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Presentación

En la primavera de 2002, ASEPUMA editó su primer volumen monográfico
sobre programación con objetivo múltiples que fue coordinado por los profeso-
res Rafael Caballero y Gabriela Fernández. Con él se iniciaba una nueva etapa
dentro del programa de publicaciones de la Asociación Española de Profesores
Universitarios de Matemática Aplicada a la Economı́a y la Empresa.

El éxito de esta publicación animó a la Junta Directiva a proponer la edición de
un segundo volumen. En la reunión de la Junta Directiva de ASEPUMA celebrada
el ? se acordó encargar la coordinación de este volumen sobre Optimización en
Incertidumbre a las profesores Emilio Cerdá, Laureano Escudero y Ramón Sala.

En la primera toma de contacto para diseñar el contenido de este número
se consideró conveniente la incorporación de Antonio Alonso-Ayuso, y aśı quedó
constituido el grupo responsable de llevar a cabo esta edición.

Los coordinadores de este monográfico contactaron con diversos profesores
especialistas en este campo y aceptaron realizar un trabajo para este número,
cada uno desde una visión particular.

El libro se estructura en dos partes: una parte metodológica y otra de aplica-
ciones, formando un total de 17 caṕıtulos de contenido y orientación diferentes,
pero a la vez complementarios.

La primera parte contiene seis trabajos, mientras que son nueve las aplicacio-
nes que se comentan.

El primer Caṕıtulo elaborado por Emilio Cerdá y Julio Moreno, presenta
una Introducción a la Programación Estocástica. Se hace un recorrido por sus
métodos fundamentales, haciendo especial énfasis en los problemas de recursos,
restricciónes probabiĺısticas y modos de transformar un objetivo estocástico en
su equivalente determinista.

Se trata, en definitiva, de presentar una panorámica general de la progra-
mación estocástica, que proporcione una buena introducción a los recién llega-
dos a este campo de la metodoloǵıa fundamental.

El profesor Jaime Gil-Aluja de la Universitat de Barcelona, plantea un Caṕıtulo
sobre la visión fuzzy de la matemática de la incertidumbre. Esta introducción,
junto con las referencias bibliográficas aportadas suponen un punto de partida
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adecuado a la iniciación a las técnicas de la teoŕıa de los subconjunto difusos o
borrosos.

Como extensión del primer Caṕıtulo, Caballero, Cerdá, Muñoz y Rey, presen-
tan la Programación estocástica multiobjetivo. Este trabajo se centra en el
estudio de problemas de decisión en los que el número de objetivos es múltiple y
algunos o todos los parámetros del problema son variables aleatorias con distri-
bución conocida. De esta forma, se relaja la hipótesis frecuente cuando se plantea
un modelo de optimización referente a que el objetivo del proceso de decisión
puede representarse a través de una única función a optimizar. Se acompañan de
una exposición amplia de los diferentes procedimientos para resolver este tipo de
problemas cuando aparecen diferentes objetivos a coordinar.

Jose Miguel Cadenas y Jose Luis Verdegay, complementan el Caṕıtulo del
profesor Gil-Aluja con la descripción de la metodoloǵıa de la programación lineal
fuzzy, con el trabajo titulado: Métodos y modelos de programación lineal
borrosa.

En el trabajo de Alonso-Ayuso, Clement, Escudero, Gil y Ortuno, escriben
el trabajo Branch and fixcoordinado, un esquema de resolución de pro-
blemas estocásticos multietapicos 0-1 mixtos.En muchos problemas de op-
timización, en especial en aquellos que evolucionan en el tiempo a lo largo de un
horizonte de planificación dado, es habitual que algunos de los coeficientes de la
función objetivo y del vector del término independiente e, incluso, de la matriz
de restricciones, no se conozcan con exactitud en el momento de tomar las de-
cisiones correspondientes, aunque se disponga de alguna información sobre ellos.
En este caṕıtulo se estudia la utilización del procedimiento llamado Branch-and-
Fix Coordinado (BFC) para obtener la solución óptima 0–1 mixta del problema
estocástico original. Se puede utilizar tanto la descomposición Lagrangiana como
la descomposición de Benders, entre otras metodoloǵıas, para aprovechar la es-
tructura del DEM. Estos tipos de descomposiciones permiten obtener soluciones
factibles continuas una vez obtenidas soluciones factibles 0–1, de forma que todas
ellas satisfagan las llamadas condiciones de no anticipación en la solución óptima.

No podia acabar esta primera parte con una referencia a los procedimien-
tos informáticos de resolución de los problemas estocásticos. Santiago Cerisola,
Andrés Ramos y Álvaro Báıllo, han escrito el trabajo Modelado de algoritmos
de descomposición con GAMS describen los métodos fundamentales de re-
solución de problemas estocásticos, la descomposición de Benders y la relajación
Lagrangiana que han sido citado en los caṕıtulos anteriores. Además aportan la
estructura del código de resolución en lenguaje GAMS de estos dos procedimien-
tos, aśı como su aplicabilidad a la resolución de unos ejemplos sencillos pero muy
ilustrativos.

La segunda parte esta dedicada a presentar algunas aplicaciones en las que
se emplean los métodos de resolución de la optimización estocástica, borrosa,
robusta, etc. La secuencia de los caṕıtulos va desde las aplicaciones .
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Con el Caṕıtulo 7 escrito por Francisco Javier Quintana con el t́ıtulo Optimi-
zación estocástica aplicada al diseño de procesos, se inicia la parte de aplicaciones.
En este caṕıtulo se describe la optimización estocástica aplicada al diseño de pro-
cesos, entre los que encontramos las plantas petroqúımicas y de producción de
enerǵıa. Exponemos algunas caracteŕısticas y ventajas de este sistema con ejem-
plos que pueden aclarar ideas.

Los dos caṕıtulos siguientes presentan aplicaciones de la optimización es-
tocástica al sector eléctrico. El primero de ellos de Narcis Nabona y Adela Pagés
presenta el trabajo: Long-term electric power planning in liberalized mar-
kets using the Bloom and Gallant formulation, que como el t́ıtulo indica
esta redactado en inglés. El Caṕıtulo plantea la planificación a largo plazo es
el elemento clave para la generación de enerǵıa por parte de las empresas pro-
ductoras, pero esta planificación tiene su concreción a en la planificación de las
decisiones a corto plazo.

En el Caṕıtulo de Santiago Cerisola, Andrés Ramos y Álvaro Báıllo, sobre
Aplicaciones en sistemas de enerǵıa eléctrica en él se presentan varios ejem-
plos caracteŕısticos de planificación y operación de sistemas de enerǵıa eléctrica
para cuya resolución se utilizan frecuentemente técnicas de descomposición.

El Caṕıtulo siguiente escrito por Maria Albareda-Sambola y Elena Fernández
con t́ıtulo: Algunos problemas estocásticos de localización discreta: un
enfoque unificador, analiza los problemas discretos de localización tratan de
seleccionar las ubicaciones óptimas para un conjunto de centros de servicios (plan-
tas) entre un conjunto de ubicaciones potenciales que es conocido a priori. Al-
gunos de los elementos del problema son datos aleatorios, y con ello obliga a
introducir la metodoloǵıa de la programación estocástica como método de reso-
lución de este tipo de problemas.

Los caṕıtulos 11 y 12, también presentan dos aplicaciones a los problemas de
localización, aunque difieren en el procedimiento de solución, ya que mientras
que el primero utiliza la metodoloǵıa de la programación estocástica, el segundo
utiliza la optimización robusta como enfoque para la resolución.

El Caṕıtulo 11, escrito por Blas Pelegŕın lleva por t́ıtulo: Localización Mi-
nimax con Incertidumbre.El trabajo presenta un modelo general en el plano,
donde la distancia viene medida por cualquier norma y se presenta incertidum-
bre en los coeficientes de la distancia, que vienen dados por variables aleatorias
con distribuciones de probabilidad arbitrarias. Se consideran tres criterios de
decisión, se analizan las propiedades básicas de los correspondientes modelos de
optimización y se plantean procedimientos para su resolución.

En Caṕıtulo siguiente Cálculo de medianas robustas con incertidum-
bre en las demandas, escrito por Maŕıa José Canós, Marisa Mart́ınez y Manuel
Mochoĺı, describe uno de los problemas a los que se enfrentan las empresas es de-
cidir donde ubicar sus instalaciones de modo que sus costes de aprovisionamiento
y distribución sean mı́nimos. La optimización robusta no necesita que la incerti-
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dumbre esté provocada por un solo parámetro (el tiempo), como la optimización
dinámica, ni tampoco que exista una distribución de probabilidad asociada, como
la optimización estocástica, requisito no trivial en problemas que, como los de lo-
calización, estudian fenómenos únicos con poca o ninguna información histórica.

El Caṕıtulo Solución Numérica de Problemas de Control Estocástico
en Economı́a ha sidfo escrito por Domı́nguez, Novales, Pérez y Ruiz. En el
trabajo se analiza el comportamiento de un consumidor que trata de maximizar
su nivel de utilidad agregada en el tiempo, que deriva del consumo de los distintos
bienes, aśı como del nivel de ocio de que disfruta en cada peŕıodo. Las restricciones
a que se enfrenta este decisor, una para cada instante de tiempo, especificarán que
la cantidad que paga por los bienes que consume no puede exceder de la renta de
que dispone. En un contexto más amplio, los mercados de capitales existen para
que el consumidor pueda reservar parte de su renta cada peŕıodo en la forma de
ahorro. De ese modo, un peŕıodo puede decidir llevar a cabo un consumo cuyo
valor de mercado es inferior a la renta del peŕıodo, ahorrando la renta no gastada.
En otro peŕıodo, podŕıa suceder lo contrario, utilizando la renta de dicho instante,
junto con parte del ahorro que arrastra de peŕıodos anteriores, para financiar su
nivel de consumo.

El Caṕıtulo 14 lleva por t́ıtulo: Learning by Doing e incertidumbre adi-
tiva: solución anaĺıtica, cuyo autor es Francisco Álvarez. En este trabajo se
presenta la solución anaĺıtica al fenómeno de que algunas empresas reducen sus
costes de producción a lo largo del tiempo como consecuencia de la acumulación
de experiencia. Esto se denomina learning by doing. El problema de elección por
parte de una empresa de su senda temporal de niveles de producción cuando ésta
tiene learning by doing puede plantearse matemáticamente como un problema de
optimización dinámica. Además se analiza la presencia de shocks aleatorios.

En el Caṕıtulo 15 Antonio Heras Mart́ınez y Ana Garćıa Aguado realizan una
aplicación de la Programación estocástica por metas al campo actuarial, y
en particular a los sistemas de tarificación a posterior como el diseño de Sistemas
de Tarificación Bonus-Malus, un problema clásico de tarificación en el seguro del
automóvil. La aplicación de técnicas de Programación por Metas Estocástica
permite obtener algunas caracteŕısticas deseables de las soluciones que no son
tenidas en cuenta por los métodos clásicos de resolución de tales problemas.

Los dos caṕıtulos finales están dedicados a las aplicaciones de la metodoloǵıa
de los conjunto borrosos. Aśı el Caṕıtulo 16 escrito po Antomil, Arenas, Bilbao,
Pérez y Rodŕıguez Uŕıa con el t́ıtulo: Planificación óptima de la actividad
quirúrgica en hospitales públicos mediante un modelo de Programación
Compromiso Probabiĺıstica. Este Caṕıtulo analiza el fenómeno de las pro-
blema de las listas de espera que es un problema de toma de decisiones racionales
con presencia de criterios múltiples en un entorno de incertidumbre e imprecisión
. Se trata por tanto de un problema de Programación Multiobjetivo Lineal con
datos vagos/imprecisos. El trabajo propone un instrumento de gestión de listas
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de espera quirúrgicas basándonos en los datos de un hospital público.
El último Caṕıtulo realizado por José Emilio Boscá, Vicente Liern, Aurelio

Mart́ınez y Ramón Sala, presenta un modelo de Análisis Envolvente de Datos
(DEA) en presencia de incertidumbre en los datos. El modelo propuesta presenta
una aplicación a las ligas profesionales de fútbol de España e Italia, en donde
se sustituye el score único de los modelos DEA tradicionales por un intervalo de
eficiencia que permite analizar en qué casos un equipo (DMU) puede llegar a ser
eficiente mejorando determinados aspectos de sus inputs y outputs.

No quisiéramos acabar esta presentación del volumen sin dedicar una pocas
ĺıneas a las personas que han hecho posible que este volumen vea la luz. En
primer lugar a los miembros de la Junta Directiva de ASEPUMA, sin los cuales
no hubiera sido posible la realización de este volumen.

A todos los autores que han colaborado de forma de desinteresada en este
volumen.

Finalmente, aunque no los últimos, a Vicente Liern y Carlos Ivorra, miembros
del Consejo de Redacción de Rect@, por su trabajo de conversión de los trabajos
de Word a LaTeX, por la composición de los caṕıtulos y por su dedicación a que
este libro fuera una realidad en los plazo fijados.

Valencia, Junio de 2004.

Antonio Alonso-Ayuso, Emilio Cerdá,
Laureano Escudero y Ramón Sala

Coordiandores
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Programación Estocástica

E. Cerdáa, J. Morenob

a Departamento Análisis Económico. UCM.
b Departamento de Estad́ıstica. UCM.

1 Introducción

Tal como su nombre indica, la Programación Estocástica trata problemas de Pro-
gramación Matemática en cuya formulación aparece algún elemento estocástico.
Por tanto, mientras que en un problema determińıstico de Programación Ma-
temática, ya sea de Programación Lineal, Programación No Lineal, Programación
Entera, Programación Mixta Lineal Entera o Programación Mixta No Lineal En-
tera, todos los datos (coeficientes) que aparecen en su formulación son números
conocidos, en Programación Estocástica dichos datos (o al menos alguno de ellos)
son desconocidos, aunque para ellos se conoce o se puede estimar su distribución
de probabilidad. Para precisar más, veamos las dos definiciones que propone
Prekopa [29]:

Primera definición: “Programación Estocástica es la ciencia que ofrece solu-
ciones para problemas formulados en conexión con sistemas estocásticos, en los
que el problema numérico resultante a resolver es un problema de Programación
Matemática de tamaño no trivial“.

Segunda definición: “La Programación Estocástica trata problemas de Progra-
mación Matemática en los que algunos de los parámetros son variables aleatorias,
bien estudiando las propiedades estad́ısticas del valor óptimo aleatorio o de otras
variables aleatorias presentes en el problema o bien reformulando el problema
en otro de decisión en el que se tiene en cuenta la distribución de probabilidad
conjunta de los parámetros aleatorios“.

Los problemas resultantes de ambas definiciones son llamados problemas de
Programación Estocástica.
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4 Programación Estocástica

La aleatoriedad en coeficientes en unos casos se deberá a la falta de fiabilidad
en los datos recogidos, en otros casos a errores de medida, en otros a eventos
futuros aún no conocidos, etc.

