correspondiente
busqueda local alcanza un 6ptimo local. Si bien la distribucién exacta de la varia-
ble que suministra el nimero de iteraciones necesarias para encontrar el 6ptimo
global es dificil de obtener, si puede aproximarse apropiadamente usando la distri-
bucién normal. El criterio de parada propuesto consiste en finalizar la bisqueda
después de e iteraciones siempre que la probabilidad de que 1) sea menor que e
sea suficientemente grande. Por tanto, la regla de parada propuesta es, tras cada
aplicacién de una busqueda local, verificar si la anterior condicion es cierta o no.
Si la respuesta es afirmativa, el algoritmo finaliza; en caso contrario, se selecciona
una nueva soluciéon desde la que aplicar una busqueda local.

Hart [20] describe diversas reglas de parada secuenciales para la Bisqueda
Aleatoria Pura que se basan en la estimacion del 6ptimo global de una funcién.
A continuacién, las modifica y generaliza para otros algoritmos secuenciales, y
describe como pueden usarse en un multiarranque. De la experiencia computa-
cional desarrollada concluye que estas reglas de parada se comportan de forma
similar a las reglas de parada bayesianas propuestas por [3][5]. Ademds, son, a
juicio del autor, més sencillas y faciles de usar.

4 Métodos multi-arranque para el problema de
la Maxima Diversidad

El problema de seleccionar un subconjunto de elementos de diversidad méxima
de un conjunto dado se conoce como Problema de la Maxima Diversidad o MDP
(del inglés Mazimum Diversity Problem). Este problema tiene multitud de apli-
caciones practicas entre las que destacan: tratamientos médicos, balanceo de sis-
temas ecoldgicos, politicas de inmigracién o ingenieria genética entre otros [18].
El MDP ha sido estudiado por numerosos autores, entre los que destacan Kuo
et al. [25] donde se describen cuatro formulaciones del problema, desde la pri-
mera mas intuitiva a la tdltima mas eficiente, sirviendo también éstas para demos-
trar que el MDP es NP-dificil. En 1996 Ghosh [16] propone un método multi-
arranque y se demuestra la completitud del problema. Posteriormente, Glover y
otros [18] proponen cuatro métodos heuristicos deterministas, dos de ellos cons-
tructivos y los otros dos destructivos. Silva y otros [39] presentan un algoritmo
multi-arranque basado en la metodologia GRASP. Concretamente describen tres
métodos constructivos, denominados KLD, KLDv2 y MDI y dos métodos de me-
jora: LS, que es una adaptacion del que propuso Ghosh, y SOMA, basado en una
implementaciéon VNS. Desde un punto de vista formal, el MDP se describe como
un problema de optimizacién combinatoria que se peude formular como sigue:
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sea S = {s; : i € N} un conjunto de elementos donde N = {1,2,...,n} es el
conjunto de indices. Cada elemento del conjunto s; € S, se puede representar por
un vector si = (81, Si2, -, Sir). Sea d;; la distancia entre dos elementos s; y s, y
sea m (con m < n) el tamano deseado del conjunto de méxima diversidad. En
este contexto, la resolucion del MDP consiste en encontrar un subconjunto Sel de
m elementos de S ( Sel C Sy |Sel| = m) de tal forma que se maximice la suma
de las distancias entre los elementos seleccionados. Matematicamente, el MDP se
puede reescribir como un problema de decisién en los siguientes términos:

maxz = g dijziT;

i<j

sujeto a:
n
E T, =m
i=1

x; €{0,1}i=1,...,n

donde x; = 1 indica que el elemento s; ha sido seleccionado.

Para abordar la resolucién del MDP mediante un esquema multi-arranque, se
proponen dos algoritmos constructivos, uno de ellos sin memoria y el otro con
memoria. En las siguientes secciones se describe cada uno de estos algoritmos.

4.1 Multi-Arranque Sin Memoria (MASM)

El algoritmo Multi-Arranque Sin Memoria (MASM) propuesto en este trabajo
consta de un procedimiento constructivo basado en GRASP y una bisqueda lo-
cal tipo firts improvement. Esta propuesta se inspira en un heuristico propuesto
por Glover y otros [18]. El procedimiento constructivo, en cada paso, afiade un
elemento de buena calidad (dado por una funcién tipo greedy) y se introduce en
el conjunto Sel, de tal forma que en el conjunto S\ Sel estardn los elementos
no seleccionados. Inicialmente, el conjunto Sel esta vacio; por lo tanto, todos los
elementos podrian ser seleccionados. El algoritmo empezaria eligiendo aleatoria-
mente un elemento de S y lo introduciria en el conjunto Sel. Posteriormente,
se calcula la distancia de todos los elementos no seleccionados s; € S\ Sel al
conjunto Sel como sigue:

d(si, X)= > d(si,s;) (1)
jeSel

que establecen una ordenacion entre todos los elementos no seleccionados. Para
seleccionar el siguiente elemento que se incluira en el conjunto Sel, se construye
una lista ordenada L donde estén todos los elementos s; € S\ Sel con un porcen-
taje a de la maxima distancia. Matematicamente, L se define como sigue:

L={s; € S\ Sel/d(s;,s¢) > dmin + a(dmaz — dmin)} (2)
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donde
Az = maxd(s;, Sel) dpmin = min d(s;, Sel)
S; €S S; €S

El siguiente elemento que se introduce en el conjunto Sel se elige aleatoriamente
de entre los elementos que hay en L, de tal forma que se asegura que tiene un
porcentaje de calidad minimo, fijado por « , y que no es una eleccién puramente
greedy, que conduciria a un 6ptimo local. Este procedimiento se mantiene hasta
haber seleccionado m elementos (|Sel| = m), de tal forma que en Sel se tendra
la solucién al problema. Este constructivo se ejecutaria niter de tal forma que
la media aritmética de las niter soluciones construidas serd peor que si la so-
lucién se hubiese construido tomando el elemento con distancia maxima a los
ya seleccionados, pero probablemente alguna de las niter soluciones mejore este
valor.

Para tener un comportamiento reactivo del algoritmo, el pardmetro « se ini-
cializa a 0.5 y posteriormente se ajusta dinamicamente en funcién de la calidad de
las soluciones construidas; es decir, si después de niter /5 iteraciones consecutivas,
la solucién con mejor valor no ha sido mejorada, entonces se incrementa « en 0.1
(hasta un méximo de 0.9).

Como método de mejora se presenta un procedimiento basado en una sim-
plificacién de la busqueda local descrita en [16], que persigue el aumento de la
eficiencia de la busqueda local. El método propuesto se encuadra dentro de las
busquedas locales tipo first improvement que, como se describe en Laguna y otros
[26], suele proporcionar mejores resultados que las estrategias tipo best improve-
ment, obviamente en mucho menos tiempo. Para ello, se factoriza la aportacion de
cada elemento s; en Sel; es decir, d; para cada elemento s; € Sel es la contribucién
a la funcion objetivo de cada elemento s;:

di= > dij=d(si,Sel) (3)

sjeSel

yva que la funcién objetivo se define como

z:%Zdi (4)

sieSel

Posteriormente, se selecciona el elemento s;« en Sel con menor contribucién a la
solucién actual; es decir, el elemento s;« € Sel con menor valor de d;«, de tal forma
que s;+ € Sel se intercambia con el primer elemento s; € S\ Sel que aumente el
valor de la funcién objetivo. El procedimiento de bisqueda se mantiene mientras
que haya mejora en la funcién objetivo, de tal forma que se extrae el elemento del
conjunto Sel que menos aporte y se introduce otro de S\ Sel que mejore el valor
dicha funciéon objetivo. Cuando no se obtenga una mejora, se pasa al segundo
elemento que menos aporte y asi sucesivamente. Este procedimiento se mantiene
hasta que no se pueda conseguir ninguna mejora.

Rect@ Monografico 3 (2007)



Duarte et al. 181

4.2 Multi-Arranque Con Memoria (MACM)

Como segundo algoritmo multi-arranque, denominado Multi-Arranque Con
Memoria (MACM), en [11] se presenta un método que utiliza memoria tanto en
la fase de construccién de soluciones como en la fase de mejora. Estas estrategias
se describen dentro de la metodologia Tabu Search [17].

El algoritmo constructivo se basa en una penalizacién por frecuencia en cada
iteracién a aquellos elementos que aparecieron en soluciones pasadas. El pro-
cedimiento también premia a aquellos elementos que aparecieron en soluciones
pasadas de muy alta calidad. Para implementar dicho algoritmo se guarda en
freq[i] el nimero de veces que el elemento s; ha sido seleccionado en construc-
ciones previas. En maz_freq se almacena el valor maximo de freq[i] para todo
i. Por otro lado, en quality[i] se guarda el valor medio de las soluciones en las
que ha participado el elemento s;. Ademds, en mazr_q se almacena el maximo
valor de quality[i] para todo i. En estas condiciones, se modifica la evaluacién del
atractivo de cada elemento no seleccionado en la construccion actual de acuerdo
a estas magnitudes para asi favorecer la seleccion de elementos con baja frecuen-
cia y alta calidad. Para ello, en vez de utilizar la distancia descrita en (3) entre
un elemento y el conjunto de los elementos seleccionados, se utiliza la siguiente
expresion:
qualityli]

_Jreqli] + drange(Sel)
maz_freq max_q

d'(si, Sel) = ds;, Sel — Brange(Sel)

con
range(Sel) = sjglsa\)éel d(s;, Sel) — . 611;1{158l d(sj, Sel)

donde ( y ¢ son parametros del algoritmo que cuantifican la aportaciéon de la

penalizacién por frecuencia y la bonificacion por calidad. Ambos se ajustan ex-

perimentalmente. La introduccién del valor de range(Sel) se hace para suavizar

los cambios en la funciéon de penalizacion.

Inicialmente, el conjunto Sel esta vacio; por lo tanto, todos los elementos
podrian ser seleccionados. El algoritmo empezaria seleccionando aleatoriamente
un elemento de S'y lo introduciria en el conjunto Sel. Posteriormente, calcula para
cada elemento s; € S\ Sel la distancia d'(s;, Sel), que en la primera construccién
coincidird con d(s;, Sel), ya que freq[i] = quality[i] = 0. Se elige aquél elemento
que maximice dicha distancia:

i*/d (s}, Sel) = Isngg({d/(si, Sel)}

y se introduce en Sel, actualizando consecuentemente el vector de frecuencias.
Este procedimiento se mantiene hasta haber seleccionado m elementos, de tal
forma que en Sel se tendra la solucién al problema. Una vez que se tiene cons-
truida dicha solucién, se actualiza el vector de calidad. El método tabu multi-
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arranque ejecuta este procedimiento niter veces, de tal forma que en cada cons-
truccion las distancias entre un elemento al conjunto de los ya seleccionados se
actualiza en funcién de su historia pasada.

Como método de mejora se utiliza una modificacion del método de mejora
propuesto anteriormente al que se le ha anadido memoria de corto plazo basado
en intercambios entre Sel y S\ Sel. Una iteracién de este algoritmo consiste en
seleccionar aleatoriamente un elemento s; € Sel. La probabilidad de seleccionar
dicho elemento es inversamente proporcional a su valor correspondiente de d;.
Ese elemento de Sel se sustituye por el primer elemento s; de S\ Sel que mejore
el valor de la funcién objetivo. En el caso de que ningin elemento mejore el valor
de la funcién objetivo, se selecciona aquél que menos la empeore, de tal forma que
siempre se realiza un movimiento. Una vez ejecutado dicho movimiento, tanto
54, como s; adquieren estatus tabu durante T'abuT enure iteraciones. Por consi-
guiente, el elemento s; no se podrd extraer del conjunto Sel (respectivamente, el
elemento s; del conjunto S\ Sel) durante este tiempo. El proceso de busqueda
tabl se mantiene hasta que se supere un ntmero Mazlter de iteraciones conse-
cutivas sin que se mejore el mayor valor obtenido hasta el momento.

4.3 Resultados experimentales

Para ilustrar el comportamiento de los dos algoritmos multi-arranque resumi-
dos en este trabajo y propuestos en [11], se presenta una comparativa con otros
dos algoritmos previos. Concretamente, los algoritmos con los que se comparan
MASM y MACM son el algoritmo constructivo D2, propuesto en Glover y otros
[18] junto con el método de mejora descrito en [16] y el algoritmo KLDv2 con
su correspondiente mejora, presentado en Silva y otros [39], que representan los
mejores métodos para este problema. Todos los algoritmos fueron codificados
en C y compilados con Borland Builder 5.0, optimizado para maxima velocidad.
Los experimentos se ejecutaron en un Pentium IV a 3GHz con 1 GB RAM. Los
algoritmos se probaron en tres conjuntos de ejemplos:

1. Silva: 20 matrices n X n con valores aleatorios enteros generados con una
distribucién uniforme de [0,9] con n € [100,500] y m € [0.1n,0.4n].

2. Glover: 20 matrices n x n en el que los valores de distancias entre cada par
de puntos con coordenadas euclideas se generan aleatoriamente en el plano
[0, 10]. Para cada instancia, cada uno de estos n puntos tiene r coordenadas,
con r € [2,21].

3. Random: 20 matrices n X n con pesos reales generados con una distribucién
uniforme de [0, 10] con n = 2000 y m = 200. Indicar que en la bibliografia
consultada, estas son las instancias mas grandes que se han resuelto.

En las tablas 2, 3 y 4 se comparan MASM, MACM, D2 + LS y KLDv2+LS. Es-
tas tablas muestran para cada procedimiento el porcentaje medio de desviacion
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Dy + LS KLDv2+LS MASM MACM

Dev. 1.722% 1.079% 0.0377%  0.0130%
i Best 2 5 12 13
g Const. 5140.5 2663.6 925.4 864.1

Tabla 2: Métodos constructivos. Ejemplos tipo Silva

Dy+ LS KLDv2+ LS MASM MACM

Dev. 0.018% 0.006% 0.0000%  0.0000%
f Best 16 18 20 20
g Const. 2149.6 971.0 790.4 397.5

Tabla 3: Métodos constructivos. Ejemplos tipo Glover

con respecto a la mejor solucién conocida (en cada experimento, ya que no se
conocen los valores éptimos), el niimero de veces que el algoritmo encuentra la
mejor solucion y el nimero de construcciones y mejora que hace el algoritmo en
10 segundos (criterio de parada). La conclusién que se puede obtener de estas
tablas es que los métodos multi-arranque propuestos mejoran sustancialmente
los algoritmos previos tanto en desviacion con respecto al mejor valor conocido
como al nimero de veces que encuentra ese valor. Ademas, en la experimentacion
presentada también se pude concluir que el uso de memoria, al menos para este
problema y estos ejemplos, conduce a mejores resultados. Indicar que en el caso
de los ejemplos de tipo Glover, los algoritmos estudiados obtienen valores muy
similares, de lo que se deduce que éstos son los méas sencillos; como consecuencia,
permiten discernir poco sobre la calidad de cada algoritmo. En el otro extremo es-
tarian los ejemplos de tipo Random, donde se observa claramente que los métodos
multi-arranque propuestos mejoran sustancialmente a los algoritmos previos.

Dy+ LS KLDv2+LS MASM MACM

Dev. 1.270% 1.219% 0.204%  0.099%
§ Best 0 0 7 15
§ Const.  128.1 3.5 12.0 14.8

Tabla 4: Métodos constructivos. Ejemplos tipo Random
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1 Introduccion

El problema de corte bidimensional no-guillotina que estudiamos en este tra-
bajo consiste en cortar un conjunto de pequenas piezas rectangulares de un tablero
rectangular grande de manera que se maximice el beneficio de las piezas corta-
das. El problema aparece en muchos procesos productivos, en las industrias del
textil, papel, acero, madera o cristal, en las que los tableros grandes obtenidos
en la fase de produccion se han de cortar en piezas més pequenas para atender
las demandas de los clientes, o cuando cajas rectangulares se han de colocar en
containers y solo dos dimensiones son relevantes. Patrones de corte eficientes re-
ducen las pérdidas de material y estrategias de empaquetado eficientes mejoran
la utilizacién del espacio y reducen los costes de transporte.

En este trabajo no imponemos a los patrones de corte la restriccién de uti-
lizar cortes guillotina, cortes que dividen completamente un rectangulo en dos
subrectangulos. Esta restriccién, que es muy comin en algunas industrias, como
las de la madera o el vidrio, aparece en muchos trabajos, pero no es necesaria

“Este trabajo ha sido financiado parcialmente por el Proyecto PBC-02-002, Consejeria de
Ciencia y Tecnologia, JCCM, y el Ministerio de Educacién y Ciencia DPI12005-04796.
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cuando se utilizan nuevas tecnologias de corte y obviamente no se necesita en
problemas de empaquetamiento. Sin esta restriccién, se pueden obtener mejores
soluciones, pero la complejidad del problema aumenta considerablemente. Los
algoritmos exactos existentes s6lo pueden resolver problemas de pequeno tamano
y por tanto es necesario el uso de algoritmos heuristicos. Nosotros propone-
mos primero un algoritmo constructivo y, a partir de él, un algoritmo GRASP y
un algoritmo Tabu Search. Los resultados de un extenso estudio computacional
muestran la eficiencia de dichos algoritmos.

2 Descripcion del problema

El problema de corte bidimensional no-guillotina puede describirse de la forma
siguiente. Sea R = (L, W) el rectangulo grande, con longitud L y anchura W.
Cada pieza ¢ tiene dimensiones (I;,w;), y valor v;, i = 1,...,m. Las piezas tie-
nen orientacion fija y han de ser cortadas con sus lados paralelos a los lados del
rectangulo (cortes ortogonales). El problema consiste en cortar el recténgulo R
en z; copias de cada pieza i, de manera que 0 < P; < z; < Q;, y el valor total de
las piezas cortadas, ) . v;x;, sea maximo. Denotaremos M = ). Q; el nimero
maximo de piezas que se pueden cortar. El problema se clasifica como 2D-SLOPP
(2-Dimensional Single Large Object Placement Problem) en la clasificaciéon pro-
puesta por Wischer et al. (2006).

Segun los valores de P; y @;, podemos distinguir tres tipos de problemas:

1. No restringido: Vi, P; =0, Q; = | L * W/l; x w;] (cota trivial).
2. Restringido: Vi, P, =0; 3i,Q; < | L« W/l; x w;|
3. Doblemente restringido: 31, P; > 0; 3j, Q; < |Lx W/l % w;]

En la Figura 1 vemos un ejemplo, con un rectdngulo R = (10,10), y m = 10
piezas que cortar. La primera solucién, Figura 1(b), es ptima para el problema
irrestringido, mientras que la segunda solucién, Figura 1(c), corresponde al caso
restringido y la tercera, Figura 1(d), al doblemente restringido, con algunos P; #
0.

Algunos autores han estudiado el problema irrestringido: Tsai et al. (1988),
Arenales y Morabito (1995), Healy et al. (1999). Sin embargo, el problema
restringido es més interesante para las aplicaciones y ha recibido mucha mayor
atencién. Métodos exactos han sido propuestos por Beasley (1985), Scheithauer y
Terno (1993), Hadjiconstantinou y Christofides (1995), Fekete y Schepers (2004)
y Caprara y Monaci (2004).

Una sencilla cota superior para el problema se obtiene resolviendo el siguiente
problema mochila acotado, en el que la variable x; representa el ntimero de piezas
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R = (10,10) 10

Pieza I; w; P Q; v

1 3 2 1 2 7

2 7T 2 1 3 20 o _

3 4 2 1 2 11 .

4 6 2 0 3 13

5 9 1 0 2 21

6 8 4 0 1 79 5 .

7 4 1 1 2 9

8 1 10 0 1 14 ’ *

9 3 7 0 3 52

10 4 5 0 2 60 ! 2

! 2 1
1 1
10 10 10 7
8 8
10 9 9
9 9
10 10 10
3 | -

(b) No restringido Opt: 268 (¢) Restringido Opt: 247 (d) Doblemente restr. Opt: 220

Figura 1: Problema 3 de Beasley (1985)

de tipo 7 que se cortan por encima de su cota inferior P;:

Max iviwi —&—iviPi (1)
i=1 i=1

s.t.: Z(lzwz)lz < LW — Zpi(liwi) (2)
i=1 i=1
lZSQZ—PZ 2:17,m (3)
x; >0, integer, i=1,...,m. (4)

Otras cotas, aparte de las incluidas en los métodos exactos mencionados, han
sido propuestas por Scheithauer (1999) y Amaral y Letchford (2003).

Recientemente han ido apareciendo diversos algoritmos heuristicos. Wu et
al. (2002) proponen un algoritmo constructivo. Lai y Chan (1997) y Leung
el al. (2001, 2003) utilizan templado simulado y algoritmos genéticos. Beasley
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(2004) desarrolla un algoritmo genético basado en una formulacién no lineal del
problema. Presenta ademds un estudio computacional muy completo sobre un
conjunto de problemas test estandard y sobre un nuevo conjunto de problemas
grandes generado aleatoriamente.

En este articulo describimos nuestros trabajos en el desarrollo de dos tipos
de algoritmos, GRASP y Tabu Search, e incluimos los resultados obtenidos sobre
cuatro conjuntos de problemas test: los 21 problemas de la literatura utiliza-
dos por Beasley (2004); los 630 problemas grandes, generados aleatoriamente por
Beasley (2004); 10 problemas utilizados por Leung et al. (2003), y los 21 proble-
mas utilizados por Hopper y Turton (2001). Este tltimo conjunto fue inicialmente
disenado para otro problema de empaquetamiento bidimensional y ha sido adap-
tado a nuestro problema para probar nuestros algoritmos sobre problemas dificiles
en los que la soluciéon éptima no contiene pérdidas. Més detalles sobre nuestros
algoritmos pueden encontrarse en Alvarez-Valdes et al. (2005).

3 Un algoritmo constructivo

Seguimos un procedimiento iterativo en el que combinamos dos elementos:
una lista P de piezas por cortar, inicialmente la lista completa de piezas, y una
lista L de rectangulos vacios en los que se puede cortar una pieza, que contiene
inicialmente el rectdngulo R = (L, W). En cada paso se elige un rectdngulo de
L, y de las piezas de P que caben en él, se elige la pieza a cortar. Al cortar
la pieza se pueden producir nuevos rectdangulos, que se anaden a L y el proceso
continia hasta que £ = () o ninguna de las piezas restantes cabe en ninguno de
los rectangulos de L.

Paso 0. Inicializacion:

L = {R}, el conjunto de rectangulos vacios.

P ={p1, p2,..., Pm}, €l conjunto de piezas pendientes de cortar.

El conjunto P se ordena inicialmente siguiendo 3 criterios: Ordenar por
P; % [; x w; no creciente, dando prioridad a las piezas que se han de cortar
obligatoriamente. Si se da un empate (por ejemplo, si P; = 0,Vi), ordenar
por v; /(l; *w;) no creciente. Si hay empates (por ejemplo, si v; = I; xw;, Vi),
ordenar por [; * w; no creciente.

B = (), el conjunto de piezas ya cortadas. Las piezas del mismo tipo pueden
aparecer agrupadas en bloques rectangulares.

Paso 1. Eleccion del rectangulo:

Tomar R*, el menor rectangulo de L en el que cabe una pieza p; € P.
Si tal R* no existe, parar.
En otro caso, ir al Paso 2.
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Paso 2. Eleccion de la pieza:

Elegir una pieza p; y una cantidad n; < @Q;, formando el bloque B* para
cortarlo de R*.

Se elige la pieza i que produzca el mayor aumento de la funcién objetivo.
El bloque B* se corta en la esquina de R* mas préxima a una esquina del
rectangulo R inicial.

Actualizar P, B y Q; que indica el nimero de piezas de tipo i que quedan
por cortar.

Mover el bloque B* hacia la esquina més proxima del rectangulo R.

Paso 3. Actualizacion de L:

Anadir a £ los posibles rectdngulos producidos al cortar B* de R*.
Tener en cuenta los posibles cambios en L al mover el bloque B*.
Fusionar rectdngulos para favorecer el corte de nuevas piezas de P.
Volver al Paso 1.

Aunque a lo largo del algoritmo nosotros mantenemos una lista de rectangulos
vacios L, en realidad tenemos un espacio vacio poligonal irregular en el que las
piezas pendientes podrian tener cabida. Una manera de adaptar nuestra lista L
a la flexibilidad del corte no-guillotina es fusionar algunos de los rectangulos de
la lista, produciendo nuevos rectangulos en los que las piezas pendientes puedan
caber mejor.

Cuando fusionamos 2 rectangulos, pueden aparecer, como maximo, 3 nuevos
rectdngulos, tipicamente un rectdngulo grande y 2 pequenos (ver Figura 2). Entre
las diversas alternativas de fusién, tratamos de seleccionar la mejor, es decir,
aquélla en la que es posible cortar las piezas mejor situadas en la lista ordenada
P. Con este objetivo en mente, imponemos las siguientes condiciones:

1. Si el orden de la mejor pieza que cabe en el rectangulo grande es estricta-
mente menor que el orden de las piezas en los rectangulos originales, los
fusionamos.

2. Si el orden de la mejor pieza que cabe en el rectangulo grande es igual que
el orden de las piezas en los rectangulos originales, los fusionamos si el drea
del rectangulo grande es mayor que el area de cada uno de los rectangulos
originales.

3. Si el orden de la mejor pieza que cabe en el rectangulo grande es estricta-
mente mayor que el orden de las piezas en los rectangulos originales, no los
fusionamos.

En la Figura 2 vemos varios casos posibles. En la Figura 2(a) los rectdngulos
originales siempre se fusionaran. El nuevo rectangulo es mayor que ambos y todas
las piezas que cabian en los originales cabrén en él. En la Figura 2(b) los nuevos
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rectangulos no son mayores que los originales. Estos se fusionardn sélo si el nuevo
rectangulo central permite cortar una pieza de menor orden que las que cabian en
los originales. En la Figura 2(c) uno de los nuevos rectangulos es mayor que los
originales y por tanto éstos se fusionaran, a menos que la mejor pieza que cabia
en el rectangulo original vertical no quepa en los nuevos rectangulos.

i

% R

(a) (b) (c)

Figura 2: Fusionando 2 rectdngulos vacios

Al final de proceso constructivo, una solucién esta compuesta por una lista de
bloques B, y una lista de rectangulos vacios £, con valor total ), vz;.

4 Un algoritmo GRASP

GRASP (Greedy Randomized Adaptive Search Procedure) fue desarrollado
por Feo y Resende (1989) para resolver problemas combinatorios dificiles. Para
una introduccién actualizada, consultar Resende y Ribeiro (2003). GRASP es un
procedimiento iterativo que combina una fase constructiva y una fase de mejora.
En la fase constructiva se construye paso a paso una solucién posible, anadiendo
elementos a una solucién parcial. El elemento a anadir en cada paso se elige
mediante una funcién greedy que se adapta dinamicamente a lo largo del pro-
ceso. Sin embargo, esta eleccién no es determinista, sino sujeta a un proceso de
aleatorizacion. De esta forma, al repetir el proceso se pueden obtener soluciones
diferentes. Al acabar cada fase constructiva, una fase de mejora, que suele consis-
tir en una busqueda local, intenta sustituir algunos elementos que forman parte
de la solucién debido a la aleatorizacién por otros que mejoren la calidad de la
solucién.
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4.1 Fase constructiva

En nuestro algoritmo GRASP, la fase constructiva corresponde al algoritmo
constructivo descrito en la secciéon anterior, introduciendo procedimientos de alea-
torizacion al elegir la pieza a cortar. Sea s; el valor de la pieza (o bloque de piezas)
1Y Smax = maz{s;|i € P}, y sea § un pardmetro a determinar (0 < § < 1). Hemos
considerado tres alternativas:

1. Elegir la pieza i al azar en el conjunto S = {j|s; > 0Smaz}

(S suele denominarse Conjunto restringido de Candidatos).
2. Elegir la pieza i al azar entre el mejor 100 (1 — §)% de las piezas.

3. Elegir la pieza i en todo el conjunto P, pero con probabilidades proporcio-
nales a sus valores s; (p; = s;/2s;)

4.2 Eleccién del parametro ¢

Un estudio preliminar mostré que no existia ningtin valor de § que produjera
siempre los mejores resultados. Por tanto, consideramos varias alternativas en las
que el valor de § variaba aleatoria o sisteméticamente a lo largo de las iteraciones.
Estas estrategias fueron:

1. En cada iteracién, elegir ¢ al azar en el intervalo [0.4, 0.9]
2. En cada iteracidn, elegir § al azar en el intervalo [0.25, 0.75]

3. En cada iteracién § toma por turno uno de los siguientes 6 valores:

0.4, 0.5, 0.6, 0.7, 0.8, 0.9.
4. 5 =0.75

5. GRASP Reactivo

En el GRASP Reactivo, propuesto por Prais y Ribeiro (2000), ¢ se toma
inicialmente al azar de un conjunto dado de valores discretos, pero trans-
currido un cierto nimero de iteraciones se analiza la calidad relativa de las
soluciones obtenidas con cada valor de ¢ y se aumentan las probabilidades
de los valores que producen mejores soluciones.

4.3 Fase de mejora

Cada solucion construida en la fase anterior es el punto de partida para una
btsqueda local en la que tratamos de mejorarla. Hemos estudiado tres alternati-
vas:
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I) Tomamos un bloque adyacente a un rectdngulo vacio y consideramos redu-
cirlo o eliminarlo completamente. Los demds bloques se desplazan hacia las
esquinas, los rectangulos vacios resultantes se fusionan y la lista actualizada
L se vuelve a cortar utilizando el algoritmo constructivo (Figura 3). Si la
solucién obtenida mejora la inicial, se realiza el movimiento y se pasa a
estudiar otro bloque. Sélo se considera la reduccién de un bloque cuando
ello no viola las cotas inferiores P; en el nimero de piezas a cortar.

II) El segundo procedimiento es una simplificacién del método I en el que los
bloques no se desplazan hacia las esquinas y los rectangulos vacios sélo se
fusionan con los ya existentes (Figura 4).

IIT) El tercer método consiste en eliminar el dltimo £% de los bloques incorpo-
rados a la solucién (por ejemplo, el dltimo 10%) y volver a cortar el espacio
vacio resultante con el algoritmo constructivo determinista, como proponen
Beltran et al. (2002). Cuando estos tltimos bloques han sido eliminados,
los bloques restantes se desplazan hacia las esquinas y los rectangulos vacios
resultantes se fusionan, antes de aplicar el procedimiento constructivo (ver
Figura 5, en la que los niimeros en las piezas indican el orden en el que
fueron incluidas en el proceso de corte).

(a) Seleccionar (b) Reducir

]

(¢) Mover (d) Cortar de nuevo

Figura 3: Método de mejora 1. Problema 8, Tabla 1
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(a) Seleccionar (b) Reducir (c¢) Cortar de nuevo

Figura 4: Método de mejora II. Problema 6, Tabla 1
6

(a) Seleccionar (b) Eliminar (c¢) Cortar de nuevo

Figura 5: Método de mejora III. Problema 15, Tabla 1

5 Algoritmo Tabu Search

Tabu Search es actualmente un metaheuristico bien conocido (para una
introduccién, consultar el libro de Glover y Laguna (1997). Los elementos basicos
del algoritmo se describen en los apartados siguientes.

5.1 Definicién de movimientos

El espacio de soluciones en el que nos movemos esta compuesto tinicamente
por las soluciones posibles. En este espacio definimos varios movimientos para
ir de una solucién a otra. La solucién inicial se obtiene aplicando el algoritmo
constructivo de la secccién 3.