Tal como indica Dantzig [11], la Programación Estocástica comenzó en 1955
con los trabajos de Dantzig [10] y Beale [2]. y ya en la misma década alcanzó
con Markowitz [23] una aplicación muy destacada al problema de selección de
carteras que le llevaŕıa a la consecución del Premio Nóbel. En [34] se recogen
unas 800 referencias sobre trabajos publicados entre 1955 y 1975, clasificadas en
función de su contenido.

En 1974 se celebró en Oxford (Inglaterra) la primera conferencia internacio-
nal en Programación Estocástica, organizada por Michael Dempster. En 1981
se celebró en Köszeg (Hungŕıa) la segunda conferencia, organizada por Andra
Prekopa. En dicho encuentro se puso en marcha el Committee on Stochastic Pro-
gramming (COSP), como una rama de la Mathematical Programming Society.
Dicho comité ha sido el responsable de organizar los sucesivas conferencias que
se han ido celebrando. La novena conferencia internacional se celebró en Berĺın
(Alemania) en 2001 y la décima se celebrará los d́ıas 9 a 12 de Octubre de 2004
en Tucson, Arizona (USA).

El COSP ha puesto en funcionamiento la página web http// stoprog.org en la
que se puede encontrar mucha información y documentación sobre Programación
Estocástica.

2 Definiciones básicas

Se considera el siguiente problema de Programación Estocástica:

mı́n
x

g̃0

(
x, ξ̃

)
,

sujeto a :
g̃i

(
x, ξ̃

)
≤ 0, i = 1, 2, ...,m,

x ∈ D,

(1.1)

donde el conjunto D ⊂ Rn, ξ̃ es un vector aleatorio definido sobre un conjunto
E ⊂ R

s.Suponemos que están dados una familia de eventos F , formada por
subconjuntos de E y una distribución de probabilidad P , definida sobre F . Por
tanto, para cada A ⊂ E, es A ∈ F, y la probabilidad P (A) es conocida. Además
suponemos que las funciones g̃i(x, ·) : E → R, ∀x, i son variables aleatorias y
que la distribución de probabilidad P es independiente del vector de variables de
decisión x.

Obsérvese que en el problema formulado (PE) para cada realización ξ del vec-
tor aleatorio ξ̃ se tiene un problema determińıstico. Un vector x ∈ D puede ser
factible para una realización del vector aleatorio y no serlo para otra realización.
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Aśımismo puede ocurrir que para una realización ξ1 sea g0

(
x1, ξ1

)
< g0

(
x2, ξ1

)
y en cambio para otra realización ξ2 del vector aleatorio ξ̃ sea g0

(
x2, ξ2

)
<

g0

(
x1, ξ2

)
.

Un caso particular del problema (PE) es el siguiente problema de Progra-
mación Lineal Estocástica:

mı́n
x

cT
(
ξ̃
)
x,

sujeto a : Ax = b,

T
(
ξ̃
)
x ≥ h

(
ξ̃
)
,

x ≥ 0,

(1.2)

donde la matriz A y el vector b son determińısticos. La matriz T (·) y los vectores
c (·) y h (·) dependen del vector aleatorio ξ̃ y por tanto son estocásticos.

Normalmente el problema estocástico se reemplaza por un problema deter-
mińıstico, que se llama determinista equivalente cuya solución óptima pasa a
considerarse la solución óptima del problema estocástico.

Fundamentalmente existen dos tipos de modelos en Programación Estocástica:

• Modelos “esperar y ver” (“wait and see”) o modelos de programacióm
estocástica pasiva, basados en la suposición de que el decisor es capaz de
esperar a que se produzca la realización de las variables aleatorias y hacer
su decisión con información completa de dicha realización, con lo que el pro-
blema se convierte en determińıstico y es posible encontrar el valor óptimo
de las variables de decisión con las técnicas habituales de programación
matemática determińıstica. En ocasiones puede tener interés el conocer
la distribución de probabilidad del valor objetivo óptimo o algunos de sus
momentos (valor esperado o varianza) antes de conocer la realización de
sus variables aleatorias. Tales problemas se llaman problemas de distri-
bución. Estos problemas se estudian en [4], [33], [29].

• Modelos “aqúı y ahora” (“here and now”) o modelos de programación es-
tocástica activa. En estos modelos el decisor toma la decisión sin el conoci-
miento de la realización de las variables aleatorias, sin que por ello queden
afectadas las distribuciones de probabilidad de las mismas. En los siguientes
apartados veremos diferentes enfoques para resolver el problema.

3 Programación con restricciones probabiĺısticas

Se considera el problema (1.1) en el que se supone que la función objetivo no
contiene ninguna variable aleatoria:
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6 Programación Estocástica

mı́n
x

g0 (x) ,

sujeto a : g̃i

(
x, ξ̃

)
≤ 0, i = 1, 2, ...,m,

x ∈ D,

(1.3)

El método de restricciones de azar (chance constrained) fue introducido
por Charnes, Cooper y Symonds en 1958. Véanse [7], [8]. La idea consiste
en transformar el problema dado en un determinista equivalente en el que se
verifiquen las restricciones con, al menos, una determinada probabilidad fijada
de antemano. Hay que distinguir dos casos según se fije la probabidad para el
conjunto de las restricciones o para cada una de ellas por separado.

Restricciones de azar conjuntas:
Se considera el problema (3.1). Sea p ∈ [0, 1] dado. Se define el determinista

equivalente:

mı́n
x

g0 (x) ,

sujeto a : P
(
g̃1(x, ξ̃) ≤ 0, g̃2(x, ξ̃) ≤ 0, ..., g̃m(x, ξ̃) ≤ 0

)
≥ p,

x ∈ D.

(1.4)

Para este problema, 1 − p es el riesgo admisible para el decisor de que la
solución del problema sea no factible.

En el caso particular de que para cada x ∈ D las variables aleatorias

g̃1(x, ξ̃), g̃2(x, ξ̃), ..., g̃m(x, ξ̃)

sean mutuamente estad́ısticamente independientes, el problema equivalente de-
terminista anterior se puede expresar de la siguiente forma.

mı́n
x

g0 (x)

sujeto a : P
(
g̃1(x, ξ̃) ≤ 0

)
P

(
g̃2(x, ξ̃) ≤ 0

)
...P

(
g̃m(x, ξ̃) ≤ 0

)
≥ p,

x ∈ D.

(1.5)

Restricciones de azar separadas o individuales:
Se considera el problema (1.3). Para cada restricción i ∈ {1, 2, ...,m} sea

pi ∈ [0, 1] dado. Se define el determinista equivalente:

mı́n
x

g0 (x) ,

sujeto a : P
(
g̃i(x, ξ̃) ≤ 0

)
≥ pi, para i = 1, 2, ...,m,

x ∈ D.

(1.6)
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La siguiente Proposición recoge la relación entre los dos casos:

Proposición 3.1. Supongamos que x̂ es una solución factible del problema

(1.6) para los valores p1, p2, ..., pm. Entonces para p = 1−m +
m∑
i=1

pi, se verifica

que x̂ es factible para el problema (1.4).

Demostración: Sea x̂ solución factible del problema (1.4). Ello quiere decir
que se verifica: P (ξ | gi (x̂, ξ) ≤ 0) ≥ pi,para todo i = 1, 2, ...,m. Definimos los
eventos Ai de la siguiente forma: Ai = {ξ | gi (x̂, ξ) ≤ 0} ,para i = 1, 2, ...,m.

Se verifica que P (Ai) ≥ pi, P
(
AC
i

)
≤ 1− pi. Veamos que se verifica que

P

(
m⋂
i=1

Ai

)
≥ p,

lo cual quiere decir que x̂ es factible para el problema (1.4). En efecto:

Teniendo en cuenta la desigualdad de Boole: P
(⋃

k

Sk

)
≤

∑
k

P (Sk) , se tiene

que

P

(
m⋂
i=1

Ai

)
= 1− P

(
m⋂
i=1

Ai

)C
 = 1− P

(
m⋃
i=1

(Ai)
C

)
≥

≥ 1−
m∑
i=1

P
(
(Ai)

C
)
≥ 1−

m∑
i=1

(1− pi) = p.

Sean:

q(x) = P (ξ | g1 (x, ξ) ≤ 0, g2 (x, ξ) ≤ 0, ..., gm (x, ξ) ≤ 0) ,
qi(x) = P (ξ | gi (x, ξ) ≤ 0) , i = 1, 2, ...,m.

El conjunto factible del problema (1.4) lo podemos representar de la siguiente
forma: C(p) = {x ∈ D | q(x) ≥ p} .

Sea: Ci (pi) = {x ∈ D | qi(x) ≥ pi} , i ∈ {1, 2, ...,m} .
El conjunto factible del Problema (1.6) lo podemos respresentar como

Ĉ (p1, p2, ..., pm) =
m⋂
i=1

Ci (pi) .

Seŕıa deseable que los conjuntos C(p) y Ĉ (p1, p2, ..., pm), que son los conjuntos
de soluciones factibles de los deterministas equivalentes que estamos estudiando,
fueran no vaćıos, cerrados y convexos. Las siguientes proposiciones tratan sobre
dichas cuestiones.
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8 Programación Estocástica

Proposición 3.2 Sea C(p) el conjunto de soluciones factibles del Problema (1.4).
En dicho conjunto se verifican las siguientes propiedades:

1) Si p1 ≤ p2, entonces C(p1) ⊃ C(p2).

2) C(0) = D.

3) C(p) es no vaćıo para todo p ∈ [0, 1]⇐⇒ C(1) �= ∅.

Demostración:
1) Sea p1 ≤ p2. Si x ∈ C(p2), es
q(x) = P (ξ | g1 (x, ξ) ≤ 0, g2 (x, ξ) ≤ 0, ..., gm (x, ξ) ≤ 0) ≥ p2 ≥ p1 =⇒ x ∈
C(p1).

2) C(0) = {x ∈ D | q(x) ≥ 0} = D, ya que q(x) es una probabilidad y por tanto
es mayor o igual que cero.

3) Si C(p) �= ∅, ∀p ∈ [0, 1] =⇒ C(1) �= ∅. Por otra parte, si C(1) �= ∅ =⇒ ∀p ≤ 1,
por 1) es C(p) ⊃ C(1) �= ∅.

Obsérvese que si C(p) �= ∅,∀p ∈ [0, 1], entonces Ĉ (p1, p2, ..., pm) �= ∅, para
todo p1, p2, ..., pm en [0,1].

La siguiente proposición, cuya demostración se encuentra en [17, ?] da condi-
ciones que aseguran que los conjuntos que estamos considerando son cerrados.

Proposición 3.3 Si las funciones gi : Rn × E → R son continuas, entonces los
conjuntos factibles C(p) y Ĉ (p1, p2, ..., pm) son cerrados.

A continuación se aborda el problema de la convexidad de los conjuntos C(p)
y Ĉ (p1, p2, ..., pm) . Estos conjuntos en general no son convexos. Veamos con-
diciones en que śı lo son. Las demostraciones de las proposiciones siguientes se
encuentran en [17, ?]. Véase también [29].

Definición 3.1 Una medida de probabilidad P : F → [0, 1] se dice que es cua-
sicóncava si ∀S1, S2 ∈ F , siendo S1 y S2 conjuntos convexos, y ∀λ ∈ [0, 1],se
verifica que P (λS1 + (1− λ)S2) ≥ mı́n {P (S1) , P (S2)} .
Definición 3.2 Una medida de probabilidad P : F → [0, 1] se dice que es log-
cóncava si ∀S1, S2 ∈ F , siendo S1 y S2 conjuntos convexos, y ∀λ ∈ [0, 1],se verifica
que P (λS1 + (1− λ)S2) ≥ [P (S1)]

λ [P (S2)]
1−λ

.
Las dos proposiciones siguientes dan condiciones para que una medida de

probabilidad sea cuasi-cóncava.

Proposición 3.3 Si P es una medida de probabilidad log-cóncava en F , entonces
P es cuasicóncava.

Proposición 3.4 Sea P una medida de probabilidad en Rs, de tipo continuo con
función de densidad asociada f. Entonces se verifica:
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• P es log-cóncava si y sólo si el logaritmo de f es una función cóncava.

• P es cuasi-cóncava si y sólo si f−1/s es convexa.

La siguiente proposición da condiciones suficientes para que los conjuntos que
estamos estudiando sean convexos.

Proposición 3.5 Si gi (·, ·) es conjuntamente convexa en (x, ξ), para cada i =
1, 2, ...,m y P es cuasi-cóncava , entonces C(p) es convexo para todo p ∈ [0, 1] y
Ĉ (p1, p2, ..., pm) es convexo, ∀p1, p2, ..., pm en [0, 1].

Algunas medidas de probabilidad cuasi-cóncavas son: La uniforme k−dimen-
sional, sobre un conjunto convexo S ⊂ Rk, la distribución exponencial en R, la
normal multivariante en Rk, la distribución de Dirichlet, la beta, la distribución de
Wishart, la gamma para ciertos valores del parámetro, la distribución de Cauchy,
la distribución de Pareto para determinados valores etc.

El caso lineal:
Se considera el problema lineal estocástico (1.2), en el cual se supone que la

función objetivo no contiene ninguna variable aleatoria:

mı́n
x

cTx,

sujeto a : Ax = b,

T (ξ̃)x ≥ h(ξ̃),
x ≥ 0,

(1.7)

Para el Problema (1.7), dado el valor p ∈ [0, 1] , el programa determinista equi-
valente correspondiente al método de restricciones de azar tomadas en conjunto
será:

mı́n
x

cTx,

sujeto a : Ax = b,

P
(
T (ξ̃)x ≥ h(ξ̃)

)
≥ p,

x ≥ 0,

(1.8)

Para el mismo Problema (1.7), dados los valores p1, p2, ..., pm, pertenecientes
al intervalo [0, 1] , el programa determinista equivalente correspondiente al método
de restricciones de azar tomadas de manera separada será:

mı́n
x

cTx,

sujeto a : Ax = b,

P
(
Ti

(
ξ̃
)
x ≥ hi

(
ξ̃
))
≥ pi, i = 1, 2, ...,m,

x ≥ 0,

(1.9)
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Sean C(p) el conjunto factible del programa (1.8) y Ĉ(p1, p2, ..., pm) el con-
junto factible de (1.9). Aunque el programa estocástico inicial (1.7) es lineal,
los conjuntos de soluciones factibles C(p), Ĉ(p1, p2, ..., pm) no tienen por qué ser
convexos, como se puede observar en el siguiente ejemplo.

Se considera el siguiente programa estocástico con una sola variable de decisión
x :

mı́n
x

g0(x),

sujetoa : Tx ≥ h
(
ξ̃
)
,

en donde T =
(
−2
1

)
,

h
(
ξ̃
)

toma los valores:(
−4
0

)
, con probabilidad 1/2, y

(
−10
3

)
con probabilidad 1/2.

Para este programa estocástico se tiene que, para todo p ∈ [0, 1/2] es C(p) =
Ĉ(p) = [0, 2] ∪ [3, 5], que no es convexo no conexo.

Las siguientes proposiciones recogen los principales resultados conocidos para
el tipo de problema que estamos considerando.

Proposición 3.6 Se considera el programa estocástico (1.7). Supongamos que
ξ̃ es un vector aleatorio cuya distribución de probabilidad es discreta y finita.Sea
P

(
ξ = ξk

)
= αk, para k = 1, 2, ...,K. Entonces para p > 1 −mı́nk∈{1,2,...,K} αk

se verifica que el conjunto factible C(p) es convexo.

La demostración se encuentra en [17, ?]

A la vista de la proposición anterior, se comprueba inmediatamente que si
pj > 1−mı́nk∈{1,2,...,K} αk para cada j = 1, 2, ...,m, el conjunto Ĉ (p1, p2, ..., pm)
es convexo.

Proposición 3.7 Se considera el programa estocástico (1.7). Supongamos que
T

(
ξ̃
)

= T y que la probabilidad P correspondiente a h(ξ̃) = h̃ es cuasi-cóncava.

Entonces los conjuntos C(p) y Ĉ (p1, p2, ..., pm) son cerrados y convexos.

La demostración se puede ver en [5]

Proposición 3.8Se considera el programa estocástico (1.7). Sean T̃1·, T̃2·, ..., T̃m·

las filas respectivas de la matriz T
(
ξ̃
)
, h

(
ξ̃
)

= h̃. Supongamos que T̃1·, T̃2·, ..., T̃m·,

h̃ tienen distribución normal con

E

[(
T̃i· − E

(
T̃i·

)) (
T̃j· − E

(
T̃j·

)T)]
= rijC, para i, j = 1, 2, ...,m,
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E
[(

T̃i· − E
(
T̃i·

)) (
h̃− E

(
h̃
))]

= siC, para i, j = 1, 2, ...,m,

donde rij y si son constantes para todo i, j. Entonces, C(p) es convexo para
p ≥ 0, 5.

La demostración se puede ver en [5]

Ejemplos:

1) Se considera el programa estocástico con conjunto factible

g(x) ≥ ξ̃, (1.10)

en donde x ∈ Rn, g(x) = (g1(x), g2(x), ..., gm(x))T no contiene ningún elemneto
aleatorio y ξ̃ =

(
ξ̃1, ξ̃2, ..., ξ̃m

)
es un vector aleatorio de dimensión m.

En este caso para p ∈ [0, 1] se tiene que el conjunto factible del determinista
equivalente para restricciones de azar conjuntas es

C(p) = {x ∈ Rn | P (ξ | g(x) ≥ ξ) ≥ p} =

=
{
x ∈ Rn | Fξ̃ (g(x)) ≥ p

}
,

en donde Fξ̃ es la función de distribución del vectora aleatorio ξ̃.

Para pi ∈ [0, 1], considerando restricciones de azar individuales se tiene que

Ci(pi) = {x ∈ Rn | P (ξi | gi(x) ≥ ξi) ≥ pi} =

=
{
x ∈ Rn | Fξ̃i (gi(x)) ≥ pi

}
= {x ∈ Rn | gi(x) ≥ γi} ,

en donde γi = F−1

ξ̃i
(pi) .

2) Se considera el programa estocástico lineal (1.7) y su determinista equiva-
lente (1.9) para restricciones de azar separadas. Sea la restricción estocástica

Ti

(
ξ̃
)
x ≥ hi

(
ξ̃
)

de la forma t̃Tx ≥ h̃, siendo
(
t̃T , h̃

)T
un vector aleato-

rio con distribución conjunta normal de media µ ∈ Rn+1, y matriz de varian-
zas y covarianzas V , de dimensión (n + 1) × (n + 1) . Calculemos su correspon-
diente restricción en el determinista equivalente (para restricciones de azar sepa-
radas). P

((
tT , h

)T | tTx ≥ h
)

= P
((
tT , h

)T | xT t− h ≥ 0
)

= P (η | η(x) ≥ 0) ,

en donde η̃(x) = xT t̃ − h̃. La variable aleatoria η̃ es normal (unidimensional),
por ser combinación lineal de variables conjuntamente normales. Su media es

mη̃(x) =
n∑
j=1

µjxj − µn+1, y su varianza es σ2
η̃(x) = z(x)TV z(x), donde z(x) =
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12 Programación Estocástica

(x1, x2, ..., xn,−1)T .

P (η̃ (x) ≥ 0) ≥ pi ⇐⇒ P

(
η̃(x)−mη̃(x)

ση̃(x)
≥ −mη̃(x)

ση̃(x)

)
≥ pi.⇐⇒

1− P

(
η̃(x)−mη̃(x)

ση̃(x)
<
−mη̃(x)
ση̃(x)

)
≥ pi ⇐⇒ 1− Φ

(−mη̃(x)
ση̃(x)

)
≥ pi,

donde Φ es la función de distribución de la normal de media cero y varianza 1.
Por tanto, la restricción de azar correspondiente queda como:

1− Φ
(−mη̃(x)

ση̃(x)

)
≥ pi ⇐⇒ Φ

(−mη̃(x)
ση̃(x)

)
≤ 1− pi ⇐⇒

⇐⇒ −mη̃(x)
ση̃(x)

≤ Φ−1 (1− pi)⇐⇒ −Φ−1 (1− pi)ση̃(x)−mη̃(x) ≤ 0.

El conjunto de los x ∈ Rn que verifican esa condición es convexo si y sólo si
Φ−1 (1− pi) ≤ 0, lo cual se verifica si y sólo si pi ≥ 0, 5.

Pueden encontrarse más ejemplos en [14], [27], [28], [30], [33], [35]. En [26] se
presenta una aplicación muy interesante.

4 Función objetivo aleatoria

Consideremos el siguiente problema estocástico, en el que todas las restriccio-
nes son determińısticas y la función objetivo es aleatoria.

mı́n
x

g̃0(x, ξ̃),

sujetoa : x ∈ X
(1.11)

El conjunto factible X ⊂ Rn está compuesto por restricciones determińısticas,
bien porque lo sean de manera natural, bien porque se haya obtenido el determi-
nista equivalente utilizando el método de restricciones de azar.

Se trata de transformar el objetivo estocástico en su determinista equivalente.
Ello puede hacerse utilizando distintos criterios, que vamos a ver a continuación,
siguiendo el enfoque de los trabajos [6] y [27].

4.1 Algunos conceptos de solución

a) Criterio del valor esperado.
Se convierte la variable aleatoria g̃0(x, ξ̃) en una función determińıstica to-

mando la esperanza matemática

E[g̃0(x, ξ̃)].
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El determinista equivalente del problema estocástico (1.11) será

mı́n
x

E[g̃0(x, ξ̃)],

sujeto a : x ∈ X
(1.12)

Para resolver el problema de programación estocástica siguiendo este criterio,
basta con conocer el valor esperado de la función objetivo estocástica y, por tanto,
es aplicable aún en el caso en el que se desconozca la distribución de probabilidad
de la variable aleatoria g̃0(x, ξ̃).

En [29] se señala que para que este criterio sea considerado apropiado se deben
cumplir dos condiciones:

1) El sistema debe repetir su realización de manera independiente un gran
número de veces, para asegurar que la media de los resultados sea bastante
próxima al valor esperado.

2) La magnitud de la variación del resultado no debe ser grande. En otro caso
nuestra poĺıtica óptima puede llevar al sistema a la bancarrota antes de que
la deseada media a largo plazo pueda ser alcanzada.

En muchas situaciones prácticas estas condiciones no se cumplen y, por tanto,
este criterio no debeŕıa ser utilizado en tales casos.

b) Criterio de mı́nima varianza.

Se convierte la variable aleatoria g̃0(x, ξ̃) en una función determińıstica to-
mando su varianza: V ar[g̃0(x, ξ̃)] = E[(g̃0(x, ξ̃))2]− {E[g̃0(x, ξ̃)]}2.

La utilización de este criterio da lugar a la elección de aquel vector x para
el que la variable aleatoria g̃0(x, ξ̃) está más concentrada alrededor de su valor
esperado, de manera que el determinista equivalente según el criterio de mı́nima
varianza puede interpretarse como una medida de error cuadrático.

El criterio de optimización es el de mı́nima varianza tanto si se trata de mini-
mizar la función objetivo (como estamos suponiendo en este trabajo) como si se
trata de maximizarlo.

Para poder utilizar este criterio es suficiente con que se conozca la varianza
de la variable aleatoria g̃0(x, ξ̃). No hace falta que se conozca su distribución de
probabilidad.

El determinista equivalente del problema estocástico (1.11), según el criterio
de mı́nima varianza será

mı́n
x

V ar[g̃0(x, ξ̃)]

sujeto a : x ∈ X
(1.13)
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14 Programación Estocástica

c) Criterio de eficiencia valor esperado desviación estándar.

Este concepto de eficiencia fue introducido por Markowitz en 1952 para resol-
ver problemas de selección de carteras en el campo de las finanzas. Véase [22] y
también [23] y [24].

Se trata de elegir una poĺıtica x0 que sea eficiente en el sentido de Markowitz.
Expliquemos su significado:

Sean µ (x) = E[g̃0(x, ξ̃)], σ2(x) = V ar[g̃0(x, ξ̃)].
Se tiene que verificar que no existe ningún x ∈ X para el cual se tenga que

µ(x) = µ(x0) y σ(x) < σ(x0), o bien σ(x) = σ(x0) y µ(x) < µ(x0).
El conjunto de puntos eficientes normalmente tiene infinitos elementos. Por

tanto, normalmente este criterio no especifica un único punto como solución
óptima. Si se quiere llegar a “una“ solución óptima habrá que añadir otras con-
sidereciones al conjunto obtenido de puntos eficientes.

El cálculo de soluciones eficientes valor esperado desviación estándar se tra-
duce en el cálculo de soluciones eficientes del siguiente problema biobjetivo de-
terminista equivalente:

mı́n
x

(
E[g̃0(x, ξ̃)], V ar[g̃0(x, ξ̃)]

)
,

sujeto a : x ∈ X
(1.14)

d) Criterio de mı́nimo riesgo.

Este criterio fue introducido por Bereanu [3] con el nombre de criterio de
mı́nimo riesgo y por Charnes y Cooper [9] con el nombre de P-modelo.

Se trata de maximizar la probabilidad de que la función objetivo sea menor
o igual que cierto valor previamente establecido. Por tanto, para resolver el
problema hay que fijar un nivel para la función objetivo estocástica, λ ∈ R,
al que se denomina nivel de aspiración, y maximizar la probabilidad de que el
objetivo sea menor o igual que ese nivel: P

{
g̃0(x, ξ̃) ≤ λ

}
.

La idea del nivel de aspiración es que “como mucho el valor objetivo sea λ”.
El determinista equivalente del problema estocástico (1.11), según el criterio

de mı́nimo riesgo será

máx
x

P
{
g̃0(x, ξ̃) ≤ λ

}
,

sujeto a : x ∈ X
(1.15)

Teniendo en cuenta que máx
x

P
{
g̃0(x, ξ̃) ≤ λ

}
= máx

x

{
1− P{g̃0

(
x, ξ̃

)
> λ}

}
=

1−mı́n
x

P
{
g̃0(x, ξ̃) > λ

}
, el problema (1.15) es equivalente a

mı́n
x

P
{
g̃0(x, ξ̃) > λ

}
,

sujeto a : x ∈ X,
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y el problema puede interpretarse como la minimización del riesgo de que la
función objetivo sobrepase el nivel de aspiración λ.

Si el problema a resolver consistiera en maximizar la función objetivo (en lugar
de minimizar como estamos considerando), es decir, si el problema original fuera

máx
x

g̃0(x, ξ̃),

sujeto a : x ∈ X

el problema de mı́nimo riesgo determinista equivalente seŕıa

máx
x

P
{
g̃0(x, ξ̃) ≥ λ

}
,

sujeto a : x ∈ X

En este caso la idea del nivel de aspiración es que “el valor objetivo al menos
sea λ”.

e) Criterio de Kataoka o criterio β−fractil

El criterio fue introducido por Kataoka [20].
Se comienza fijando por el decisor una probabilidad β ∈ (0, 1) para la función

objetivo y se determina el menor nivel que puede alcanzar la función objetivo
con esa probabilidad. En concreto, el determinista equivalente del problema es-
tocástico (1.11), según el criterio de Kataoka1 será:

mı́n
(xT ,λ)

λ

sujeto a : P
{
g̃0

(
x, ξ̃

)
≤ λ

}
= β,

x ∈ X

Si el problema a resolver consistiera en maximizar la función objetivo (en lugar
de minimizar como estamos considerando), es decir, si el problema original fuera

mı́n
x

g̃0

(
x, ξ̃

)
,

sujeto a : x ∈ X

el problema de Kataoka determinista equivalente seŕıa

mı́n
(xT ,λ)

λ

sujeto a : P
{
g̃0

(
x, ξ̃

)
≥ λ

}
= β,

x ∈ X

1En trabajos posteriores al de Kataoka otros autores como Stancu-Minasian [33] plantean el

problema con restricción probabiĺıstica de desigualdad: P
{
g̃0

(
x, ξ̃

)
≤ λ

}
≥ β. Se demuestra

que si la variable aleatoria g̃0
(
x, ξ̃

)
es continua el resultado del problema es el mismo en ambos

casos.
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Comparando los tres primeros criterios con los dos últimos (que se llaman de
máxima probabilidad) aparecen algunas diferencias:

• En el criterio de mı́nimo riesgo se fija el nivel de aspiración y en el criterio
de Kataoka se fija la probabilidad, luego ambos dependen de los valores que
se asignen a estos parámetros, mientras que en los tres primeros casos no
hay que fijar ningún parámetro.

• En los criterios valor esperado, mı́nima varianza y eficiencia valor esperado
desviación estándar sólo necesita conocerse la esperanza t/o la varianza ,
no haciendo falta la distribución de probabilidad.

La elección de un criterio u otro deberá realizarse en base a las caracteŕısticas
del rpoblema y a las preferencias del decisor. De todas formas, los cinco cri-
terios están relacionados entre śı, dado que cada uno de ellos utiliza diferentes
caracteŕısticas de la función objetivo.

4.2 Relaciones entre las soluciones según los distintos cri-
terios

En [6] se obtienen algunos resultados para problemas estocásticos como (1.11)
que cumplen algunas condiciones adicionales. Veamos algunos de dichos resulta-
dos.

Consideremos el problema estocástico (1.11) en el que suponemos ahora que
el conjunto de soluciones factibles X ⊂ Rn es no vaćıo, cerrado, acotado y con-
vexo. Suponemos también que ξ̃ es un vector aleatorio definido sobre un con-
junto E ⊂ Rs cuyas componentes son variables aleatorias continuas y cuya distri-
bución de probabilidad es independiente de las variables de decisión del problema
x1, x2, ..., xn.