Distinguimos dos tipos de movimientos: reducciéon de bloques e insercién de
bloques. En la reduccién de bloques, se reduce el tamano de un bloque existente
eliminando algunas de sus filas o columnas. En la insercién de bloques, un nuevo
bloque se anade a la solucién. En ambos casos, presentamos priemro un esquema
del procedimiento y luego un ejemplo detallado.

e Reduccion de bloques

Paso 0. Inicializacion:
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B = lista de bloques de la solucién actual
L = lista de rectangulos vacios

Paso 1. FEleccion del bloque a reducir

Tomar B, uno de los bloques de B, con k columnas y [ filas de piezas
Pi-
Seleccionar el nimero de r de columnas (filas) a eliminar,
1<r<k (1<r<i),
manteniendo el nimero de piezas en la solucion z; > P;.
Si P; = 0, el bloque puede desaparecer completamente.
El nuevo rectangulo vacio se anade L.

Paso 2. Mowver los bloques restantes hacia sus esquinas mds proximas:

La lista de rectangulos vacios L se actualiza adecuadamente.

Paso 3. Volver a cortar nuevos bloques en los rectdngulos vacios:

Aplicar el algoritmo constructivo de la Seccion 3,

El algoritmo parte de las listas actualizadas £ y B, y P contiene las
piezas pendientes de cortar. Antes de aplicar el procedimiento cons-
tructivo, se estudia las posibles fusiones de rectdangulos de L, para
adaptarse lo mejor posible a las piezas de P.

Al seleccionar la pieza a cortar, la pieza eliminada en el Paso 1 no se
considera hasta que otra pieza haya sido anadida a la solucién.

Paso 4. Fusionar los bloques con la misma estructura:

Fusionamos dos bloques de la misma pieza si son adyacentes (o uno
de ellos puede desplazarse para ser adyacente con el otro) y en el lado
adyacente tienen la misma dimension.

En la Figura 6 vemos un ejemplo de movimiento de reduccién sobre un pro-
blema propuesto por Jakobs (1996) y utilizado posteriormente por Leung et
al. (2003). Los rectdngulos se denotan (z1,y1, x2,y2) donde (z1,y1) son las
coordenadas del vértice inferior izquierdo y (x2,y2) las del vértice superior
derecho. El rectangulo inicial es R = (0,0,120,45), con m = 22 tipos de
piezas v un total de M = 25 piezas que utilizan todo el rectangulo, sin
dejar zonas de pérdida. La Figura 6(a) muestra una solucién con 23 piezas,
en la que no caben dos piezas (6x12). El conjunto L estd compuesto por
Ry = (60,24,72,30) y Re = (72,18,84,24) (en gris claro). En el Paso 1,
se selecciona un bloque compuesto por una pieza (12x21) (en gris oscuro).
Su reduccion supone su desaparicion completa de la solucion, creando un
nuevo rectangulo vacio R3 = (72,24, 84,45) que se afiade a L (Figura 6(b)).
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En el Paso 2, el bloque compuesto por una pieza (12x15) se desplaza ha-
cia la esquina superior derecha. Por tanto, L = {R;, Ra, R4, R5}, donde
Ry = (60,30,72,45) y Ry = (72,24,84,30) (Figura 6(c)). En el Paso 3 el
procedimiento constructivo vuelve a cortar los rectangulos vacios. Primero,
Ry y Ry se fusionan, formando Rg = (60,24, 72,45), y lo mismo sucede con
Rs vy Rs, que forman R; = (72,18, 84,30). Entonces, se selecciona Ry7 y las
dos piezas (6x12) se cortan en él, llenandolo completamente. Finalmente,
se toma Rg y se corta en él la pieza eliminada inicialmente. La solucién
final, que es 6ptima, aparece en la Figura 6(d).

(a) Seleccionar (b) Reducir

(¢) Mover hacia la esquina (d) Volver a cortar

Figura 6: Reduccién de bloques. Problema 3 de Jakobs (1996)

e Insercion de bloques

Paso 0. Inicializacion:
B = lista de bloques
L = lista de rectangulos vacios
Paso 1. Elegir el bloque a insertar
Tomar p;, una pieza para la que x; < @;, y considerar un bloque de
esas piezas con k columnas y [ filas (kx [ < Q; — z;).
Paso 2. Seleccionar la posicion en la que insertar el nuevo bloque

Paso 3. Eliminar las piezas de la solucion que se solapan con el nuevo
bloque

Actualizar B (algunos de los bloques originales se reducen o eliminan)
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Actualizar L (pueden aparecer nuevos rectdngulos vacios).
Paso 4. Volver a cortar nuevos bloques en los rectangulos vacios

Paso 5. Fusionar los bloques con la misma estructura:

Los Pasos 4 y 5 son los mismos del procedimiento de reducciéon de
bloques.

En la Figura 7 vemos un ejemplo de movimiento de insercién sobre un pro-
blema propuesto por Fekete y Schepers (2004) y utilizado posteriormente por
Beasley (2004). El rectdngulo inicial es R = (0,0,100,100) y se han de cor-
tar m = 15 tipos de piezas, con un total de M = 50 piezas. La Figura 7(a)
muestra una soluciéon de valor z = 27539. El conjunto L estd compuesto por
Ry = (70,41,72,81) y Ry = (72,80,100,81). En el Paso 1 seleccionamos una
pieza i = 5 de dimensiones (6x40) con @); = 5 y s6lo 2 copias en la solucién actual
y consideramos un bloque B* de una pieza. En el Paso 2 colocamos B* sobre R,
seleccionando la esquina superior izquierda del rectangulo para colocar la esquina
superior izquierda del bloque. B* cubre completamente R; y parte de Rs, que se
transforma en Rs = (76,80, 100,81). B* también cubre parcialmente un bloque
de la solucién (Figura 7(b)). Por tanto, en el Paso 3, eliminamos las piezas de
la soluciéon que se solapan con B*. Esto produce dos nuevos rectangulos vacios
Ry = (76,40,78,80) y Rs = (72,40,76,41) (Figura 7(c)). En el Paso 4, el proce-
dimiento constructivo comienza con la lista £ = {R3, R4, R5}. Primero, R3 y Ry
se fusionan, produciendo Rg = (76,40,78,81) y R; = (78,80,100,81). Mientras
que ninguna de las piezas restantes cabia en R3 o en R4, una pieza ¢ = 13 de
dimensiones (2x41) cabe en Rg. La nueva solucién es mejor que la inicial y tiene
un valor zx = 27718, que es el éptimo (Figura 7(d)).

5.2 Movimientos que se estudian

En cada iteracién estudiamos todos los posibles movimientos de reduccién e
insercion que se pueden aplicar a la solucién actual.

e Reduccién:

1. Tomar cada bloque de la solucién, de uno en uno, en orden aleatorio.

2. Considerar todas las posibilidades de reduccién en las direcciones en
las que sea adyacente a un rectangulo de pérdida.

e Insercion:

1. Seleccionar una pieza para la que el nimero de copias en la solucidn,
x;, es menor que @;, de una en una, en orden aleatorio.
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(a) Solucién inicial (b) Insertar bloque

(c¢) Eliminar solapamiento (d) Fusionar y volver a cortar

Figura 7: Insercién de bloques. Problema 1 de Fekete y Schepers (2004)

2. Considerar todos los bloques posibles que se pueden formar con esa
pieza.

3. Considerar todas las posiciones en las que se puede colocar el bloque
sobre un rectangulo vacio.

5.3 Seleccién del movimiento

La funcién objetivo original consiste tinicamente en maximizar el valor de las
piezas cortadas f(x) = >, v;x;. Sin embargo, si los movimientos se evaldan con
esta funcién, pueden haber muchos movimientos con la misma evaluacién. Para
discriminar entre estos movimientos, utilizamos una funcién objetivo secundaria:

9(x) = k1S + k2 |L| + k3sC + k4 F.

e S (Simetria): Intentamos no explorar soluciones simétricas y concentrarnos
en aquellas soluciones en las que los rectangulos vacios estan concentrados
preferentemente en la parte superior derecha del rectdngulo.
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S =1 si no existe una solucién simétrica con los rectangulos de pérdida mas
concentrados en la parte superior derecha. En otro caso, S = 0.

e |L| (Nimero de rectdngulos vacios)). Si es posible, preferimos soluciones
con el menor nimero de rectangulos vacios.

e C (Rectingulos vacios centrados y agrupados): Preferimos soluciones en las
que los rectangulos vacios estan centrados y agrupados, ya que esto facilitara
su fusion y poder cortar mas piezas. Consideramos el menor rectangulo FR
que contiene todos los rectangulos vacios y

C=1-(0.75%7d+0.25xra)

donde rd es la distancia desde el centro de E'R al centro del rectangulo
inicial, dividida por la distancia del centro del rectangulo inicial a su esquina
inferior izquierda, y ra es el drea of ER dividida por el area del rectangulo
inicial.

e F (Factibilidad). En problemas doblemente restringidos, la solucién puede
no ser factible. En ese caso F' = 1. Si no, F = 0.

Estos criterios se suman en la funciéon objetivo secundaria con pesos que re-
flejan su importancia relativa, de acuerdo con los resultados de un estudio com-
putacional preliminar sobre un subconjunto de problemas. En la versién actual
del algoritmo los pesos son:

Criterio Coeficiente Peso
Simetria k1 5000
Ntumero de rectangulos vacios ko —950
Rectangulos vacios centrados y agrupados ks 50
Factibilidad ky —50000

5.4 Lista Tabu

La lista tabu contiene para cada solucién un par de atributos: el valor de la
funcién objetivo y el menor rectangulo ER que contiene todos sus rectangulos
vacios. Un movimiento es tabi si estos dos atributos de la nueva solucién corres-
ponden a un par de la lista tabu.

El tamano de la lista tabu varia dindmicamente. Después de un cierto nimero
de iteraciones sin mejorar la mejor solucién conocida, la longitud de la lista se
elige al azar en el intervalo [0.25 % M,0.75  M], donde M =Y. Q;.

El criterio de aspiracion permite moverse a una solucién con estatus tabu si
mejora la mejor solucién conocida.
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5.5 [Estrategias de intensificacién y diversificacién

Los movimientos que hemos definido implican un alto nivel de diversificacién.

Sin embargo, hemos anadido dos nuevas estrategias de diversificacién:

6

e Memoria a largo plazo

A lo largo del proceso de bisqueda, guardamos la frecuencia con la que cada
tipo de pieza aparece en las soluciones.

Esta informacion se usa para intensificacion y diversificaciéon. En una estra-
tegia de diversificacion, favorecemos movimientos que incluyen piezas que
no aparecen frecuentemente en las soluciones. En una estrategia de intensi-
ficacion, consideramos tnicamente las piezas que aparecen en soluciones de
alta calidad y favorecemos que esas piezas aparezcan en las nuevas solucio-
nes.

En la fase de diversificacién, la funcién objetivo se modifica restandole un
término que es la suma de las frecuencias de las piezas que aparecen en la
solucién

f(@) = f(x) =22 freq(pi)
En la fase de intensificacion, la funcién objetivo se modifica sumandole un

término que es la suma de las frecuencias de las piezas que aparecen en un
conjunto de soluciones de élite €

f(@) = f@) + K3 ice freq(pi)

Reinicio

De acuerdo con la funcién objetivo secundaria, tendemos a explorar solu-
ciones que satisfagan el criterio de simetria. Después de un cierto nimero
de iteraciones sin mejorar la mejor soluciéon conocida, la solucién actual
se transforma aplicdndole un movimiento de simetria vertical y otro hori-
zontal respecto a los ejes vertical y horizontal que pasan por el centro del
rectangulo. La nueva solucion obtenida serda muy diferente de las recien-
temente estudiadas y puede ser considerada como un punto de reinicio del
proceso de biisqueda.

Estudio computacional

6.1 Problemas test

Hemos usado varios conjuntos de problemas test:

1. Un conjunto de 21 problemas de la literatura: 12 de Beasley (1985), 2 de

Hadjiconstaninou y Christofides (1995), 1 de Wang (1983), 1 de Christofides
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y Whitlock (1977), 5 de Fekete y Schepers (2004). Para todos ellos la
solucién éptima es conocida y aparece en Beasley (2004).

2. Un conjunto de 630 problemas grandes generados por Beasley (2004), si-
guiendo el esquema de Fekete y Schepers (2004). Todos tienen un recténgulo
inicial (100, 100). Para cada valor de m, nimero de tipos de piezas (m =40,
50, 100, 150, 250, 500, 1000), se han generado aleatoriamente 10 problemas
con P, =0,Q; =Q*,Yi=1,...,m donde Q* = 1;3;4. El valor asignado
a cada pieza es igual a su area multiplicada por un entero aleatoriamente
elegido entre {1, 2, 3}.

3. Los 21 problemas test mencionados en primer lugar fueron transformados
por Beasley (2004) en problemas doblemente restringidos definiendo cotas
inferiores P;. Concretamente, para cada tipo de pieza ¢ = 1,...,m que
satisface:

m

> (Lwy) Py + liw; < (LW)/3, la cota inferior P; se fija a 1.
J=1,j#1
Este conjunto de problemas nos permitirda probar nuestros algoritmos en el
caso general de problemas doblemente restringidos.

4. Finalmente, hemos incluido los problemas test utilizados por Leung et al.
(2003), entre los que se encuentran 3 problemas de Lai y Chan (199a), 5
de Jakobs (1996), y 2 de Leung et al. (2003). También hemos incluido 21
problemas més grandes de Hopper y Turton (2001). Son problemas en los
que el valor de cada pieza corresponde a su area y el objetivo es minimizar
los rectangulos vacios asociados a la soluciéon. Estos problemas han sido
generados de forma que la soluciéon 6ptima no contiene rectangulos vacios.

Hemos incluido los problemas de Leung et al. (2003) y Hopper y Turton (2001)
porque presentan caracteristicas que los hacen complementarios de los problemas
de los grupos anteriores. Mientras muchos de aquéllos pueden considerarse pro-
blemas de seleccion, ya que no todas las piezas posibles pueden ser cortadas y
el problema es elegir el mejor subconjunto, éstos pueden considerarse problemas
rompecabezas, pues todas las pieza caben en el rectangulo y el problema es elegir
su posicién.

6.2 Implementacién de los algoritmos

Los algoritmos han sido codificados en lenguaje C' 4+ + y se han ejecutado en
un ordenador PentiumlIII a 800 Mhz. En la implementacion final del algoritmo
GRASP utilizamos como estrategia de aleatorizacién la alternativa 1, basada en
el Conjunto Restringido de Candidatos. Para la eleccién del ¢ utilizamos GRASP
reactivo y como procedimiento de mejora el Método III. El algoritmo para cuando
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se alcanza el limite de 10000 iteraciones o se iguala la cota inferior o la solucién
optima si es conocida. Esta estrategia de parada cuando se consigue la solucion
6ptima ha sido previamente utilizada por Beasley (2004) y la hemos adoptado
para poder comparar con sus resultados.

En cuanto al algoritmo Tabu Search, el tamano de la lista tabt cambia tras 100
iteraciones sin mejorar la mejor soluciéon conocida. Si transcurren 400 iteraciones
sin mejora, se realiza una fase de diversificacién basada en memoria a largo plazo
durante 100 iteraciones o hasta que se mejore la solucién. Tras ella, se recupera la
funcién objetivo original y se continia el proceso de busqueda. Después de otras
400 iteraciones sin mejora se realiza una fase de intensificacién, con K = 100
durante 100 iteraciones o hasta que se mejore la solucién. Tras ella recuperamos la
funcién objetivo original, pero si la solucién no ha mejorado, en lugar de continuar
la biisqueda desde la solucién actual se realiza un reinicio y se continta a partir
de la solucién transformada. Como en el caso del algoritmo GRASP, el algoritmo
Tabu Search para cuando se alcanza un limite de iteraciones, en este caso 1500,
o cuando se llega a la solucién 6ptima.

6.3 Resultados obtenidos

Los resultados obtenidos para los tres conjuntos de problemas restringidos apa-
recen en las tablas 1, 2y 3. Los resultados sobre los problemas doblemente restrin-
gidos apareceran mas adelante. Las dos primeras tablas incluyen una comparacion
directa con los resultados obtenidos por Beasley (2004). Los tres algoritmos pue-
den compararse en términos de calidad. Sin embargo, los tiempos de ejecucién
no pueden compararse directamente. Beasley codificé su algoritmo en lenguaje
FORTRAN y utiliz6 un ordenador Silicon Graphics O2 workstation (R10000 chip,
225MHz, 128 MB). Una comparacién aproximada (http : //www.spec.org) indica
que su ordenador es el doble de rapido que el nuestro. En la tabla 1 vemos que
el algoritmo Tabu Search resuelve éptimamente todos los problemas en tiempos
de computacién muy breves, aventajando a los otros algoritmos en términos de
calidad y tiempo. Para los problemas grandes de la tabla 2 las soluciones éptimas
no son conocidas y las comparaciones se hacen con las cotas superiores obtenidas
resolviendo problemas mochila acotados (Seccién 2). La tabla 2 muestra que el
algoritmo Tabu Search obtiene nuevamente los mejores resultados sobre cada tipo
de problemas, excepto para m = 50, @* = 1 donde GRASP es ligeramente mejor.
Los tiempos de computaciéon son mucho mas cortos que los de Beasley, aunque
son mayores que los requeridos por el GRASP. Ambos algoritmos estdn basados
en ideas similares. El algoritmo Tabu Search, mas complejo, obtiene mejores so-
luciones pero necesita tiempos de ejecucion més largos. En la tabla 3 volvemos
a comparar GRASP y Tabu Search. Tabu Search aventaja claramente a GRASP
en cuanto a la calidad de las soluciones, con tiempos de ejecucién similares.

La tabla 4 muestra los resultados de los algoritmos sobre el conjunto de pro-
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blemas doblemente restringidos. La cota superior corresponde en este caso a la
solucion del problema restringido. Los problemas para los que los algoritmos no
encuentran solucion son claramente infactibles. Aparecen aqui para no modificar
la tabla de resultados publicada por Beasley. El algoritmo Tabu Search obtiene
los mejores resultados, pero sus tiempos de computacién son méas largos.

7
1]
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Origen del problema I Tamano Solucién  Solucién Solucién  Solucién Tiempo de CPU (segundos)

(L,W) m M  de Beasley GRASP TABU 6ptima  Beasley = GRASP  TABU

Beasley (1985) 1 (10, 10) 5 10 164 164 164 164 0,02 0,00 0,06

2 (10, 10) 717 230 230 230 230 0,16 0,00 0,00

3 (10, 10) 10 21 247 247 247 247 0,53 0,00 0,00

4 (15, 10) 5 7 268 268 268 268 0,01 0,00 0,00

5 (15, 10) 7 14 358 358 358 358 0,11 0,00 0,00

6 (15, 10) 10 15 289 289 289 289 0,43 0,00 0,00

7 (20, 20) 5 8 430 430 430 430 0,01 0,00 0,00

8 (20, 20) 7 13 834 834 834 834 3,25 0,77 0,16

9 (20, 20) 10 18 924 924 924 924 2,18 0,00 0,05

10 (30, 30) 5 13 1452 1452 1452 1452 0,03 0,00 0,00

11 (30, 30) 7 15 1688 1688 1688 1688 0,60 0,05 0,00

12 (30, 30) 10 22 1801 1865 1865 1865 3,48 0,05 0,06

Hadjiconstantinou 3 (30, 30) 7 7 1178 1178 1178 1178 0,03 0,00 0,00

y Christofides (1995) 11 (30, 30) 15 15 1270 1270 1270 1270 0,04 0,00 0,00

Wang (1983) (70, 40) 19 42 2721 2726 2726 2726 6,86 0,77 0,11

Christofides y Whitlock (1977) 3 (40, 70) 20 62 1720 1860 1860 1860 8,63 0,39 0,06

Fekete y Scheppers (2004) 1 (100, 100) 15 50 27486 27589 27718 27718 19,71 2,31 0,05

2 (100, 100) 30 30 21976 21976 22502 22502 13,19 4,17 2,14

3 (100, 100) 30 30 23743 23743 24019 24019 11,46 3,68 3,40

4 (100, 100) 33 61 31269 32893 32893 32893 32,08 0,00 0,66

5 (100, 100) 29 97 26332 27923 27923 27923 83,44 0,00 0,00

Porcentaje medio de desviacién respecto al éptimo 1,21% 0,19% 0,00% 8,87 0,58 0,32
Numero de soluciones éptimas (de 21) 13 18 21

Tabla 1: Resultados computationales — Problemas de la literatura
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Desviaciones medias respecto de la cota superior

m Q* M Solucién  Solucién  Solucién Tiempo de CPU (segundos)
de Beasley GRASP TABU  Beasley GRASP TABU

40 1 40 7,77 6,97 6,55 13,57 2,33 10,97
3 120 3,54 2,22 1,95 47,43 6,62 14,20

4 160 3,24 1,81 1,65 63,30 4,44 18,26

50 1 50 5,48 4,80 4,85 14,60 4,71 15,49
3 150 2,35 1,50 1,27 59,27 7,05 22,50

4 200 2,63 1,18 0,96 80,07 5,34 18,19

100 1 100 2,26 1,51 1,50 27,20 5,36 38,79
3 300 1,27 0,47 0,31 119,47 9,41 32,11

4 400 1,06 0,26 0,18 175,10 6,99 19,67

150 1 150 1,31 0,89 0,84 40,60 5,53 54,90
3 450 0,60 0,14 0,07 190,53 11,71 31,76

4 600 0,92 0,11 0,05 323,83 6,75 19,87

250 1 250 0,88 0,51 0,45 76,70 527 90,07
3 750 0,57 0,04 0,01 439,47 13,89 13,70

4 1000 0,39 0,03 0,00 693,67 6,65 4,50

500 1 500 0,26 0,05 0,03 203,10 3,24 86,17
3 1500 0,18 0,00 0,00 1210,80 12,24 1,10

4 2000 0,18 0,00 0,00  1790,83 1,15 0,84

1000 1 1000 0,09 0,00 0,00 667,23 1,01 7,80
3 3000 0,07 0,00 0,00 3318,47 6,53 1,54

4 4000 0,07 0,00 0,00 4840,57 0,29 1,19

Tipo 1 1,64 1,04 0,95 558,11 513 19,61
Tipo 2 1,70 1,14 1,06 668,41 590 23,84
Tipo 3 1,66 1,03 0,94 830,02 7,28 32,56
Todos 1,67 1,07 0,98 685,51 5,91 25,34

Tabla 2: Resultados computationales — Problemas aleatorios grandes
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Origen del I Tamano Solucién  Solucién Solucién Tiempo de CPU
problema (L,W) m M GRASP TABU 6ptima  GRASP TABU
Lai y Chan (1997a) 1 (400,200) 9 10 80000 80000 80000 0,00 0,00
2 (400,200) 7 15 79000 79000 79000 0,00 0,02
3 (400,400) 5 20 154600 160000 160000 4,12 0,38
Jakobs (1996) 1 (70,80) 14 20 5447 5600 5600 10,16 1,89
2 (70,80) 16 25 5455 5540 5600 15,44 16,88
3 (120,45) 22 25 5328 5400 5400 12,57 0,42
4 (90,45) 16 30 3978 4050 4050 10,28 1,97
5 (65,45) 18 30 2871 2925 2925 14,94 1,53
Leung et al. (2003) 1 (150,110) 40 40 15856 16280 16500 90,52 52,36
2 (160,120) 50 50 18628 19044 19200 132,26 63,95
Hopper y Turton (2001) 1-1 (20,20) 16 16 400 400 400 0,94 0,42
1-2 (20,20) 17 17 386 400 400 9,28 4,23
1-3 (20,20) 16 16 400 400 400 0,06 0,95
2-1 (40,15) 25 25 590 600 600 19,44 0,44
2-2 (40,15) 25 25 597 600 600 17,36 4,16
2-3 (40,15) 25 25 600 600 600 0,71 0,00
3-1 (60,30) 28 28 1765 1800 1800 26,80 4,91
3-2 (60,30) 29 29 1755 1800 1800 37,35 10,11
3-3 (60,30) 28 28 1774 1800 1800 30,92 5,52
4-1 (60,60) 49 49 3528 3580 3600 102,05 45,27
4-2 (60,60) 49 49 3524 3564 3600 110,79 68,59
4-3 (60,60) 49 49 3544 3580 3600 94,41 51,11
5-1 (60,90) 73 73 5308 5342 5400 212,07 135,97
5-2 (60,90) 73 73 5313 5361 5400 231,56 96,80
5-3 (60,90) 73 73 5312 5375 5400 231,24 82,06
6-1 (80,120) 97 97 9470 9548 9600 480,44 240,39
6-2 (80,120) 97 97 9453 9448 9600 465,49 399,86
6-3 (80,120) 97 97 9450 9565 9600 478,02 206,78
7-1 (160,240) 196 196 37661 38026 38400 3760,14  3054,38
7-2  (160,240) 197 197 37939 38145 38400 2841,96  1990,70
7-3  (160,240) 196 196 37745 37867 38400 3700,99  5615,75
Porcentaje medio de desviacién del éptimo 1,68% 0,42% 423,95 392,19
Numero de soluciones 6ptimas (de 31) 5 16

Tabla 3: Resultados computationales — Problemas sin pérdida
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Origen del problema I Tamano Solucién  Solucién  Solucién Cota Tiempo de CPU (segundos)
(L,W) m M  de Beasley GRASP TABU  superior Beasley @GRASP TABU

Beasley (1985) 1 (10, 10) 5 10 164 164 164 164 0,02 0,00 0,00
2 (10, 10) 717 225 225 225 230 5,53 0,71 1,70

3 (10, 10) 10 21 220 220 220 247 7,85 1,21 2,26

4 (15, 10) 5 7 268 268 268 268 0,01 0,00 0,00

5 (15, 10) 7 14 301 301 301 358 5,05 0,72 1,48

6 (15,10) 10 15 265 252 265 289 6,81 1,81 1,59

7 (20, 20) 5 8 430 430 430 430 0,01 0,00 0,00

8 (20, 20) 7 13 819 819 819 834 6,54 1,32 1,76

9 (20,20) 10 18 924 924 924 924 5,64 0,00 0,00

10 (30, 30) 5 13 n/f n/f n/f n/f 2,38 0,22 0,94

11 (30, 30) 7 15 1505 1518 1518 1688 2,96 1,59 2,52

12 (30,30) 10 22 1666 1648 1672 1865 3,78 1,65 3,73

Hadjiconstantinou 3 (30, 30) 7 7 1178 1178 1178 1178 0,25 0,00 0,00
y Christofides (1995) 11 (30,30) 15 15 1216 1216 1216 1270 2,60 2,08 3,18
Wang (1983) (70, 40) 19 42 2499 2700 2716 2726 6,36 1,48 6,16
Christofides y Whitlock (1977) 3 (40, 70 20 62 1600 1720 1720 1860 6,81 0,88 5,27
Fekete y Scheppers (2004) 1 (100, 100) 15 50 25373 24869 25384 27718 11,86 3,73 25,27
2 (100, 100) 30 30 17789 19083 19657 22502 5,80 3,02 18,35

3 (100, 100) 30 30 n/f n/f n/f n/f 4,03 0,66 12,41

4 (100, 100) 33 61 27556 27898 28974 32893 20,42 2,80 37,46

5 (100, 100) 29 97 21997 22011 22011 27923 18,41 3,30 61,90

Porcentaje medio de desviacién de la cota superior 8,11% 7,36% 6,62% 5.86 1.29 8.86

n/f: Problema no factible

Tabla 4: Resultados computacionales — Problemas doblemente restringidos
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1 Introduccion

La secuenciacién de proyectos consiste en determinar el inicio y final de un
conjunto de actividades en un proyecto. Dichas actividades estédn ligadas entre si
por relaciones de precedencia y requieren uno o mas recursos. La secuenciacion
de proyectos ha sido objeto de una gran aten-ciéon en la investigacion desde que
los primeros métodos, CPM y PERT, fueron desarrollados en los anos 50. Estos
procedimientos fueron capaces de resolver grandes problemas y fueron considera-
dos una herramienta muy ttil en el proceso de planificacién. Sin embargo, ambos
presuponen que los recursos son ilimitados con lo que su aplicaciéon queda muy
limitada en los problemas reales. Por esto muchos investigadores comenzaron a
estudiar el caso de los recursos limitados (RCPSP) del cual se han desarrollado
hasta el momento muchos algoritmos exactos y aproximados. El libro de Demeu-
lemeester y Herroelen [4] muestra una excelente descripcion de la actual situacién
de la investigacién. El problema clasico del RCPSP incluye dos tipos de recursos;
los renovables, cuya disponibilidad se renueva en cada periodo del intervalo de
planificacién, y los no renovables, cuya disponibilidad se va reduciendo a lo largo
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del proyecto a medida que se consumen. Sin embargo estos dos tipos de recursos
no son suficientes para representar muchas situaciones reales por lo que han sido
propuestos algunos otros tipos de recursos como los comprometidos (allocatable)
[8, 13] o los acumulativos]9, 10].

En nuestro trabajo consideramos los recursos parcialmente renovables, intro-
ducidos por Bottcher et al. [3] en 1999. La disponibilidad de este tipo de recursos
estd asociada a un subconjunto de periodos del horizonte de planificacién y las
actividades sélo consumen el recurso si son procesadas dentro de esos periodos.
Este tipo de recursos pueden ser un instrumento poderoso para resolver proble-
mas de secuenciacién de actividades. Ademds, desde el punto de vista tedrico,
engloban como casos particulares tanto a los renovables como a los no renovables.
Por otro lado, los recursos parcialmente renovables permiten modelizar complica-
das reglas laborales y restricciones en problemas de horarios como casos concretos
de problemas de secuenciacién. Como ejemplo consideremos un proyecto que in-
volucra recursos humanos. Podemos encontrarnos con condiciones laborales tales
como trabajar a lo sumo dos dias del fin de semana cada tres semanas consecuti-
vas. Esta restriccion no puede ser modelizada como un recurso renovable porque
eso exigiria considerar cada periodo por separado. Tampoco puede serlo como
uno no renovable porque tendriamos que considerar todo el horizonte de plani-
ficacion. Sin embargo podemos hacerlo como un recurso parcialmente renovable
con un conjunto de periodos 6, 7, 13, 14, 20, 21 que incluyen los dias de los tres
primeros fines de semana y con una disponibilidad de 2 unidades. Cada tarea
consume 1 unidad de dicho recurso durante cada dia del fin de semana en el que
es procesada. Supongamos tres actividades A, B y C secuenciadas en la escala
temporal. De ellas, la actividad A estd en proceso en los periodos 5, 6 y 7 y, por
tanto, consume 2 unidades del recurso. La actividad B se realiza en los periodos
del 9 al 12, ambos inclusive, y no consume nada. Por fin, la actividad C comienza
en el 16 y acaba en el 20 y consume tinicamente 1 unidad en el periodo 20. Si estas
tres tareas fueran realizadas por el mismo trabajador la solucién seria imposible
porque excede a la disponibilidad de recursos.

Bottcher et al.[3] propusieron una formulacién entera y desarrollaron algorit-
mos exactos y heuristicos. Schirmer [12] estudié ampliamente este nuevo tipo de
recursos en su libro sobre problemas de secuenciacion de actividades. En él pre-
sent6 muchos ejemplos de condiciones especiales que podian ser adecuadamente
modelizadas usando los recursos parcialmente renovables y también presenté va-
rias familias de algoritmos aproximados para resolver el problema de secuenciacién
de actividades con recursos parcialmente renovables (RCPSP /7). En este trabajo
describimos algunas técnicas de preproceso y desarrollamos diferentes algoritmos
heuristicos para el RCPSP /7. El preproceso reduce las dimensiones del problema
tanto en los recursos como en los tiempos posibles de finalizacién, a partir de aqui
TPF, de las actividades y, por tanto, mejora la eficiencia de los algoritmos.

En el apartado 2 definimos los elementos del problema y exponemos una for-
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mulacion entera del mismo. El apartado 3 describe los aspectos principales del
preproceso. En el 4 exponemos el algoritmo constructivo que utilizaremos en las
metaheuristicas de los apartados posteriores. Los apartados 5 y 6 estan dedicados
a exponer los procedimientos GRASP y de Busqueda Dispersa respectivamente,
estableciendo comparaciones entre los resultados obtenidos por ambos. Por fin,
el apartado 7 expone conclusiones y futuras lineas de investigacion.

2 Formulacién del problema

El RCPSP /7 puede ser definido de la manera siguiente: Sea J el conjunto de
n = |J| actividades, numeradas de 1 a n, donde las actividades ficticias 1 y n re-
presentan el inicio y final del proyecto. Sea P; el conjunto de actividades que son
predecesoras inmediatas de la actividad j y PJ( el conjunto de todas las predeceso-
ras de j. Cada actividad j tiene una duracién d; y no puede ser interrumpida. Sea
R el conjunto de recursos parcialmente renovables. Cada recurso r € R tiene una
disponibilidad total K, y un conjunto de periodos asociado II,.. Una actividad
J que necesite del recurso r consumird k;, unidades del mismo en cada periodo
t € I, en que esté en proceso. Finalmente, sea T el tltimo periodo del horizonte
de planificacién. Para cada actividad j , mediante el analisis del camino critico,
obtenemos el primero y el tltimo de los TPF de la actividad que denotamos EF'T}
y LFT)}. Representamos por E; = {EFTj,....,LFT}}, su conjunto de TPF, y por
Qi = {t, st +d;j — 1}
El RCPSP/7 consiste en secuenciar las actividades de manera que se satisfagan
las relaciones de precedencia y las restricciones de los recursos y se minimize el
tiempo total de duracién del proyecto o makespan.

Si definimos las variables:

1 sila actividad j acaba en el tiempo ¢
Tjt =
7 0 en otro caso.

se puede formular como:

teE,
s.t. S =1 jeJ (2)
teE;
Z twy < Z (f - dj)l‘jt J€J, 1€ Pj (3)
teb; teEE;

Z kjr Z Z Tjq < K, reR (4)

j€T  t€ll geq;, ) E;
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z; € {0,1} jeJ, teE, (5)

La funcién objetivo (1) minimiza el tiempo final de la dltima actividad y, por
tanto, la duracién del proyecto. Las restricciones (2) aseguran que cada actividad
acaba una sola vez. Las restricciones (3) son las de precedencia y (4) las de
recursos. Noétese que a diferencia del problema con recursos renovables donde
hay una restriccién por cada recurso y periodo, en este problema sélo hay una
restriccién global para cada recurso r € R. Otra caracteristica especial de este
problema es que todas las actividades deben acabar dentro del intervalo cerrado
E; porque el conjunto II, esta definido dentro del horizonte de planificacién (0, T').
Por tanto, no esta garantizada la existencia de soluciones posibles. De hecho,
Schirmer[12] ha probado que el problema de factibilidad del RCPSP/7m es NP-
completo en sentido estricto.

La formulacién anterior se conoce como formulacién normalizada de Bottcher
et al. [3] y Schimer[12]. En sus trabajos también han considerado formulaciones
alternativas pero finalmente adoptaron la normalizada por su simplicidad.

3 El preproceso

El preproceso tiene dos objetivos. En primer lugar, ayudar a decidir si una
instancia dada tiene soluciones posibles. En este caso, el segundo objetivo es
reducir la cantidad de recursos y de TPF de las actividades. Si se consiguen
estos dos objetivos, los procedimientos de solucién no perderan tiempo tratando
de resolver problemas imposibles y concentraran sus esfuerzos en los elementos
significativos del problema. El preproceso que hemos desarrollado incluye varios
procedimientos:

1. Identificar los problemas triviales. Se secuencia cada actividad j en su
EFTj Si esta soluciéon cumple las restricciones de recursos, es la solucién
optima.

2. Reducir el horizonte de planificacion. Construimos una primera solucién
aplicando un algoritmo iterativo GRASP. Si el makespan de esta solucién,
ts, coincide con el que proporcionaria el CPM, la solucién es 6ptima y el
preproceso finaliza. En caso contrario, hacemos T = tg. Con este nuevo T’
se recalculan los LF'Tj reducidos y con ellos los intervalos Ej.

3. Eliminar recursos ociosos y no restrictivos. En primer lugar, eliminamos
recursos ociosos, es decir, aquellos recursos r que no son utilizados por
ninguna actividad. Esto sucede si Vj € J con ky; # 0 — I, Ej =0. A
continuacién, calculamos para cada uno de los recursos no eliminados una
cota superior de la cantidad maxima que de él se demanda resolviendo el
siguiente problema lineal:
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J-1
Moz DMD:=3 kp ) >,
j=2

telr geQyu m E;

LFT;
s.t. > oap=1 (1<ji<J) (7)
t=EFT;
T t+dj71
> wim+ > @i <1 (j < JiePit<T) (8)
m=t s=1
,Tjtgo (1§]§J,EFT7§t§LFTJ)

9)
Se trata de maximizar la demanda de cada recurso (6), sujeto a que cada
actividad debe acabar en un y sélo en un instante (7), se respeten las re-
laciones de precedencia (8), y todas las variables son no negativas. Si este
maximo no supera la disponibilidad del recurso, no sera restrictivo y puede
eliminarse.

4. Eliminacion de variables. Calculamos, para cada uno de los TPF de cada
actividad j y cada recurso, el consumo que realizaria esa actividad si aca-
base en ese tiempo junto con el consumo que como minimo realizarian el
resto de actividades teniendo en cuenta que j acaba en ese TPF. Si esta
estimacién del consumo global excede la disponibilidad del recurso, el TPF
no sera posible y es eliminado. Al eliminar un TPF de una actividad se
comprueba la coherencia de los TPF de una actividad con los TPF de sus
antecesoras y sus sucesoras. Si alguno de éstos es imposible, se suprime. Si
como consecuencia de estos procesos alguna actividad se queda sin TPF el
problema es imposible.

Todos estos pasos pueden encontrarse expuestos detalladamente en [1, 2].

4 El procedimiento GRASP

El GRASP (Greedy Randomized Adaptive Search Procedure) es un pro-
ceso iterativo que combina una fase constructiva y una fase de mejora hasta que
se cumple un criterio de parada. La fase constructiva construye una solucién
paso a paso, anadiendo elementos a una soluciéon parcial. El elemento a anadir
es seleccionado de acuerdo con una funcién greedy que se adapta dindmicamente
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segtin se va construyendo la solucion. Sin embargo la seleccién que se hace no es
determinista sino sujeta a una cierta aleatorizacién. Por tanto, cuando repetimos
el proceso obtenemos diferentes soluciones. Cuando hemos obtenido una solucién
posible exploramos su entorno en una fase de busqueda local hasta que obte-
nemos un optimo local. Las primeras dos subsecciones contienen el algoritmo
constructivo y la fase de mejora. Las dos ultimas describen procedimiento de
GRASP agresivo y un Reencadenamiento de Trayectorias (Path Relinking) que
opera sobre las mejores soluciones obtenidas por el GRASP. Se puede encontrar
una visién general sobre el GRASP en Resende y Ribeiro[11] y un compendio
extensivo sobre la literatura acerca del GRASP en Festa and Resende[5].

4.1 El algoritmo constructivo

Hemos adaptado el Esquema de Secuenciacién en Serie (SSS) propuesto por
Schirmer[12], que a su vez es una adaptacién del Esquema de Secuenciacién en
Serie normalmente usado para el clasico RCPSP. Denotamos por F'T; el tiempo de
finalizacién asignado a la actividad j. En cada etapa del procedimiento iterativo
se secuencia una actividad eligiendo entre el vigente conjunto de decisiones, que
son pares (j,t) formados por una actividad j y un tiempo posible de finalizacién
t € TPF;. La seleccion se basa en una regla de prioridad aleatorizada.

Paso 0. Inicializacion
s =1 (pone en marcha el contador)
FT; =0 (secuenciamos la actividad ficticia 1)
S = {1} (secuenciacién parcial en la etapa 1)

EL;= conjunto de actividades elegibles (actividades que tienen a 1 por
tnico predecesor)

Paso 1. Construccion del conjunto de decisiones
D, ={(j,t)|j€ ELs,t € TPF;}
Paso 2. Eleccion de la decision

Seleccionamos una decisién (j*,¢*) in Dy, de acuerdo con una regla aleato-
rizada de prioridad

Paso 3. Test de Factibilidad
Si (j*,t*) es factible por recursos, ir al Paso 4
En caso contrario
Dy = D\ {(5",1")}

Si Dy = (), llamar al Mecanismo de Reparacion
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Si encontramos una decision posible (j*,t*) para secuenciar j* € E L,
ir al Paso 4

En otro caso, PARAR. El algoritmo no encuentra una solucién posible
En caso contrario, ir al Paso 2
Paso /4. Actualizacion
s=s5+1
FT;. =t*
Sy =8, 1U{j*}
BL, = (EL1\ {7")U{j € J| P, C 8.}
ViedJ|jeP, :TPF,=TPF\{r|t"+d, > 1}
Si s = n, PARAR. La secuenciacién se ha completado.

En caso contrario, ir al Paso 2.

En el Paso 1, la construccién de D, podria haber incluido el test de factibi-
lidad del Paso 3, como en el esquema original de Schirmer [12]. Sin embargo,
hemos preferido no comprobar la disponibilidad de recursos de cada decisién sino
solamente la de la decisién que escogemos. En los problemas con un gran ntimero
de TPF para las actividades esta estrategia es méds eficiente.

Para seleccionar la regla de prioridad hemos probado con 32 reglas de prioridad
usadas por Schirmer|[12]. Las 8 primeras estdn basadas en la estructura de la red,
incluyendo las reglas clasicas como EFT, LFT, SPT o MINSLK. La otras 24 reglas
se basan en la utilizacién de los recursos. 12 de ellas usan todos los recursos y
las otras 12 solamente los escasos. Una experiencia computacional preliminar nos
condujo a elegir la regla LFT como la mas adecuada en términos de velocidad y
calidad de la solucién. Estos resultados previos también mostraban que incluso
con las reglas mas eficientes el algoritmo constructivo, si selecciondbamos en cada
etapa la decisién con mayor prioridad, fallaba para obtener una solucién posible
para muchas de las instancias de 10 actividades generadas por Bottcher et al.[3].
Por tanto, la aleatorizacion incluida en el algoritmo no persigue sélo conseguir
soluciones diversas, sino también asegurar la obtencion de soluciones posibles para
la mayoria de los problemas.

Introducimos un procedimiento de aleatorizacion para seleccionar la decisién
en el Paso 2. Sea s;; la puntuacién de la decisién (j,t) en la regla de prioridad
Y Smaz = max{s;;|(j,t) € Ds}, y sea § un pardmetro a determinar (0 < § < 1).
Hemos considerado tres alternativas:

1. Eleccion equiprobable en una Lista Restringida de Candidatos, S

Elegimos una decisién (j*,t*) al azar en el conjunto S = {(j,t)| sju >
6Smaw}
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2. Eleccion sesgada en una Lista Restringida de Candidatos, S

Las decisiones que incumben a la misma actividad j reciben un peso que es
inversamente proporcional al orden de sus tiempos de finalizacién. Por ejem-
plo, si en S tenemos las decisiones (2,4), (2,5), (2,7), (2,8) que incumben a
la actividad 2 y las ordenamos por sus tiempos de finalizaciéon crecientes,
entonces la decisién (2,4) tendrd un peso igual a 1, la decisién (2,5) un
peso de 1/2,1a (2,7) un peso de 1/3 y la (2,8) de 1/4. El mismo método se
aplica a las decisiones correspondientes a las otras actividades. Por tanto,
las decisiones de S correspondientes a los tiempos de finalizacién més bajos
de las actividades involucradas serdn equiprobables y el proceso de seleccién
aleatoria les favorecera.

3. FEleccion sesgada en el conjunto de decisiones D

La decisién (j,t) se elige entre todas las de D con una probabilidad que
viene dada por un valor de Regret propuesto por Schirmer [12].

Los resultados de las pruebas computacionales, que pueden encontrarse en
[1], nos hicieron decidirnos por el segundo procedimiento para implementar el
algoritmo definitivo.

Constatamos que la estrategia aleatoria mejora significativamente la habilidad
del algoritmo constructivo para encontrar soluciones posibles para instancias fuer-
temente restringidas. Sin embargo, una limitada experiencia computacional nos
ha mostrado que el algoritmo construtivo podria ser incapaz de obtener solucio-
nes posibles para todas las instancias de 10 actividades generadas por Bottcher et
al.[3]. Por tanto, decidimos incluir un mecanismo de reparacién para secuencias
parciales infactibles. Si en el Paso 3 todas las decisiones de D,, fallan en la prueba
de factibilidad y D,, resulta vacio, en lugar de parar el proceso e iniciar una nueva
iteracién tratamos de reasignar algunas de las actividades ya secuenciadas a otros
TPF con la idea de liberar algunos recursos que puedan ser utilizados para que
alguna de las actividades todavia no secuenciadas sea procesada. Si este pro-
cedimiento tiene éxito, el proceso constructivo continua. En caso contrario, se
para.

4.2 La fase de mejora

Dada una solucién posible obtenida en la fase constructiva, la fase de me-
jora consta de 2 pasos. Primero, identificar las actividades cuyos tiempos de
finalizacién deban ser reducidos para conseguir una nueva solucién con el menor
tiempo tiempo total, que etiquetamos como criticas. Después, mover las acti-
vidades criticas de manera que la secuencia resultante sea posible de acuerdo
con las relaciones de precedencia y recursos. Hemos disenado dos tipos de mo-
vimientos: un movimiento simple, que implica una sola actividad critica, y un
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movimiento doble en el cual, ademés de la actividad critica, también son movidas
otras actividades.

1. Construccion de M, el conjunto de las actividades criticas
Paso 0. Inicializacion
M ={n} (la dltima actividad del proyecto, n, siempre es critica)
Paso 1. Anadir actividades a M

Mientras( 3j € M que no haya sido considerada para aumentar M)

{

Tomar la actividad mas larga todavia no considerada j € M
Vi € P; : Si FT; + d;j = FT; (no hay holgura entre i y j)
M= MuU{i}
}

En el Paso 1, la condicién para incluir una actividad en M es, simple-
mente, si 7 ha de ser movida hacia la izquierda, reduciendo su tiempo de
finalizacién, un predecesor i procesado inmediatamente antes de j también
ha de ser movido hacia la izquierda para dejar espacio para poder mover
j. Esta condicién, si consideramos que los filtros del preproceso pueden
haber eliminado algunos TPF de las actividades, puede ser refinada. Si
t' = max{t € TPF;|t; < FT;}, la condicién del Paso 1 puede escribirse
como: Si FT; +d; > t;, i es critica.

2. Movimiento simple

Intentamos mover, en orden topolédgico, cada actividad j € M hacia la
izquierda a un nuevo tiempo de finalizacién en el que satisfaga las relacio-
nes de precedencia y recursos. Si alguna actividad no se puede mover, el
procedimiento se detiene. Si hay varios nuevos TPF para una actividad,
elegimos aquel cuya suma de todos los consumos de recursos sea minima.

3. Movimiento doble

Consideramos las actividades de M, en orden topolédgico, para valorar
sus posibilidades de ser movidas hacia la izquierda. Para cada actividad
j € M estudiamos todos los TPF que sean anteriores al vigente. Si encon-
tramos un t factible por recursos, movemos j para que acabe en t y no es
necesario mover ninguna otra actividad. En caso contrario, consideramos
la posibilidad de mover las otras actividades de J. Movemos una actividad
1, hacia la izquierda o la derecha, a un nuevo tiempo de finalizacién provi-
sional si satisface las relaciones de precedencia y compensa la violacion de
recursos provocada por el movimiento de j o, al menos, reduce el déficit.
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Por tanto, a lo largo de la bisqueda en J, construimos una lista provisional
de cambios LC hasta que la solucién es reparada o J estda agotada. Si la
solucién es reparada con la lista LC, efectuamos estos cambios y conside-
ramos un nuevo j € M. En caso contrario, el procedimiento se para sin
mejorar la solucion.

El movimiento doble se puede reforzar utilizdndolo repetidamente mien-
tras se produzcan reducciones del déficit. El procedimiento es mas complejo
pero, a veces, ofrece movimientos posibles para las actividades criticas.

Los tres procedimientos de la fase de mejora se realizan iterativamente:

S= solucién vigente
improve = false
do{

Construir el conjunto M de actividades criticas

improve=SimpleMove(S, M)

if improve = false

improve=DoubleMove(S, M)

} while (improve = true)

4.3 Un procedimiento agresivo

La versién estandar de nuestro algoritmo heuristico comienza aplicando
el preproceso de la Secciéon 3. El problema reducido va entonces al algoritmo
GRASP descrito antes, combinando una fase constructiva y una de mejora en
cada iteracién, hasta que el procedimiento de parada, en este caso un numero fijo
de iteraciones, lo interrumpe.

Una versién reforzada del algoritmo heuristico combina el preproceso y el
GRASP de una forma més agresiva. Después de un numero determinado de
iteraciones (criterio de parada), comprobamos si la mejor solucién conocida ha
mejorado. En este caso, fijamos el horizonte T' en el nuevo makespan mejorado
y volvemos a pasar los filtros de reduccién de variables. El algoritmo GRASP se
aplica entonces al problema reducido. Ahora, obtener soluciones posibles es mas
dificil, pero si las conseguimos seran de alta calidad.

4.4 Reencadenamiento de Trayectorias

Si durante los procedimientos descritos antes guardamos un conjunto de
buenas soluciones, normalmente llamadas soluciones de élite, podemos llevar a
cabo un procedimiento de Reencadenamiento de Trayectorias. Comenzando en
una de estas soluciones de élite, llamada solucion inicial, construimos un camino
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hacia otra solucién de élite, llamada solucion guia. En el camino vamos impo-
niendo progresivamente, a las soluciones intermedias, los atributos de la soluciéon
guia de manera que evolucionen desde la solucién inicial hasta que alcancen la
solucién gufa. A lo largo de este camino confiamos en encontrar soluciones que
sean mejores que las dos soluciones de élite que estamos utilizando.

En nuestro caso guardamos las 10 mejores soluciones obtenidas en el GRASP
y combinamos todas las parejas posibles tomando una de ella como solucién ini-
cial y la otra como guia y, después, al contrario. Dada una solucién inicial se le
va imponiendo sucesivamente a cada actividad el tiempo de finalizaciéon corres-
pondiente de la solucién guia. Asi vamos obteniendo una familia de soluciones
que se transforman de la inicial a la guia. En muchos casos estas soluciones inter-
medias no son posibles. Entonces aplicamos un mecanismo de reparacion similar
al descrito en la Seccién 4.1. Vamos de la actividad 1 a la n comprobando, para
cada actividad j, si la solucién parcial de 1 a j es posible. Si no lo es, tratamos
de repararla. Silo conseguimos pasamos a estudiar la actividad j 4+ 1. En otro
caso, descartamos la solucién y procedemos con la solucion intermedia siguiente.
Si obtenemos una solucién intermedia completa que sea posible le aplicamos la
fase de mejora descrita en el GRASP.

5 El procedimiento de Scatter Search

Un algoritmo de Scatter Search es un procedimiento aproximado donde
se construye una poblacién de soluciones posibles y, posteriormente, se combinan
sistematicamente los elementos de unos subconjuntos determinados con la finali-
dad de producir nuevas soluciones posibles que esperamos que mejoren la mejor
solucién conocida (para una descripcién més exhaustiva del algoritmo se puede
ver el libro de Laguna and Marti[7]). El esquema bdsico del algoritmo se compone
de 5 pasos:

1. Generacion y mejora de soluciones
. Construccion del Conjunto de Referencia
. Elecciéon de Subconjuntos

. Procedimiento de combinacién

T = W N

. Actualizacién del Conjunto de Referencia

Este algoritmo bésico acaba cuando el Conjunto de Referencia no puede ser
actualizado y no hay nuevas soluciones disponibles para el procedimiento de com-
binacién. Sin embargo, el esquema puede ser intensificado anadiendo un nuevo
paso donde el Conjunto de Referencia es regenerado y, por tanto, son posibles
nuevas combinaciones. Las subsecciones siguientes describen con detalle cada
paso del algoritmo.
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5.1 Generacién y mejora de soluciones

En nuestro algoritmo la poblacién inicial se genera mediante una versién sim-
plificada del algorimo GRASP expuesto anteriormente.

5.2 Construcciéon del Conjunto de Referencia

A partir de la poblacién inicial seleccionamos un conjunto de b soluciones
para formar el Conjunto de Referencia, S, que sera el conjunto cuyas soluciones
combinaremos para obtener nuevas soluciones. La estrategia habitual es seleccio-
nar by elementos con el criterio de calidad: las b1 soluciones con los makespans mas
cortos y en el caso de empates eligiendo aleatoriamente. Las restantes bo = b — by
soluciones se seleccionan con el criterio de diversidad: las soluciones se seleccionan
una por una, buscando en cada momento la soluciéon mas lejana a las soluciones
que integran en ese momento el Conjunto de Referencia. Esto es, seleccionamos la
solucién s* para la cual el Minges{dist(s,s*)} es méximo. Definimos la distancia
entre dos soluciones s; y s2 como

dist(sy,82) = Z?:l |si — sb|

donde S; es el tiempo de finalizacién de la i-ésima actividad de la solucién s;.

5.3 Eleccion de Subconjuntos

Hemos desarrollado y comprobado diferentes procedimientos de combi-
nacion. La mayoria de ellos combina 2 soluciones, mientras que uno combina
3. La primera vez que ejecutamos la combinacion se combinan todos los pares
(o trios). En las ejecuciones siguientes, cuando el Conjunto de Referencia ha
sido actualizado y se compone de soluciones viejas y nuevas, sélo estudiamos las
combinaciones que contienen, al menos, una solucién nueva.

5.4 Procedimiento de combinacion de soluciones

Hemos desarrollado ocho procedimientos diferentes de combinacién. Cada
solucién s; estd representada por el vector de tiempos de finalizacién de cada una
de las n actividades del proyecto: s; = (sj,55,...,s7). Cuando combinamos 2
soluciones s1 y s2 (0 3 soluciones s1, s2 y s3), ordenamos las soluciones segin
los makespans no decrecientes. Por tanto, s1 serda una solucién con un makespan
menor o igual que sy (y el makespan de sy serd menor o igual que el de s3).

En este trabajo sélo exponemos las combinaciones 1 y 8 que han resultado las
mas eficaces y sobre las que se implementaron las mejoras posteriores como fue la
regeneracién del conjunto de referencia. Ademads son las que vienen reflejadas en
los resultados computacionales. La descripcién de las otras combinaciones puede
encontrarse en [2].
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Combinacion 1

Los tiempos de finalizacién de cada actividad en la nueva solucion, s., se
obtienen como una media ponderada de los tiempos de finalizacién de las dos
soluciones, con pesos relacionados con sus makespans segin la expresiéon:

klszi + kQSé

T T | donde ki = (1/s1)? vy ko = (1/55)?

se=1
Combinacion 8
Se combinan tres soluciones s1, so y s3 mediante un procedimiento de votacién.
Para decidir el valor de s’, las tres soluciones votan cada una por su propio
tiempo de finalizacién s}, sb, si. Escogemos como s’ el valor con mayor niimero
de votos. Si los tres valores son diferentes tendremos un empate. En este caso,
si el makespan de s es estrictamente menor que los otros actiia como voto de
calidad e impone su tiempo de finalizacion a los otros. Si no lo fuera, es decir si
dos o tres soluciones tienen el mismo makespan minimo el tiempo de finalizacion
se escoje al azar entre aquellos que corresponden a las soluciones empatadas.

La mayoria de las soluciones obtenidas por procedimientos de combinacién
no satisfacen todas las restricciones de precedencia y recursos. Las soluciones
imposibles son sometidas a un proceso de reparaciéon que trata de conseguir so-
luciones posibles tan préoximas como sea posible a las soluciones creadas por la
combinacién. FEste proceso se compone de dos fases. En la primera conside-
ramos los tiempos de finalizacién s’ en orden topoldgico para comprobar si la

solucién parcial (s, s, .., s') satisface todas las restricciones. En este caso, estu-

3 c)
diamos el tiempo siguiente si™!. En caso contrario, descartamos s’ como tiempo
de finalizacién de la actividad ¢ y buscamos un nuevo tiempo entre aquellos que
son posibles para i. La busqueda va de los tiempos mds préximos a s’ a los
m4s lejanos. Cuando encontramos un tiempo ' que puede ser incluido en una
solucién parcial (sl,s?,..,t") paramos la bisqueda y consideramos el tiempo si-
guiente s°*1. Si no encontramos ningin tiempo posible para la actividad i el
proceso va a una segunda fase que consiste en un procedimiento de reparacion si-
milar al del algoritmo constructivo que trata de cambiar el tiempo de finalizacion
de las actividades previas, 2,3, ..,7 — 1, para darle a la actividad ¢ mas posibili-
dades de encontrar un tiempo de finalizacion que satisfaga las restricciones. Si el
mecanismo tiene éxito, el proceso vuelve a la primera fase y considera el tiempo

siguiente siT1. Si fracasa, descartamos la solucién combinada.

5.5 Actualizacién del Conjunto de Referencia

La soluciones combinadas que son inicialmente posibles y las obtenidas
por el proceso de reparaciéon pasan a la fase de mejora descrita en la Seccién
4.2. Entonces estudiamos las soluciones mejoradas para su posible inclusién en
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el Conjunto de Referencia. El Conjunto de Referencia S es actualizado siguiendo
el criterio de calidad, es decir, formaran parte de €l las mejores soluciones b entre
las que forman S y las que provienen de la mejora. Si no se puede actualizar S
porque ninguna de las nuevas soluciones es mejor que las existentes entonces el
algoritmo se para a menos que se incluya la regeneracion de S.

5.6 Regeneraciéon del Conjunto de Referencia

La regeneracién del Conjunto de Referencia S tiene dos objetivos. Por un
lado introducir diversidad en el conjunto ya que, por la forma en que actualizamos
S, muchas soluciones con altos makespans pueden ser rapidamente sustituidas por
otras que los tengan inferiores pero que sean muy similares a las soluciones que
ya hay en S. Por otro, tratamos de obtener soluciones de alta calidad, incluso
mejores que las que ya tenemos en S.

Obtenemos las nuevas soluciones aplicando de nuevo el algoritmo del GRASP
descrito en la Seccién 4, pero con una modificacién. Sacamos provecho de la
informacién obtenida hasta este momento sobre la solucién éptima para orientar
la busqueda hacia las soluciones de alta calidad. Més en concreto, si la mejor
solucién conocida tiene un makespan sj.,, ponemos el horizonte de planificacién
T = sy, vy corremos el preproceso de nuevo para reducir los TPF de las activida-
des. Cuando ahora corremos el GRASP es més dificil obtener soluciones, porque
s6lo permitimos soluciones con iguales o mejores que s, ,, pero si tenemos éxito
conseguimos soluciones de alta calidad.

6 Resultados computacionales

6.1 Instancias para las pruebas

Bottcher et al.[3] generaron un primer conjunto de instancias para pruebas.
Tomaron como punto de partida PROGEN 2 [6], un generador de instancias para
el clasico RCPSP con recursos renovables, modificaron y agrandaron el conjunto
de pardmetros y generaron un conjunto de 2160 instances con 10 actividades
no ficticias, 10 réplicas para cada una de las 216 combinaciones de valores de los
parametros. Como la mayoria de los problemas fueron imposibles restringieron los
valores de los parametros a las 25 combinaciones més prometedoras y generaron
250 instancias con 15, 20, 25 y 30 actividades operativas, manteniendo siempre
la cantidad de 30 recursos.

Mids recientemente, Schirmer[12] desarrollé PROGEN 3, una extensién de
PROGEN 2, y generé algunas instancias nuevas. En concreto, generd 960 instan-
cias de 10, 20 30 y 40 actividades, con 30 recursos. La mayoria de ellas tenian
solucién posible, unos pocos de ellos eran imposibles y algunos fueron considera-
dos como no decididos porque no se consiguié una solucién posible en un tiempo
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limitado del algoritmo de branch and bound de Bottcher et al.[3]. La Tabla 1
muestra la categoria de los problemas de Schirmer como viene expuesta en [12].

Conjunto de  No resueltos Resueltos Problemas No decididos Problemas Total
Instancias optimamente optimamente posibles imposibles
J10 39 901 940 11 9 960
J20 203 734 937 23 0 960
J30 181 757 938 22 0 960
J40 183 743 926 34 0 960
Total 606 3135 3741 90 9 3840

Tabla 1: Problemas para pruebas generados por Schirmer

Por 1ltimo, consideramos que era necesario disponer de instancias de mayores
dimensiones y utilizamos el PROGEN 3 con los mismos parametros de Schirmer
para generar 960 nuevas instancias de 60 actividades y 30 recursos.

6.2 Resultados del preproceso

Los procedimientos del preproceso indicados en la seccion 3 se han aplicado
a los problemas de Bottcher et al.[3] de 10, 15, 20, 25 y 30 actividades que estaban
disponibles solicitdndolos a los autores. En las Tablas 2, 3 y 4 aparecen diferentes
aspectos de los resultados. La Tabla 2 muestra los logros del preproceso para
determinar el estatus de los problemas. Hemos senalado como posibles aquellas
instancias para las que el preproceso encuentra una solucién y como imposibles
aquellas que el preproceso puede demostrar que no tienen solucién. Cuando no ha
sido posible determinar dicho estatus los hemos marcado como no decididos. En
resumen, podemos decir que nuestro preproceso es muy eficiente para determinar
el estatus de una instancia dada.

n=10 n=15 n=20 n=25 n=30
Problemas 2160 250 250 250 250
Detectados como imposibles 1205 16 17 12 8
Detectados como possibles 879 233 231 236 239
No decididos 76 1 2 2 3
Categoria real Imposibles  Posible No decididos Imposibles No decididos

Tabla 2: Problemas de Béttcher et al. - Determinacion del estatus

La ultima linea de la Tabla 2 muestra el estatus que hemos sido capaces de
determinar para los problemas que quedaban por decidir después del preproceso.
Para ello usamos CPLEX con una formulacion entera del problema adaptada a
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partir de la expuesta en la Seccién 2. Incluso en este caso para 2 instancias de
tamano 20 y 3 de tamano 30 ha sido imposible determinar su estatus, aunque
suponemos que seran imposibles.

La Tabla 3 muestra las soluciones éptimas que obtiene el preproceso. En esta
tabla no se han incluido los problemas que quedaban como no decididos porque
es muy improbable que tengan solucién. Para més del 70 % de las instancias las
técnicas del preproceso han obtenido los 6ptimos.

n=10 n=15 n=20 n=25 n=30

Problemas 2160 250 250 250 250
Problemas posibles 879 234 231 236 239
ptimos obtenidos por el preproceso 646 165 177 190 193
Problemas restantes 233 67 54 46 46

Tabla 3: Problemas de Bottcher et al. - Soluciones éptimas identificadas en el prepro-
ceso

La Tabla 4 presenta la reduccion de recursos y variables conseguida para aque-
llos problemas no resueltos por el preproceso. Las rapidas técnicas del preproceso
reducen significativamente la cantidad de recursos a considerar y, todavia mas
importante, la cantidad de valores posibles de las variables de decisién.

n=10 n=15 n=20 n=25 n=30
Problemas 233 67 54 46 46
Recursos iniciales 30 30 30 30 30

Recursos restantes (media) 18 (60%) 18 (60%) 23 (77%) 25 (83%) 25 (83%)

Variables iniciales (media) 90 268 565 874

1314

Variables restantes (media) 51 (57%) 130 (49%) 348 (62%) 611 (70%) 906 (69%)

Tabla 4: Problemas de Béttcher et al. - Reduccién de recursos y variables

Los resultados obtenidos para los problemas de prueba generados por Schirmer|[12]

son de calidad similar y pueden ser consultados en [1, 2].