Las demostraciones de todas las proposiciones que presentamos a continuación
se encuentran en [6].

Proposición 4.1 Se considera el problema estocástico (1.11) con las hipótesis
adicionales introducidas en este subapartado.

a) Si la solución óptima del problema según el criterio del valor esperado es
única, entonces es una solución eficiente valor esperado desviación estándar. Si
no es única sólo se puede asegurar que las soluciones óptimas valor esperado
son soluciones débilmente eficientes valor esperado desviación estándar, pero no
tienen por qué ser eficientes valor esperado desviación estándar.

b) Si la varianza de la función objetivo es una función estrictamente convexa,
el problema de varianza mı́nima tiene solución única que es una solución eficiente
valor esperado desviación estándar. Si no es única sólo se puede asegurar que las
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soluciones óptimas de mı́nima varianza son soluciones débilmente eficientes valor
esperado desviación estándar, pero no tienen por qué ser eficientes valor esperado
desviación estándar.

La siguiente proposición establece relación entre las soluciones óptimas según
los criterios de mı́nimo riesgo y de Kataoka.

Proposición 4.2 Se considera el problema estocástico (1.11) con las hipótesis
adicionales introducidas en este subapartado. Supongamos que la función de
distribución de la variable aleatoria g̃0(x, ξ̃) es estrictamente creciente. Entonces
x∗ es la solución de mı́nimo riesgo para el nivel de aspiración λ∗ si y sólo si(
x∗T , λ∗

)T es la solución de Kataoka con probabilidad β∗, con λ∗ y β∗ verificando

P
(
g̃0(x, ξ̃) ≤ λ∗

)
= β∗.

A la vista de la proposición anterior se puede asegurar que en las condiciones
que estamos considerando en este subapartado:

• Para cada nivel de aspiración λ, la solución de mı́nimo riesgo es también la
solución de Kataoka con una probabilidad β igual a la máxima probabilidad
obtenida en el problema de mı́nimo riesgo.

• Para cada valor β fijado, la solución de Kataoka es también solución de
mı́nimo riesgo para un nivel de aspiración igual al valor óptimo del problema
de Kataoka.

En [6] se establecen también relaciones entre soluciones de Kataoka y solucio-
nes eficientes valor esperado desviación estándar para algunos tipos de programas
estocásticos lineales.

4.3 Ejemplo

Como ejemplo vamos a considerar el caso de función objetivo lineal con dis-
tribución de probabilidad normal.

Sea el programa estocástico lineal

mı́n
x

ξ̃Tx,

sujeto a : x ∈ X
(1.16)

El conjunto factible X ⊂ Rn está compuesto por restricciones determińısticas,
bien porque lo sean de manera natural, bien porque se haya obtenido el determi-
nista equivalente utilizando el método de restricciones de azar. Se supone que el
vector aleatorio ξ̃ sigue una distribución de probabilidad normal multivariante,
con valor esperado ξ̄ y matriz de varianzas y covarianzas S definida positiva.
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En estas condiciones la variable aleatoria ξ̃Tx es normal con valor esperado
ξ̄Tx y varianza xTSx. Por tanto se tiene que ξ̃T x−ξ̄T x√

xTSx
es una variable aleatoria

N(0, 1) (normal con valor esperado 0 y desviación t́ıpica 1).

A continuación se calcula el determinista equivalente del programa estocástico
(1.16) para cada uno de los criterios considerados en este apartado.

a) Criterio del valor esperado

mı́n
x

ξ̄Tx,

sujeto a : x ∈ X

b) Criterio de mı́nima varianza

mı́n
x

xTSx,

sujeto a : x ∈ X

c) Criterio de eficiencia valor esperado desviación estándar

mı́n
x

(
ξ̄Tx, .

√
xTSx

)
,

sujeto a : x ∈ X

d) Criterio de mı́nimo riesgo de nivel λ

máx
x

P
{
ξ̃Tx ≤ λ

}
,

sujeto a : x ∈ X
(1.17)

Pero

P
{
ξ̃Tx ≤ λ

}
= P

(
ξ̃Tx− ξ̄Tx√

xTSx
≤ λ− ξ̄Tx√

xTSx

)
= Φ

(
λ− ξ̄Tx√
xTSx

)
, (1.18)

donde Φ es la función de distribución de la N(0, 1), que es estrictamente creciente,

por lo que máx
x

P
{
ξ̃Tx ≤ λ

}
= máx

x
Φ

(
λ− ξ̄Tx√
xTSx

)
= Φ

(
máx
x

λ− ξ̄Tx√
xTSx

)
, y el

problema (1.17) es equivalente a

máx
x

λ− ξ̄Tx√
xTSx

sujeto a : x ∈ X.
(1.19)

Una vez resuelto este problema, la probabilidad máxima para la que se puede
asegurar que la función objetivo estocástica es menor o igual que el nivel de

aspiración fijado λ, es: Φ
(

máx
x

λ− ξ̄Tx√
xTSx

)
.
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e) Criterio de Kataoka o criterio β−fractil

mı́n
(xT ,λ)

λ

sujeto a : P
{
ξ̃Tx ≤ λ

}
= β,

x ∈ X

Teniendo en cuenta (1.18), y que la función de distribución Φ es estricta-
mente creciente, se tiene que Φ

(
λ−ξ̄T x√
xTSx

)
= β ⇐⇒ λ−ξ̄T x√

xTSx
= Φ−1 (β) ⇐⇒ λ =

Φ−1 (β)
√
xTSx + ξ̄Tx, por lo que el problema (4.11) se puede expresar:

mı́n
(xT ,λ)

λ

sujeto a λ = Φ−1 (β)
√
xTSx + ξ̄Tx,

x ∈ X

y este problema es equivalente al problema con n variables de decisión:

mı́n
x

Φ−1 (β)
√
xTSx + ξ̄Tx,

sujeto a : x ∈ X.

Este problema es convexo para β ≥ 0, 5. Una vez resuelto este problema, el
menor nivel λ para el que podemos afirmar que la función objetivo no supera ese
nivel con probabilidad β es λ = mı́n

x
Φ−1 (β)

√
xTSx + ξ̄Tx.
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[7] Charnes, A., Cooper, W.W. “Chance-Constrained Programming“. Manage-
ment Science, 5, 73-79, 1959.

[8] Charnes, A., Cooper, W.W., Symonds, G.H. “Cost Horizons and Certainty
Equivalents: An Approach to Stochastic Programming of Heating Oil“. Ma-
nagement Science, 4, 235-263, 1958.

[9] Charnes, A., Cooper, W.W. “Deterministic Equivalents for Optimizing and
Satisfying under Chance Constraints“. Operations Research, 11, 1, 18-39,
1963.

[10] Dantzig, G.B. “Linear Programming under Uncertainty“. Management
Science, 1, 197-206, 1955.

[11] Dantzig, G.B. “Planning under Uncertainty“. Annals of Operations Research,
85, 1999.

[12] Dempster, M.A.H. Stochastic Programming. Academic Press, 1980.

[13] Diwelar, U. “Optimization under Uncertainty: An Overview“. SIAG/OPT
Views -and-News, 13,11-8, 2002

[14] Goicoechea, A., Hansen, D.R., Duckstein, L. Multiobjective Decision Analy-
sis with Engineering and Business Applications. John Wiley and Sons, 1982.

[15] Hammer, P.L. Stochastic Programming. State Of The Art, 1998. Annals of
Operations Research, Vol 85, 1999.

[16] Higle, J.L., Sen, S. Stochastic Decomposition. Kluwer Academic Publishers,
1996.

[17] Kall, P. Stochastic Linear Programming. Springer-Verlag, 1976.

[18] Kall, P. “Stochastic Programming“. European Journal of Operational Re-
search, 10, 125-130, 1982.

[19] Kall, P., Wallace, S.W. Stochastic Programming. John Wiley, 1994.

[20] Kataoka, S. “A Stochastic Programming Model“. Econometrica, 31, 1-2,
186-196, 1963.

[21] Kibzun, A.I., Kan, I.S. Stochastic Programming Problems with Probability
and Quantile Functions. John Wiley, 1996.

[22] Markowitz, H. “Portfolio Selection“. The Journal of Finance, 7, 77-91, 1952.

[23] Markowitz, H. Portfolio Selection: Efficient Diversification of Investment.
Cowles Commission Monograph 16, John Wiley and Sons, 1959.

Rect@ Monográfico 2 (2004)
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1 El latir de una sociedad compleja

La sociedad en la que se desenvuelve la actividad económica está soportando,
cada vez más, el efecto de cambios profundos para los que no resulta fácil estimar
las consecuencias sobre los hombres, las instituciones y las relaciones entre unos
y otros. De una manera muy resuntiva, acostumbramos a hablar de las nuevas
perspectivas utilizando palabras tales como revoluciones, convulsiones,. . . que
dan lugar a comportamientos no lineales que conducen hacia un futuro cargado
de incertidumbre.

Conocer, explicar y tratar este nuevo mundo constituye el principal objetivo
de quienes deseamos una sociedad mejor al servicio del hombre. Pero para ello,
será necesario vencer no pocos obstáculos colocados por quienes son remisos a la
apertura de su pensamiento a la recepción del aire fresco que exigen los nuevos
tiempos.

Somos consientes de las dificultades que entraña traspasar el umbral de una
nueva era, sobre todo, si se tiene en cuenta que todos cuantos nos hemos for-
mado a través del estudio de la ciencia económica sabemos del gran arraigo de
la matemática determinista como elemento capaz de describir las interrelacio-
nes existentes entre los fenómenos económicos. Somos conscientes de la enorme
atracción ejercida por los razonamientos sobre ella fundamentados, avalados por
la seguridad que otorga tantos siglos de experiencia. Pero pretender traducir un
mundo tan cambiante en el lenguaje numérico tradicional resulta hoy, misión casi
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imposible. Bien es cierto que, afortunadamente, aán se dan en determinadas oca-
siones circunstancias aptas para la utilización de la aritmética de la certeza y del
azar, pero también lo es que cada vez resulta mas dif́ıcil incluso acotar convenien-
temente los fenómenos, lo que constituye la condición mı́nima para el empleo del
más rudimentario de los números inciertos.

Desde hace unas pocas décadas los estudiosos de la economı́a y gestión de em-
presas están intentando canalizar sus inquietudes a través de un buen námero de
propuestas que, en diferentes sentidos, pretenden dar un nuevo tratamiento tanto
a viejos problemas como a los que van surgiendo del complejo entramado de rela-
ciones económico-financieras. Sin embargo en muchas de ellas se constatan, bajo
formas diferentes, viejas rutinas que no han conseguido generar horizontes capa-
ces de ofrecer luz a las obscuras profećıas de brujos y adivinadores de inquietantes
futuros.

Creemos que la principal causa de tanto inmovilismo viene dada por la influen-
cia del “principio del tercio excluso”, que ha constituido norma a la vez que gúıa
para los cient́ıficos durante más de 2000 años. Hemos pensado llegado el momento
de enunciar un nuevo principio, el de la “simultaneidad gradual”, que puede co-
bijar un elevado número de razonamientos lógicos capaces de crear conceptos,
establecer métodos y elaborar modelos y algoritmos, aptos para proporcionar,
por lo menos, algunas de las respuestas esperadas.

Hemos repetido en muchas ocasiones, que el saber cient́ıfico no debe servir para
explicar y tratar el universo que nos gustaŕıa vivir sino el que realmente vivimos1.
Para ello es necesario revisar en profundidad aquellos conocimientos “sagrados”
hasta ahora, que describen un mundo estable y crear una nueva estructura del
pensamiento capaz de convivir con los desequilibrios y equilibrios inestables que
conducen a la incertidumbre, aunque para ello sea necesario reflexionar sobre la
idoneidad del comportamiento cient́ıfico generalmente aceptado.

Una de las ideas recurrentes en la ciencia occidental durante muchos siglos ha
sido la idea de las leyes de la naturaleza2. Según ella, la naturaleza sigue ciertas
reglas estructuradas en torno a la certeza. Parece llegado el momento de poner
de manifiesto que cada vez resulta más patente la contradicción de esos plantea-
mientos con el aspecto cambiante del universo en general y con los cambios que
se producen en el entorno del ser humano en particular. Creemos llegado el mo-
mento de impulsar una idea darwiniana de la evolución de los sistemas sociales y
económicos, colocando dentro de sus justos ĺımites la idea geométrica. Es necesa-
rio saber “explicar” los fenómenos que van apareciendo, d́ıa a d́ıa, dando razón de
los cambios inductores de incertidumbres. Afortunadamente, somos hoy capaces
de extraer también de la incertidumbre ciertos comportamientos expresables, la

1Gil Aluja, J.: “La incertidumbre en la economı́a y gestión de empresas”. Actas del IV
Congreso de la Asociación Española sobre Tecnologia y Logica Fuzzy.Blanes, 14 de Septiembre
de 1994. Págs: 9-14

2Gil Aluja, J.: “Investment un uncertainty”.Kluwer academica Publishers. Dordrecht 1998.
Págs.:19-20

Rect@ Monográfico 2 (2004)
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mayor parte de ellos mediante posibilidades, algunos a través de probabilida-
des y muy pocos por la certeza.

Ha sido, sobre todo, a lo largo de los últimos decenios cuando más importantes
han sido las mutaciones, no sólo en cuanto a la fenomenoloǵıa socio-económica,
sino también en los comportamientos y en el pensamiento individual. Ante este
contexto, parece ĺıcito preguntarse cómo se puede concebir una actividad cient́ıfica
cuando el pensamiento humano, cargado de un alto grado de subjetividad, intenta
encontrar, entre tanto cambio, lo objetivo.

No resulta, pues, honesto cerrar los ojos y decir que se cree en las certezas,
aunque éstas no residan en nuestro mundo, sobre todo teniendo en cuenta que la
incertidumbre puede dar lugar a una nueva manera de representar las inestabi-
lidades y a través de ella comprender mejor el papel que juegan en unas nuevas
reglas que explican la naturaleza. Parece abierta, aśı, una puerta que quizá sea
angosta, pero es suficiente para salir del universo determinista que resulta alie-
nante ya que en él todo se halla predeterminado e inscrito en el Big Bang. Al
traspasar esta puerta aparecerá un universo incierto que permitirá explicar los
nuevos hábitos, las nuevas normas de conducta, los nuevos fenómenos.

La matemática del determinismo ha tenido un gran predicamento y ha impe-
rado y continúa imperado aún hoy en muchos ámbitos de la actividad cient́ıfica
en economı́a y gestión de empresas. Pero al iniciarse en la sociedad importan-
tes cambios, que tienen cada vez mayor presencia en el campo económico, se
levantan ciertas voces clamando por una nueva manera de enfocar los problemas.
Se subraya, aśı, la insuficiencia del mecanicismo para explicar los fenómenos y
comportamientos de la nueva sociedad en emergencia.

En el ámbito de la matemática aplicada, se están intentando crear elementos
capaces de llegar a un adecuado tratamiento de los fenómenos que tienen lugar
en el seno de los estados y de las empresas, cuando su conocimiento se produce
de manera tan poco precisa que no somos capaces de representar numéricamente
las magnitudes resultantes de la actividad económica . No podemos, hoy, ante la
imposibilidad de recoger las complejas e inciertas realidades, recurrir a una sim-
plificación inicial para realizar los desarrollos posteriores en base a estos elementos
simplificadores.

2 De los principios a la lógica

La revisión del complejo entramando cient́ıfico existente, aceptado sin fisuras
significativas hasta hace poco, comporta hurgar en los principios mismos que
forman la base a partir de la cual se construyen los elementos teóricos necesarios
para, finalmente, llegar a un adecuado tratamiento de los problemas susceptibles
de ser planteados. A partir de ellos se levantan cuatro niveles o estratos: lógica,
matemática pura, matemática aplicada y estudios de optimización.
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En la configuración de la actividad investigadora 3, la ciencia occidental se
ha ido construyendo a lo largo de los siglos tomando como uno de los indiscuti-
bles soportes el principio del tercio excluso, a partir del cual, una arquitectura
lógica va tomando forma hasta consolidarse con los trabajos de George Boole.
Un único operador lógico permite el encadenamiento de proposiciones a través de
dos modos: hacia adelante con el “modus ponens” y hacia atrás con el “modus to-
llens”. El paso del razonamiento lógico, expresado en palabras, a su presentación
mediante śımbolos ha dado lugar al desarrollo de la matemática en su estado
más puro que, con el tiempo, ha adquirido “formas” diferentes, pero siempre
dentro de un mecanicismo, tanto en cuanto se ha seguido el camino de la certeza
como en cuanto se ha emprendido la senda del azar. La formulación de la ma-
temática binaria resulta esclarecedora de cuanto acabamos de exponer. En base
a estos razonamientos lógicos, expresados mediante śımbolos, se han elaborado
técnicas espećıficas en forma casi siempre de modelos y algoritmos, cuyo objetivo
ha sido y continúa siendo el suministro de instrumentos capaces de prestar una
ayuda en la adopción de decisiones. La matemática aplicada alcanza, aśı, su
mayor nivel de operatividad. La utilización de estos elementos en los diferentes
ámbitos en los cuales aparece el problema decisional constituye el último peldaño
de esta escalera que los investigadores han subido para suministrar la necesaria
ayuda a quienes tienen responsabilidades en el gobierno de las naciones y en la
gestión de empresas e instituciones.

En los momentos actuales y, como consecuencia de las razones reiteradamente
expuestas y otras que podŕıamos añadir, no es posible asentar toda la actividad
investigadora sobre el principio del tercio excluso, el cual ha resultado estrecho
para albergar las “explicaciones” de las complejas realidades y fenómenos propios
de nuestra época. La formulación de un nuevo principio se ha convertido, aśı,
en cuestión fundamental si se desean abrir nuevas puertas a las aventuras que el
futuro propone.

Hace casi un siglo, en 1910, Lukaciewicz 4 expuso su “principio de valencia”,
señalando que entre la verdad y la falsedad hab́ıa una tercera posición. Entre el
1 y el 0 colocaba, aśı, el 0.5 que representaba la indeterminación. Retomaba, de
esta manera, la idea de los epicúreos.

Los amplios desarrollos habidos en los últimos decenios en el ámbito de la
matemática no determinista y las fruct́ıferas aplicaciones sobre todo en el área
de la ingenieŕıa y de la economı́a nos ha llevado al intento de definir un principio
capaz de cobijar los distintos operadores lógicos que hab́ıan ido surgiendo, los
cuales dif́ıcilmente teńıan cabida dentro del principio del tercio excluso ya que su
encastre sólo era posible a través de medios artificiosos. Pretend́ıamos, además,
que el nuevo principio pudiera generalizar el de tercio excluso. De estas reflexiones

3Gil Aluja, J.: “Elements for a theory of decision in uncertainty”. Kluwer Academic Publi.
Boston. London, Dordretch 1999. Pág.: 15

4Lukaviewicz, J.: “O zasadzie wylaczonego srodka”. Przegl’d Filozficzny. 13. 1910
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nació el principio de la simultaneidad gradual. Este principio puede ser
enunciado de la siguiente manera: “Una proposición puede ser a la vez verdadera
y falsa. a condición de asignar un grado a su verdad y un grado a su falsedad”.

Pasemos, mediante unos ejemplos, a poner en evidencia el contenido y signifi-
cación de este enunciado, al tiempo que mostramos la posición relativa del mismo
con respecto al principio tradicional.5

Existen ciertas proposiciones para las cuales normalmente no se plantean pro-
blemas mayores para aceptar el cumplimento del principio del tercio excluso. Aśı,
cuando se anuncia “Pedro pertenece al sexo masculino”, concluimos en la verdad
de esta proposición y en la falsedad de la negación. Pero se pueden aportar otras
proposiciones para las cuales el cumplimiento no resulta tan claro. En efecto, pro-
posiciones tales como “Pedro es alto”, “Pedro es moreno”, “Pedro es inteligente”,
plantean ciertos problemas dada la relatividad del calificativo “alto”, “moreno”,
“inteligente”. Para solucionarlos, los estudios tradicionales acostumbran a esta-
blecer un umbral (evidentemente subjetivo y arbitrario) a partir del cual se asume
la verdad de la proposición. Si se acepte en el caso de la altura que el umbral
es 1 m. 80 cms., quienes lleguen o sobrepasen esta altura serán consideradas
personas altas y para los que no alcanzan esta talla se les asignará la falsedad de
la proposición. Llegamos, de esta manera, a admitir que una persona con una
altura de 1m. 80cms. es alta mientras que otra de 1 m. 79 cms. es no alta.
Creemos que la aceptación del principio de la simultaneidad gradual permite una
buena solución convirtiendo el principio del tercio excluso en un caso particular.
Veámoslo.

Para una mayor comodidad continuaremos con uno de nuestros ejemplos. En
cuanto a la proposición concerniente a la altura se buscarán aquellas medidas para
las cuales se cumple plenamente la verdad y la falsedad de esta proposición. El ser
humano más alto del mundo mide 2 m 38 cms y el más bajo (proposición negativa
de la anterior) 0 m. 56 cms. A partir de estas cotas, en nuestro caso numéricas
(aunque no tienen porque ser siempre aśı) se establece un orden desde la verdad
(alto) hasta la falsedad (bajo). Este escalado puede venir enmarcado por un
intervalo, por ejemplo [0, 1] o por cualquier otro concepto apto para permitir la
ordenación. Si, a efectos de una mayor sencillez y para no separarnos del ámbito
numérico se acepta el intervalo [0, 1], asignaremos un 1 a la verdad y un 0 a la
falsedad y, entonces, el gigante de 2 m. 38cms. será alto en un grado 1 y el enano
de 0 m. 56 cms, alto en grado 0. Una persona con altura de 1 m, 70 cms. podŕıa
ser considerada alta en un grado 0.3, por ejemplo. Se establece, aśı, que cuando
más nos acercamos a la verdad de la proposición el grado asignado se halla más
próximo de 1 y cuanto más nos alejamos, el grado adscrito se encuentra más cerca
de 0.

5El posterior desarrollo ha sido recogido de la obra de Gil-Aluja, J.: ”Elements for a theory
of decision in uncertainty”. Kluwer Academic Publ. Boston, Londres, Dordretch 1999, Págs.:
16-18
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Pero cuando planteamos la falsedad de la proposición, convirtiendo el alto
en no alto, o bajo si se quiere, sucede que los mismos protagonistas juegan un
papel diferente, al serles asignado un grado distinto. Aśı, como bajo, el enano lo
es en grado sumo por lo que le será asignado una valuación de 1, mientras que
el gigante no es bajo en absoluto y su grado será 0. Quien con altura de 1 m 70
cms. era alto en un grado 0.3, será bajo en un grado 0.7, pero ejemplo. De esta
manera, cualquier persona es alta y baja a la vez, si tomamos la precaución de
acompañar al calificado de un grado expresable numéricamente (como en nuestro
ejemplo) o no numéricamente, si aśı procediera.

Pero es que, además, a todas aquellas proposiciones a las cuales se acomoda
confortablemente el principio del tercio excluso también les son aplicables el prin-
cipio de simultaneidad gradual. Lo que sucede, entonces, es que de todos los
grados posibles sólo le son asignados los extremos. De esta manera, con las re-
servas derivadas del caso, a la proposición “Pedro pertenece al sexo masculino”
se le asigna un 1 en su grado de verdad y a la proposición “Pedro no pertenece
al sexo masculino” un grado 0 de verdad. Por tanto, pertenece y no pertenece al
sexo masculino, pero en grado distinto.

Esta breve exposición permite, aśı lo esperamos, poner de manifiesto la ge-
neralidad del principio de simultaneidad gradual, capaz de albergar una gran
variedad de desarrollos lógicos. En efecto, frente a las limitaciones existentes en
la lógica formal surgidas del rigor derivado del principio del tercio excluso, se ha
comprobado la enorme flexibilidad y adaptabilidad de las llamadas lógicas mul-
tivalentes. Un claro ejemplo de cuanto acabamos de señalar lo hallamos en los
operadores lógicos de inferencias. Aśı, en la inferencia binaria el único operador
es:

c = a ∨ b
en donde a y b son los predicados y c la inferencia, mientras que en el ámbito de la
multivalencia son posibles una práctica infinidad de operadores. Se acostumbran
a citar como más conocidos, la llamada inferencia de Lee, cuyo operador es el
mismo que el del campo binario ya presentado; la inferencia de Lukaciewicz, cuya
formulación habitual es la siguiente:

c = 1 ∧ (a + b)

la inferencia de Goguen, cuya expresión, que reproducimos, permite la utili-
zación de valuaciones o probabilidades:

c = 1 ∧ b

a

aśı como las surgidas de cualquier T-conorma 6. A ellas es posible añadir un
6Como es conocido de toda T-conorma se puede obtener un operador de inferencia con sólo

sustituir la proposición o predicado de a por a.
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sinnúmero de operadores que cumplen los requisitos necesarios para ser conside-
radas como inferencias. No vamos a extendernos más en estos planteamientos y śı,
en cambio, hacer referencia al tránsito de la lógica a la matemática fundamental.

3 Una propuesta de matemática de la incerti-
dumbre

Cuando se encadenan palabras y/o proposiciones de una manera “razonada”
llegamos normalmente a ciertos resultados. Estos resultados se amalgaman a
su vez entre śı y siempre a través de palabras, expresadas de forma verbal o
escrita, se consiguen nuevos resultados. Todo este proceso puede ser considerado
propio del ámbito de la lógica. Pero tanto las palabras como las proposiciones son
susceptibles de representación a través de śımbolos, de la misma manera que los
lazos entre ellas, pueden ser expresados mediante operadores. Cuando se actúa
aśı, y se traspasa la frontera de la palabra para llegar al reino de los śımbolos, se
transita de la lógica a la matemática.

Desde hace casi cincuenta años, han aparecido algunos intentos de llevar a
cabo la construcción formal de una matemática a partir de las incipientes lógicas
multivalentes. Poco a poco los rescoldos de estos ensayos iŕıan formando un
caldo de cultivo del cual naceŕıa una idea capaz de aglutinar, con el tiempo, a
centenares de miles de investigadores cuyos trabajos abriŕıan el camino a una ma-
temática de la incertidumbre. Tiene lugar, en primer término, el desarrollo
de los elementos numéricos, dando paso a una nueva aritmética de la incertidum-
bre. A los operadores llamados “duros”, propios del mecanicismo y aptos para
la manipulación de magnitudes objetivas, se van incorporando otros operadores,
considerados “blandos”, los cuales ejercen una función central cuando se trata de
amalgamar, de la mejor manera posible, elementos con una alta carga de subje-
tividad. Si el operador más representativos de los primeros es el de composición
suma-producto, el que posee una mayor significación entre los segundos es el de
composición o convolución maxmin.

Durante el último tercio del siglo XX, se observa que matemáticos e ingenieros
principalmente, van pasando desde el campo de la investigación tradicional y secu-
lar a esta nueva manera de formalizar los razonamientos. Los investigadores se
afanan en el análisis y desarrollo de nuevos conceptos, aportando una simboloǵıa
capaz de identificar los elementos numéricos que conforman una emergente
matemática, diferenciada de la sustentada sobre razonamientos mecanicistas. Pa-
ralelamente, quizás con un cierto “gap”, se van abriendo paso algunos conceptos,
surgidos casi siempre de planteamientos combinatorios, los cuales permiten vis-
lumbrar la formación de un núcleo de conocimientos básicos con un contenido
suficientemente unitario para poder hablar de una matemática no numérica
de la incertidumbre. Aśı se está consiguiendo, cada vez más, expresar con
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mayor fidelidad los razonamientos surgidos de las lógicas multivalentes mediante
la matemática numérica de la incertidumbre, por una parte, y no numérica de la
incertidumbre, por otra.

Todos cuantos, de alguna manera, nos hallamos en el ámbito de las inves-
tigaciones sociales, económicas o de gestión, somos conscientes de la necesidad
de disponer de un “instrumental” apto para ser utilizado en el tratamiento de
los problemas complejos, caracteŕısticos de nuestros tiempos y que, dif́ıcilmente,
la matemática en su estado puro puede suministrar, por lo menos de manera
inmediata. De ah́ı la importancia de una matemática aplicada que, en los
diferentes campos del conocimiento ha tomado nombres distintos. Recordemos a
este respecto la investigación operativa de los estudios clásicos o los trabajos
recogidos con la denominación de técnicas operativas de gestión, en época
más reciente. La incorporación al acervo cient́ıfico de trabajos realizados en el
ámbito de la matemática pura han facilitado (y están facilitando) la construcción
de herramientas de indudable eficacia. Estas herramientas son presentadas, gene-
ralmente mediante modelos o algoritmos. Estos elementos técnicos no son siempre
novedosos, aparecido de manera instantánea y súbita, sino que, en buena medida,
constituye total o parcialmente, reformulaciones de conceptos conocidos o bien
adaptaciones de esquemas utilizados con éxito en otros momentos.

Quizás uno de los aspectos que permite vislumbrar mejor la ĺınea que separa
las matemáticas del determinismo y del azar con los de la incertidumbre viene
dado por la naturaliza de las asignaciones numéricas. En efecto, sabemos que el
concepto de medida, utilizando en teoŕıa de conjuntos, significa un dato que es
aceptado con carácter general porque se le supone objetivo. Teóricamente debe
satisfacer determinadas propiedades entre las que se encuentran la “aditividad”.
Aśı cuando se consideran dos subconjuntos booleanos A y B que son disjuntos
(no poseen ningán elemento comán) se puede escribir:

m(A ∪B) = m(A) + m(B)

En el campo de las probabilidades, la noción de medida adquiere toda su signifi-
cación, ya que el “evento” constituye, en si mismo, un concepto objetivo.