6.3 Resultados computacionales de los algoritmos construc-
tivos

Las 32 reglas de prioridad descritas por Schirmer[12] fueron introducidas
en el algoritmo constructivo de la Seccién 4.1. Fueron comprobadas con las 879
instancias posibles de tamano 10 generadas por Bottcher et al.[3]. La Tabla 5
nos muestra los resultados obtenidos por la 6 reglas que mejor han funcionado.
Las 3 primeras reglas se basan en el grafo de los problemas, mientras que las 3
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dltimas lo hacen en el consumo de recursos. ES indica que las reglas requieren
solo el uso de recursos escasos con subindices r. Rk, es la capacidad restante
del recurso r en el estadio s, segtiin se define en la seccién 4.1. RDj,; es la
demanda relevante, definida como RDj,y = kj,|Q ;i NII,|. MDE},; es la demanda
minima relevante comprometida para el recurso r por todos los sucesores de la
actividad j cuando esta empieza en el periodo ¢t. La caracteristica méds importante
de la Tabla 5 es que incluso las mejores reglas son incapaces de obtener una
solucién posible para el 20% de esas pequenas instancias de tamano 10. Por
tanto, necesitamos estrategias de aleatorizacion y mecanismos de reparaciéon que
incrementen significativamente la probablidad de encontrar soluciones posibles en
la fase constructiva del algoritmo GRASP.

Regla Definicién Soluciones posibles (%)  Soluciones éptimas (%)
LFT Min{LFT;} 80.09 64.28
MTS Maxz{|{i|j € P,}|} 79.64 69.98
SLK Min{LST; — EFT;} 76.22 61.66
DRC/ES  Maz{>" (RK, — RDjn)} 81.57 27.08
DRS/ES  Min{>" (RK,./RD;)} 79.29 27.53
TRS/ES  Min{3. (RDjri + MDE;.1)} 79.41 28.56

Tabla 5: Resultados de la Reglas Prioridad

La Tabla 6 muestra los resultados finales del algoritmo constructivo completo
con la regla de prioridad LFT, incluyendo ya el mecanismo de reparacién. Como
en la Tabla 5, los problemas de prueba son los de tamano 10 de Bottcher et al.[3].

Regla  Estrategia Iteraciones  Soluciones Posibles (%)  Soluciones ptimas (%)
LFT  Aleatorizacién 2 1000 99.89 99.09
Aleatorizacién 2 2000 100 99.43

Tabla 6: Resultados del algoritmo constructivo completo

6.4 Resultados computacionales de los algoritmos GRASP

La Tabla 3 muestra los resultados del algoritmo GRASP en los proble-
mas no triviales de Schirmer[12]. Hemos probado cuatro versiones del algoritmo:
GRASP, que es el algoritmo GRASP bésico, GR+PR, en el cual se se utilizan las
mejores soluciones obtenidas con el GRASP para realizar el Reencadenamiento de
Trayectorias descrito en la Seccién 4.4, el AG-GR, el procedimiento GRASP mo-
dificado descrito en la Seccién 4.3, y AG-GR+PR, que combina los dos anteriores.
El algoritmo GRASP usa la regla de prioridad LFT, el segundo procedimiento de
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aleatorizacién con & = 0.85 y realiza un maximo de 2000 iteraciones. Para cada
tamano de problema las tablas muestran el niimero de soluciones no 6ptimas, la
distancia media al 6ptimo y la distancia maxima al mismo. Sin embargo, no se
conocen todas las soluciones 6ptimas. De hecho, en la Tabla 3, la solucién 6ptima
no es conocida para una instancia de tamano 30 y para 5 de tamano 40. En
estos casos, que estdn marcados (*), la comparacion se realiza con la mejor so-
lucién conocida, obtenida mediante un proceso de tiempo limitado realizado con
el codigo entero CPLEX, proveniente de alguna version del algoritmo GRASP en
cualquiera de los tests preliminares o del algoritmo de Scatter Search desarrollado
por los autores [2].

Tamafo Instancias GRASP GR AG-GR AG-GR
Problema  no triviales +PR +PR
10 803 No éptimos 1 1 1 1
Dist. Media (%) 0.004 0.004 0.005 0.007
Dist. Max. (%) 2.9 2.9 4.0 4.0
T. Medio CPU (seg.) 0.9 0.9 0.3 0.3
20 565 No 6ptimos 43 32 22 19
Dist. Media (%) 040  0.33 0.13 0.12
Max dist. (%) 20.5 20.5 13.0 13.0
T. Medio CPU (seg.) 1.4 1.4 1.1 1.2
30 453 No éptimos* 68 63 35 33
Dist. Media (%) 1.00 0.88 0.24 0.21
Max dist. (%) 36.4 33.3 13.6 12.1
T. Medio CPU (seg.) 2.9 3.1 3.4 3.7
40 386 No éptimos™ 89 84 59 54
Dist. Media (%) 2.03 1.82 0.67 0.59
Max dist. (%) 389 389 20.5 20.5
T. Medio CPU (seg.) 5.7 6.2 2.9 7.2
60 346 No 6ptimos 110 105 91 80
Dist. Media a la cota (%) 3.68 3.31 1.38 1.16
Dist. Méx. a la cota (%) 78.0 78.0 26.8 26.8
T. Medio CPU (seg.) 8.7 10.3 10.6 13.4

Tabla 7: Resultados de los algoritmos GRASP en los problemas de Schirmer y en los
de 60 actividades

Los resultados de la Tabla 3 nos permiten observar més claramente las diferen-
cias de resultados entre los cuatro algoritmos. El GRASP agresivo no garantiza
una solucién mejor que el GRASP bésico, pero para los problemas grandes tiende
a producir resultados mejores. El algoritmo de Rencadenamiento de Trayectorias
anade pequenas mejoras a los ya buenos resultados obtenidos por los procedi-
mientos GRASP.

Las ultimas lineas de cada bloque de la Tabla 3 proporcionan los tiempos
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(en segundos de CPU) usados por los algoritmos en los diferentes tamanos de
problemas. En todos los casos el preproceso esta incluido como un parte del
procedimiento de solucién. El algoritmo esté codificado en C++ y corre en un
Pentium IV a 2.8 Ghz y un mayor detalle sobre la valoracion de los tiempos
puede encontrarse en [1]. De dicha valoracién deducimos que el algoritmo GRASP
agresivo con el Reencadenamiento de Trayectorias parece ser la mejor opcién para
un algoritmo heuristico eficiente.

El dltimo bloque de la Tabla 3 muestra los resultados de los algoritmos GRASP
en las instacias de 60 actividades que generamos aleatoriamente. Como las so-
luciones éptimas no son conocidas, para aquellos problemas cuya optimalidad
no hemos podido probar, hemos calculado las distancias entre la mejor solucién
obtenida y la cota lineal como (best — [b)/lb. En este conjunto de instancias el
GRASP agresivo es claramente mejor y los tiempos de calculo no han aumentado
mucho.

6.5 Resultados del algoritmo Scatter Search

Para obtener la poblacién inicial se ejecuta el algoritmo GRASP hasta
que ha obtenido 100 soluciones posibles o ha llegado a 2000 iteraciones. Con la
poblacién inicial se construye un conjunto de referencia S con 10 soluciones de
las cuales 5 son soluciones de calidad y 5 lo son de diversidad.

En la Tabla 8 aparecen los resultados de los 2 métodos de combinacién descri-
tos en la Seccién 5.4. Se indica también la cantidad de soluciones no 6ptimas para
cada método. En esta experiencia preliminar no se incluye ninguna regeneracion
del conjunto de referencia y el algoritmo se para cuando, después de una fase de
combinacién, no se han encontrado nuevas soluciones para anadir al conjunto de
referencia.

Método de Soluciones no 6ptimas
Combinacién n=10 n=20 n=30 n=40 Total
1 3 25 39 61 128
8 3 22 41 61 127

Tabla 8: Comparacién de los métodos de combinacién en los problemas de Schirmer

La Tabla 8 también muestra que el algoritmo bésico de Scatter Search es
muy eficiente y obtiene soluciones 6ptimas para la mayoria de las 3826 instan-
cias posibles de Schirmer. Por tanto, una fase adicional para regenerar el con-
junto de referencia sélo estard justificada si ayuda a resolver los problemas més
dificiles. El procedimiento de regeneraciéon descrito en la Seccién 5.6 depende
de tres parametros: la cantidad de iteraciones del algoritmo GRASP modificado,
la cantidad de nuevas soluciones obtenidas y la cantidad de veces que se llama
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al proceso de regeneracion. Hemos considerado los siguientes valores para esos
parametros:

1. Méxima cantidad de iteraciones: 500 - 1000

2. Méaxima cantidad de nuevas soluciones: 20 - 50

3. Llamadas a regenerar: 3 - Solo cuando la solucién ha mejorado desde la
ultima llamada a la regeneracién.

Mét. Reg Iter. Soluciones Regeneracion Sol. No D. Media  D. Méx. Tiempo
Comb. 6ptimas  al 6ptimo  al 6ptimo  medio (segs)
1 0 Sin regenerar 128 3.19 18.06 35.1
1 1 500 20 Mientras mejore 100 2.17 15.22 66.6
1 2 1000 20 Mientras mejore 94 2.02 15.22 84.5
1 3 1000 50 Mientras mejore 90 1.84 15.22 96.9
1 4 500 20 3 veces 66 1.39 13.04 129.5
1 5 1000 20 3 veces 62 1.30 13.04 172.7
1 6 1000 50 3 veces 60 1.23 15.22 191.3
8 0 Sin regenerar 127 3.30 18.06 47.3
8 1 500 20 Mientras mejore 80 1.78 13.04 86.0
8 2 1000 20 Mientras mejore 76 1.66 13.04 111.0
8 3 1000 50 Mientras mejore 73 1.55 13.04 119.6
8 4 500 20 3 veces 62 1.32 13.04 158.4
8 5 1000 20 3 veces 58 1.14 13.04 210.6
8 6 1000 50 3 veces 53 1.10 13.04 225.3

Tabla 9: Comparacién de los procedimientos de regeneracién en los problemas dificiles
de Schirmer

Hemos probado 6 combinaciones de estos parametros sobre los problemas de
Schirmer no resueltos por el algoritmo bésico con los diversos métodos de combi-
nacion. La Tabla 9 muestra los resultados de los métodos de combinacion 1 y 8
sobre los 148 problemas restantes. Para cada estrategia de regeneracion las tablas
presentan la media y el maximo porcentaje de distancia al 6ptimo o a las mejores
soluciones conocidas porque la solucién éptima no es conocida para 1 instancia
de tamano 30 y para 5 de tamano 40. La tltima columna proporciona el tiempo
medio, en segundos, en un Pentium IV a 2.8 GHz.

Si comparamos linea a linea las dos partes de la tabla, correspondientes res-
pectivamente a los métodos de combinacién 1 y 8, podemos ver que las estrategias
de regeneracion funcionan mejor, en términos de soluciones no 6ptimas y distan-
cia al 6ptimo, cuando se usa el método 8 aunque necesita mas tiempo de calculo
debido a que hay que combinar 3 soluciones en cada paso. En la parte inferior
de la tabla, correspondiente al método 8, podemos ver que la tltima alternativa,
Reg 6, obtiene muy buenos resultados y resuelve 6ptimamente més del 50% de
los problemas restantes. Sin embargo, requiere mas tiempo y, como el nimero de
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llamadas a regenerar es fijo, regenerara el conjunto de referencia 3 veces incluso
para instancias para las que el algoritmo basico ya habria encontrado la soluciéon
Optima. Por tanto, para la experiencia computacional final, reflejada en la tabla
10, también mantenemos la alternativa Reg 1, donde se llama a la regeneracion
solo mientras la solucion mejora, y también restringe el tiempo méaximo de célculo
a 300 segundos por instancia. Este tiempo limite, que se comprueba tnicamente
al final de cada fase, producird un ligero deterioro en los resultados globales pero
los tiempos medios se reducirdn mucho ya que se impiden los tiempos extrema-
damente largos de algunas instancias.

Tamano del Instancias Scatter Search GRASP

problema Regen 0 Regen 1 Regen 6
Desviacion media respecto al éptimo
10 946 0.02 0.00 0.00 0.01
20 960 0.09 0.03 0.02 0.07
30 960 0.15 0.09 0.05 0.11
40 960 0.24 0.14 0.10 0.23
Total 3826 0.13 0.07 0.04 0.11
Soluciones No optimas
10 946 3 0 0 1
20 960 22 10 5 19
30 960 41 29 21 33
40 960 61 41 31 54
Total 3826 127 80 57 107
Tiempo medio de cdlculo
10 946 1.1 1.6 2.1 1.0
20 960 1.8 3.4 10.1 0.7
30 960 3.5 5.7 13.8 2.1
40 960 6.6 10.6 20.7 4.4
Total 3826 3.3 5.3 11.7 2.1

Tabla 10: Comparacién del Scatter Search y el GRASP en los problemas de Schirmer

La tabla 10 muestra los resultados completos para las tres versiones del al-
goritmo de Scatter Search: Reg 0, Reg 1, Reg 6, y las compara con la mejor
versién del GRASP desarrollado por Alvarez-Valdes et al.[1], el que llamamos
Grasp Agresivo con Reencadenamiento de Trayectorias.

Dicha tabla contiene los resultados de las 3826 instancias posibles de Schir-
mer. La primera parte de la tabla muestra la distancia media a los éptimos (o a
las mejores soluciones conocidas, ya que el 6ptimo es desconocido para 6 instan-
cias de Schirmer). La segunda parte muestra la cantidad de veces que la mejor
solucién obtenida no consigue el 6ptimo o la mejor solucién conocida, mientras
que la tercera parte nos dice el tiempo medio de cdlculo. También se puede ver
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que mientras que el algoritmo GRASP es muy eficiente y puede obtener mejo-
res soluciones en los problemas pequenos, el Scatter Search con el incremento de
complejidad que suponen las estrategias de regeneracion puede mejorar significa-
tivamente los resultados generales con incrementos moderados de los tiempos de
calculo.

7 Conclusiones

Hemos estudiado una generalizacion del problema clasico de secuenciacion
de proyectos con limitaciéon de recursos. Hemos considerado un tipo de recursos
relativamente nuevo, los recursos parcialmente renovables, donde la disponibili-
dad de un recursos estd asociada a un conjunto dado de periodos y las actividades
solo lo consumen si son procesadas en dichos periodos. Este tipo de recursos pue-
den considerarse como una generalizacién tanto de lo recursos renovables como
de los no renovables, pero su principal interés proviene de su utilidad para mo-
delizar situaciones que aparecen en los problemas de turnos, horarios de trabajo
y calendarios que pueden ser formulados como problemas de secuenciaciéon de
proyectos.

Hemos desarrollado diferentes técnicas de preproceso que ayudan a determinar
la existencia de soluciones posibles y a reducir la cantidad de variables y restric-
ciones. También hemos disenado e implementado unos algoritmos heuristicos
basados, por un lado, en el GRASP y el Reencadenamiento de Trayectorias y por
otro, en el Scatter Search. El preproceso y los algoritmos heuristicos, que han sido
probados en dos conjuntos de instancias provinientes de la literatura y en otro de
instancias de mayor tamano creado por nosotros con un procedimiento similar al
utilizado en los otros dos, han sido capaces de determinar el status de factibilidad
de muchas de las instancias que hasta el momento estaba sin determinar y de
resolver éptimamente la mayoria de las instancias posibles.

Estamos convencidos que las técnicas de preproceso aqui desarrolladas de-
berian ser usadas por cualquier procedimiento de solucién, exacto o heuristico,
aplicado a este problema. Nuestros algoritmos heuristicos son muy eficientes y
pueden ser consideraros una herramienta ttil para obtener soluciones de alta ca-
lidad para este problema.

Las lineas futuras de investigacion seran el desarrollo de un algoritmo exacto
y el diseno de nuevos algoritmos heuristicos para problemas que combinen los
recursos parcialmente renovables con los cldsicos recursos renovables, dado que
esto sucede en muchas situaciones reales.
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1 Introduccion

Las Metaheuristicas son estrategias generales para disenar procedimientos
heuristicos para resolver un problema de optimizacién mediante un proceso de
btisqueda en un cierto espacio de soluciones alternativas. Los procesos de buisqueda
heuristica estan generalmente basados en transformaciones de las alternativas que
determinan una estructura de entornos en el espacio de soluciones. La Blisqueda
por Entornos Variables (Variable Neighbourhood Search (VINS) [60], [38], [48]
estd basada en un principio simple: cambiar sistematicamente la estructura de
entornos por la que se realiza la bisqueda [40], [45]. Su desarrollo ha sido répido,
con muchos articulos ya publicados o pendientes de aparecer [43]. Se han reali-
zado muchas extensiones, principalmente para permitir la solucién de problemas
de gran tamano [42]. En la mayoria de ellas, se ha hecho un esfuerzo por mantener
la simplicidad del esquema bésico [47][46].

En la siguiente seccidn se exponen las reglas basicas de la VNS. Las exten-
siones, incluyendo los hibridos, se consideran en la secciéon 3. En la seccién 4
se repasan las aplicaciones practicas mas importantes de la VNS en planificacion
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logistica. En la seccién 5 se profundiza en algunas cuestiones relevantes de esta
metaheuristica. El trabajo finaliza con unas breves conclusiones.

2 Esquemas Fundamentales

Un problema de optimizacién consiste en encontrar, dentro de un conjunto X
de soluciones factibles, la que optimiza una funcién f(x). Si el problema es de
minimizacion se formula como sigue:

min{f(z) [z € X} (1)

donde z representa una solucién alternativa, f es la funcién objetivo y X es
el espacio de soluciones factibles del problema. Una solucién éptima z* (o
minimo global) del problema es una solucién factible donde se alcanza el minimo
de (1).

Si X es un conjunto finito pero de gran tamano es un problema de optimi-
zacién combinatoria. Si X = R"”, hablamos de optimizacién continua. La
mayoria de los problemas de optimizacién que surgen en aplicaciones practicas son
NP-duros [27] y para abordarlos se necesitan métodos de optimizacién heuristica
(al menos para instancias de gran tamafo o como solucién inicial para algin pro-
cedimiento exacto). Las metaheuristicas se han mostrado como una herramienta
apropiada para abordar este tipo de tareas.

Una estructura de entornos en el espacio de soluciones X es una aplicacién
N : X — 2% que asocia a cada solucién x € X un entorno de soluciones N (z) C
X, que se dicen vecinas de x. Las metaheuristicas de busqueda local aplican
una transformacién o movimiento a la solucién de busqueda y por tanto utilizan,
explicita o implicitamente, una estructura de entornos. El entorno de una solucién
x € X estaria constituido por todas aquellas soluciones que se pueden obtener
desde x mediante una de las transformaciones o movimientos contemplados.

Una solucién factible z* € X es un minimo global del problema (1) si no
existe una solucién = € X tal que f(x) < f(x*). Decimos que la solucién 2’ € X
es un minimo local con respecto a N si no existe una solucién z € N(z') C X
tal que f(z) < f(2’). Una busqueda local descendente cambia la solucién actual
por otra solucién mejor de su entorno, por tanto corren el riesgo de quedarse
atascada en un minimo local que no sea 6ptimo global. Las metaheuristicas
basadas en procedimientos de busqueda local aplican distintas formas de continuar
la busqueda después de encontrar el primer éptimo local. La metaheuristica VNS
consiste basicamente en cambiar la estructura de entornos de forma sistematica.

La metaheuristica VNS se basa en aprovechar sisteméticamente tres hechos
simples:

1. Un minimo local con una estructura de entornos no lo es necesariamente
con otra.
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2. Un minimo global es minimo local con todas las posibles estructuras de
entornos.

3. Para muchos problemas, los minimos locales estan relativamente proximos
entre si.

Los dos primeros hechos sugieren el empleo de varias estructuras de entornos
en las busquedas locales para abordar un problema de optimizacién. El dltimo
hecho, constatado empiricamente, indica que los 6ptimos locales proporcionan
informacién acerca del éptimo global. Puede ser, por ejemplo, que tengan carac-
teristicas comunes pero, generalmente, no se sabe cuales son esas caracteristicas.
Es conveniente, por tanto, realizar un andlisis de las proximidades de cualquier
optimo local buscando informacién que permita orientar la busqueda hacia el
optimo global.

Las heuristicas basadas en VNS, al contrario de lo que ocurre con otras me-
taheuristicas, se mantienen simples; no sélo sus esquemas bésicos sino también la
mayoria de las extensiones, requiriendo el ajuste de muy pocos parametros. Esta
caracteristica permite que la metaheuristica VNS y sus extensiones sean utiles
para disenar rapidamente procedimientos heuristicos con los que proporcionar
buenas soluciones con rapidez de manera muy simple dejando al descubierto cua-
les son las razones que determinan su rendimiento, lo que frecuentemente facilita
la elaboracién de implementaciones sofisticadas muy eficientes.

Al abordar la resoluciéon de un problema, o tipo de problemas, particular,
una de las primeras tareas consiste en la recopilacién de informacién y documen-
tacién acerca del problema y de sus caracteristicas. Esta informacién debe incluir
aspectos referentes a, aspectos de los problemas reales, su dificultad y los pro-
cedimientos, heuristicos o no, aplicados al enfrentarse a ellos. Esta informacion
puede completarse con algunos disenos intuitivos de operaciones de mejora de las
soluciones propuestas o informacién aportada por la experiencia del rendimiento
de tales operaciones. Esta informacion y el conocimiento de procedimientos rudi-
mentarios, generalmente biisquedas locales, puede ser aprovechada para el diseno
de ingredientes de la VNS que pueden ser determinantes en su éxito.

En los problemas de logistica més importantes, las soluciones estan constitui-
das por selecciones u ordenaciones de elementos. Una forma corriente de realizar
movimientos en el espacio de soluciones es cambiar algunos de estos elementos.
Estos movimientos dan lugar a diversas estructuras de entornos si se fija algunos
de los aspectos de estos cambios. En muchos procedimientos de bisqueda se uti-
lizan estos movimientos fijando o acotando el nimero de elementos de la solucion
que se pueden cambiar. De esta forma se obtienen los entornos més utilizados las
busquedas de entornos variables. Un k- intercambio es un movimiento consistente
en intercambiar k elementos de la solucién. Es decir, cambiar k elementos de la
solucién por otros k elementos que no estén en la solucién, si las soluciones con-
sisten en la seleccién de un nimero fijo de elementos, o intercambiar de posicién k
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elementos de la solucién, si se trata de ordenaciones. Se suelen utilizar los entor-
nos Nj(x) consistentes en cambiar k elementos en la solucién z, para k =1, 2, ...
En otras aplicaciones el k-ésimo entorno consiste en las soluciones que se obtienen
al cambiar, a lo sumo, k elementos de la solucién. Este es el tipo de entornos
mas corriente en las aplicaciones de la VNS a problemas de logisticos estandares
como el problema de la p-mediana [38]. Para los problemas de rutas de vehiculos,
como el problema del vendedor o TSP (Travelling Salesman Problem) también se
utilizan otros movimientos estandares en las heuristicas de estos problemas [62].

2.1 VNS Descendente

Una busqueda local descendente consiste basicamente en determinar iterativa-
mente una mejor solucion a partir de la solucion actual mediante alguna transfor-
macién o movimiento. La clasica busqueda descendente greedy o voraz consiste
en reemplazar siempre la solucién actual por la mejor de todas las soluciones que
se pueden obtener a partir de la actual mediante uno de los movimientos con-
templados. En el extremo opuesto a la estrategia voraz, de “el mejor primero”,
se encuentra la estrategia ansiosa, de “el primero mejor”, que aplica un movi-
miento de mejora desde que se detecte alguno. Otras estrategias intermedias son
posibles para elegir esta solucién del entorno que mejora la soluciéon actual, pero
todas ellas deben detenerse cuando no sea posible encontrar dicha mejora. Segu-
ramente la elecciéon de los movimientos a considerar puede ser determinante en el
éxito de la busqueda local, pero dificilmente se puede determinar a priori cual de
las posibilidades vislumbradas va a ser la mas efectiva. Frente a las estrategias
de probarlas una de tras de otra en cada caso o emplearlas conjuntamente con-
templando todos los movimientos posibles, que son estrategias poco inteligentes,
el hecho 1 resenado anteriormente indica la posible conveniencia de combinar los
distintos tipos de movimientos.

Si en una busqueda local descendente se realiza un cambio de estructura de
entornos cada vez que se llega a un minimo local, se obtiene la Bisqueda por
Entornos Variables Descendente (Variable Neighbourhood Descent, VND).
Denotemos por N, k =1, ..., kpmaz, & una serie finita de estructuras de entornos
en el espacio X. Los entornos N pueden ser inducidos por una o mas métricas
introducidas en el espacio de soluciones z.

Los pasos de la VND se muestran en la figura 1.

Inicializacién. Seleccionar una serie de estructuras de entornos Ny, k =1, ...,
Kmaz, ¥ una solucién inicial x.

Iteraciones. Repetir, hasta que no se obtenga mejora, la siguiente secuencia:

1. Hacer k « 1.
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2. Repetir, hasta que k = k44, 1l0s pasos:

(a) Exploracién del entorno. Encontrar la mejor solucién =’ del k-ésimo
entorno de z.

(b) Moverse o no. Si la solucién obtenida 2’ es mejor que z, hacer x «— a’
y k < 1; en otro caso, hacer k «— k + 1.

Figura 1. VNS Descendente; VND

Notese que, dado que se vuelve a iniciar el recorrido de las estructuras de
entornos desde la primera cada vez que se produce un cambio, cuando se trata
de encontrar la mejor solucién del k-ésimo entorno de la solucién actual x, esta
solucién no ha podido ser mejorada con ninguno de los (k-1) entornos anteriores.
Por tanto, la solucién final proporcionada por el algoritmo es un minimo local
con respecto a cada una de las k4, estructuras de entornos. Como consecuencia
de ellos, la probabilidad de alcanzar un minimo global es mayor que usando una
sola estructura.

En la seleccién de la estructura de entornos para abordar un determinado
problema, tanto implementando una busqueda local, voraz o ansiosa, o cualquier
otra metaheuristica de busqueda que utilice los entornos de forma explicita o
implicita deben tenerse en cuenta diversas cuestiones sobre los entornos. Entre
tales cuestiones estd la completitud, complejidad y ntimero de los movimientos
a aplicar, la eficiencia de los mismos, la posibilidad de examinarlos en distinto
orden, e incluso el grado de precisién. Estos aspectos son también cruciales para
el uso de varias estructuras de entornos en una VNS.

La mayoria de las heuristicas de btisqueda local usan en sus descensos simple-
mente un entorno y algunas veces dos (kmq. < 2). Ademds del orden secuencial de
las estructuras de entornos en la VND anterior, se puede desarrollar una estrategia
anidada. Supongamos, por ejemplo, que k4, = 3. Entonces una posible estrate-
gia anidada es: ejecutar la VND de la figura 1 para las dos primeras estructuras
de entornos, sobre cada z’ que pertenezca al tercer entorno de z (¢’ € N3(z)).
Esta VNS ha sido aplicada en [6], [44] y [4].

2.2 VNS Reducida

Aparte de la bisqueda local descendente, otro método de biisqueda basado
explicitamente o implicitamente en una estructura de entornos y atin mas rudi-
mentario pero de uso muy frecuente es la bisqueda por recorrido al azar. Mientras
que la busqueda local concentra su esfuerzo en la explotacion o intensificacién de
la bisqueda entorno a la solucién actual, la bisqueda por recorrido al azar, por
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el contrario, persigue una mayor capacidad de exploracién o diversificacién de la
busqueda. El procedimiento consiste en realizar transformaciones de la solucién
actual hasta encontrar una mejora; cuando esto ocurre, se toma la nueva solucion
como solucion actual y se continta la busqueda desde ella. En la eleccién de es-
tas transformaciones o movimientos es conveniente tener en cuenta también una
serie de aspectos: en qué direccién realizar los movimientos, qué lejania abarcar
en las transformaciones. Si se repiten los fracasos en la busqueda de una solucién
mejor, se puede probar otra forma distinta de realizar las transformaciones. La
VNS reducida realiza estos cambios de forma sistematica.

La Busqueda por Entornos Variables Reducida (Reduced Variable Neigh-
bourhood Search, RVNS) selecciona al azar soluciones del entorno actual de la
solucion actual cambiando a la siguiente estructura de entornos si no se obtiene
mejora y volviendo a la primera estructura en otro caso. Los pasos de la RVNS
se presentan en la figura 2.

Inicializacién Seleccionar una serie de estructuras de entornos Ny, k = 1, ...,
kmaz, ¥ una solucién inicial x. Elegir una condicién de parada

Iteraciones. Repetir, hasta que se cumpla la condicién de parada, la siguiente
secuencia:

1. Hacer k « 1.
2. Repetir, hasta que k = k;q2, los pasos:

(a) Agitacién. Generar al azar una solucién 2’ del k- ésimo entorno de x
(x € Ni(x)).

(b) Moverse o no. Si la solucién obtenida a’ es mejor que z, hacer z « 2/
y k < 1; en otro caso, hacer k «— k + 1.

Figura 2. VNS Reducida; RVNS.

El cambio de estructura de entornos se puede realizar sélo si la mejora no
se produce en cierto niimero de intentos. En este caso, se considera que varias
estructuras de entornos consecutivas coinciden; Ny = N1, para algunos valores
de k. Frecuentemente, la distinta forma de realizar los movimientos que de lugar
a las distintas estructuras de entornos puede significar probar soluciones mas
distantes o mas distintas. En estos casos se estd usando una serie de estructuras
de entornos anidadas, es decir donde N (z) € Ngi1(z), y por tanto el cambio
de estructura de entornos se interpreta como una ampliacién del entorno o del
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radio de busqueda de la mejora. La ampliacion del radio se realiza por escalones
si Ni(x) = Ni41(z) para una serie de iteraciones consecutivas.

La RVNS es util para instancias muy grandes de problemas en las que la
buisqueda local es muy costosa. Como condicién de parada se usa generalmente
el médximo nimero de iteraciones entre dos mejoras. La RVNS se ha mostrado
superior a un método de Monte-Carlo en un problema minimax continuo y a
la heuristica del intercambio rdpido de Whittaker al aplicarla al problema de la
p-mediana [45].

2.3 VNS Basica

La Biisqueda por Entornos Variables Basica (Basic Variable Neighbour-
hood Search, BVNS) es una estrategia que alterna bisquedas locales con movi-
mientos aleatorios sobre unas estructuras de entornos que varian de forma sis-
temdtica.

Los pasos de la VNS baésica se dan en la figura 3.

Inicializacién Seleccionar una serie de estructuras de entornos Ni,k = 1, ...,
kmaz, y una solucién inicial x. Elegir una condiciéon de parada

Iteraciones. Repetir, hasta que se cumpla la condiciéon de parada, la siguiente
secuencia:

1. Hacer k < 1.
2. Repetir, hasta que k = k42, l0os pasos:

(a) Agitacién. Generar al azar una solucién =’ del k- ésimo entorno de x.

(b) Moverse o no. Si la solucién obtenida 2" es mejor que x, hacer z — z”
y k < 1; en otro caso, hacer k «— k + 1.

Figura 3. VNS Basica; BVNS.

Las estructuras de entornos utilizadas pueden ser anidadas y escalonadas como
en la busqueda por entornos variables reducida. La condicién de parada puede
ser, por ejemplo, el maximo tiempo de CPU permitido, el médximo ntmero de
iteraciones, o el maximo ntmero de iteraciones entre dos mejoras. Obsérvese que
la solucién 2’ se genera al azar en el paso (2a) para evitar el ciclado prematuro,
que puede ocurrir si se usa cualquier regla deterministica.
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2.4 VNS General

La Busqueda por Entornos Variables General (General Variable Neigh-
bourhood Search, GVNS) se obtiene al sustituir la bisqueda local del paso (2b)
de la Busqueda por Entornos Variables basica por una Busqueda por Entornos
Variables descendente; es decir, una VND. Esta estrategia utiliza dos series de
estructuras de entornos posiblemente distintas, una para la busqueda descendente
y otra para los movimientos aleatorios de agitacion.