Sin embargo cuando se hace referencia a una “sensación” o “percepción” de
tipo subjetivo que no es posible o no se sabe medir, se recurre a otro concepto: el
de valuación, utilizado, entre otros por la teoŕıa de los subconjuntos borrosos.

Aśı, dados ∼A y ∼B, si se supone que ∼A está incluida en ∼B, es decir, que para
cada elemento el nivel de pertenencia es siempre igual o mayor en ∼B que en ∼A ,
se podrá escribir que, dado que ∼A se halla incluido en ∼B :

v(∼A) ≤ v(∼B)

Esta propiedad se sustenta en el concepto subjetivo de sensación.
En el ámbito de la economı́a y la gestión de empresas, se han realizado inten-

tos, creemos que de manera parcial logrados, de crear unos elementos capaces de
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llegar a un adecuado tratamiento de los fenómenos que tienen lugar en el seno
de los estados y de las empresas, cuando su conocimiento tiene lugar de manera
poco precisa. Para ello se han utilizado la teoŕıa de los errores, la de los inter-
valos de confianza, la de los números borrosos, de los subconjuntos borrosos y
todas las generalizaciones propuestas, que ya hemos empleado. La diferencia con
el tratamiento realizado en los esquemas tradicionales, es importante. Ante la
imposibilidad de recoger con precisión la compleja e incierta realidad económica,
se recurŕıa a una simplificación inicial para realizar los desarrollos posteriores en
base a estos elementos simplificadores. Las posibles desviaciones iniciales se iban
acumulando y ampliando a medida que el proceso operativo avanzaba. Se perd́ıa
además, una información desde el principio que ya no era posible recuperar.

Por nuestra parte preferimos recoger los fenómenos económicos y de gestión
con su incertidumbre, para realizar los pertinentes desarrollos conservado la im-
precisión (y también toda la información) para hacerla “caer” lo más tarde posi-
ble, dado que siempre es posible (perdiendo información) reducir la incertidumbre.

Cuanto acabamos de señalar, tiene como finalidad plantear ciertas reflexiones
sobre los profundos cambios que se están produciendo en el ámbito de estudio de
los problemas en las empresas e instituciones de nuestros d́ıas. Creemos que, de
una manera casi imperceptible pero continuada, los investigadores van aceptando
las nuevas bases sobre las que se asientan las modernas técnicas de optimización.

Ahora bien, conviene poner en evidencia una vez más que no todos los concep-
tos, métodos y técnicas que se están utilizando han nacido de manera espontánea
y súbita. Algunos de ellos, incluso, han sido empleados hace ya varias décadas,
aunque en otros contextos clásicos. Quizá haya sido la irrupción de la teoŕıa de
los subconjuntos borrosos 7 la espoleta que ha elevado el nivel de su interés y
utilidad, hasta convertirlas en el eje de los nuevos movimientos.

Todo cuanto ha sido expuesto no debe inducir a la falsa creencia de la inu-
tilidad de los modelos basados en los instrumentos surgidos al amparo de los
paradigmas clásicos. Es más, los indudables avances que en su aplicación se
han producido en los últimos años han permitido un perfeccionamiento de los
estudios cuantitativos dirigidos al tratamiento de los fenómenos complejos, re-
sultado, aśı, válidos aquellos esquemas, en muchas ocasiones afortunadamente.
Sólo cuando no es posible, honestamente, considerar estimaciones “objetivas”, se
debe recurrir a principios y modos de actuación diferentes. Pero en un mundo
convulsionado como el de nuestros d́ıas, no parece que la incertidumbre vaya a
remitir y únicamente conviviendo con ella resultará fácil la aceptación de nuevas
reglas.

La noción de subconjunto borroso forma parte, ya hoy, del conglomerado
de elementos conocidos con el nombre de matemáticas. Se adapta muy bien
tanto al tratamiento de lo subjetivo como de lo incierto. La nueva concepción
de la incertidumbre, a partir de los conceptos borrosos, ha dado lugar a una

7Zadeh, L.: “Fuzzy Sets”. Information and Control. 8 de Junio de 1965. Págs.: 338-353

Rect@ Monográfico 2 (2004)
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distinta manera de pensar que reúne el rigor del razonamiento con la riqueza de
la imaginación, asociando, aśı, las posibilidades secuenciales de la máquina a las
posibilidades de las partes menos utilizadas del cerebro humano.

Los elementos instrumentales surgidas de los desarrollos de la matemática bo-
rrosa no son mucho más complicados que los utilizados normalmente, e incluso
resultan más simples y mucho más cercanos a la manera habitual de pensar del
hombre. La teoŕıa de los subconjuntos borrosos es un intento, por el momento
parcialmente logrado, de rehabilitar cient́ıficamente la subjetividad y la impre-
cisión.

La utilización de los esquemas borrosos tiene lugar actualmente, en la practica
totalidad de los campos de estudio de las ciencias. Se encuentra en la gestión de
las empresas, en bioloǵıa, en medicina, en geoloǵıa, en socioloǵıa, en fonética y
hasta en música, por sólo citar algunos. Todo problema situado en el ámbito
de la incertidumbre es susceptible de ser tratado a través de la teoŕıa de los
subconjuntos borrosos. A medida que transcurre el tiempo, cada vez se van
incorporando en los esquemas formales más mecanismos del pensamiento tales
como las sensaciones y las opiniones numéricas y no numéricas.

Desde hace 70 años en elevado námero de matemáticos se ha interesado por
las lógicas multivalentes, entre ellos cabe destacar a B. Rusell, Lukaciewicz, Post,
etc., pero es en 1965 en que Lofti Zadeh publica su primer art́ıculo 8 donde se
inicia el verdadero avance en el estudio de esta nueva rama de las matemáticas.
Hoy se estima que existen más de 600.000 investigadores dedicados a su estudio
y desarrollo.

Aśı, pues, se concibe hoy una matemática borrosa de la misma manera que no
existió problema en su momento en concebir una matemática del azar. Es más, si
para las relaciones hombre-ordenador en la situación actual resulta imprescindible
recurrir a teoŕıas mecanicistas, para la relación entre el hombre y sus semejantes
parece más adecuada la utilización de la teoŕıa de la incertidumbre en la que la
borrosidad juega un papel esencial.

4 Breve referencia a la matemática numérica para
la optimización

Los modelos numéricos establecidos para el tratamiento de los problemas en
un ambiente de incertidumbre se asientan, fundamentalmente, en la definición de
un amplio abanico de números en cuya esencia se halla ausente el concepto de
precisión. Se considera, aśı, inicialmente una magnitud para la que no se conoce
de manera precisa su valor o, si se prefiere, que es “incierta”. Supongamos que la
magnitud pertenece a R.

8Zadeh, L.: “Fuzzy Sets”. Information and Control. 8 de Junio de 1965. Págs.: 338-353
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Existen muchas situaciones en las que se puede afirmar, sin embargo, que una
magnitud x es superior o igual a a1 ∈ R e inferior o igual a a2 ∈ R, es decir que
x pertenece al segmento [a1, a2] ⊂ R .Por otra parte, se supone que no existe ley
de probabilidad alguna, incluida la ley uniforme o equiprobable, que pueda ser
afectado a los elementos de este segmento. Se dirá entonces que:

A = [a1, a2]

es un “intervalo de confianza” en R.
Hay que señalar que:

(a2 = a1) (A = [a1, a1] = a1)

Un intervalo de confianza se puede generalizar a través de un “dominio de
fianza” en Rn. Se incorpora, normalmente, la hipótesis segán la cual un “dominio
de confianza” (es decir, un intervalo de confianza si se considera n = 1) es siempre
convexo.

La definición de la convexidad de un dominio de confianza es la siguiente:
Sea A un dominio de confianza en Rn, n = 1, 2, 3, . . .. Si se consideran dos

puntos (x1) y (x2) que pertenecen a A, entonces todo punto (x∗) situado sobre
el segmento que une x1 y x2 pertenece a A.

También se puede utilizar otra definición que, evidentemente equivale a la
anterior:

(A ⊂ Rn convexa) ⇐⇒ (∀(x1) ∈ A,∀(x2) ∈ A) :

(µA(λ(x1) + (1− λ)(x2))) ≥ (Min [µA(x1), µA(x2)], ∀λ ∈ [0, 1])

en donde:
(µA(x) = 0)⇐⇒ (x /∈ A)

(µA(x) = 1)⇐⇒ (x ∈ A)

Cuando el dominio de confianza D no es convexo resulta preferible utilizar las
palabras “subconjunto de confianza”. Se trata aqúı pura y simplemente del con-
cepto de subconjunto ordinario tal que al introducir el concepto de “función ca-
racteŕıstica” se pude hacer:

Para todo x ∈ E:

µD(x) =
{

1, x ∈ D
0, x /∈ D

El concepto de subconjunto de confianza añade al concepto de subconjunto
una idea suplementaria. Se hace referencia a uno o varios elementos del referencial
y se establece la hipótesis que este (o estos) elementos se hallan en el dominio y
no pueden encontrarse fuera del dominio. A la definición de subconjunto se añade
una idea de decisión, de elección, de confianza.
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Vamos ahora a avanzar e imaginar que el subconjunto de confianza puede ser
considerado a diferentes niveles de presunción 9. Generalmente, cuando el nivel
de presunción se eleva el número de elementos afectados, disminuye. Esto va a
justificar la utilización de la palabra presunción. En el ámbito de la matemática
se acostumbra a expresar, partiendo de una referencial E y de subconjuntos de
confianza Aa que dependen de a , de la siguiente manera:

(a
′
> a)⇐⇒ (Aa′ ⊂ Aa)

Dicho de otra manera, estos subconjuntos de confianza se encajan de manera
monótona los unos dentro de los otros cuando crece.

El valor de α se llama “nivel de presunción”. Generalmente la determinación
de Aa para cada valor es un “dato subjetivo” aunque en ciertas ocasiones puede
ser una medida. Este dato subjetivo se halla, de esta manera, asociado a una
apreciación de la incertidumbre. El nivel 0 corresponde siempre al referencial. A
medida que aumenta el nivel de presunción los subconjuntos obtenidos no pueden
aumentar (ampliarse). Es posible que al nivel 1 el subconjunto sea vaćıo.

De esta manera, mediante un encaje, se ha constrúıdo un nuevo concepto que
se llama “subconjunto borroso” o de manera impropia para simplificar “conjunto
borroso”. Se le puede, aśı, presentar como una generalización del concepto de
subconjunto ordinario.

L. A. Zadeh presenta los subconjuntos borrosos a partir de la noción de con-
junto. Se puede representar un subconjunto vulgar a partir de un par:

(E,µ
∼A
(x))

en donde E es el referencial y A ⊂ E se halla definido por su función caracteŕıstica:

µA(x) =
{

1, x ∈ A
0, x /∈ A

de esta manera, en los subconjuntos ordinarios o vulgares, la pertenencia de un
elemento de subconjunto es de todo o nada.

En el supuesto de un subconjunto borroso se escribirá:

(E,µA(x))

en donde E es el referencial y se escribe también ∼A ⊂ E que se halla definido por:

µ
∼A
(x) = a, x ∈ Aa

imponiéndose la anteriormente enunciada propiedad de encaje.
Se ha podido observar la utilización del śımbolo∼(tilde en lengua española)

para indicar que se trata del concepto de subconjunto borroso. Se ha colocado
9Del latin “praesumptio”: coyuntura. confianza, exceso de confianza....
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este śımbolo debajo de la letra mayáscula que indica que se trata de un conjunto
o subconjunto; algunos autores colocan el ∼debajo de la letra mientras que otros
no utilizan este śımbolo con objeto de simplificar la elaboración tipográfica.

Los intervalos de confianza constituyen un medio de tratamiento de la incer-
tidumbre en R y en Z cuando se dispone, para informaciones aceptadas como
ciertas, de los extremos inferior y superior. Pues bien si se asocia la noción de
subjetividad a la de incertidumbre, se llega, para R o Z, a la noción de número
borroso. Para ello, vamos a considerar dos propiedades concretas de los subcon-
juntos borrosos.

Subconjunto borroso normal. Un subconjunto borroso ∼A ⊂ R es “normal”
cuando:

∨xµ∼A(x) = 1

Subconjunto borroso convexo. Se ha podido observar, que todo subconjunto
borroso esta constituido por un encaje de subconjuntos vulgares en función del
nivel de presunción considerado. Supongamos ahora, que todos los subconjuntos
vulgares de nivel α sean segmentos o intervalos de confianza Aa = [a(α)

1 , a
(α)
2 ]

entonces la anterior propiedad (α
′
> α)⇐⇒ (Aα′ ⊂ Aα) se escribirá:

(α
′
> α)⇐⇒

(
[a(α

′
)

1 , a
(α
′
)

2 ] ⊂ [a(α)
1 , a

(α)
2 ]

)
Se dirá entonces que el subconjunto borroso A es convexo.

Una definición equivalente de la convexidad adaptada al caso R seŕıa:

(∼A ⊂ R
n convexa)⇐⇒ (∀x1 ∈ Aα,∀x2 ∈ Aα,∀α ∈ [0, 1], λ ∈ [0, 1] :

µAα
(λx1 + (1− λ)x2) ≥ µAα

(x1) ∧ µAα
(x2))

Se llega, aśı, a la noción de número borroso.
Se define un número borroso como un subconjunto borroso del referencial de

los reales, que tiene una función de pertenencia normal (debe existir una xi para
la que µ(x) toma el valor uno) y convexa (cualquier desplazamiento a la derecha
e izquierda de x este valor µ(x) va disminuyendo).

Un número borroso puede ser representado a través de los segmentos formados
al “cortar” (asignar un valor) la función de pertenencia a unos determinados
niveles.

La teoŕıa de los números borrosos puede considerarse como una ampliación
de la teoŕıa de los intervalos de confianza, cuando se consideran estos intervalos a
todos los niveles desde 0 hasta 1, en lugar de considerar un solo nivel. También es
posible, a partir de un número borroso, conocer los intervalos de confianza, para
cada uno de los niveles desde 0.1 hasta 1 para un determinado número borroso.

De todo ello se deduce que un número borroso se caracteriza por los pares
“nivel de presunción” “intervalo de confianza”, ya que a cada nivel de presunción
se le adscribe un intervalo de confianza.
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Para realizar operaciones con números borrosos se actáa de la misma manera
que con los námeros reales ordinarios, operado nivel a nivel tal como se hace con
los intervalos de confianza.

De entre todos los números borrosos aparece, por su facilidad de utilización, el
número borroso triangular cuya singularidad consiste en que se halla determinado
por tres cantidades: una por debajo de la cual no va a descenderse, otra en la que
por encima no será posible llegar, y finalmente, aquella que representa el máximo
nivel de presunción. La representación gráfica de un número borroso triangular
(a1, a2, a3) queda reflejado, en un sistema de coordenadas, por un triángulo. De
ah́ı su denominación.

El número borroso triangular permite formalizar de manera muy fidedigna
gran cantidad de situaciones económicas en la que se estiman magnitudes locali-
zadas en el futuro. Aśı, en la estimación del coste de un producto a elaborar, es
frecuente pensar que su precio no va a ser inferior a 40 ni superior a 70, siendo el
precio que tiene la máxima posibilidad 55 unidades monetarias: se ha definido,
entonces, en el campo de la incertidumbre, un número borroso triangular.

Dado que en el ámbito de la economı́a y gestión de las empresas se estudian
problemas cuyas magnitudes se proyectan hacia el futuro, no exigen, frecuente-
mente, una extrema precisión sino la mayor adaptación posible a la realidad. Un
presupuesto no precisa de una exactitud al céntimo sino que refleja lo que va a
suceder en la realidad con una “buena aproximación”. Una estimación de ventas
para un peŕıodo no puede realizarse de una manera totalmente ŕıgida, pues hay
demasiados elementos que influyen en ella. Los ejemplos surgen a millares. En
actividades repetitivas, en cambio, la probabilidad resulta altamente fruct́ıfera,
pero en la gestión de las empresas, la repetitividad constituye la excepción. De ah́ı
el interés en la utilización de los números borrosos en general y de los triangulares
en particular.

Conviene señalar, en última instancia, que la transformación de los modelos
tradicionales de carácter numérico al campo de la incertidumbre, basada en la
sustitución de números precisos por números inciertos, los generalizan e incluso
los hacen más aptos para el tratamiento de la realidad. Ahora bien, en śı misma,
esta transformación no resulta suficiente para abordar la compleja realidad de
nuestros d́ıas. Son los modelos inciertos, desarrollados a partir de conceptos
emergidos de la matemática no numérica, quienes son capaces de llenar el vaćıo,
cada vez más profundo, en el estudio de unos fenómenos que escapan, no sólo a
la medición sino también a la valuación 10, aun cuando ésta sea realizada a través
del más simple de los números inciertos.

La incorporación de estos instrumentos significa una clara ruptura en relación
a situaciones precedentes. Y ello, aun cuando en su desarrollo se utilicen elemen-

10Recordemos que el concepto de valuación se asimila a una asignación numérica realizada
subjetivamente. La subjetividad es la caracteŕıstica que la diferencia de la noción de medida,
de carácter eminentemente objetivo
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tos ya empleados en los estudios clásicos. La actual situación de equilibrio en
la cohabitación de modelos numéricos y no numéricos en la incertidumbre, está
dando paso a una mayor supremaćıa de estos últimos, como consecuencia de las
crecientes dificultades de acotar siquiera los fenómenos sociales, económicos y de
gestión. Por ello, aquellos conceptos que exigen inevitablemente ser expresados
numéricamente (en la certeza o en la incertidumbre) han ido dejando protago-
nismo por las dificultades de expresarlas objetiva y hasta subjetivamente, habida
cuenta del contexto cada vez más incierto en el cual se inscriben.

5 Elementos no numéricos para la optimización

La optimización implica, frecuentemente, la necesidad de tomar partido por
una alternativa frente a otra u otras. Los estudios económicos y de gestión se
han desarrollado, en gran parte, con la búsqueda de elementos capaces de dar
pautas, ayudar en definitiva, a aquellos en quienes recae la tarea de pasar de los
planteamientos a su ejecución. En los estudios clásicos las ayudas toman muchas
veces la forma de criterios basados en conceptos con apoyo numérico. Aśı,
se hallan presentes en prácticamente todas las áreas del conocimiento económico
las nociones de economicidad, rentabilidad, productividad, ... las cuales compor-
tan informaciones siempre expresadas mediante números precisos, aleatorios o, de
manera más reciente, inciertos. Ahora bien, mantenerse en esta ĺınea exige plan-
tear la pregunta relativa a cómo poder suministrar criterios cuando honestamente
no es posible establecer unas asignaciones numéricas, ni siquiera subjetivas. El
camino parece, pues, cortado y se hace precisa la búsqueda de nuevas v́ıas.

Nos hemos acostumbrado a disponer, cuando se inicia un proceso de opti-
mización, de una cifra representativa del nivel de apreciación de cada objeto
f́ısico o mental que en él interviene. El mayor (o en su caso el menor) de estos
números determina muchas veces el resultado buscado. Tan asociados se han
hallado número y nivel de apreciación que es dif́ıcil concebir el uno sin el otro. Sin
embargo, esta inveterada costumbre no debe impedir el intento de separar este
matrimonio, no siempre bien avenido. Creemos llegado el momento de dar una so-
lución amistosa a las incompatibilidades, haciendo durar la convivencia en todos
aquellos casos en los cuales no sea necesario el engaño y dejando que el número
y el nivel de apreciación puedan estar presentes de manera independiente en los
diferentes planteamientos de la ciencia económica, cuando las circunstancias lo
exijan.

Sabemos muy bien, es evidente, como utilizar el análisis numérico, principal-
mente en la certeza y el azar, pero también en la incertidumbre. El nivel de
apreciación en cambio, carece de la costumbre de actuar por śı solo y se ve ne-
cesitado de una estructura suficientemente sólida para poder enfrentarse a los
planteamientos más generales.

Puesto de manifiesto la existencia de un nuevo contenido de la matemática
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para la optimización, pasamos ahora, a la descripción de aquellos elementos que
constituyen su soporte. En otras palabras, vamos a ver cuál es la tipoloǵıa básica
sobre la que se asienta la optimización. Nos referimos a los conceptos de relación,
asignación, agrupación y ordenación. El estudio de la optimización en las
ciencias sociales pone de manifiesto que en la práctica totalidad de los casos la
optimización tiene lugar bien para establecer una relación, bien para afectar una
“cosa” a otra “cosa”, bien para realizar agrupaciones casi siempre homogéneas, (
las cuales sirven también para separar los grupos formados) o bien para establecer
un orden de prioridades, unas veces de mejor a peor (de más a menos) , otras
veces en sentido inverso.

Vamos a proceder, a continuación a la anunciada descripción, muy somera 11

como procede en este contexto, de estos cuatro elementos:

a) Relación
El fenómeno de la relación forma parte consustancial de la vida social,

económica y de la actividad de las empresas. Afecta tanto a los seres inteli-
gentes como a los animales inferiores y objetos inanimados. Se trata de lo que
para generalizar llamamos “objetos” f́ısicos o mentales.

Quizás el aspecto de las relaciones que resulta más familiar, se sitáa en el
ámbito de las conexiones entre las personas integrantes de nuestra sociedad. Los
individuos que viven dentro de un contorno social forman ćırculos dentro de los
cuales realizan la totalidad de sus actividades vitales. La caracteŕıstica de cada
uno de estos v́ınculos es que un sujeto cualquiera es capaz de relacionarse con
todo otro sujeto, bien de manera directa o a través de otros sujetos.

La vida se desarrolla en el interior de cada ćırculo unas veces aumentando el
nivel de la relación, otras veces “enfriándolo”, es decir, reduciendo la fuerza de
la conexión.

El paso de un ćırculo o “casta” a otro resulta, la mayor parte de las veces, muy
dif́ıcil. Casi siempre es necesario algán tipo de revolución. Ahora bien, cuanto se
acaba de señalar no impide la existencia de algunas relaciones entre uno o varios
miembros de un “ćırculo” con uno o varios miembros de otros “ćırculos”. Sin
embargo, esta relación no es simétrica en el sentido de que una cierta relación en
un sentido no es correspondida en el sentido inverso (prestar un servicio, conceder
una dávida, ... sin contrapartidas). A pesar de ello, es posible imaginar una
sociedad ideal, en la cual todos sus miembros se hallan relacionados entre śı, de
manera directa o indirecta.

La fuerza de la costumbre nos ha llevado a considerar el “conjunto producto”
como la noción capaz de representar la totalidad de relaciones existentes entre los
elementos de un conjunto referencial o las relaciones entre dos o más referenciales.
La incorporación del concepto de “grafo” permite desarrollar la idea de relaciones
entre una parte de los elementos del conjunto producto, con fruct́ıferos resultados.

11Gil Aluja, J.: “Elements for a theory of decision in uncertainty”. Kluwer Academic Publis-
her. Boston. Londres, Dordretch. Págs: 20-28

Rect@ Monográfico 2 (2004)
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Los estudios clásicos, basados en la lógica booleana, consideran la alterna-
tiva de existencia o no de relación. La necesidad de establecer un grado o nivel
de relación, aconseja pasar al ámbito de las lógicas multivalentes. La relación
borrosa o matriz borrosa adquiere, entonces, un papel relevante.

En efecto, a partir de un grafo borroso, presentado en forma matricial o sa-
gitada, es posible, mediante adecuados algoritmos, conocer si existe un solo
ćırculo de relaciones (grafo fuertemente conexo) o varios ćırculos de relaciones
(grafo no fuertemente conexo). En este último caso parece la noción de clase de
equivalencia o subgrafo fuertemente conexo.

Establecidos los nexos de relación y el nivel de los mismos, cabe preguntar
cuál será la evolución de los mismos a través de sucesivos peŕıodos de tiempo o
etapas, en su caso. En otro orden de ideas, también se puede centrar el nivel de
interés en el conocimiento de las variaciones en el grado o intensidad de la relación
a medida que van interviniendo más elementos que actáan como intermediarios.
En otras palabras, cuando la cadena de relaciones se va alargando.

Existe un operador capaz de dar cumplida respuesta a tales cuestiones. Se
trata del operador convolución maxmin. La utilización de este interesante
agente conector permite llegar a la conclusión de que el tiempo, el espacio, o las
conexiones, segán los casos, desemboca en tres situaciones a largo plazo, tipifica-
das por la convergencia en el ĺımite, la periodicidad y las situaciones caóticas.

Una amplia tipoloǵıa de relaciones permite establecer ciertas caracteŕısticas
y propiedades poséıdas por cada tipo de relación. De esta manera se abre un
abanico de formas teóricas aptas para representar diversas realidades. A partir
de ellas el encadenamiento de relaciones entre objetos pertenecientes a varios
conjuntos conduce a conexiones directas e indirectas.

Finalmente, otros aspectos merecen especial atención. A medida que trans-
curre el tiempo o se suceden etapas, se pueden generar nuevas relaciones dentro
de cada subgrafo o entre elementos pertenecientes a subgrafos distintos. En este
caso la red de relaciones va siendo cada vez más tupida. Pero no tiene porque ser
siempre aśı. En ciertos supuestos desaparecen lazos, antes existentes.

Pero es quizás al analizar la variación en las intensidades, niveles o fuerza de
las relaciones, cuando surgen particularidades que es necesario tener en cuenta a
la hora de representar fielmente las realidades sociales, económicas y de gestión.
Aśı, en multitud de supuestos tiene lugar la “degradación” en el nivel de una
o varias relaciones, mientras que en otros, no pocos también, el transcurso del
tiempo o la sucesión de etapas “fortalece” los v́ınculos.

El testudio de este tipo de relaciones presenta unas particularidades tales que
no pueden ser tratadas de la misma manera que las no acumulativas. Resulta
entonces necesario variar, en cierto modo, el camino seguido, haciendo intervenir
además de la relación o relaciones primarias entre los objetos de un conjunto
con los de otro u otros, la relación de objetos de cada conjunto consigo mismo.
Aśı, cuando se trata de establecer la relación acumulada directa o indirectamente
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entre los elementos de dos conjuntos, además de presentar una relación en forma
matricial o sagitada entre los objetos de un conjunto y los del otro, se deben definir
las relaciones en forma matricial o sagitada entre los objetos de un conjunto entre
śı y los del otro conjunto, también entre śı. Se tiene, entonces, que el proceso
formalizador parte bien sea de tres matrices o de tres grafos sagitados.

Un caso particular de cuanto acabamos de exponer viene dado por las llamadas
relaciones de incidencia o causalidad 12. En ellas un conjunto de causas está
“conectado” con un conjunto de efectos. A medida que se van obteniendo los
efectos acumulados de primera y segunda generación se observa un aumento del
nivel de la relación. En este caso, las relaciones entre objetos de un mismo
conjunto deben poseer la propiedad reflexiva, en el sentido de que la incidencia
de un objeto consigo mismo es total. Es aśı que sus representaciones matriciales
se caracterizan por poseer el valor unidad en todos los elementos de su diagonal
principal. Lo mismo sucede en la forma sagitada en la cual cada arco que une
un vértice consigo mismo esta valuado con un uno. Nadie puede dudar de la
importancia ejercida por las relaciones de causalidad a lo largo del desarrollo del
pensamiento cient́ıfico. El proceso propuesto permite, además, obtener “todas”
las relaciones directas e indirectas, sin posibilidad de error u omisión, recuperando
lo que se ha venido denominando “efectos olvidados”.

b) Asignación:
Una manera muy especial de establecer relaciones tiene lugar mediante un

proceso conocido con el nombre de “asignación”. También se emplean, como
sinónimos, otros términos tales como afectación o adscripción. Por nuestra parte
utilizaremos habitualmente el primero de estos vocablos en el bien entendido que
no hacemos bandera de esta elección.

La calificación de relación “especial” creemos tiene su plena justificación en
un aspecto consustancial con la asignación, tan diferenciable que lo ha ido apar-
tando de los estudios relacionales clásicos. Nos referimos al hecho de que el objeto
susceptible de afectación y objeto al cual éste debe ser afectado, no pueden jugar
papeles reversibles, en caso alguno. El sentido, pues, de la adscripción es siempre
el mismo. De ah́ı, la consideración fundamental de un conjunto de elementos a
asignar y de otro conjunto de elementos que siempre recibirán la asignación. Y
todo ello con independencia del propio fenómenos de la asignación, cuyas carac-
teŕısticas espećıficas lo hacen merecedor de especial atención.

El planteamiento del problema de la asignación parte de la existencia de tres
conjuntos, normalmente finitos, de objetos f́ısicos o mentales. El primero recoge
los elementos a asignar, el segundo los elementos que deben recibir la asignación
y el tercero los elementos en los cuales se basa el proceso asignador ( cualida-
des, caracteŕısticas, singularidades, ...), en definitiva lo que podŕıamos denominar
criterios de asignación. Cómo organizar el papel que juega cada uno de estos

12Kaufmann, A. y Gil Aluja, J.: ” Modelos para la investigación de efectos olvidados”. Ed.
Milladoiro. Santiago de Compostela, 1988
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conjuntos, constituye el punto de arranque a partir del cual se desarrollan las
distintas técnicas que se han elaborado. Consideramos, por nuestra parte, que
una buena manera de representar estos aspectos viene dada por la construcción
de un subconjunto borroso para cada uno de los objetos a asignar tomando como
referencial el conjunto de “criterios” de asignación. Se tienen, entonces, unos
descriptores, tantos como elementos posee el primero de los conjuntos (elemen-
tos a asignar). De igual manera, se elaboran el mismo número de subconjuntos
borrosos, con idéntico referencial, del conjunto de los “criterios”, como objetos
receptores de la asignación. Se trata, también en este caso, de descriptores,
pero ahora de los elementos del segundo de los conjuntos (objetos receptores).