Los pasos de la VNS general (GVNS) se muestran en la figura 4.

Inicializacién Seleccionar una serie de estructuras de entornos Ny, k = 1, ...,
kmaz, que se usaran en la agitacion; y una serie de estructuras de entornos N ;, J
=1, ..., Jmaz, que se usaran en el descenso y una solucién inicial z. Elegir una
condiciéon de parada

Iteraciones. Repetir, hasta que se cumpla la condicién de parada, la siguiente
secuencia:

1. Hacer k «— 1.
2. Repetir, hasta que k = k44, los pasos:

(a) Agitacién. Generar al azar una solucién =’ del k- ésimo entorno de x.

(b) Biisqueda local. Aplicar la VND con los entornos N7, j = 1, ..., jmaz,
y 2’ como solucién inicial; denétese con z” la solucién asi obtenida.

(¢) Moverse o no. Si la solucién obtenida z” es mejor que x, hacer © «— z”
y k « 1; en otro caso, hacer k «— k + 1.

Figura 4. VNS General; GVNS.

El uso de la Biisqueda por Entornos Variables general (GVNS) ha dado lugar a
las aplicaciones més exitosas aparecidas recientemente (ver, por ejemplo, [44],[6],
(10], [11], [12], [13], [71] y [75]).

2.5 VNS Anidada

Es el caso mas sencillo del uso de una VNS general. Ambas series de entorno
coinciden en una serie anidada obtenida a partir de un tnico tipo de movimiento
sencillo. El movimiento més usual en este sentido es el del intercambio que con-
siste en cambiar un elemento de la solucién por otro elemento posible. Si las
soluciones se identifican como vectores el cambio consiste en modificar una de las
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componentes; si se trata de la selecciéon de un nimero determinado de elementos
de un universo, el cambio consiste en sustituir un elemento de la solucién por otro
que no esté en la solucion; si se trata de permutaciones, se intercambian las po-
siciones de dos elementos. El valor de k corresponde con el niimero de elementos
de la solucién cambiados (esta ha sido la versién paralelizada en [25]).

La estrategia de Busquedas por Entornos Variables Anidados (Nes-
ted Variable Neighbourhood Search, NVNS) se obtiene a partir de un tnico mo-
vimiento elemental al que estd asociada una estructura de entornos N. Los
entornos anidados se definen recursivamente por Nyi(z) = N(z) y Nip1(z) =
N(Ng(z)),Vz € X. El nimero maximo de entornos a usar en la agitacién y en la
busqueda local se fijan por los valores kpaz V jmaz, respectivamente.

Los pasos de la VNS anidada (NVNS) se muestran en la figura 5.

Inicializacién Seleccionar una estructura de entornos N y una solucion inicial
z. FElegir una condicién de parada

Iteraciones. Repetir, hasta que se cumpla la condiciéon de parada, la siguiente
secuencia:

1. Hacer k < 1.
2. Repetir, hasta que k = k42, los pasos:

(a) Agitacién. Generar al azar una solucién =’ del k- ésimo entorno de x.
(b) Busqueda local con VND.

(i) Hacer j < 1.
(ii) Repetir, hasta que j = jmaz, los pasos:
x Exploracién del entorno. Encontrar la mejor solucién z” €
N;(2).
* Moverse o no. Si f(z”) | f(2'), hacer 2’ — 2" y j? <71; en
otro caso, hacer j < j + 1.

(¢) Moverse o no. Si la solucién obtenida z” es mejor que z, hacer x «— z”
vy k < 1; en otro caso, hacer k «— k + 1.

Figura 5. VNS anidada; NVNS.
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3 Extensiones de la VNS

Se han propuesto en la literatura diversas formas de extender la VNS para
dotarla de algunas caracteristicas adicionales. Describimos en primer lugar va-
rias formas sencillas de realizar estas extensiones en la subseccién 3.1. Las tres
siguientes subsecciones se dedican a otras tantas extensiones que constituyen me-
joras practicas de la VNS que han permitido resolver con éxito problemas muy
grandes: la Busqueda por Entornos Variables con descomposicién (VNDS), la
Busqueda por Entornos Variables sesgada (SVNS) y la Busqueda por Entornos
Variables paralela (PVNS). En la subseccién 3.5 se consideran las extensiones por
hibridacién de la VNS. En algunos casos se han propuesto independientemente
procedimientos heuristicos que en esencia explotan ideas del VNS y que pueden
considerarse como casos especificos o extensiones de esta metaheuristicas como
la busqueda local iterada (Iterated Local Search ,ILS) o la busqueda por entornos
grandes (Large Neighbourhood Search, LNS).

3.1 Extensiones basicas

Las primeras extensiones se derivan directamente de la VNS bésica. La BVNS
es un método descendente de la primera mejora con aleatorizacién. Sin mucho
esfuerzo adicional se transforma en un método ascendente-descendente: en el paso
(2¢) hacer también © < x” con alguna probabilidad, incluso si la solucién es peor
que la actual (o que la mejor solucién encontrada hasta el momento). La bisqueda
en los entornos se intensifica si en lugar de una agitacién para tomar una tnica
solucién al azar se toman en el paso (2a) todas las soluciones del k-ésimo entorno
de la solucion actual. En este caso es conveniente explotar un posible recorrido
sistematico del entorno. También se puede transformar en una busqueda de la
mejor mejora si se realiza la biisqueda local del paso (2b) desde una solucién de
cada uno de los k4, entornos y se aplica el cambio al mejor entorno kx. Una
estrategia distinta con intensificacién intermedia se tiene eligiendo la solucién
2’ en el paso (2a) como la mejor entre b (un pardmetro) soluciones generadas
aleatoriamente en el k-ésimo entorno. Una tultima extensién sencilla consiste en
introducir ky,in Y Kpaso, dos pardmetros que controlan el proceso de cambio de
entorno: en el algoritmo anterior, en vez de k < 1 hacer k « ki y en vez
de k < k + 1 hacer k < k + kpqso. Estas extensiones pueden aplicarse a la vez
produciendo nuevas variantes de la bisqueda por entornos variables.

3.2 VNS con Descomposicion

La Busqueda por Entornos Variables con Descomposicién (Variable
Neighbourhood Decomposition Search, VNDS) [51] extiende la VNS en un esquema
de entornos variables en dos niveles basado en la descomposicién del problema.
Cuando se obtiene al azar la solucion agitada, se fijan los atributos comunes entre
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la solucion actual y la agitada y se aborda el problema de optimizar los elementos
no comunes, mediante un procedimiento exacto u otra heuristica. Sus pasos son
los presentados en la figura 6.

Inicializacién Seleccionar una serie de estructuras de entornos Ng, k = 1, ...,
kmaz, y una solucién inicial x. Elegir una condiciéon de parada

Iteraciones. Repetir, hasta que se cumpla la condiciéon de parada, la siguiente
secuencia:

1. Hacer k « 1.
2. Repetir, hasta que k = k42, los pasos:

(a) Agitacién. Generar al azar una solucién a’ del k- ésimo entorno de z.
Definir y como el conjunto de atributos presentes en x’ pero no en x
(y=2"\=)

(b) Busqueda local. Buscar el 6ptimo parcial en el espacio de los atributos
y por alguna heuristica. Sea ¥’ la mejor solucién encontrada para estos
atributos y sea 2’/ la correspondiente solucién del espacio completo
obtenida al incorporar a x tales atributos (2’ = a \ 2’ Uy/’).

(¢) Moverse o no. Si la solucién obtenida 2 es mejor que z, hacer x — 2’
y k < 1; en otro caso, hacer k «— k + 1.

Figura 6. VNS por Descomposiciéon; VNDS.

La diferencia entre la VNS bdsica y la VNDS estd en el paso (2b): en vez de
aplicar algin método de busqueda local en el espacio completo X (empezando
desde 2’ € Ni(z)), en la VNDS se resuelve en cada iteracién un subproblema en
un subespacio X C Nj(z) con 2’ € X;. Cuando la biisqueda local utilizada en
este paso es también una VNS, aparece un esquema VNS en dos niveles.

3.3 VNS Sesgada

Una vez que se ha alcanzado la mejor solucién en una gran regién es necesario
buscar estrategias para alejarse bastante de ella para posibilitar una nueva mejora.
La Busqueda por Entornos Variables Sesgada (Skewed Variable Neighbour-
hood Search, SVNS) [37] afronta la exploracién de regiones de valles alejados de la
solucion actual. Si el 6ptimo local alcanzado esta considerablemente alejado del
anterior y no es significativamente peor puede ser conveniente llevar hasta alli el
proceso de busqueda. Las soluciones generadas al azar en entornos muy lejanos
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pueden diferenciarse substancialmente de la solucién actual; por lo que la VNS
degenera, en algin sentido, en una heuristica de arranque miltiple (en la que se
realizan iterativamente descensos desde soluciones generadas al azar). Por tanto,
la VNS sesgada incorpora una compensacién por la distancia desde la solucién
actual para evitar este inconveniente. Sus pasos son presentados en la figura 7.

Inicializacién Seleccionar una serie de estructuras de entornos Ny, k = 1, ...,
Emaz- Encontrar una solucién inicial 2 y su valor objetiva f(x); hacer z* «— x y
f* < f(z). Elegir una condicién de parada y un pardmetro c.

Iteraciones. Repetir, hasta que se cumpla la condicién de parada, la siguiente
secuencia:

1. Hacer k « 1.
2. Repetir, hasta que k = k44, los pasos:

(a) Agitacién. Generar al azar una solucién =’ del k- ésimo entorno de x.

(b) Bisqueda local. Aplicar algiin método de biisqueda local con 2’ como
solucion inicial; dendtese con " el minimo local asi obtenido.

(¢) Mejora o no. Si f(z) < f*, hacer z* — 2" y f* «— f(z").

(d) Moverse o no. Si f(2") — a-p(x,2”) < f(x), hacer © «— 2" y k «— 1;
en otro caso, hacer k — k + 1.

Figura 7. VNS sesgada; SVNS.

La SVNS usa una funcién p(z,2”) para medir la distancia entre la solucién
actual z y el 6ptimo local encontrado z”. La distancia usada para definir los en-
tornos Ny puede también utilizarse con este proposito. La eleccién del pardmetro
adebe permitir la exploracién de valles lejanos a x cuando f(z”) es algo peor
que f(x), pero no demasiado (en otro caso siempre se abandonaria la solucién x).
Con ello se pretende evitar frecuentes trayectorias desde x a una solucién relati-
vamente cercana para volver a x. Un buen valor para « tiene que determinarse
experimentalmente en cada caso.

3.4 VNS Paralela

Las tsquedas por Entornos Variables Paralelas (Parallel Variable Neigh-
bourhood Search, PVNS) constituyen la tercera extensién [66]. Se han propuesto
en [25] y [17] diversas formas de paralelizar la VNS que han sido aplicadas al
problema de la p- mediana. En [25] se analizan tres de ellas: (i) paralelizar la
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busqueda local, (ii) aumentar el nimero de soluciones obtenidas del entorno ac-
tual y realizar biisquedas locales en paralelo desde cada una de ellas y (iii) hacer
lo mismo que en (ii) pero actualizando la informacién sobre la mejor solucién
encontrada. En todas ellas se utiliza la conocida estrategia maestro-esclavo en la
que el procesador maestro, distribuye la informacion a los procesadores esclavos
que una vez realizada su tarea la devuelven al procesador maestro.

En la primera estrategia de paralelizacion, los procesadores disponibles com-
parten la tarea de realizar cada busqueda local. Por ejemplo, en una busqueda
local greedy basada en una estructura de entorno, cada procesador busca la me-
jor solucién de una parte del entorno y se selecciona la mejor de ellas. Cuando
ninguno de los procesadores consigue mejorar a la solucion, la busqueda local
se detiene. En la segunda paralelizacion, cada procesador toma una solucién del
entorno de la solucién actual y aplica la busqueda local. Se toma el mejor minimo
local de los encontrados por los procesadores y se compara con la solucion actual
a la que reemplaza si la mejora. Sin embargo, en la tercera paralelizacién cada vez
que un procesador se detiene en un minimo local se compara la solucién actual y
la reemplaza si la mejora. Entonces, mientras un procesador realiza la bisqueda
local es posible que otro procesador haya mejorado la solucién actual y con esta
solucién con la que se compara el minimo encontrado. Se utiliza la conocida
estrategia maestro-esclavo en la que el procesador maestro, que almacena la so-
luciéon actual z, envia a los procesadores soluciones x; del entorno de la solucion
actual x, recibe los minimos locales x;’ encontrados por éstos que si mejoran la
solucién actual x en el momento de recibirlos. La estructura de entornos se modi-
fica cuando ninguno de los procesadores ha conseguido mejorar la solucién actual.
El inconveniente de esta estrategia es que los procesadores quedan ociosos mas
tiempo que en la anterior. La segunda paralelizacion, cuyos pasos se muestran en
la figura 8, es la que ha dado mejores resultados.

Inicializacién Seleccionar una serie de estructuras de entornos Ny, k = 1, ...,
Kimaz, ¥ una soluciéon inicial x. Elegir una condicién de parada

Iteraciones. Repetir, hasta que se cumpla la condicién de parada, la siguiente
secuencia:

1. Hacer k < 1.
2. Repetir en paralelo, hasta que k = k4., para cada procesador p los pasos:

(a) Agitacién. Generar al azar una solucién x;, del k- ésimo entorno de z.
(b) Busqueda local. Aplicar algiin método de bisqueda local con x; como
solucion inicial; dendtese con ,T;/ el minimo local asi obtenido.

(c) Moverse o no. Si la solucién obtenida x;; es mejor que z, hacer x « z7y
k < 1; en otro caso, hacer k «— k + 1.

Figura 8. VNS Paralela; PVNS.
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3.5 Hibridos

Dado que el cambio sistematico de estructura de entornos es una herramienta
simple y muy potente, otra forma de extender la VNS ha sido incorporarla a otras
metaheuristicas. Estas propuestas han dado lugar a diversas metaheuristicas
hibridas.

La busqueda tabt ( Tabu Search, TS) [30], [31], [32], [34] generalmente usa una
estructura de entornos con respecto a la que ejecuta movimientos de ascenso y
descenso explotando diferentes tipos de memoria. En principio hay dos maneras
de hacer hibridos de VNS y TS: usar algtin tipo de memoria para orientar la
busqueda dentro de la VNS o usar la VNS dentro de la TS. En [67], [8], [5] v [53]
se proponen hibridos del primer tipo y en [6] y [19] del segundo tipo.

La metaheuristica GRASP (Greedy Randomized Adaptive Search Procedure)
[22] [73] consta de dos fases; en la primera fase se construyen soluciones usando un
procedimiento greedy aleatorizado y en la segunda, las soluciones se mejoran por
alguna busqueda local o un método enumerativo. Una forma natural de hibridizar
la VNS con GRASP es usar la VNS en la segunda fase de GRASP lo que ha sido
aplicado en [58], [75], [1], [10], [68], [23].

La busqueda Multi-arranque (MultiStart Search, MS) [56] [57] es una meta-
heuristica clasica que, para evitar el estancamiento de un procedimiento descen-
dente en un 6ptimo local, sencillamente reinicia la biisqueda desde otra solucion.
En [4] se propone y analiza una heuristica hibrida entre la VNS y la MS con-
sistente en reiniciar la VNS desde otra solucion generada al azar del espacio X,
cuando se estanca en un minimo local, por no encontrar ninguna mejora a través
de ninguno de los entornos de la solucién x.

En combinacién con el método Piloto [21] se ha propuesto recientemente [52].
La VNS se combina con operadores genéticos en [19].

3.6 La VNS en planificaciéon Logistica

La VNS ha alcanzado éxitos relevantes en campos de aplicacién diversos entre
los que caben destacar los de unas técnicas de descubrimiento que han permitido
descubrir una herramienta informética (el Sistema AutoGraphiX [13], [2]) que
ha conseguido probar o refutar algunas conjeturas abiertas en teoria de Grafos.
Se ha aplicado a problemas de optimizacién continua [61] creando un software
especifico GLOB [20]. También se ha aplicado con éxito a multitud de problemas
de optimizacién combinatoria importantes en la industrial [43] y la economia [26],
entre los que se encuentran los problemas mas relevantes de planificacién logistica
[78]: problemas de empaquetado, problemas de localizacién y problemas de rutas.

Los Problemas de Empaquetado constituyen una clase de problemas im-
portantes en contextos de logistica y distribucién. En [24] se usa la VNS bésica
para una de las versiones basicas: el problema de empaquetado unidimensional
(Bin-Packing Problem, BPP) en el que se tiene que empaquetar un conjunto de
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objetos de diferente tamano en el menor nimero de cajas o segmentos de capaci-
dad fija.

Los Problemas de Localizacién, muy relevantes en la planificacion logistica,
y los de agrupamiento o clustering (dentro de la clasificacién no supervisada) tie-
nen caracteristicas comunes que los hacen similares al ser abordados por bisquedas
metaheuristicas. El problema de la p-mediana es el problema mas extensamente
estudiado en Teoria de Localizacién. Consiste en determinar p ubicaciones, en-
tre un conjunto de m localizaciones posibles para un servicio, de forma que se
minimice la suma de las distancias de n usuarios a su punto de servicio mas cer-
cano. Este problema ha sido abordado con éxito en [38] y [51] por medio de una
VNS bésica, una VNS reducida y una VNDS, respectivamente. En [26] y [17] se
proponen y prueban diversas VNS paralelas para este problema [66]. En [63] se
aplica la VNS al problema del p-centro en el que hay que minimizar, en lugar
de la suma, el méaximo de las distancias de los usuarios a sus respectivos puntos
de servicios més préximos. Diversas variantes de la VNS han sido aplicadas con
éxito en [6] y [7] al problema multiple de Weber que es la versién continua del
problema de la p-mediana, en el que las p localizaciones pueden elegirse en todo
el plano donde también estén ubicados los usuarios. En [51] se muestra la apli-
cacién de la RVNS y la VNDS para el problema simple de localizacién de plantas
(Simple Plant Location Problem, SPLP) en el que se debe decidir el nimero p de
localizaciones, minimizando la suma del coste total que implica la separacién de
los usuarios a los puntos de servicio, y el coste de la seleccién de cada ubicacion
para el servicio. El problema de asignacién cuadritica (Quadratic Assignment
Problem, QAP) es otro problema relevante que surge en localizacién y ha sido
abordado con la VNS en [15].

Otro tipo de problemas de optimizacién combinatoria importante, sobre todo
en el contexto de la planificacion logistica, son los Problemas de Rutas. Tanto
las versiones cldsicas del problema del vendedor o viajante de comercio ( Travelling
Salesman Problem, TSP), del problema de rutas de vehiculos ( Vehicle Routing
Problem, VRP) y del problema de rutas de arcos (Arc Routing Problem, ARP),
asi como algunas de sus extensiones, han sido abordadas con la VNS. El problema
del viajante de comercio o TSP consiste en, dadas n ciudades con las distancias o
costes entre ellas, encontrar una ruta de minimo coste (es decir, una permutacién
de las ciudades que minimiza la suma de las n distancias entre ciudades adyacentes
en la ruta). En [9], [39] y [62] se aplican procedimientos del tipo de la VNS con
distinto tipo de movimiento para el TSP. En [28] se aplica una VNDS similar con
dos esquemas de descomposicién diferentes. En [76] y [68] se usa una VNS para
resolver otra importante extension del TSP denominada problema del comprador
en el que, dada una particién del conjunto de clientes, hay que visitar al menos
uno de cada conjunto de la particion. Un trabajo interesante sobre el TSP con
recogida y distribucién es [14].

Un problema de ruta de vehiculos o VRP consiste en disenar las rutas desde un
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depésito para visitar un conjunto dado de clientes con minimo coste. Los clientes
tienen demandas conocidas y los vehiculos tienen capacidad limitada. En [5] y
[15] se aplican la VNS y la VND en la resolucién de la variante del problema en el
que cada cliente puede ser visitado en cierto intervalo de tiempo que se denomina
VRPTW (VRP with Time Windows) y en [71] se trata un problema multiple de
este tipo. En [18] se explora el uso de una VND para un VRP con recogida. En
[35] se considera un problema on-line muy general.

En [67] se propone una combinacién de la VNS y la TS que usa varias estruc-
turas de entornos para el problema del ciclo mediano (Median Cycle Problem,
MCP). En este problema se debe determinar la ruta de menor longitud que re-
corra parte de las ciudades con una cota superior para la suma de las distancias
desde las ciudades no incluidas en el recorrido hasta la ciudad més cercana de
la ruta. En [38] se aplica una VNS a una versién del problema del viajante de
comercio con clientes de recogida y entrega de mercancias. La ruta tiene que
recorrer todos los clientes de recogida antes que los de entrega, partiendo y lle-
gando al depésito. En [29], [41] y [42] se aborda con una VNS de forma exitosa
problemas de rutas de arcos en los que las rutas deben recorrer todas las aristas
o arcos de un grafo o red.

3.7 Conclusiones

Las heuristicas mas tradicionales en optimizacion realizaban buisquedas locales
descendentes por lo que se bloquean con el primer 6ptimo local encontrado. Las
metaheuristicas proporcionaron métodos para escaparse de los 6ptimos locales
de mala calidad. El valor de tales 6ptimos locales difiere considerablemente del
valor del éptimo global y, especialmente si hay muchos éptimos locales, la mejora
en la calidad de los nuevos éptimos alcanzados era insuficiente para acercarse
suficientemente. Sin embargo, las mejoras introducidas en las estrategias basicas
y los recursos computacionales de las implementaciones han permitido obtener
procedimientos cada vez rdpidos en acercarse con garantias a la solucién 6ptima
por lo que el impacto practico de las metaheuristicas ha sido inmenso.

En contraste con este éxito, el desarrollo tedrico de resultados sobre meta-
heuristicas estd més retrasado [49]. Frecuentemente se obtienen buenas heurfs-
ticas con algo de inventiva, experiencia e intuicién. y con un gran esfuerzo en el
ajuste de numerosos parametros se van mejorando. Pero las razones de porqué
unas estrategias funcionan tan bien como lo hacen para algunos problemas y otras
no, y estas funcionan mejor que aquellas para otros problemas son desconocidas.
La situacién es incluso peor con los hibridos y las mejoras computacionales; mu-
chas veces es dificil discernir si el mérito lo tiene una de las componentes o se esta
obteniendo beneficio de la interaccién.

El desarrollo y aplicacién de la VNS contribuye a profundizar en algunas
cuestiones que influyen en el rendimiento general de las metaheuristicas. Tres de
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estas ideas son la topografia de los optimos locales, el las trayectorias seguidas
por los procesos en su acercamiento al 6ptimo, y la dicotomia entre la mejor o
la primera mejora. El estudio de la topografia de los minimos locales se realiza
en términos de una descripcion de los perfiles de montanas y valles encontrados
durante la btisqueda. Cuando se aplica la VNS, el descenso desde una solucion
2’ seleccionada al azar, puede volver al éptimo local = alrededor del que estédn
centrados los entornos actuales, o a otro éptimo local z” cuyo valor puede ser
mejor o no que el de 2. Se ha estudiado en [37] la probabilidad de estos tres
sucesos como una funcién de la distancia de x a x’ al aplicarla al problema de la
maéxima satisfabilidad ponderada. Conviene también observar si "’ est4 mds cerca
de = que 2’ (lo que puede ser interpretado como que x” pertenece al mismo valle
que z, con rugosidades locales en relieve) o no (lo que puede interpretarse como
un indicio de que se ha encontrado un nuevo gran valle). El relieve suministra esta
informacién en base a una determinada cantidad de descensos desde puntos en
entornos sucesivamente mas amplios. Los perfiles varian considerablemente con
la calidad del éptimo local . Cuando z es una mala solucion es suficiente alejarse
un poco para obtener, con alta probabilidad, un éptimo local mejor. Cuando el
optimo local x es bueno, o muy bueno, debe alejarse bastante mas para encontrar
un nuevo gran valle y, ademads, la probabilidad de encontrar una solucién mejor
que la actual es entonces baja. Esto ilustra una debilidad del esquema béasico de
la VNS que tiende a degenerar en un arranque multiple cuando la distancia de x
a x’ se hace grande. El remedio es el proporcionado por el esquema de la VNS
sesgada.

Para algunos problemas se dispone de instancias para las que se conoce el
optimo global y se puede analizar la distancia al blanco durante el proceso de
bisqueda. Es corriente analizar las bisquedas heuristica determinando lo fre-
cuente que se alcanza el 6ptimo global o el promedio de la diferencia relativa
entre el valor éptimo del objetivo y el alcanzado por la bisqueda. Sin embargo,
se obtiene mucha mas informacién si se consideran las propias soluciones y no
sélo su valoracién. Una herramienta para poner en practica esta idea ha sido
desarrollada para aplicar una VNS para el problema del vendedor en [28]. Esta
herramienta presenta en pantalla la solucion éptima para el caso de entrenamiento
bajo estudio, la solucion actual y la diferencia simétrica entre estas dos soluciones.
Esto indica cuanta mejora queda por hacer y donde. Ademads, una rutina permite
también la representacion de la diferencia entre la solucién actual en una iteracion
y en la siguiente. Finalmente, como las representaciones de las soluciones para
problemas grandes pueden ser dificiles de leer, y muchos problemas, en particular
los problemas euclideos, permiten una descomposiciéon natural, una rutina de en-
foque permite la representacién de la informacién mencionada anteriormente para
subproblemas seleccionados; es decir, en alguna region del espacio en la que se
traza la ruta. Ademas de usar esta informacion para guiar la busqueda, se puede
evaluar el trabajo realizado paso a paso por una VNS u otra metaheuristica. Se
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pueden estudiar variantes en cada uno de esos pasos y recopilar informacién de-
tallada para sacar conclusiones que pueden no ser evidentes en un rendimiento
global de la heuristica. Esto puede dar lugar al descubrimiento de fenémenos
inesperados y, la profundizaciéon proporcionada por su explicacion, puede a su vez
dar lugar a principios para mejorar las heuristicas.

En muchos trabajos se ha observado que cuando se aplica un paso de una
la heuristica buscando iterativamente un movimiento de mejora dentro de un
conjunto de posibilidades se puede optar por dos tacticas bien diferenciadas: la
primera mejora (es decir, el primer movimiento que reduce el valor de la funcién
objetivo) o la mejor mejora, (es decir, el movimiento que mds reduce el valor
de la funcién objetivo). Del andlisis de las caracteristicas de los entornos se
deduce si al acercarse al 6ptimo local es conveniente realizar el esfuerzo de recorrer
completamente el entorno de la solucién actual o en los estadios iniciales de la
buisqueda las mejoras encontradas inicialmente son suficientemente significativas
para hacer irrelevante el andlisis exhaustivo del entrono.

Los criterios de comparacion entre las mateheuristicas deben referirse al ma-
yor o menor grado de cumplimiento de las propiedades deseables de las meta-
heuristicas. Tales buenas cualidades son las que propician o garantizan el interés
préctico y tedrico de las propuestas. En [59] se propone una propuesta de relacién
de dichas propiedades. Esta relacién es similar a las propuestas por otros autores.
En [46] se analiza en que medida la VNS en relacién a otras metaheuristicas se
ajustan a tales propiedades. Algunas de tales propiedades son las siguientes: la
simplicidad, la precisién: la coherencia: la efectividad, la eficacia: la eficiencia, la
robustez, la interactividad y la innovacién

La VNS esta basada en un principio simple poco explorado: el cambio sis-
tematico de la estructura de entornos durante la bisqueda. Esta simplicidad de
la metaheuristica contribuye a dotarla de la amplia aplicabilidad que se refleja en
la variedad de las aplicaciones aparecidas en la naturaleza. La VNS esta dotada
de reglas precisas que describen la forma de efectuar tales cambios. Todos los
pasos de los esquemas basicos y extendidos de la VNS se traducen coherente-
mente de los principios en que se inspira. La eficacia de la VNS se sustenta en
la probabilidad de encontrar soluciones éptimas para una gran cantidad de pro-
blemas en los que ha sido probada superior o equivalente a otras metaheuristicas
con la que ha sido comparada. La VNS tiene probada efectividad en la reso-
lucién de problemas de varios bancos de prueba con resultados 6ptimos o muy
cercanos a los 6ptimos, y con tiempo computacional moderado (o al menos ra-
zonable). La metaheuristica VNS se ha mostrado considerablemente eficiente en
muchos experimentos al obtener de una forma mas rapida resultados mejores o
equivalentes a los de otras metaheuristicas. Ademads, la VNS se muestra robusta
ya que ha probado su rendimiento en multitud de problemas sin necesidad de
realizar un ajuste especifico de parametros al conjunto de entrenamiento. Las
metaheuristicas VNS se ha extendido considerablemente al hibridizarse con otros
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procedimientos mejorando su efectividad. Cabe destacar ademas la frecuencia con
la que las metaheuristicas incorporan las ideas en las que se basa la VNS para
beneficiarse de sus efectos positivos. La amigabilidad de los sistemas basados en
la VNS cuenta con la ventaja de que los principios bésicos en que se basa son
faciles de usar con un nimero de parametros muy pequeno, incluso inexistentes
en algunos casos. Las posibilidades de la VNS para la innovacion estan amplia-
mente corroborada con los resultados obtenidos con el programa AutoGraphiX
AGX [13] [2] de descubrimiento cientifico asistido por ordenador que estd basado
en VNS y del que ya se han publicado gran cantidad de resultados bajo el titulo
comun Variable Neighborhood Search for Extremal Graphs.

Las lineas futuras tienen que ir por las mejoras necesarias para poder resolver
eficientemente problemas dificiles y muy grandes. El tamano de los problemas
abordados se limita en la practica por las herramientas disponibles para resolverlos
més que por la necesidad de los potenciales usuarios de estas herramientas.
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1 Introduccion

El problema de rutas de vehiculos, VRP, es sin lugar a dudas uno de los pro-
blemas de optimizacién combinatoria més estudiados y tratados en la literatura.
Sin entrar en méas detalle y de forma muy genérica el problema consiste en disenar
rutas que visiten una serie de de puntos distribuidos geograficamente de forma
que se minimice la distancia total recorrida. En cada punto se debe recoger una
cantidad conocida de mercancia. Cada punto debe ser visitado una vez (i.e., por
un solo vehiculo), las rutas deben empezar y acabar en un depdsito central y se
deben respetar las restricciones de capacidad del vehiculo. Seria prolijo enumerar
los trabajos importantes y conocidos que han tratado este modelo y sus variantes,
generalizaciones o casos particulares: VRPTW (problema de rutas con ventanas
de tiempo), PVRP (Periodic VRP), el conocidisimo TSP, MDVRP (MultiDepot
VRP), etc.

*Los autores de este trabajo agradecen la ayuda del Ministerio de Educacién y Ciencia por
la subvencién econémica para la realizacién de este trabajo a través del Plan Nacional de I+D,
(Proyecto SEJ- 2005 08923/ECON), asi como a la Junta de Castilla y Leén (“Consejeria de
Educacién” — Project BUOOSAQG).
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Cdémo es conocido el VRP es un problema NP-Hard, y aunque hay conocidos
téenicas para su resolucién de forma exacta como Fisher (1994) o Toth and Vigo
(2001), es mucho més extensa la literatura sobre técnicas heuristicas. Desde el
cldsico algoritmo “saving” de Clarke and Wrigth, (1964), el algoritmo “swap”
de Gillet and Miller (1974), o el interesante algoritmo de Fisher y Jailkumar
(1981), etc, hasta el desarrollo de técnicas metaheuristicas mas modernas, como
los Algoritmos Genéticos (Potvin and Bengio, 1994; Thangiah, Osman and Sun,
1994), Temple Simulado (Osman, 1993), Biusqueda Tabi (Gendreau et al., 1994;,
Rochat and Taillard, 1995; Taillard et al., 1997; Cordeau, Laporte and Mercier,
2001), GRASP, Kontoravdis and Bard (1995) Bisqueda Local Guiada (Vondouris
and Tsang, 1999), Colonias de Hormigas (Gambardella, Taillard, and Agazzi,
1999) o Variable Neigbourhood Search (Braysy, 2003).

Un elemento importante para el buen funcionamiento de muchos de estas
técnicas heuristicas y metaheuristicas es la definicién de movimientos o entornos
o vecindarios, que permitan pasar de una solucion a otra cercana en el espacio de
busqueda. Estos movimientos vecinales deben tener las siguientes buenas carac-
teristicas: cada vecindario debe contener un gran nimero de soluciones vecinas
y estas deben ser faciles o rapidas de evaluar. De otra forma la exploracién del
espacio de soluciones puede no ser eficaz. Tradicionalmente en los problemas de
rutas de vehiculos los movimientos vecinales pueden ser “intrarutas”, es decir,
modificaciones de cada ruta independiente de las demds (cambio de orden de los
puntos de visita de esa ruta), o “entrerutas”, es decir, modificaciones que afectan
a mas de una ruta (pasar elementos de una ruta a otra, o intercambio de elemen-
tos entre rutas). Entre los primero destacan los conocidos intercambios r-6ptimos
(Lin, 1965; Lin and Kernighan, 1973) y entre los segundos los propuestos por Van
Breedam (1995), o Taillard et al. (1997) que generalizan las usadas anteriormente
por Gendreau et al. (1994).

Existen trabajos recientes que usan un mecanismo para generar soluciones
de forma diferente. Este mecanismo se basa en el método de “Ejection Chains”
(“cadenas de expulsiones”) concebido por Glover (1992), en el contexto del TSP.
Tiene las siguientes caracteristicas basicas que lo distinguen de los movimientos
clésicos: el movimiento de una solucién a otra no es simple, es decir no se pasa
de una solucién a otra vecina como tradicionalmente, sino que antes de realizarse
el cambio se genera una cadena de movimientos y la nueva solucion se elige entre
las que aparecen en esa cadena. La segunda caracteristica es que estas cadenas
no operan directamente sobre soluciones sino sobre estructuras similares a una
solucién que se denominan “estructuras de referencia”. Por tanto para generar es-
tas cadenas de movimientos tipo “Ejection Chains” se ha de disponer una serie de
reglas para crear estas estructuras desde una solucion, para pasar de una estruc-
tura de referencia a otra (reglas de transicién), y para crear soluciones factibles a
partir de una estructura de referencia. Como se senala en Glover (1996), estas ca-
denas “pueden contener cantidades exponenciales de soluciones, pero cuyo mejor
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elemento puede identificarse en tiempo polinomial”. Implementaciones de Ejec-
tion Chains han producido buenos resultados en problemas de rutas de vehiculos
incluso con complicadas restricciones como en Cao and Glover (1997), Pesch and
Glover, (1997), Rego and Roucairol (1996), Rego, (1998a y 2001).

En este trabajo se trata el Minmax VRP, una variante del VRP en el que
la funcién objetivo no es minimizar la distancia total recorrida, sino la duracion
de la ruta mas larga. Este problema no ha sido muy estudiado en la literatura
sin embargo han aparecido instancias reales de este modelo en el contexto del
transporte escolar en areas rurales y que han sido estudiadas en Delgado and
Pacheco (2001), Corberan et al. (2002), Delgado (2002) o Pacheco and Mart{
(2006). En estos trabajos se usaban metaheuristicos basados en Busqueda Tabu
y Bisqueda Dispersa y se usaban movimientos vecinales clasicos o simples. Una
caracteristica en estas instancias reales de transporte escolar rural es que cada
ruta empieza en el primer punto de visita y no en el origen (es decir, son rutas
abiertas).

En este trabajo se propone el diseno y uso de movimientos basados en Ejec-
tion Chains adaptados a este problema. Para ello se propone un nuevo tipo de
estructura de referencia y se crean reglas para generar las correspondientes Ejec-
tion Chains. La eficacia de estos nuevos movimientos se contrastan con instancias
reales de transporte escolar. Los resultados obtenidos muestran que este nuevo
tipo de movimiento mejora significativamente los movimientos més cldsicos usados
para este problema en las anteriores referencias.

El trabajo se estructura de la siguiente manera: en las dos siguientes secciones
se describen los movimientos vecinales clasicos “intrarutas” y “entrerutas”; en la
seccion cuarta se describe el funcionamiento de las Ejection Chains, asi como
algunas de las ejemplos mas importantes de este métodos en problemas de rutas;
en la 5 se describe el método Ejection Chains propuesto para este problema, y en
la sexta se muestran los resultados computacionales.

A continuacién se fija la notaciéon de variables y pardametros usada en este
trabajo: {1,2,...,n} el conjunto de puntos del problema, donde 1 es el colegio o
destino final, y {2,...,n} los puntos de recogida de estudiantes; ¢; el ntimero de
ninos que se recogen en cada punto, ¢ = 2,...,n; t;; el tiempo de recorrido entre
los puntos iy 7,1, 7 =1,...,n; @ capacidad de los vehiculos y m el tamano de la
flota. Finalmente se denota por ., la duracién de la ruta mas larga, es decir,
la funcién objetivo.
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2 Movimientos “Intra rutas”

2.1 Intercambios r-6ptimos.

Fueron desarrollados por Lin (1965) y Lin y Kernighan (1973) para el TSP
simétrico. Consisten en eliminar r arcos y reconectar las r cadenas! restantes (r+1
si la ruta no es cerrada). Usualmente se emplean 2-intercambios y 3-intercambios.

Rewe s\ ()—( )\

Figura 2.- Intercambio 2-Optimo

Figura 3.- Intercambio 3-Optimo

Obsérvese que algunos de ellos llevan implicito un cambio de sentido en el
recorrido de alguna cadena. Esto puede ser un inconveniente o una ventaja de-
pendiendo del problema concreto.

LCadena: secuencia de puntos consecutivos
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2.2 Intercambios de Or

Variante del método anterior, los intercambios de Or (1976) consisten en reco-
locaciones de cadenas de puntos en la misma ruta. Se suele limitar el tamano de
las cadenas a intercambiar (2 nodos, 3 nodos, etc...). Son por tanto intercambios
3-6ptimos. En la figura se recoloca la cadena [i,i + 1] después del nodo j.

Figura 4.- intercambio de Or (cadena con dos nodos).

2.3 Intercambios IOPT

Variante del método anterior introducido por Braysy, (2003). Son similares a
los intercambios de Or, pero en los IOPT intercambios se invierte la orientacion
de la cadena recolocada.

Figura 5.- Intercambio IOPT (cadena con dos nodos).

3 Movimientos “Entre rutas”

3.1 Recolocacién de cadenas (String relocation)

Fueron propuestos por Van Breedam (1995). Una cadena de puntos se mueven
de una ruta a otra manteniendo el orden original. El caso mas simple consiste
en mover un punto de una ruta a otra; este tipo de movimientos aparecen en
Gendreau et al. (1994).
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Rouie 1: § o ° o kﬁ
rove2: |\ (e (e —(

Rove ' N\ o (D—() N

Roule 2% & o o o §

Figura 6.- Movimiento relocate simple

RYRY

Figura 7: Relocate con 2 nodos

3.2 Intercambio de cadenas (String Exchange)

También propuestos en Van Breedam (1995). De una ruta se envia una cadena
de puntos a otra, y de esta iltima una cadena a la primera. En el caso mas
simple el movimiento exchange intercambia dos puntos pertenecientes a 2 rutas
diferentes; este caso particular aparece también en Gendreau et al. (1994).

Route 2: @ 5 8 §

wer [0 D OO

Figura 8.- Movimiento Exchange (caso simple y otro con cadenas de dos y un
nodo)

3.3 CROSS intercambios

Propuestos en Taillard et al. (1997). Suponen una generalizacién de los movi-
mientos entre pares de rutas. Son cambios entre pares de cadenas correspondientes
a rutas diferentes.
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n+H1i+ki U+ 10+ 1+ 1k A+

Figura 9.- CROSS Intercambio

Se caracterizan porque mantienen el sentido (direccién) de los clientes en las
rutas seleccionadas. Se suele limitar el tamano de las cadenas a intercambiar.
Como ya hemos comentado generalizan los movimientos anteriores: Si k = k' =
se tiene un String exchange; si k =1y k' = 0 un String relocation; sii +k+1 e
i+ k' + 1 coinciden con el final de la ruta se tiene un cruce de rutas

—®

o000 o o0

Figura 10.- Casos particulares de CROSS intercambios.

3.4 ICROSS intercambios

Fueron introducidos por Braysy (2003). Son similares a los CROSS intercam-
bio pero en los ICROSS intercambios se invierte la orientacion de las cadenas

Rect@ Monogréfico 3 (2007)



272 Nuevos movimientos vecinales basados en “Ejection Chains”

intercambiadas.

o—9 O— ®«—0 o0

- @ o ®
‘\*‘ 1T+l i1’+k’

Figura 11.- ICROSS intercambio

4 Concatenacién de movimientos simples: “Ejec-
tion chains”

Los métodos de Ejection Chains fueron concebidos por Glover (1992) en el
contexto del TSP para generar movimientos complejos en el espacio de busqueda
a partir de movimientos simples, modificando un ntimero variable de componentes
de la solucion.

En los métodos de Ejection Chains se genera una secuencia de movimientos,
que va conduciendo de una solucién a otra. En los pasos sucesivos cambios en cier-
tos elementos causan que otros elementos sean expulsados de su estado, posicion
o valor actual.

Habitualmente las FEjection Chains estan relacionadas con las restricciones;
el término inglés “ejection” significa expulsion, salida, y alude a que al hacerse
cambios en ciertos elementos se causa que otros elementos sean “expulsados” de
su estado actual, debido a que en caso contrario se produciria una infactibilidad.
En alguna de las referencias relacionadas con el TSP o el VRP las Ejection Chains
se realizan mediante expulsion o salida de nodos y en otras mediante salida de
trayectos o arcos.

Los procedimientos basados en Ejection Chains trabajan de forma explicita
sobre estructura llamada estructura de referencia. Esta estructura es similar,
pero ligeramente diferente de una solucién. Por medio de un conjunto de reglas
(denominadas “de transicién”) se va pasando de una estructura a otra. También
existen reglas que permiten pasar de una estructura de referencia a soluciones
factibles del problema (soluciones prueba o Test Solutions). Al final la concate-
nacion de movimientos consiste en pasar de una solucién de partida a la mejor
solucién prueba de todas las obtenidas.

Un esquema del funcionamiento de las “Ejection Chains” viene dado el la
Figura 12. S indica la solucién inicial, ER las estructuras de referencia visitadas
y TS las soluciones pruebas obtenidas a partir de las estructuras de referencias
visitadas.
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ER

S /
™Sa

SP

SP

SP

SP

Sp

ER

SP

SP

SP

Figura 12.- Esquema de funcionamiento de las “Ejection Chains”

Veamos algunos trabajos en que métodos basados en Ejection Chains han
conseguido buenos resultados.

4.1 “Stem-and-cycle”, SC

Rego (1998-a), en el contexto del TSP, disena Ejection Chains que se basan en
la salida de arcos; para ello utiliza una estructura de referencia, que se representa
en la figura 13, llamada “stem-and- cycle” (tallo y ciclo). El tallo va desde t,
o punta, hasta r, raiz o nodo comun con el ciclo, a los nodos, pertenecientes al
ciclo, que estén al lado de la raiz se les denomina subraices (sl y s3 en la Figura
13). Los nodos t y r tienen un nimero impar de conexiones. Esta estructura se
dice que estd degenerada si el tallo se reduce a un solo nodo (se trata entonces de
una solucién factible).

Figura 13.- Estructura “stem-and-cycle“
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A partir de estas estructuras, mediante dos reglas diferentes, se iran obte-
niendo los siguientes eslabones de la cadena (ver figura 14). La primera regla
consiste en anadir un arco que va desde la punta hasta un nodo dentro del ciclo y
en eliminar alguno de los dos arcos que parten de ese nodo. La segunda consiste
en anadir un arco que va desde la punta hasta un nodo del tallo y en eliminar el
arco adecuado de los dos que parten de ese nodo.

Figura 14.- Dos reglas para que obtener nuevas estructuras.

A medida que se vayan recorriendo eslabones en una cadena, en un determi-
nado nivel puede ocurrir que la “stem-and-cycle” degenere, y en cualquier caso
siempre se pueden obtener las llamadas soluciones prueba (que son ciclos factibles)
de la Figura 15.-

Figura 15.- Soluciones “prueba”

En resumen, se puede observar que las Ejection Chains dan lugar a unos
vecindarios que incluyen los vecindarios de movimientos simples para a partir de
ellos crear movimientos més complejos y poderosos. Los vecindarios definidos
por Ejection Chains posibilitan movimientos de mayor poder sin un incremento
significativo del esfuerzo computacional.
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4.2 Estructura Double Routed (DR)

La podemos observar en la figura 16. Se parece a la anterior pero posee dos
nodos “rafz”. Glover (1996) muestra que esta estructura tiene varias ventajas
sobre la anterior.

Figura 16.- Ejemplo de Double Routed

4.3 Estructura en flor

Es una generalizacion de la estructura SC, presentada también por Rego,
(1998b). Esta estructura muestra su utilidad en el VRP sin ventanas de tiempo.

Figura 17.- Estructura en flor

4.4 Estructura Constrained Doubly Rooted, CDR

Sontrop et al. (2006) contribuyen con una nueva estructura de referencia que
generaliza estructuras utilizadas previamente. La estructura de referencia que
presentan llamada Constrained Doubly Rooted, CDR, es la que se muestra en la
imagen.
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Figura 18.- Estructura Constrained Doubly Rooted

Tiene dos raices. Se llama restringida porque el corazon, donde se sitia el
depdsito siempre es una de las raices.

5 Nuevas “Ejection Chains” para el Minmax VRP

En esta seccion se describe el nuevo método tipo “Ejection Chains” que se
propone en este trabajo. Para ello se describe primero la estructura de referencia y
las diferentes reglas de transicién en que se basan; es decir: para pasar de solucién
inicial a estructura, de estructura a estructura y de estructura a soluciones prueba.
La estructura que se propone se describe en la figura 19. Es similar al a la
estructura en flor descrita en la subseccién 4.3, pero con arcos en vez de arista
(es decir se trata de un grafo dirigido).

R, O—O0—0O0—0O—{]

Figura 19.- Estructura de referencia propuesta, m rutas completas (R;) y una
ruta parcial incompleta o huérfana RP
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Basicamente la estructura incluye todos los puntos del problema y consta de m
rutas completas (en la figura 19 Ry, R y Ry,), es decir que empiezan y finalizan
en el origen 1, y una ruta incompleta o parcial (“huérfana”, RP), que también
finaliza en el origen pero comienza en otro punto diferente.

Hay 2 formas de generar estas estructuras a partir de una solucién. La primera,
mas sencilla, se ilustra en la figura 20: en una ruta se elimina un arco (en la figura
el (y,z)) y se enlaza el primer punto de ese arco con el origen (se anade el arco

(y,1))

7 v
re O——O—1]
1]

Figura 20.- Forma sencilla de crear una ruta parcial RP

En la segunda forma, se eliminan dos arcos en dos rutas diferentes, y se enlaza
la primera parte de la primera ruta con la segunda parte de la segunda. La primera
parte de la segunda ruta se enlaza con el origen 1. De esta manera como ruta
parcial o “huérfana” la segunda parte de la primera ruta. La figura 21 ilustra este
proceso.

y z v
R [0 ] O O O

Figura 21.- Otra forma de crear una ruta parcial

La forma de pasar de una estructura a otra es la siguiente: se elimina un arco
de una ruta y se enlaza la primera parte de esa ruta con la ruta parcial actual.
De esta manera queda la segunda parte de la ruta como nueva ruta parcial. La
figura 22 ilustra este proceso.
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X z A4

y
R, re O——>O——[1]
Figura 22.- Paso de una estructura a otra

Finalmente para generar soluciones prueba a partir de una estructura, se in-
serta la ruta parcial entre los dos tltimos puntos de una ruta (i.e el peniltimo
punto, y el origen). Por tanto se generan m soluciones prueba, tantas como rutas.
La figura 23 ilustra este proceso.

j k
e O——O—{1]
r S w

P
R, O O
Figura 23.- Obtencion de soluciones prueba

La transicién de una estructura de referencia a otra debe evitar la creaciéon de
rutas parciales degeneradas, es decir, con solo un punto, (el destino final 1). La
razon es que una estructura con ruta parcial degenerada da lugar a solo una so-
lucién prueba y ademaés esta ya esta incluida entre las soluciones prueba obtenidas
de la estructura anterior. Por otra parte para evitar ciclos, se ha de impedir las
transiciones entre estructuras que supongan la incorporacién de arcos eliminados
en transiciones anteriores o en la creacion de la primera estructura inicial.

Por tanto el procedimiento Ejection Chain trabaja de la forma siguiente:

e A partir de la solucién inicial se crean todas las estructuras de referencia,
ER, como se ha indicado anteriormente, y para cada una de ellas se generan
las soluciones prueba ST correspondientes
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e Entre todas ellas se identifica la mejor solucion, segin la funciéon objetivo
y su correspondiente estructura de referencia; se toma esta como primera
estructura de referencia actual

e En los pasos siguientes se actia de forma similar: desde la estructura de
referencia actual se generan todas las estructuras de referencia posibles y
sus correspondientes soluciones prueba; se toma como nueva estructura de
referencia actual la correspondiente a la mejor solucion

e El proceso finaliza cuando se han ejecutado un nimero predeterminado
de pasos, aunque se pueden establecer otros criterios. La solucion final
obtenida (el output del proceso) es la mejor solucién prueba visitada en
todo el proceso.

Hay que hacer las siguientes consideraciones al proceso descrito anteriormente:

e En nuestro caso la funcién objetivo es la duracién de la ruta mas larga; en
caso de “empate” se observaria cual es la segunda ruta mas larga de cada
solucién; y si se mantuviera el empate la tercera y asi sucesivamente

e La mejor solucién se busca siempre entre las soluciones factibles, en otras
palabras se prefiere siempre una solucién factible que otra infactible. Si en
algin paso no hubiera soluciones prueba factibles se elegiria como mejor
solucién aquella con menor grado de infactibilidad. Como en este problema
las soluciones prueba solamente pueden violar las restricciones de capacidad,
se elegirfa como mejor solucion aquella que menos exceda esta restriccion
en el conjunto de las rutas

6 Resultados Computacionales

A continuacién, para contrastar la eficacia de estos movimientos tipo Ejec-
tion Chains, se van a realizar una serie de pruebas con las instancias reales de
transporte escolar antes mencionadas. Para estas instancias se ejecutan sendos
procedimientos de biisqueda local: uno que usa movimientos simples basados en
CROSS intercambios (ver seccién 3.3), y el segundo en el que el paso de una
solucién a otra se basa en el proceso de Ejection Chain descrito en el apartado
anterior, con un numero de pasos igual a 5. Los CROSS intercambios han sido
usados con éxito para este problema y con estas instancias en Delgado y Pacheco
(2001), Delgado (2002) y Pacheco y Mart{ (2006). En ambos procedimientos de
Busqueda Local tras cada movimiento las rutas de la nueva solucién obtenida se
mejoran con intercambios de Or (ver seccién 2.2).

Las instancias reales se refieren a la recogida de alumnos de secundaria y
su traslado a 16 institutos de secundaria en la provincia de Burgos; los datos
para cada instituto (ndmero de puntos de recogida, nimero de alumnos en cada
punto matrices de distancia y tiempos) son descritas exhaustivamente en Delgado
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(2002), ademads estén disponibles en las paginas web de Rafael Mart{ y Joaquin
Pacheco. Para cada instituto se han considerado diferentes niimeros de autobuses
m, variando desde nvr — 1, hasta nvr + 3, siendo nvr el nimero de vehiculos
usados en la realidad por las autoridades.

Las soluciones iniciales de las que parten ambos procedimientos de busqueda
local se generan con la adaptacién del algoritmo de Fisher y Jaikumar (1981)
propuesta en Pacheco y Marti, (2006). En la tabla 1 se muestran los resultados
de ambos algoritmos de biisqueda local (BL_CROSS bisqueda local basada en
CROSS intercambios y BL_EC basado en Ejection Chains), asi como la funcién
objetivo de la solucién usada por las autoridades (Sol.Real).

BL CROSS BL EC
Pr. | Sol.Real M m
nor/tmaz | nvr—1 | nor | ner+l | nor42 | nor43 | nor—1 | nor | nor+1 | ner+2 | norts

S1 12/70 57 | 52 | 48 47 48 55 | 52 | 48 47 48
S2 5/45 47 | 44 | 32 32 47 | 42 | 33 32

S3 6/60 54 | 45| 43 39 54 | 45| 43 39

S4 3/70 57 | 41 38 36 55| 41 38 34
S5 4/60 59 |47 39 59 |47 39

S6 4/80 90 | 66 | 54 50 48 90 | 66 | 55 50 43
ST 6/60 54 | 45| 37 36 51 | 45| 37 36

S8 9/75 61 | 58 | 50 49 45 60 | 58 | 50 47 44
S9 5/90 91 | 65| 57 o1 47 93 | 65| 55 50 47

S10 | 6/60 48 | 44| 40 47 | 43 | 40

S11| 4/60 67 | 51 | 45 39 65 | 48| 43 39
S12 | 2/25 15| 14 9 15| 14 9
S13 | 6/45 40 | 36 | 29 29 40 | 36 | 29 29
S14 | 5/60 53 | 46 | 38 53 | 46| 37

S15 1 7/50 50 | 45| 44 40 50 | 44| 42 40
S16 | 2/60 84 | 51| 40 35 84 | 51| 40 35

Tabla 1: Resultados obtenidos por ambos procedimientos de bisqueda local (en minu-
tos)

De la tabla 1 que muestra los resultados computacionales se pueden extraer
las siguientes conclusiones:

e Los resultados obtenidos por ambas estrategias mejoran los resultados que
se usaron en la realidad. Esta mejora es significativa en casi todos los casos;
solamente en S2 la diferencia no es muy grande (1 y 3 minutos).

e Los resultados obtenidos por ambas estrategias son iguales en la mayoria de
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las instancias 43 de 64; en muchos de estos 43 casos la solucién final coincide
con la mejor solucién reportada hasta la fecha

e En el resto de los 21 instancias las Ejection Chains obtienen mejor resultado
en 18 casos y los CROSS intercambios en 3

e Ademas las Ejection Chains mejoran significativamente en algunos casos
(S6 m = 7 en 5 minutos; S11 m = 4, en 3 unidades, y varios casos en
2 minutos); mientras que los CROSS intercambios simples mejoran en 1
minuto en 2 casos (S2 m = 6; y S9 m =4) y en 2 minutos en 1 caso (S6
m =5).

Por tanto es claro que aunque no muestren una superioridad aplastante las Ejec-
tion Chains propuestas en este trabajo dan ligera pero significativamente mejores
resultados que los movimientos simples propuestos en anteriores trabajos para
este problema.

7 Conclusiones

En este trabajo se disenian movimientos basados en Ejection Chains para pro-
blemas de rutas, concretamente para el Minmax VRP. Nuestras Ejection Chains
se basan en estructuras de referencia y reglas de transicion relativamente sencillas,
faciles de programar y con una complejidad polinomial en el tamano del problema
(A(n2)): m rutas completas y una ruta parcial que en cada paso va reinsertdndose
en una ruta completa dando lugar a otra ruta parcial. Los movimientos vecinales
a que dan lugar estas Ejection Chains mejoran significativamente los movimientos
simples usados para este problema en las instancias reales de transporte escolar en
referencias recientes. Hay que indicar que al menos en un contexto de busqueda
local. Es de esperar que este tipo de movimientos mejoren atin mas sus resulta-
dos insertados en estrategias heuristicas mas sofisticadas que una bisqueda local.
Ademss las estructuras y reglas usadas podrian sofisticarse mas para dar lugar a
movimientos més potentes y adaptarse facilmente a otros modelos de rutas.
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1 Introduccion

En este trabajo se presenta un sistema de apoyo a la gestion y control de la
produccién de una pequena empresa de contrachapado de la Comunidad Valen-
ciana. La produccién de la empresa se gestionaba de manera intuitiva, basdndose
tUnicamente en la experiencia de los directivos. El alto grado de incumplimiento
de las fechas de entrega de los pedidos senalaba la ineficiencia de su gestién y la
necesidad de instalar un sistema de gestion integral de la produccion.

La produccién en esta empresa es un proceso continuo con dos fases bien di-
ferenciadas en cuanto a la incertidumbre de sus procesos. La primera de ellas es
la que contiene mayor grado de incertidumbre, por la influencia de factores exter-
nos no controlables. La segunda es més determinista y por ello su planificacién
es susceptible de ser automatizada. Al final de esta segunda fase, se detecté un
cuello de botella que limitaba el ritmo de trabajo previo.

A partir de un andlisis exhaustivo de la empresa se decidieron dos tipos de
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actuaciones para mejorar la eficiencia del sistema productivo. Primero, desarro-
llar un procedimiento matematico para resolver de forma eficiente el problema
originado por el cuello de botella. En segundo lugar, disenar una aplicacién que
integrase todos los datos del sistema productivo (clientes, proveedores, stocks,
pedidos, subproductos generados, horas utilizadas, desperdicio de materia prima)
junto con el algoritmo matemédtico. Finalmente, debia proveerse al gestor de di-
ferentes informes que le permitiesen planificar de manera mas eficiente la parte
del sistema productivo no susceptible de ser automatizada. Estos informes pro-
porcionan informacion sobre el estado de los pedidos, rendimiento de las distintas
secciones, estados de stocks, calidad de la materia prima por proveedor, etc.

En los siguientes epigrafes se describe la empresa y su proceso productivo; el
sistema de informacién desarrollado (GESPLAN) y sus componentes principales:
el algoritmo heuristico para la automatizaciéon de la planificacién y la base de
datos que gestiona toda la informacién. Finalmente se exponen las conclusiones.

2 Descripcion del proceso productivo

La empresa se dedica a la elaboraciéon de tablero contrachapado, destinado
mayoritariamente a la obtencién de los componentes utilizados por los fabricantes
de envases de madera. También produce tablero para la fabricaciéon de mueble
escolar y de esquis. Su principal actividad consiste, pues, en la transformacion
de troncos de chopo en tableros de contrachapado, que posteriormente se cortan
a la medida solicitada por el cliente. La produccién se realiza contra pedido y
también para stock.

En el proceso de transformacién (Figura 1), la madera pasa secuencialmente
por 4 secciones: desenrollo, secado, prensado y corte. En la primera seccion, los
troncos de chopo se desenrollan y cortan en hojas de chapa cuadradas o rectangu-
lares de diferentes medidas y grosores. El aprovechamiento depende de diversos
factores como la forma del tronco, el grado de humedad, el grosor de la corteza,. . .
La eliminacion de la humedad de la madera, en la seccién de secado, se realiza
bien en una maquina o bien en el secadero exterior al aire libre. Las hojas se-
cas se clasifican en tres grupos segiin su calidad (primera, segunda y tercera).
A continuacion, estas hojas de chapa clasificadas pasan a la secciéon de pren-
sado, en donde se agrupan y encolan varias hojas y se introducen en las prensas
obteniéndose el tablero contrachapado. Los tableros de idénticas caracteristicas
se apilan formando los lotes, que se etiquetan con la medida, cantidad, fecha y
prensa utilizada. En la seccion de corte, los tableros son lijados y cortados para
obtener el producto final solicitado por el cliente. Cada tablero pasa secuencial-
mente por dos maquinas. La primera (macro) procesa los tableros uno a uno y
realiza simultdneamente varios cortes longitudinales para obtener piezas con el
ancho indicado en el pedido. Las piezas asi obtenidas se apilan y se cortan en la
retestadora a la medida del largo solicitado para el producto final. Esta maquina
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puede realizar también varios cortes simultdaneos. La empresa dispone de dos
macros y una retestadora. En todas ellas, las sierras laterales cortan una medida
fija de cada lado que no se aprovecha.

La produccién es por tanto un proceso lineal y continuo en el que se diferencian
dos fases en funcion de la incertidumbre de los datos que intervienen en el proceso.
La primera fase (secciones de desenrollo y secado) es la que mayor grado de
incertidumbre posee. En estas secciones no se conocen con precision la duracion
del proceso ni la calidad del producto obtenido (hojas de primera, segunda o
tercera calidad), ya que son numerosos los factores externos que influyen en él:
calidad de la madera recibida, situacion climatoldogica, pues de ésta dependen los
tiempos de secado exterior,... La segunda fase (secciones de prensado y corte)
puede ser planificada de forma automética pues los datos son deterministas y
conocidos. FEl objetivo de la planificacion sera satisfacer las fechas de entrega
de los pedidos y optimizar la utilizaciéon de los recursos productivos. Una vez
planificada esta segunda fase, el gestor puede planificar de manera mas eficiente
la parte del sistema productivo no susceptible de ser automatizada.

El estudio de equilibrado del flujo de la produccién ha permitido identificar
el cuello de botella en la seccién de corte. Concretamente, las principales limi-
taciones se producen en la maquina que realiza los Ultimos cortes en el tablero
(retestadora). El tiempo de preparacién de esta mdquina para ajustar las sierras
cuando se cambia la medida del producto es muy elevado, pues los cambios y
mediciones se realizan manualmente. Por otra parte, la capacidad productiva de
las prensas es suficiente para alimentar la secciéon de corte.

Figura 1: Esquema de produccion de la empresa de contrachapado
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3 Sistema de informacién para la gestién integral
GESPLAN

Con el objetivo de mejorar la gestion integral de la empresa, se ha desarrollado
el sistema de informacion, GESPLAN, que a continuacién se describe. En él se
integra una base de datos con los procedimientos automatizados de planificacion,
que se alimentan mutuamente. La informacion global resultante permite al gestor
planificar de manera mas eficiente la parte del sistema productivo no susceptible
de ser automatizada. Ademsds, facilita la elaboracion de informes para los encarga-
dos de las distintas secciones y de los documentos administrativos habitualmente
necesarios.

El objetivo principal del sistema de planificacién es satisfacer las fechas de
entrega de los pedidos de los clientes, optimizando la utilizacién de los elementos
productivos. Para ello, dado que la retestadora es un cuello de botella, el sistema
comienza elaborando un plan de corte para dicha méquina. Con la informacién
residente en la base de datos relativa a los pedidos pendientes y al stock almace-
nado, se ejecuta el algoritmo heuristico que se describe en el epigrafe siguiente.
Como resultado, se obtiene las dimensiones y el nimero de los tableros a cortar,
el patrén de corte de cada tablero (nimero de sierras y distancia entre ellas en
cada maquina de corte) y el orden en que deben pasar los lotes de tableros por
la seccion de corte. También se indica lo méas tarde que se debe cortar cada lote
para que se puedan cumplir las fechas de entrega. Ademds del objetivo general
del sistema, el algoritmo también persigue minimizar desperdicios y minimizar el
tiempo total de proceso.

Con el fin de poder llevar a cabo el plan de corte generado por el algoritmo,
debe organizarse el trabajo de las tres secciones previas para que los lotes de
tableros que salen de las prensas alimenten de manera adecuada la seccién de
corte. Para ello, a partir de los resultados del algoritmo, GESPLAN construye
también un plan para cada una de las secciones anteriores.

El plan de prensado indica las dimensiones y cantidad de tableros de los lotes
y el orden en que han de ser prensados, asi como lo mas tarde que debe comenzar
el proceso de cada lote para satisfacer las fechas de entrega. El plan de troceado
de troncos y de secado indica el ntimero de hojas necesarias de cada calidad, las
dimensiones de las hojas y el orden de corte y secado. No se puede indicar con
precision cuantas hojas hay que cortar ni cuantos troncos hay que trocear, aunque
si se puede hacer una estimacién.

Toda la informacién generada se vierte en la base de datos, facilitando asi el
posterior andlisis por parte la empresa. Esta informacion se extrae mediante in-
formes ya programados en la base de datos. Estos informes estan parametrizados,
permitiendo variar fechas, proveedores, clientes, etc. El beneficio es doble, por
una parte GESPLAN permite elaborar autométicamente albaranes, facturas, in-
formacién sobre pedidos no completos, etc. y por otra planificar automéaticamente
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la produccién de la segunda fase del proceso y controlar la producciéon no sus-
ceptible de ser planificada de manera automatica. La comunicacién entre los dos
componentes principales del sistema, base de datos y algoritmo, es por tanto bi-
direccional. La base de datos ha sido creada con el programa Microsoft Access(©)
con procedimientos para exportar e importar datos a la segunda componente del
software. Kl algoritmo disenado para planificar la produccién es un algoritmo
heuristico especificamente desarrollado para esta aplicacién.

4 Algoritmo heuristico para la planificacion de la
maquina de corte

El algoritmo heuristico desarrollado calcula las dimensiones de las hojas que
hay que desenrollar e intenta encontrar una secuencia de paso por la retestadora
que permita satisfacer las fechas de entrega pactadas con los clientes.

El algoritmo resuelve el problema de planificar la méquina de corte en tres
etapas. En la primera (apartado 4.1) decide los lotes de tableros que se tienen que
procesar para realizar todos los pedidos. En segundo lugar (apartado 4.2) opti-
miza el orden en que dichos lotes pasan por la retestadora. Por tltimo (apartado
4.3), la solucién calculada se propaga al resto de maquinas.

4.1 Eleccién de los lotes para atender a los pedidos

Definimos un pedido de manera que todas las piezas sean exactamente del
mismo tipo, con las mismas caracteristicas. En general, serd necesario dividir
las peticiones reales de un cliente en diversos pedidos para que se cumpla esta
premisa. En esta primera etapa del algoritmo se determina el niimero de tableros
que debe ser procesado y las medidas de los mismos para obtener las piezas
demandadas en los pedidos, intentando minimizar el residuo generado (parte del
tablero que se desperdicia). De cada tablero van a surgir piezas de cémo méaximo
dos pedidos, A (principal) y B (residual). Definimos un lote como un conjunto de
tableros que seran cortados de la misma manera, dando lugar cada tablero a nj
piezas de las mismas medidas para el pedido A y, si procede, ny piezas de otras
medidas para el pedido A o para stock. Por lo tanto, cada lote queda determinado
por el ntimero de tableros, las dimensiones de los mismos, el tipo de acabado, el
numero de sierras en las distintas méaquinas de corte y la distancia entre ellas.
Ademss, a cada lote se le asigna la fecha de entrega del pedido principal asociado.

La empresa trabaja con una serie de medidas estandar de tablero. Los pedidos
se ordenan por fecha de entrega creciente y para cada pedido A se busca aquella
longitud de tablero que se pueda convertir en piezas del pedido de manera que
el desperdicio sea minimo. Después, se calcula la parte sobrante de tablero, des-
contados los margenes, para ver si de ella se puede obtener alguna pieza de otro
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pedido B que requiera el mismo acabado o, en su defecto, alguna pieza para stock.
Obviamente esto reduce significativamente el nimero de pedidos que pueden uti-
lizarse como pedidos residuales. Por tultimo, se calcula el nimero de tableros
necesario de la longitud escogida de manera que sirvamos por completo al pedido
A o al B. Si con los tableros que componen el lote no servimos completamente al
pedido A, calcularemos otro lote para las piezas restantes.

Por lo tanto, cada lote tiene asociados como maximo dos pedidos y cada pedido
puede requerir més de un lote.

4.2 Optimizacién del orden de los lotes

Una vez decididos los lotes que vamos a procesar, debemos escoger el orden en
que van a ser atendidos por la retestadora. Para evaluar la bondad de un orden
concreto tenemos en cuenta dos factores. El primero y més importante es si los
pedidos van a poder ser entregados a tiempo. Para calcular esto sélo tenemos
en cuenta el tiempo empleado por la retestadora, ya que segin la experiencia ese
tiempo va a ser mayor que el utilizado en el resto de secciones de la empresa. Cada
pedido entregado fuera de tiempo lleva asociada una penalizaciéon dependiente de
su importancia y de la tardanza en entregarlo. El segundo factor que tenemos
en cuenta, con mucho menos peso que el primero, es el tiempo necesario para los
cambios de sierra en la retestadora. El problema es por tanto encontrar el orden
de los lotes que minimice esta funciéon de penalizacion. Veamos el modelo que
corresponde con este problema de optimizaciéon. Para simplificar la formulacién
supondremos que cada lote sirve a un tnico pedido, aunque si permitiremos varios
lotes por pedido.

Modelo Partimos de la definicién de los n lotes, Iy, ..., [,. Cada pedido Py, h =

1,...,p, lleva asociados nj, lotes necesarios para terminar el pedido, P, =
{lPh(1)7 sy lPh(nh)}'
Definimos z;,7 = 1,...,n, como el instante en que el lote i-ésimo comienza

a ser tratado por la retestadora. Entonces x; + d; es el instante de finalizacién
del lote, donde d; denota el tiempo necesario para cortar todos los tableros del
lote con la retestadora, una vez sus sierras estan en la posicion adecuada. Esta
duracién del lote es conocida y constante (una vez definidos los lotes). La fecha de
finalizacién del pedido P, es por tanto f, = maz{zp, ) +dp, )i = 1,...,n,}.
Nuestro principal objetivo es entregar los pedidos antes de su fecha de entrega
ddp,. Una tardanza de un pedido conlleva una penalizacién ¢; dependiente de la
importancia del mismo. El primer y més importante factor de la funcién objetivo
es por tanto

Z Ch(fh — ddh)Jr

p
h=1
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Segun la informacion proveniente de la empresa existe una gran diferencia
en los tiempos necesarios para el cambio de sierras entre dos lotes, dependiendo
del tamano de los tableros de ambos lotes y las sierras que se deban emplear.
Es por tanto importante intentar minimizar el tiempo total de cambio de sierras.
Dado que este tiempo depende del orden concreto de lotes que escojamos, estamos
trabajando con un recurso con tiempo de preparacién dependiente de la secuencia.
Los tiempos de preparaciéon son tipicos en los procesos industriales, donde las
unidades de proceso como reactores o filtros tienen que ser limpiados después
de la finalizacién de ciertas actividades. En general, el tiempo de limpieza sera
mayor para pasar de un producto de baja calidad a uno de alta que viceversa. En
nuestro caso el tiempo de preparacién depende de si es necesario mover, anadir
o quitar sierras. Para profundizar en la literatura sobre tiempos de preparacion,
consultar [1]o [8, Sec. 3]. La definicién de lotes nos permite calcular la matriz
cambio(), cuya elemento ij contiene el tiempo de preparacién de la retestadora
entre los lotes 7 y j.

Para modelizar las restricciones del modelo necesitamos conocer el orden en
que los lotes son procesados. Concretamente, definimos para cada par de lotes
(4,7),% # j, la variable binaria y;;, que es 1 si el lote 7 se procesa inmediatamente
antes que el 7, 0 en caso contrario. Si un lote j se procesa justo después del i la
restriccién correspondiente es x; = x;+d; +cambio(i, j), dado que empezaremos a
procesar el lote j cuando se hayan efectuado los cambios de sierra correspondientes
después de acabar el lote i. Esta igualdad se consigue anadiendo 2 restricciones
por cada pareJa de lotes 1y j, siendo M una constante muy grande, por ejemplo

M = Zd —I—Z Z cambio(i, j):

i=1 j=1,j7#i

xj > x; + di + cambio(i, j)y;; — M(1 —yi;) (1)

x; < a4+ di + cambio(i, §)yi; + M(1 —yi;)  (2)

Un valor de 1 en y;; nos lleva a la igualdad deseada, mientras que un valor
de 0 nos ofrece dos desigualdades triviales. Estas variables nos ayudan ademas
a modelizar la segunda parte de la funciéon objetivo, minimizar el tiempo inver-
tido en cambio de sierras, Y| 37, i, cambio(i, j)y;;. Como éste juega un
papel secundario, lo multiplicamos por una constante [ mucho menor que «, la
constante por la que multiplicamos el primer factor. El modelo de programacién
lineal entera queda resumido en la Figura 2.
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p n n
Min « Z cn(fn —ddp)t + BZ Z cambio(i, j)yi;
h=1 i=1 j=1,j#£i
s.a.  x; > x; +di +cambio(i,j)yi; — M1 —yii) G,5=1,...,n, i#]
xj < mi+d; + cambio(i,j)yi; + M(1—vy;5) ,57=1,...,n, i#j

Jn = wp, ) +dp, ) i=1,...,n4
h=1,...,p

z; >0 1=1,...,n

yijE{O,l} Zajzlavnal#j

> oy=1 i=1,...,n

Jj=1,j#i

Figura 2. Modelo matemaético

Este problema es NP-duro, al reducirse al problema del agente viajero (TSP)
cuandoa=0y f=1. Cuandoa=1y =0y ¢, =1, obtenemos el problema
de minimizacién de la suma de tardanzas en una maquina, también NP-duro [3].
En ambos caso hemos supuesto que tenemos un tnico lote por pedido.

Se ha disenado un algoritmo heuristico para obtener una solucién de este
problema. Sin embargo, no vamos a intentar encontrar una solucién 6ptima
global para el mismo. Nuestras estimaciones sobre el tiempo empleado para cada
accién son muy aproximadas. Ademas, el indice de percances que puede ocurrir
es alto. Por tanto, no podemos controlar con completa seguridad si un pedido lo
podemos entregar a tiempo o no, i.e., la funcién objetivo (primer factor) no es
completamente fiable, tiene demasiada incertidumbre. Para paliar esta carencia
vamos a restringir el espacio de busqueda de soluciones, limitandonos a aquellas
donde los pedidos sigan un orden aproximado acorde con la fecha de entrega,
permitiéndonos variaciones para tener en cuenta la importancia de los pedidos y
poder mejorar la segunda parte de la funcién objetivo entre aquellos subérdenes
que conduzcan a entregar los pedidos a tiempo. Esquema bésico del algoritmo.

La Figura 3 muestra el esquema algoritmico basico compuesto por dos meta-
heuristicos, el primero de ellos es un GRASP y el segundo un algoritmo genético.
Los algoritmos genéticos (GAs) fueron introducidos en [7] y simulan la evolucién
bioldgica. Trabajan con conjuntos de soluciones denominados poblaciones que
van cambiando o evolucionando a lo largo del tiempo. La calidad de una solucion
le ayuda a sobrevivir las distintas generaciones o ser reemplazada por nuevas
soluciones mejores (supervivencia del més fuerte), calculadas a partir de viejos
individuos mediante combinacién y mutacién. Para una introduccién en los GAs
consultar [5].
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Definir lotes. Sea n el niimero de lotes.
POB = GRASP(npob).

SOLUCIN = GA(POB, npob, nilter).
Propagar SOLUCIN al resto de secciones.

Ll

Figura 3. Esquema algoritmico GRASP + GA(npob, nlter)

El algoritmo desarrollado comienza calculando una poblacién inicial POB
que contiene npob individuos. A partir de entonces se repite el mismo proceso un
numero prefijado de veces nlter (ver Figura 4). La poblacién se divide aleatoria-
mente en parejas de miembros. Cada pareja de individuos (padres) se combina
o cruza, dando lugar a dos nuevas soluciones (hijos). Posteriormente, los hijos
son sometidos a un proceso de mutacion, tras lo cual se determina su calidad me-
diante la funcién objetivo. Al igual que en algunos algoritmos genéticos hibridos
(ver [9]), v al contrario que en los genéticos puros, aplicamos una biisqueda local,
DOSOPT, a cada uno de los hijos para mejorar su calidad (ver Figura 4). Por
dltimo, los anadimos a la poblacién, obteniendo una poblacién aumentada de
2npob individuos una vez hemos combinado todas las parejas formadas. Al elimi-
nar los npob peores individuos retornamos al tamano original y podemos repetir
el procedimiento.

1. Desde i =1,...,nlter:

1.1 Dividir la poblacién en pares de individuos
1.2 Combinar cada par de individuos y generar otros dos indivi-
duos con el operador de cruce
Para cada individuo A obtenido en 1.2, hacer:
A = MUTACIN()A)
A= DOSOPT(\)
POB = POBU{\}
Eliminar de POB los peores nPob individuos, desempatando
aleatoriamente

2. Devolver la mejor solucién

Figura 4. Esquema algoritmico GA(POB, npob, nilter)

Individuos, calidad, cruce y mutacién Un individuo I viene dado por una
permutacién de los lotes I = (I1,... 1), que determina el orden en que los lotes
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pasaran por la retestadora. La calidad de un individuo se calcula atendiendo a la
funcién objetivo descrita en el modelo (Figura 2) y siguiendo este orden, donde
el inicio del lote I es el final del I ;| mas cambio(l!_,,1}). El final del lote I! es
el inicio mas su duracion, que al ser constante solo se calcula una vez al inicio
del algoritmo. El segundo factor de la funciéon objetivo nos ayuda a desempatar
entre (sub)permutaciones de lotes que lleven a las mismas tardanzas.

El cruce utilizado en el GA propuesto es el denominado de dos puntos para
permutaciones [6] que a partir de dos individuos (madre y padre) genera dos
nuevos individuos (hijo e hija) del siguiente modo: se escogen 2 enteros q1 y ¢2
con 1 < ¢ < g2 < n. Lahija Ha se determina tomando los lotes de las posiciones
1,...,q1 de lamadre M, 7% := M. TLas posiciones i = g1 +1,..., g2 se obtienen
del padre P, (¢ := P donde k es el minimo indice tal que £ ¢ {12, ... iH}.
Las posiciones restantes ¢ = g2 + 1,...,n se obtienen de nuevo de la madre,
[Ha .= M | donde k es el minimo ndice tal que (M ¢ {12, ... 12} El hijo
se obtiene de forma simétrica intercambiando los roles de la madre y el padre.
Este operador de cruce ha resultado efectivo en varios problemas de secuenciacién
(ver por ejemplo [6] o [2]). La motivacién para seleccionar este operador ha sido
doble. En primer lugar, si ambas soluciones contienen un determinado lote en sus
primeras posiciones, esta caracteristica la heredaran ambos hijos. Esto es 1til para
aquellos lotes con fecha de entrega temprana, los cuales estardn en general en las
posiciones delanteras en las buenas soluciones. En segundo lugar, la hija hereda
con este operador muchos de los emparejamientos de la madre. Es decir, si dos
lotes estan en posiciones consecutivas en la madre (al menos en la primera parte,
la anterior a ¢ ), también lo estardn en la hija. Esto es importante para el segundo
miembro de la funcién objetivo, porque se conserva el tiempo de preparacion de
la retestadora.

La mutaciéon es importante para introducir diversidad en la poblaciéon. Se
ha escogido una mutacién similar a la empleada en [6]. Para cada una de las
posiciones del individuo, salvo la dltima, se decide aleatoriamente si intercambiar
el lote en esa posicion con el situado en la siguiente. Debido a la incertidumbre
en la funcién objetivo, no se permite que el pedido principal asociado al lote que
se adelante tenga una fecha de entrega que supere en una cantidad ¢ (cuyo valor
es elegido por el usuario) a la del pedido principal asociado al lote que se retrase.
Poblacién inicial y biisqueda local.

La poblacién inicial se crea mediante la técnica GRASP (ver Figura 5). Un
procedimiento de bisqueda miope aleatorizado y adaptativo (GRASP, [4]) es un
proceso iterativo o multi-arranque, en el que cada iteracion GRASP consiste en
dos fases y calcula una solucién. En general GRASP termina ofreciendo la mejor
solucién obtenida, aunque en el algoritmo que se presenta se han introducido
todas las soluciones en la poblacién inicial. En la fase constructiva de un GRASP
se construye una solucién posible iterativamente, anadiendo elemento a elemento.
Los elementos se escogen atendiendo a una funcién greedy (miope o agresiva),

Rect@ Monografico 3 (2007)



Valls et al. 295

pero teniendo en cuenta la aleatoriedad. En la segunda fase o fase de mejora, se
aplica una busqueda local en un vecindario de la solucién creada anteriormente.

1. Desde i =1,...,nPob

11 ELEG=1,...,n
1.2 Desdei=1,...,n
1.2.1 Fecha_ent = min{fecha de entrega(j), j € ELEG}
1.2.2 ELEG2 = {j € ELEG/ | fecha de entrega(j)—Fecha_ent |< u}

1.2.3 Calcular tiempo(j), j € ELEG2; donde tiempo(j) = tiempo de
preparacién (cambios de sierra) de la maquina si escogiéramos
ahora el lote j

1.2.4 Seleccionar lote k € FLEG2 con muestreo aleatorio sesgado uti-
lizando la funcién tiempo para calcular las probabilidades

1.2.5 ELEG = ELEG\ {k}; (i) =k
1.3 Hacer A = DOSOPT ()
1.4 POB = POB U {)\}

2. Devolver POB

Figura 5. Esquema algoritmico GRASP(nPob) para calcular la poblacién
inicial

En la iteracién i-ésima de la primera fase se escoge el lote que asignamos a la
posicién i-ésima del individuo. Para ello se restringen los lotes candidatos a ser
seleccionados como aquellos lotes cuya fecha de entrega dista de la minima fecha
de entrega de los lotes elegibles una cantidad menor que un pardmetro pu. Esta es
la forma de asegurar que los lotes asociados a pedidos con una fecha de entrega
temprana se situen en las primeras posiciones. A cada uno de los lotes candidatos
a ser escogidos se le asigna una prioridad dependiente del tiempo de preparacién
necesario (cambios de sierra en la retestadora), teniendo en cuenta el lote escogido
en la iteracion anterior. Con estas prioridades se calculan probabilidades, que se
utilizan para escoger el lote que ocupara la posicién i-ésima del individuo que
se estd generando. De esta forma se cumplen dos caracteristicas del GRASP,
que la funcién que guia la seleccion es adaptativa y aleatorizada. El tiempo de
preparacién de la maquina seria la funcién greedy empleada en este caso.

En la segunda fase se aplica una buisqueda local, DOSOPT, basada en los
dos-intercambios. En concreto, para cada posicién i,7 = 1,...,n — 1, estudiamos
el impacto en la funcién objetivo producido si intercambiamos el lote I} con el
siguiente. Este cédlculo es mas sencillo a medida que aumenta ¢, dado que las
fechas de finalizacién de los lotes anteriores se mantienen invariables. nicamente
no estudiamos el intercambio de 2 lotes consecutivos si el pedido principal asociado
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allote IZ, | tiene una fecha de entrega que supere en una cantidad ¢ la del asociado
al lote If. La razén es de nuevo la incertidumbre en la funcién objetivo. Esta
busqueda local se aplica también después en el genético a cada hijo calculado.

4.3 Propagacién de la solucién

Una vez decididos los lotes y el orden en que estos van a ser procesados ain
es necesario realizar una serie de decisiones para propagar la solucién al resto
de secciones. Para ello ejecutamos un paso hacia atrds con cada uno de los
lotes. En primer lugar, a cada lote le asociamos una de las dos macros existentes.
En general escogeremos siempre la misma para dejar la otra libre, salvo que las
caracteristicas de los tableros requieran emplear la segunda. Calculamos cudntos
tableros puede procesar la macro escogida al trabajar simultdneamente junto a
la retestedora, puesto que esto es lo que generalmente se produce en la empresa.
Como la retestadora es mas réapida que la macro, a veces se necesitard cortar
algunos tableros con la macro antes de que la retestadora comience con ese lote
(son los que denominamos tableros rebalsados). Estos se cortaran con la macro
que generalmente estd libre. Como disponemos de dos macros para abastecer a
la retestadora, en principio la asignacion se produce sin problemas.

El segundo y tltimo paso de propagacion consiste en la seccién de prensado.
Podemos procesar un lote con una, dos o las tres prensas de las que dispone
la empresa, dependiendo de las caracteristicas del lote. Empleamos un algoritmo
totalmente greedy para decidir qué prensas utilizar. Para cada nuevo lote sabemos
cuando se libera cada prensa. Utilizando esta informacién estudiamos cuando se
terminaria de procesar cada lote y cuando se liberaria cada prensa en cada una
de las posibilidades (empleando una sola prensa, siendo la 1?, 2* é 3%, empleando
la 1* y la 22, ...). Escogemos aquella combinacién con la que el lote salga antes
de las prensas. Desempatamos por el niimero de prensas, escogiendo primero por
tanto aquellas que antes dejan libre alguna(s) prensa(s).

5 Base de datos

La base de datos desarrollada en Microsoft Access(©) es una aplicacién con-
cebida para facilitar, mediante un entorno amigable y sencillo de utilizar, tareas
como la actualizacién de informacién por el usuario, llamadas al programa de
planificacién y generacion de informes. Es una base totalmente relacionada para
evitar duplicidades e incoherencias en la informacién contenida.

El objetivo de la base de datos es doble. En primer lugar, debe de contener
toda la informacién que requiere el algoritmo para poder obtener una solucion.
En segundo lugar, y dado que contiene todos los datos manejados por la empresa,
debe generar automaticamente los informes que habitualmente realiza la empresa
y que proporcionan informacién sobre facturacién, albaranes, rendimiento de la
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madera, etc. Describimos a continuacion, presentando alguna de las pantallas, el
contenido de la base de datos.

Desde el ment inicial, mostrado en la figura 6, se permite el acceso a todos
los formularios disenados para actualizar los datos que varian continuamente, a
dos nuevos mentus donde se encuentran respectivamente accesos a la creacion de
informes y formularios para la actualizacién de los datos permanentes; y por
dltimo, al programa para obtener la solucién a partir de los datos referentes a los
pedidos y al stock.

B3 Microsoft Access - [MENU ; Formulario] [@EE
P pwtvo Edon e Jreets Famdo Begsvos  Hereneots Vegae ST —— P
il Q[ lmxs Ferers
T | NENF AN T |08
&  Actusliar datce per manentes
| i | g
Generar Informes
Yoo | Az |
e
Horss o Tormn Jsaie

Secadain |

[Garvrar Seaencia T eacion
Horas Secaders Insrie
ok remaodes | o %
Praa .
Stk Rebakda
==
o ama
Stodh Thas A
Retstaden

Seock futiculas B
Horas en Resostadora
T = Informe Salida Programs.

st Fomung )

Figura 6 Menu inicial de GESPLAN

La primera columna de la pantalla mostrada en la figura 6 contiene el acceso
a los formularios que se han desarrollado para actualizar toda la informacion del
proceso productivo, tanto del material comprado (madera) como de los productos
semielaborados que se obtienen a lo largo del proceso. Ademads, se accede también
a sendos formularios en los que se imputan horas de trabajo en cada seccién
para elaborar posteriormente informes que faciliten el andlisis del rendimiento del
trabajo en cada una de ellas.

A la derecha de este menu, se observan dos partes separadas por una linea
horizontal. En la parte superior, los accesos a pedidos y albaranes enlazan con
respectivos formularios. En el primero de ellos (pedidos) se completa toda la
informacién relativa a los pedidos que se reciben, desde el cliente que lo solicita
hasta el detalle pormenorizado de la mercancia requerida. Los datos contenidos
en el formulario albaranes estan relacionados con los pedidos origen del albaran
(un pedido puede desglosarse en varios albaranes), con los datos de stock, ya que
la mercancia puede provenir de stock y con los articulos fabricados para dicho
pedido. Parte de la informacién contenida en la tabla definida para albaranes
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proporcionaré los datos para confeccionar informes de dichos albaranes que seran
enviados junto con el material requerido a los clientes.

Ademads del enlace para abandonar el sistema, aparecen otros dos (actuali-
zar datos permanentes y generar informes) que conducen a sendos ments. El
primero de ellos accede a los formularios desde los que se actualizan los datos
que poco varfan a lo largo del tiempo (datos de clientes, proveedores, tipos de
productos e informacién relativa a los tipos de corte y méquinas utilizadas en el
proceso productivo,...). El segundo contiene una serie de informes, diseiados
para proporcionar informacién de gran utilidad a los gestores (pedidos pendien-
tes de fabricar, pedidos fabricados no servidos, rendimiento de las secciones por
periodo, facturacién por cliente, facturacién por periodo, stock,. .. ).

La parte inferior del ment mostrado en la figura 6, estd destinada a ejecutar
con éxito el algoritmo desarrollado para planificar la seccién de corte. Aparecen
accesos a formularios que contienen los datos del stock, que deben de estar ac-
tualizados para obtener una solucién correcta. Asimismo, se ofrece la posibilidad
de acceder a informes en los que se muestra, si las hay, incoherencias encontradas
en los datos. La ejecucion del algoritmo determinaré el plan de corte propuesto.

A continuacién se muestran como ejemplo el formulario de los pedidos (fi-
gura 7), un informe que notifica los pedidos o partes de pedidos ya han sido
fabricados y estan pendientes de servir (figura 8) y otro que advierte sobre la ren-
tabilidad que se ha obtenido de la madera adquirida, partida por partida (figura
9).

Wicrosafl ccess - [Cormult Pedidos]
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Fiztia wifivgi Paneekars i
|Desgiose Padid__]
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Figura 7 Formulario introduccion de pedidos
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Figura 8 Informe lineas de pedido fabricadas y pendientes de servir
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Figura 9. Informe sobre el rendimiento de la madera que se ha obtenido en
cada partida

Por tltimo, la figura 10 muestra el informe que recoge la solucién proporcio-
nada por el programa de planificacién. En concreto, aparece toda la informacion
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asociada al lote que ocupa el primer lugar en la solucién propuesta: numero
de tableros, caracteristicas, hojas necesarias de cada calidad, pedidos asociados,
nimero de cortes en la retestadora, tiempo de ejecucién en prensa y corte, etc.
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Figura 10. Salida del programa

6 Conclusiones

En este trabajo se ha analizado el sistema productivo de una empresa de
contrachapado y se ha propuesto un sistema de informacién de ayuda a la gestion.
Este sistema se ha disenado ex profeso para la situacién que define a la empresa,
desarrollando algoritmos para la parte del sistema productivo detectada como
determinista y susceptible de ser automatizada. Los algoritmos forman parte
del sistema de planificacion que se comunican con la base de datos, donde se
almacenan todos los datos de la empresa. La informacién necesaria para planificar
es suministrada por la base de datos. Asimismo, la informacién producida por
los algoritmos de planificacién también se almacena en la base de datos. Asi la
informacién global permite al gestor planificar, de manera mas eficiente, la parte
del sistema productivo no susceptible de ser automatizada.
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Los beneficios obtenidos al planificar la secciéon de corte y propagar esta in-
formacién hacia atras hasta la seccion de desenrollo han sido muy importantes:
disminuciéon del niimero de los pedidos que se convierten en urgentes por una
inadecuada planificacién; consecuentemente, disminucién del nimero de horas
extraordinarias; mayor utilizacion de la retestadora lo que implica aumentar la
capacidad de produccién de la empresa; disminucion de desperdicios. . .

Ademds, para el buen funcionamiento del sistema, es preciso que los datos
estén actualizados en su globalidad, lo que implica la posibilidad de obtener in-
formacién valida en todo momento. Todo ello facilita la elaboraciéon de informes
para los encargados de las distintas secciones y de los documentos administrativos
habitualmente necesarios.
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1 Introduccion

Muchas técnicas heuristicas de resolucién de problemas aplican procedimientos
de mejora a soluciones previamente obtenidas. Los procedimientos de mejora mas
conocidos son las Busquedas Locales en las que, una vez definido el concepto de
entorno de una solucién, se escoge una solucion del mismo que mejore a la solucién
inicial. Si esta solucién existe, el procedimiento reitera el paso anterior con ella.
En caso contrario, se finaliza la busqueda. La gran mayoria de los procedimientos
de mejora que pueden aplicarse a una solucién son variantes de las Busquedas
Locales o emplean a éstas como elementos importantes de su diseno.

Frecuentemente, los métodos de mejora son independientes de la solucién que
se desea mejorar. Asi, se aplican por igual a buenas y a malas soluciones. No
realizan un analisis de las soluciones que les permita adaptarse a las caracteristicas

“Este trabajo ha sido parcialmente financiado por el Ministerio de Ciencia y Tecnologia
(proyecto TIN2005-08404-C04-03 (70% son fondos FEDER)) y por el Gobierno de Canarias
(proyecto P1042004/088). La actividad desarrollada se enmarca dentro de los objetivos de la
red RedHeur (proyecto TIN2004-20061-E).
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de las mismas. Como consecuencia, emplean una mayor cantidad de recursos
computacionales. El andlisis de las soluciones permite disenar métodos de mejora
maés eficientes y eficaces.

Presentamos un procedimiento alternativo para mejorar la calidad de una
solucién del problema del empaquetado rectangular bidimensional no guillotina
(Strip Packing Problem). El procedimiento tiene su origen en el andlisis de una
técnica constructiva GRASP [1] previamente propuesta para este problema. Se ha
observado que esta técnica tiende a ubicar de forma incorrecta los rectangulos en
las tultimas iteraciones del método constructivo. Por ello, se propone recons-
truir la solucién obtenida por el método constructivo extrayendo los ultimos
rectangulos de la solucién para ubicarlos usando una técnica heuristica. Rea-
lizamos un andlisis de la solucién obtenida por el método constructivo para de-
terminar qué rectangulos deben extraerse de la solucién. Con ello, adaptamos el
procedimiento de mejora al problema y asi aumentamos la eficiencia del mismo.

El presente trabajo se estructura de la siguiente forma. En la préoxima seccién
se introduce el Strip Packing Problem. En la secciéon 3 se expone la técnica
constructiva GRASP y en la seccién 4 se describe la particular implementacién
que se hace de la misma para el Strip Packing Problem. Ademas, se describe el
analisis de la solucién que da lugar al procedimiento de mejora. Por tltimo, se
muestra la experiencia computacional realizada y se enumeran las conclusiones
que se siguen de los resultados obtenidos.

2  Strip Packing Problem

Los problemas de empaquetado constituyen una amplia clase de problemas
en los que, de forma general, se desea empaquetar un conjunto de items (figuras
geométricas pequenas) en un objeto geométrico mayor (o conjunto de objetos) de
tal forma que se optimice algin objetivo relativo al empaquetado obtenido.

La importancia de estos problemas en procesos industriales o de gestién fi-
nanciera se refleja en la gran cantidad de trabajos aparecidos en la literatura
cientifica. Algunos trabajos de revision y clasificacién en los que también se enu-
meran aplicaciones son [4] [5] [6] [10] y [11].

Aqui consideramos el Strip Packing Problem que se formula como sigue. Dado
un objeto rectangular de amplitud fija w y altura infinita, y un conjunto, R =
{R(w1,h1),...,R(wy,hy,)}, de rectdngulos con al menos uno de sus lados, w;,
hi, menor que w, se desea empaquetar el conjunto R en el objeto rectangular
utilizando el menor espacio posible (o lo que es lo mismo, se pretende minimizar
la altura del empaquetado). En este problema se pueden rotar los objetos y los
cortes pueden ser de tipo no guillotina. Un corte es tipo guillotina si atraviesa el
objeto desde un lado hasta el lado opuesto. En un corte no guillotina, lo anterior
no es cierto. En la figura 1(a)) se muestra una solucién de un Strip Packing
Problem.
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3 Greedy Randomized Adaptive Search Proce-
dures

En un método constructivo se anade iterativamente elementos a una estruc-
tura, inicialmente vacia, hasta obtener una solucién del problema. La eleccion del
elemento a incluir se basa en una evaluacién heuristica, que mide la conveniencia
de considerar este elemento como parte de la solucién. La funcién heuristica es
dependiente del problema y expresa el conocimiento que sobre el mismo se tiene.
Si la evaluacién de un elemento depende de los elementos previamente incluidos
en la solucién se dice que el método es adaptativo.

Ademas de la funcién heuristica, es necesaria una estrategia que indique qué
elemento se escoge. Una de las estrategias mas conocidas es la greedy en la que
se selecciona el elemento que optimiza la funcién heuristica. Esta estrategia suele
dar pobres resultados en la mayoria de los casos. Por ello se han propuesto
estrategias alternativas. Una de ellas consiste en elegir, no el mejor elemento,
sino uno de los mejores al azar. Al conjunto de los mejores elementos se le llama
Lista Restringida de Candidatos (LRC).

GRASP (Greedy Randomized Adaptive Search Procedure) [7][8][9] es un pro-
cedimiento heuristico que consta de varias etapas. A una fase constructiva, en
la que se escoge iterativamente y al azar un elemento de la lista restringida de
candidatos, le sigue una fase de postprocesamiento en la que se mejora la so-
lucién obtenida en la fase anterior. Como postprocesamiento suele emplearse una
simple busqueda local descendente. Los anteriores pasos se reiteran hasta que se
cumpla el criterio de parada. La mejor solucién obtenida es la propuesta por el
algoritmo. En ocasiones, se considera una fase de preprocesamiento previa a la
fase constructiva. El propdsito de esta fase es acelerar la fase constructiva poste-
rior, incluyendo aquellos elementos que, en base a algin criterio, deben estar en
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la solucién. Asi, pueden incluirse aquellos elementos que necesariamente perte-
necen a la solucién 6ptima del problema, o aquellos elementos que, en base a la
experiencia del decisor o historia pasada de la bisqueda, pertenecen a soluciones
de alta calidad. En [3] se ha propuesto un GRASP para un problema de ruta
de vehiculos en el que el usuario incorpora conocimiento al procedimiento en la
forma de soluciones en las que ciertos clientes deben ser servidos por vehiculos
especificos. En la figura 1 se muestra un pseudocédigo del GRASP.

procedure GRASP;
begin
Solucién Inicial := Fase de preprocesamiento;
Solucién Actual := Solucién Inicial;
Mejor Solucién := Solucién Actual;
repeat
Solucién Actual := Fase Constructiva;
Solucién Actual := Fase de Postprocesamiento
If Objetivo(Solucién Actual) <
Objetivo(Mejor Solucién)
then Mejor Solucién := Solucién Actual;
until (Criterio de parada);
end

Figura 1: Pseudocddigo descriptivo del GRASP.

Los elementos que determinan completamente la técnica GRASP son: el
método de preprocesamiento, la funcién heuristica, la forma en que se construye
la lista restringida de candidatos, el método de postprocesamiento y el criterio
de parada. De los anteriores elementos, algunos son totalmente dependientes del
problema y para otros pueden hacerse elecciones dependientes o independientes
del mismo. Asi, la funcién heuristica es dependiente del problema, y la regla de
parada puede ser dependiente o independiente del problema. Algunas reglas de
parada independientes del problema son finalizar la busqueda si se alcanza un
nimero maximo de iteraciones o se sobrepasa el tiempo méximo de CPU previa-
mente establecido. En [2] se proponen reglas de parada dependientes del problema
que analizan las caracteristicas de las soluciones obtenidas para decidir cuando
finalizar la busqueda.

4 GRASP para el Strip Packing Problem

En la presente seccion describimos un GRASP para el Strip Packing Problem.
En [1] se encuentra una descripién detallada de este GRASP junto al anélisis de
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amplios resultados experimentales que muestran la eficiencia y eficacia de esta
técnica.

La definicién de la lista restringida de candidatos se realiza a partir del con-
cepto de contorno superior.

4.1 Contorno superior

La inclusién de un rectangulo cualquiera en el objeto, determina un contorno
superior rectangular como el que se muestra en la figura 1(b). Ademds, es posible
que se obtengan areas no aprovechables, llamadas desperdicios, como el que se
obtiene al incluir el rectdngulo 4 en el objeto de la figura 1(b). El contorno, C,
puede representarse por medio del conjunto de segmentos horizontales (tomados
de izquierda a derecha) que lo forman. Es decir:

C= {(ylu ZC%, ‘T%)v (y27 vaxg)v ) (ycvxtljaxg)}

con
y* = altura del i-ésimo segmento
z% = punto inicial del i-ésimo segmento .
rh = punto final del i-ésimo segmento
Ademés, en el primer contorno 1 = 0 y x5 = w. Nétese que, intuitivamente,
es preferible un contorno formado por pocos segmentos. Esto es asi, ya que,
en general, la posibilidad de obtener desperdicios aumenta con el ntmero de

segmentos.

4.2 Lista restringida de candidatos

Sea t la iteraciéon actual del proceso constructivo y supongamos que R =
R1 U Ry, siendo Ry el conjunto de los rectangulos previamente incluidos en el
objeto y Ry = R\ Ry. Sea C(t) el contorno determinado por los rectdngulos de
R;,. Evaluaremos la conveniencia de incluir un rectangulo de R en el objeto por
la forma que tendrd el contorno C(t) tras su inclusién.

Lista restringida de candidatos: sea dado « € [0, 1] y supongamos que el
segmento del contorno con menor altura es (y¢, 2%, x}). La lista restringida
de candidatos se construye como sigue:

LRC = {R(wj, h;) € Ry : (0 < wh— 2t —w; <) V(0 < ab—ai—h; <)}

Es decir, la lista estd formada por aquellos rectangulos que mejor se ajustan
al ancho del segmento inferior del contorno. El ajuste viene determinado
por el valor de a.

Rect@ Monografico 3 (2007)



308 Mejorando las soluciones de un Strip Packing Problem

Para que la anterior definicién tenga sentido, debe haber, al menos, un rectangulo
de Ry, digamos R(w,, h;), tal que (0 < 2 —2' —w, < @)V (0 < zb—2' —h, < a).
Si ningun elemento de Ro cumple la anterior condicién, se escoge el rectangulo que
mejor se ajusta a x4 — 7, y se reconstruye el contorno. Si no existe tal rectangulo,
se reconstruye el contorno eliminando, convenientemente, el segmento (y*, x4, x5).

4.3 Fase de postprocesamiento

Una de las situaciones anémalas que puede presentarse al aplicar los métodos
constructivos anteriores se muestra en la figura 2. Consideremos la ubicacion del
rectangulo 6. Cualquiera de los métodos anteriores lo ubicaria segtin se indica en
la figura 2(b). La bondad de esta nueva situacién depende del instante en que
se produce. En las primeras iteraciones del método, la situacién es aconsejable.
No obstante, en las tiltimas iteraciones puede producir soluciones de baja calidad.
En particular, si nos encontramos en la tltima iteracién, seria preferible ubicarlo
como se muestra en la figura 2(c).

El anterior comportamiento es caracteristico del método constructivo que em-
pleamos. Por ello, en [1] se proponia el procedimiento de mejora consistente en
extraer los tltimos rectdangulos de la solucién y ubicarlos de la mejor manera po-
sible. Para ello, se consideran todas las ordenaciones posibles de los rectangulos
extraidos y, para cada una de ellas, se colocan, segin el orden establecido en la
ordenacion, los rectangulos en la posicién, y con la orientacién, que alcanza una
menor altura relativa.

A pesar de que la anterior fase de postprocesamiento mejora la calidad de las
soluciones obtenidas en la fase constructiva (ver [1]), tiene dos inconvenientes.

1. Valores limitados del pardmetro m: dado que se realiza una bisqueda ex-
haustiva entre todas las posibles combinaciones de los tltimos m rectangulos,
hay que limitar esta bisqueda a valores peque nos de m.

2. Obligacion de fijar a priori el valor de m: soluciones diferentes requeriran,
posiblemente, reconstruir desde puntos distintos. Fijar a priori el valor de
m impide que la fase de postprocesamiento se adapte a la solucién obtenida
en la fase constructiva.

Para subsanar estos inconvenientes, se propone analizar el contorno superior
que se obtiene en cada iteracién del proceso constructivo y determinar de esta
forma el valor de m, y realizar una bisqueda heuristica entre todas las combina-
ciones de los tltimos m rectangulos.

Analisis del contorno

La fase constructiva de un GRASP para el problema del empaquetado de
rectangulos bidimensional no guillotina consta de n iteraciones (con n el nimero
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Figura 2: Procedimiento de mejora

de rectdngulos a empaquetar). Sea C(t) el contorno superior que se obtiene al
incluir un rectdngulo en la ¢-ésima iteracion.

Asociado al contorno C(t) pueden considerarse varios valores que miden la
suavidad del mismo. Uno de estos valores es la altura media de los segmentos que
se define como

1o ,
AlturaMedia(C(t)) = - Z(y*(C(t)) ) t=1,...,n
i=1
donde c¢ es el nimero de segmentos del contorno y

yT(Ct)) = max {y"} t=1,...,n.

Convenimos que AlturaMedia(C(0)) = 0. Sea asimismo
AAlturaMedia(t) = AlturaMedia(C(t — 1)) — AlturaMedia(C(t)), t=1,...,n

el incremento que se produce en la altura media del contorno al incluir el rectangulo
de la t-ésima iteracién.

Proponemos el siguiente método para obtener la iteracién (o equivalentemente
el nimero de rectdngulos) a partir de la cual aplicar el método de mejora.

Mayor incremento en la altura media. Aplicar el procedimiento de mejora
a partir de la iteracién en que se produce un mayor incremento en la altura
media. Es decir, si t* es la iteracion que maximiza

AAlturaMedia(t), t=1,...,n,

se extraen los rectangulos empaquetados en las iteraciones que van desde la
t* hasta la n. Es decir, se extrae aquel rectangulo que, en base al criterio
anterior, ha sido mal colocado (ha producido un mayor incremento en la
altura media) y todos los que han sido colocados posteriormente.
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Bisqueda heuristica

Noétese que una vez determinada la iteracion, t*, a partir de la cual reconstruir,
se obtiene un nuevo problema de empaquetado de dimensién menor en el que la
frontera inferior del objeto en que se deben incluir los rectangulos viene dada por
el contorno C(t*). Este nuevo problema puede abordarse por cualquiera de las
técnicas heuristicas de resolucién de problemas. Hemos experimentado con una
Busqueda Local Descendente.

Bisqueda Local Descendente. Dada una permutacién de los rectangulos y
el movimiento consistente en intercambiar el orden de dos ellos, realizar el
mejor de los movimientos mientras sea posible. Los rectangulos se empa-
quetan, segun el orden establecido en la ordenacién, en la posicién, y con
la orientacion, que alcanza una menor altura relativa.

4.4 Criterio de parada

La busqueda realizada con GRASP finaliza después de un numero dado,
niter = 20, de pasadas del bucle Fase Constructiva, Fase de Postprocesamiento.

5 Experiencia computacional

Para evaluar el comportamiento de la propuestas de mejora de las soluciones
obtenidas en la fase constructiva del GRASP, se resolvieron diferentes problemas
generados aleatoriamente. Se implementd un generador de problemas que, dado
el ancho del objeto rectangular, w, el nimero de rectangulos, n, y el valor objetivo
6ptimo, oy, suministra un conjunto de n rectangulos que pueden ubicarse en un
objeto rectangular de amplitud w utilizando una altura hgp,. En la figura 1(a)
se muestra uno de los problemas obtenidos con este generador. Cada problema
fué resuelto 5 veces realizando 20 pasadas del bucle Fase Constructiva, Fase de
Postprocesamiento. El valor que determina el umbral de ajuste en el proceso
constructivo del GRASP se fijé a o = 0.

En la tabla 1 se muestran los resultados obtenidos en la experiencia computa-
cional. Las tres primeras columnas describen el problema: ntimero de rectangulos
(n), ancho del objeto rectangular (w) y altura éptima (hopt).

En las columnas 4 y 5 se recogen el mejor valor objetivo (Obj) y el valor
objetivo medio obtenido en las 20 fases constructivas del GRASP. En las columnas
6 y 8 se muestran estos mismos valores tras la fase de postprocesamiento. Las
columnas 7 y 9 almacenan las mejoras, respecto de la fase constructiva, producidas
tras la fase de postprocesamiento.

Por cada problema se muestran 5 filas de resultados (una por cada una de las
5 ejecuciones del GRASP realizadas) mds una que recoge los valores medios de
las mejoras. De los resultados obtenidos podemos concluir lo siguiente.
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Tabla 1: Evaluacion experimental del postprocesamiento

Constr. Postproc.
n w hep Obj Obj  Obj Mej. Obj  Mej.
50 50 50 51 52.6 51 0 52.45 0.15
52 53.15 51 1 52.95 0.2
52  55.7 51 1 55.15 0.55
52 55.2 51 1 54.9 0.3
52 5255 52 0 52.45 0.10
0.6 0.26
50 40 60 64 64.2 62 2 63.75 0.45
62 6555 62 0 63.15 0.85
64 66.3 63 1 64.9 1.4
64 65.9 64 0 64.4 04
63 6545 63 O 64.45 1
0.6 0.82
100 50 50 52 52.55 52 0 52.55 0
52 52 51 1 51.35 0.65
52 52 52 0 52 0
51 51.65 51 0 51.65 0
52 52 51 1 51.35 0.65
0.4 0.26
100 50 75 77 7735 77 0 77.05 0.3
76 76.75 76 O 76.75 0
77773 770 7 0.3
T 770 7 0
77 7755 77T 0 77.25 0.3
0 0.18
200 100 100 101 101.8 101 O 101.8 0
101 101.8 101 O 101.5 0.3
102 102.2 101 1 102.05 0.15
101 103.85 101 0O 102.65 1.2
101 102.2 101 O 102.05 0.15
0.2 0.36
200 120 160 163 164.75 162 1 163.7 1.05
163 166.9 162 1 165.3 1.6
162 169.25 162 0 169.25 0
163 165.55 162 1 165.05 0.5
165 167.1 163 2 165.75 1.35
1 0.9
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6
[1]

1. La fase de postprocesamiento mejora la calidad de las soluciones. La mejora
se produce tanto en el mejor valor objetivo como en el valor objetivo medio.
Aunque la mejora pueda parecer no significativa hay que senalar que las
soluciones generadas en la fase constructiva son, en la gran mayoria de los
casos, de alta calidad. Por ello, el efecto de la mejora puede parecer menor.

2. La técnica GRASP propuesta es eficaz en la resolucion del problema. La
distancia que existe entre el mejor valor objetivo encontrado por GRASP
y el valor objetivo éptimo es inferior en todos lo casos a 2 unidades (para
cuatro problemas es inferior a 1 unidad y para los otros dos es inferior a
2 unidades). Este comportamiento ya se observé en la amplia experiencia
computacional desarrollada en [1].
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1 Introduccion

El problema de diseno de red éptima se caracteriza por la busqueda de la
mejor configuracion de la red que satisfaga un conjunto dado de requerimientos.
Este problema ha sido estudiado por un buen nimero de investigadores ya que
su solucion es relevante en numerosas aplicaciones y se conoce que pertenece a la
clase NP- completo. Actualmente no existen algoritmos exactos que puedan re-
solver problemas similares en un periodo de tiempo razonable, especialmente para
instancias grandes. De ahi que otro tipo de técnicas, tales como las heuristicas,
deban emplearse, si bien no para encontrar la solucién 6ptima, si para encontrar
soluciones de calidad aceptable.

Este tipo de problemas se presentan en muy diversos campos, por ejemplo en
disenos, re-disenos de redes de computadoras o telecomunicacion, distribucion,
sistemas eléctricos de potencia, de redes de transporte, etc. Una amplia compi-
lacién de modelos y aplicaciones puede ser encontrada en la obra de Magnanti y
Wong [10].

En el presente trabajo abordamos el siguiente problema de diseno de redes:
dado un conjunto de nodos y un conjunto de aristas potenciales, se deben selec-
cionar las aristas que formaran parte de la red, de modo que puedan circular por
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ella diversos productos entre ciertos pares origen-destino establecidos, sin exceder
la capacidad de cada arista. Al hacer esto se incurre en dos diferentes tipos de
costos: los costos variables por transportar una unidad de producto y los costos
fijos pagados por la inclusién de las aristas en el diseno de la red. El objetivo es
determinar qué aristas deben considerarse en el diseno de forma que se garantice
la operacion de la red y que el costo total en que se incurra (considerando costos
de diseio y de operacién) sea el menor posible.

Se puede encontrar una extensa bibliografia en la versién no capacitada del
problema, pero el caso que considera capacidades finitas en las conexiones no
se encuentra en igual situacion. FEste tipo de problemas es més realista, pero
también mucho més complejo, y ha sido abordado con diferentes metodologias
tales como relajacién lagrangeana [2], procedimiento de acotamiento [3], Tabu
Search [9], etc.

Sin embargo estos trabajos han sido desarrollados para redes orientadas. Esto
significa que en esas redes puede que entre dos nodos sélo exista un arco en un solo
sentido mientras que en el presente trabajo, siempre que se considere conexién
entre dos nodos se consideraran los arcos en los dos sentidos. Ademds, en esos
trabajos los arcos dirigidos que unen dos nodos poseen capacidades independien-
tes, una para cada sentido del arco, mientras que en el problema aqui abordado,
existe una unica capacidad para la arista que une dos nodos, es decir, esta capa-
cidad debe ser compartida por todos los productos que circulen por los dos arcos
orientados correspondientes a la arista, sin importar el sentido del flujo. Estas ca-
racteristicas impiden cualquier adaptacién inmediata de los métodos propuestos
para redes orientadas al problema aqui abordado.

Para redes no orientadas solo se han reportado resultados obtenidos con el
diseno de una metaheuristica evolutiva, los cuales no son satisfactorios para redes
con ciertas caracteristicas [1] y otro trabajo desarrollado por Herrmann [7] que
utiliza un método de ascenso dual para redes tipo malla.

Por todo lo anterior y teniendo en cuenta que Tabu Search resulto efectivo en
un problema similar, pero sobre redes orentadas [9], se ha considerado importante
estudiar la efectividad en este problema de dicha metaheuristica, caracterizada
por una exploracion inteligente de estructuras de memoria.

2 Planteamiento del problema

Sea G = (N, A) un grafo que representa una red no orientada con un conjunto
N de nodos y un conjunto A de aristas potenciales. Sea A’ el conjunto de arcos
potenciales asociados a esas aristas. Sea K el conjunto de productos con demanda
d* para el k-ésimo producto. Del conjunto de nodos se distinguirdn varias parejas
origen-destino, asociadas cada una de ellas a un producto que circulara por la
red. Sean O(k) y D(k) el nodo origen y nodo destino respectivamente del k-
ésimo producto.
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Por otra parte, a cada arista potencial {7, j} se le asigna un costo fijo F;; por
su utilizacion o construccion, asi como costos cfj y cfi por unidad de producto
transportado, el cual depende del tipo de producto de que se trate y del sentido
en que circule por la arista. Cada arista {i,j} tiene asociada una capacidad
finita u;;, la cual deberd ser compartida por todos los productos que circulen en
cualquier direccién de la misma.

El modelo tiene dos tipos de variables de decisiéon. El primer tipo es una
variable binaria que modela las elecciones de diseno y se define como y;; = 1, si
la arista {7, j} se incluye en el disefio de la red, o bien, y;; = 0, en caso contrario.
El segundo tipo es una variable continua que modela las decisiones de flujo del
producto k que circula por el arco orientado (i, 7) y que denotaremos como xfj

Debe senalarse que, una vez que se haya decidido conectar dos nodos i,j (esto
es, la arista{i, j} formard parte del diseno de la red), se permitird flujo en ambos
sentidos, o sea, se consideraran en la red ambos arcos (4,7) v (4,1).

Para cada producto k € K y cada ¢ € N impondremos las restricciones usuales

de conservacion de flujo en redes

d* sii=O(k)
Z xfj - Z fcfz =< —d¥ sii=D(k)Vk €K, (1)
{5:(i,5)€ A’} {j:(j, ) €A’} 0 en caso contrario Vi € N

También consideraremos que el flujo de todos los productos que circulan en
cualquier direccién por cada arista {i,j} no debe exceder la capacidad de dicha
arista.

k k .
E (z3; + 25;) < wijyis v{i,j} €A (2)
kEK

Estas restricciones no solo aseguran que sean respetadas las capacidades de las
aristas, sino también fuerzan a que el flujo de cualquier producto xfj sea cero si
la arista {4, j} no ha sido seleccionada en el diseno. Por tltimo, exigimos que las
variables continuas sean no negativas y que las variables de diseno sean binarias.

x>0 Vk e K; V(i,j) € A (3)
yi; €{0,1} W{i,j}eA

Nuestro objetivo serd minimizar el costo total en que se incurre por diseno y
operacion de la red, esto es,

min Z Z cfjxfj—i- Z Fivyi; (4)

keK (i,j)eA’ {i,j}€A

Al problema (1)-(4) lo referiremos como DRCM.
Las decisiones a tomar consisten en la seleccion de las aristas que deben in-
cluirse en el disefio final de la red esto es, los valores de las variables y;; y los
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volimenes de flujo de cada producto que circulardn por cada una de las aristas
incluidas en sus dos direcciones (xfj, x];l) para satisfacer las demandas.

Es importante destacar aqui dos aspectos esenciales del problema:

1. Una vez que una arista ha sido incluida en el disenio de la red, se permitird
flujo en ambas direcciones, por lo que los costos variables de transportacion
asociados a cada arista dependerdan no solamente del producto sino también
del sentido en que esté circulando.

2. Cada arista posee una capacidad finita que serd compartida por todos los
productos que la usen sin importar la direccién del flujo para esos productos.

La gran dificultad de este problema estriba en dos cosas: un equilibrio entre costos
fijos y variables al construir una solucién, y una interaccién entre los diferentes
productos que comparten las capacidades de cada arista en la red.

3 Tabu Search

Los origenes de Bisqueda Tabu (Tabt Search, TS, en inglés) pueden situarse
en diversos trabajos publicados hace alrededor de 20 anos. Oficialmente, el nom-
bre y la metodologia fueron introducidos posteriormente por Fred Glover [6].
Numerosas aplicaciones han aparecido en la literatura, asi como articulos y libros
para difundir el conocimiento tedrico del procedimiento [5].

TS es un procedimiento metaheuristico para resolver problemas de optimi-
zacién combinatoria, utilizado para guiar cualquier procedimiento de busqueda
local, en la exploracién del espacio de soluciones més alla de la simple optimalidad
local.

TS se basa en la premisa de que para poder calificar de inteligente la resolucién
de un problema, debe incorporar memoria adaptativa y exploracion sensible, que
son las caracteristicas principales de bisqueda tabii. El éxito de esta metodo-
logia en diversos problemas se debe a sus estructuras de memoria y al uso de
estrategias de intensificacion y diversificacion. Las estrategias de memoria evitan
retornar a soluciones visitadas anteriormente, permiten guardar atributos de bue-
nas soluciones contribuyendo a identificar regiones de interés y mas generalmente
guiar la exploracion del espacio de solucién. Las estrategias de intensificacion y
diversificacion permiten avanzar a una solucién vecina que es peor que la solucién
actual, pero que proporciona la posibilidad de penetrar a un espacio del conjunto
de soluciones factibles que de otro modo no habria sido visitado y que podria
contener una soluciéon 6ptima global al problema.

Tabt Search distingue dos tipos de memoria: a corto y a largo plazo.

e La memoria a corto plazo, estd basada en atributos, es decir almacena atri-
butos de soluciones recientemente visitadas y su objetivo es explorar a fondo
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una region dada del espacio de soluciones. En ocasiones se utilizan estra-
tegias de listas de candidatos para restringir el nimero de soluciones exa-
minadas en una iteracién dada o para mantener un caracter agresivo en la
busqueda.

e La memoria a largo plazo almacena las frecuencias u ocurrencias de atri-
butos en las soluciones visitadas tratando de identificar o diferenciar regio-
nes. Estas tienen dos estrategias asociadas: Intensificar y Diversificar la
biusqueda. La intensificacién consiste en regresar a regiones ya exploradas
para estudiarlas mas a fondo. Para ello se favorece la aparicién de aque-
llos atributos asociados a buenas soluciones encontradas previamente. La
diversificacion consiste en visitar nuevas areas no exploradas del espacio de
soluciones. Para ello se modifican las reglas de eleccién para incorporar a
las soluciones atributos que no han sido usados frecuentemente.

4 Metodologia de Solucién

El procedimiento disenado, el cual estd inspirado en un método propuesto por
Crainic et al. para redes orinetadas [9], puede resumirse en los siguientes pasos
que explicaremos mas adelante.

1. Obtener una solucién inical.
2. Realizar una bisqueda local.
3. Ejecutar movimientos de diversifiacion.

4. Repetir pasos 2 y 3 un numero predefinido de veces.

4.1 Obtencion de la solucién inicial
La solucién inicial (X,Y") donde
X ={afj Yk e KV(i,j) € A}, Y = {y;; Y{i,j} € 4}

se obtiene mediante un procedimiento greedy aleatorizado desarrollado a tal
efecto. El procedimiento que se usa estd basado en la técnica heuristica del
GRASP [8]. Por consiguiente, esta solucién inicial ya es relativamente buena.

4.2 Busqueda local

Dada una solucién factible (X,Y) es necesario definir la vecindad donde se
realizard la busqueda local. Esta vecindad, la cual denominaremos vecindad con-
tinua, consta de todas las soluciones que pueden alcanzarse a partir de la actual
mediante un pivoteo simplex.
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Consecuentemente, un movimiento local corresponde a una transiciéon de una
base del sistema (1) - (3) a una adyacente, o sea, un camino bdsico es sustituido
por uno de los actualmente no basicos.

Para determinar qué movimiento implementar, se determina, para cada posi-
ble camino a entrar a la base, el correspondiente camino bésico a salir y se evalia
el “valor” de este movimiento potencial (en cuanto a la mejoria de la funcién
objetivo). Se selecciona e implementa el movimiento “mejor” si no es tabu, o en
caso de serlo, si mejora el criterio de aspiracién.

Es bueno senalar aqui que no todos los caminos estan disponibles en cada
iteracion, sino que se trabaja con el método de generacion de columnas. Para
la generacién de caminos se utilizan tres diferentes longitudes de arco, las cuales
tiene en cuenta tanto los costos fijos como variables, asi como la capacidad de la
arista.

La busqueda local contintia mientras no se alcance un nimero predefinido de
generacién de caminos para cada producto.

4.3 Fase de diversificacion

El objetivo de esta fase es sacar la busqueda del aparente éptimo local hacia
una region prometedora. Para ello se define la vecindad discreta, en relacion a
las variables de diseno y se usa para modificar drasticamente la configuracion de
la red y diversificar la bisqueda.

La estrategia de diversificacién implementada estd basada en la observacion
que un numero de “buenos” arcos aparecen una y otra vez en los caminos usados
para satisfacer la demanda.

Por lo tanto se implementa una estructura de memoria de largo plazo basada
en frecuencia, que registra por cuantas iteraciones ha estado un arco en la base,
esto es por cuanto tiempo pertenece al menos a un camino basico.

Arcos que tengan puntaje alto en esta memoria usualmente han sido utilizados
en las soluciones ya exploradas anteriormente.

Por ello para diversificar, uno selecciona un nimero pequeno de estos arcos
y los quita de la base cualquier camino que contenga al menos uno de los arcos
cerrados. Durante la tenencia tabu de estos arcos, ningtin camino que los contenga
podré entrar a la base, a menos que el criterio de aspiracién ignore el estatus tab.

5 Resultados

Para evaluar el desempeno del algoritmo propuesto se generaron aleatoria-
mente 120 problemas, agrupados en las siguientes 4 clases:

Clase I: Costos Fijos altos, holgada en capacidad

Clase II: Costos fijos altos, apretada en capacidad

Clase III: Costos variables altos, holgada en capacidad
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Clase IV: Costos variables altos, apretada en capacidad

Se consideraron también redes de diferentes tamanos: 30 nodos y 350 aristas
(700 arcos), 50 nodos y 975 aristas (1950 arcos). Para cada tamano se generaron
instancias con 10, 50 y 100 productos. Todos ellos fueron corridos con Cplex 7.1
[4] durante 6 horas y con el algoritmo propuesto en este trabajo.

La tabla 1 muestra los resultados agrupando las instancias segin las clases
anteriormente definidas. La columna 1 muestra esta clasificacién, la columna 2
muestra el promedio de las diferencias relativas entre la solucién entregada por
el algoritmo propuesto y la mejor solucion entera entregada por el optimizador
Cplex luego de 6 horas. Los valores negativos indican una mejora a favor del
algoritmo desarrollado en este trabajo. En la tercera columna se ofrece el tiempo
(medido en segundos) que necesité el algoritmo propuesto.

Clase TS vs Cplex | Tiempo-TS
I —2.59% 72.37
11 5.33% 69.30
111 —2.23% 75.81
I\Y —2.30% 66.05
General | —0.44% 70.88

Tabla 1: Instancias agrupadas por clase

Como era de esperar las instancias con costos fijos predominantes y capacida-
des muy justas (redes restringidas) obtuvieron los peores resultados.

En la tabla 2 se agrupan las instancias segin el tamano de la red. La primera
columna muestra el nimero de nodos y productos de la red, la segunda columna
muestra el promedio de la diferencia relativa del resultado obtenido por TS com-
parado contra la mejor solucién entera entregada por Cplex. Los guiones indican
que no pudo realizarse la comparacién porque el optimizador no encontré ninguna
solucion factible en el periodo de 6 horas y al igual que en la tabla anterior los
valores con signo negativo en la segunda columna indican una mejora a favor de
la metaheuristica empleada en este trabajo.

Nd-prod | Ts vs Cplex | Tiempo-Ts
30-10 1.35% 1.97

30-50 —1.85% 58.85
30-100 6.88% 88.90
50-10 —2.97% 27.40
50-50 - 62.10
50-100 | - 117.80

Tabla 2: Instancias agrupadas segiin sus dimensiones.
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Como puede observarse, para redes pequenas el optimizador obtiene buenos
resultados, sin embargo, a medida que crece el niimero de nodos y productos
circulando en la red se justifica plenamente el uso de la metaheuristica.

Por ultimo, se realiza una comparacién con los resultados entregados por un
algoritmo basado en Scatter Search . En la tabla 3 se presentan los resultados
para las redes de tamano grande, donde se habia detectado que se degradaba el
desemperio de este dltimo [1]. Al igual que en las tablas anteriores los signos
negativos indican una mejoria contra lo que se esta comparando.

Nodos- Ts vs SS | t-TS t-SS
Productos

50-10 -3.93% 7.76 27.4
50-50 —5.71% 78.1 62.1
50-100 —11.03% | 254.455 | 117.8

Tabla 3: Comparacién contra ScatterSearch

Es bueno senalar que para redes més pequenas el comportamiento de ambas
metaheuristicas fue similar.

6 Conclusiones

En este trabajo se presenta un algoritmo que combina la metaheuristica Bus-
queda Tabu con el método Simplex Revisado para producir una busqueda que
explore el espacio de soluciones (variables de flujo) mediante movimientos que
consisten en pivoteos del simplex revisado. Consideramos que el procedimiento
presentado propone una forma eficiente de encontrar buenas soluciones factibles
al problema de disenio de red multiproducto y constituye una buena adaptacion,
al caso no orientado que aqui se estudia, de desarrollos realizados para otro tipo
de redes.

Por otra parte, consideramos que es posible extender y mejorar este trabajo
para incorporar al TS otras técnicas tales como oscilacién estratégica que permi-
tan obtener resultados atin mejores, sobretodo en redes muy restringidas y con
costos fijos predominantes, donde la inclusién o no de una arista puede hacer gran
diferencia.
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