Con objeto de obtener las relaciones, a partir de las cuales iniciar el proceso
para la asignación, se puede recurrir a alguno de los ı́ndices capaces de expresar
el “alejamiento” o “acercamiento”, en su caso, entre los objetos a afectar y los
objetos a los cuales debe realizarse la afectación. Entre los más conocidos caben
citar los que surgen de la noción de distancia y los que parten de la noción de
adecuación. A partir de ellos, es posible utilizar una amplia gama de variantes.

La tarea de asignar convenientemente un objeto a otro objeto, tiene en śı
misma, un carácter combinatorio. Por este motivo las técnicas precisas para esta
labor han tenido que ser buscadas en este campo de la matemática. No es de
extrañar, entonces, que se haya hurgado en aquellos algoritmos capaces de acotar
el número de operaciones necesarias para encontrar la o las soluciones óptimas.
La justificación de tales algoritmos proporciona una buena base teórica sobre la
cual es posible sustentar una teoŕıa de la asignación, quizás aun hoy incompleta.

Elementos de la programación matemática, flujos en redes, acotaciones en ar-
borescencias, ... confluyen para encauzar los estudios de asignación hacia proce-
dimientos de cálculo capaces de dar amplia respuesta a los problemas planteados.
Estos procedimientos se concretan en algoritmos. Entre los más utilizados cita-
remos el algoritmo por eliminación de filas y columnas, al que es necesario
añadir otros dos aptos para la optimización: el algoritmo húngaro y algoritmo
branch and bound.

Las posibilidades de utilizar estos algoritmos en las realidades sociales, econó-
micas y de gestión, son muchas. De hecho, disponemos de una buena experiencia,
en este sentido, en campos tales como los recursos humanos, finanzas e inversiones,
marketing, ... e incluso conocemos de un estudio realizado para la asignación de un
jugador de fútbol a una posición del equipo. Un amplio ventanal se ha abierto para
las optimizaciones basadas en la afectación, adscripción o, si se quiere, asignación.

c) Agrupación
El problema de la agrupación homogénea de objetos f́ısicos o mentales consti-

tuye una constante para la optimización. En efecto, son frecuentes las situaciones
en las cuales es necesario reunir, en bloques, “objetos” muchas veces con aparien-
cia diferente, bien para una selección entre los componentes del mismo grupo bien
para elegir un grupo entre varios de ellos. En la actividad social, económica y de
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gestión, son múltiples los casos en que se presenta este planteamiento. Aśı, en
el ámbito productivo, la separación por grupos homogéneos de materias primas,
productos semielaborados o productos acabados 13 , constituye una constante en
el d́ıa a d́ıa de los procesos de fabricación. En la actividad financiera la agrupación
de productos o instrumentos de financiación 14 o la de objetos de la inversión 15 es
algo que de manera expresa o tácita se halla en la mente de los agentes activos de
este campo. La actividad comercial presenta una variada gama de planteamientos
decisorios en cuyo origen se halla la necesidad de agrupar 16. Y la gestión de los
recursos humanos no es ajena a este problema 17. Nos hemos limitado a señalar
algunos de los muchos casos que aparecen en los estudios de optimización.

La formalización de estos planteamientos ha tenido lugar, a lo largo del tiempo,
a partir de ciertas técnicas cuyo desarrollo no ha proporcionado, en nuestra
opinión, los resultados deseados para dar cumplida respuesta a los retos plantea-
dos. La posterior dispersión de los caminos emprendidos ha evitado la formación
de un esquema unitario con la suficiente generalidad para abarcar el amplio es-
pectro de la compleja realidad social de nuestra época.

En efecto, vamos a tomar como referencia el concepto de semejanza. Este
término adquirió en su momento, gracias al desarrollo de la matemática de la
incertidumbre, una importancia especial, sobre todo para procesos de agrupación
o separación. Con el tiempo se ha ido constatando que este concepto no ha
resultado lo suficientemente útil para una eficaz agrupación, como consecuencia
de la no existencia de la propiedad transitiva. En efecto, si se dispone de un
grupo de objetos concretos o abstractos, A, B, C, y se cumple que A y B son
semejantes a un determinado nivel, aśı como B y C son semejantes, también a
este nivel, no tiene porque cumplirse que al nivel especificado lo sean A y C. Para
que esto se cumpla es necesaria la intervención de la citada propiedad transitiva.

Es suficientemente conocida la manera de obtener los subgrafos transitivos a
partir de un grafo de semejanzas (reflexivo y simétrico). Estos subgrafos expresan
“relaciones de similitud” entre algunos elementos del referencial, formando el ma-
yor “grupo” posible con caracteŕısticas similares: Son las llamadas subrelaciones
máximas de similitud. Para su obtención se han elaborado algunos algoritmos en-

13Gil Aluja, j.:MAPCLAN. Modelo for assembling products by means of clans. Proceedings
de la Third International Conference on modellling and simulation MS’97. Melbourne 29-31
Octubre 1997. Págs 496-504

14Gil Lafuente, A.M.:Fundamentos de Análisis Financiero. Ed Ariel. Barcelona. 1993. Págs:
285-300

15Gil Aluja, J.: Invertir en al incertidumbre. Ed. Piramide. Madrid 1997. Págs: 115-139
16Gil Lafuente,J.:Marketing para el nuevo milenio. Ed. Piramide. Madrid. 1997. Págs:145-

161
17Gil Aluja, J.: La gestión interactiva de los recursos humanos en la incertidumbre. Ed.

CEURA. Madrid. Págs: 145-158
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tre los cuales caben citar el de Pichat 18 y el de Lafosse-Marin Kaufmann 19. Los
subconjuntos que se forman no son disjuntos. Y aunque esta circunstancia carece
de importancia en muchos casos, cabe plantearse el problema de la formación
de subrelaciones máximas de similitud disjuntas. Cuando esta propiedad se con-
vierte en una exigencia, habrá que recurrir a la transformación del grafo borroso
de semejanza en un grafo borroso de similitud a través del cierre transitivo.

La importancia que ha representado disponer de estos elementos teóricos ca-
paces de obtener agrupaciones por semejanzas o similitudes, ha sido enorme. A
pesar de ello, estos elementos no han resultado suficientes para resolver toda la
gama de problemas de optimización que las realidades económicas y de gestión
plantean. No se olvide que el punto de partida es una matriz cuadrada, en la
cual los elementos de las filas coinciden en cantidad y en esencia con los elementos
de las columnas. Y esto es un caso particular de otro más general, en el que no
coinciden, ni en número ni en concepto, las filas con las columnas. Para llegar a
él se puede partir de una matriz rectangular, ni simétrica ni reflexiva.

Conscientes de esta necesidad, intentamos en su d́ıa abordar la construcción de
un conglomerado de conocimientos a partir de la noción de afinidad, ya utilizada
en trabajos anteriormente, realizados junto al añorado profesor Kaufmann 20 . Los
resultados han permitido poner en evidencia el carácter general de este concepto,
del cual la importante noción de similitud constituye un caso particular.

Para lograr este objetivo, tomamos como punto de arranque el concepto de
relación, en su aspecto más amplio, en el sentido que pueden existir conexio-
nes a distintos niveles entre elementos de dos conjuntos referenciales finitos. La
presentación de estas relaciones mediante una relación borrosa, normalmente rec-
tangular, permite un amplio juego del que se derivan interesantes reflexiones.

Una de ellas, y no la menos importante, hace referencia a la flexibilidad deri-
vada de la posibilidad de obtener, a partir del tratamiento mediante α−cortes, un
abanico de matrices booleanas capaz de permitir la adaptabilidad necesaria en la
formación de agrupaciones, considerando los niveles deseados de homogeneidad.

Al disponer de matrices booleanas, se consigue un entronque con los estudios
clásicos de la lógica binaria, lo que permite aprovechar relevantes aspectos, hasta
ahora creemos poco utilizados en los procesos de optimización. Cabe destacar a
este respecto, el conglomerado de conocimientos elaborados a partir del concepto
de “familia de Moore”, los cuales permiten la obtención de adecuadas agrupacio-
nes. La presentación de estas agrupaciones mediante estructuras reticulares pone

18Pichat, E.: Algorithm for finding the maximal elements of a finite universal algebra. Inform
Proceeding 68. Publ. North Hollanda. 1969

19Kaufmann, A.: Modèles mathématiques pour la stimulation inventive. Ed. Albin Michel,
1979. Pág.: 62

20Señalemos a t́ıtulo de ejemplo las obras de Kaufmann, A. y Gil Aluja, j.: Técnicas de gestión
de empresa. Previsiones, decisiones y estrategias. Ed. Pirámide. Madrid. 1972, Cap. 10 y
Técnicas especiales para la gestión de expertos. Ed. Milladoiro. Santiago de Compostela, 1993.
Cap 13, de los mismos autores
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en evidencia las afinidades. Para ello se ha recurrido a los ret́ıculos de Galois, a
cuya belleza formal se añade su gran capacidad de adaptación.

Las posibilidades de utilizar este conjunto de elementos teóricos y técnicos a
la optimización en la incertidumbre, se ven facilitadas por la puesta a punto de
algunos algoritmos de empleo alternativo según las circunstancias concretas de
cada momento. En efecto los algoritmos de la “correspondencia inversa máxima”
y de las “submatrices completas máximas” constituyen eficaces instrumentos de
solución rápida y eficaz a los problemas planteados. A ellos, hemos podido añadir
un tercero, cuya base se halla en la llamada teoŕıa de clanes. Creemos que, con esta
triloǵıa, se puede cerrar, aunque sea provisionalmente, la esfera de la “agrupación”
como concepto fundamental de la optimización en la incertidumbre.

d) Ordenación
Se llega finalmente, a la noción de orden. Si en los estudios tradicionales la

ubicación de los elementos numéricos adquiere categoŕıa de protagonismo, cuando
las realidades sociales sufren convulsiones que incapacitan la adopción de técnicas
lineales, su desplazamiento resulta inevitable. Es entonces cuando el proceso de
ordenación asume la mayor responsabilidad.

En efecto, cada vez resulta más dif́ıcil circunscribir la fenomenoloǵıa actual
al estricto reducto de un número e incluso acotarla entre dos o más números.
Ante estas circunstancias, el recurso a una comparación basada en formas no ma-
nifestadas cuantitativamente, puede proporcionar excelentes soluciones. Resulta
evidente que seŕıa preferible, para todos, disponer de la información suficiente,
capaz de permitir una asignación numérica a cada fenómeno susceptible de opti-
mización. Pero a falta de soportes aptos para el suministro de tales elementos,
creemos más honesto conformarnos con menos, aunque este menos impida preci-
siones muchas veces superficiales.

Con objeto de obtener estructuras capaces de conducirnos hacia algoritmos
aptos para la ordenación se han creado ciertos desarrollos que permiten una sufi-
ciente gama de caminos capaces de cubrir un amplio abanico de problemas hasta
hace poco sin solución satisfactoria.

El primero parte de la noción de función ordinal de un grafo. La definición
de este concepto a partir de la teoŕıa de grafos resulta altamente fruct́ıfera al
proporcionar una estructura básica a partir de la cual, siguiendo cada una de las
formas señaladas, se elaboran algoritmos de fácil asimilación y eficacia probada
para su utilización en los planteamientos económicos y de gestión.

La teoŕıa de grafos suministra, aśı, interesantes esquemas para establecer una
relación de orden. Si se exceptúan los grafos “fuertemente conexos” los cuales,
representados por matrices con una sola clase de equivalencia, no permiten hallar
un orden entre sus vértices, la posibilidad de descomponer un grafo no fuerte-
mente conexo en subgrafos śı fuertemente conexos, ha abierto las puertas a la
ordenación cuando no de vértices, por lo menos de conjunto de vértices (los que
componen cada clase de equivalencia o subgrafo fuertemente conexo).
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Una vez obtenidas todas las clases de equivalencia o subgrafos fuertemente
conexos, se ha vencido el escollo más importante que pod́ıa evitar la ordenación.
Ahora, cuando no se pueden ordenar vértices por la existencia de circuitos, es
posible la ordenación de clases de equivalencia, es decir, de grupos de objetos
f́ısicos o mentales.

Sin abandonar la misma metodoloǵıa general, se puede abordar un segundo
camino que tiene como punto de arranque la denominada matriz latina. Su
andadura, pues, tiene lugar, por lo menos inicialmente, a partir de una forma
matricial. La utilización de adecuados operadores, principalmente el de convo-
lución maxmin, conduce al método de la composición P-latina. La exigencia de
una propiedad espećıfica (la del camino elemental) permite establecer la enume-
ración de los caminos elementales de un grafo, que son, en śı mismos, fuente
inmediata de ordenación. El algoritmo que se desprende hace el resto.

El último sendero susceptible de utilización ofrece unas caracteŕısticas dife-
renciales de los dos anteriores. Su fundamento se halla en conocidas propiedades
del cálculo matricial, las cuales fueron sagazmente utilizadas primero por Saaty
21 y luego por Dhin 22

En un sistema social y económico marcado por la incertidumbre el concepto
de orden ocupa un puesto de privilegio para la optimización. Ordenar inversio-
nes, ordenar fuentes de financiación, ordenar recursos, ... es la antesala de la
optimización. Cuando no es posible obtener un cuadro “valorado” de objetos,
apelar a un “orden no cuantificado” de los mismo puede ser suficiente para una
optimización aceptable.

Relación, asignación, agrupación, ordenación, ... y tantos otros vocablos que
en un futuro inevitablemente van a aparecer, son conceptos que van emergiendo,
en este intento de buscar nuevos caminos para dar solución a los complejos pro-
blemas que la optimización plantea.

6 Consideraciones finales

Tradicionalmente, la ciencia económica ha tenido como uno de sus objetivos
fundamentales, la búsqueda de la optimización. No puede extrañar, entonces, que
estemos viviendo unos momentos de desconcierto, cuando una realidad, llena de
convulsiones que hacen la vida inestable, quiere ser tratada como se hab́ıa hecho en
situaciones de equilibrio, envueltas en estabilidades. Nos hemos de acostumbrar
a pensar que la sociedad, la economı́a y la actividad de las empresas, tal como las
hemos conocido hasta ahora, no tienen ninguna posibilidad de sobrevivir en un
futuro muy inmediato y que muchos, pero que muchos cambios serán inevitables.

21Saaty, T.L.:Exploring the interface between hierarchies, multiples objectives and fuzzy sets.
Fuzzy Sets and Systems. 1978. Vol. 1 N. 1. Págs: 57-68

22Dihn, Xuan Bá.: A method for estimating the membership function of a fuzzy set. Revue
Buseval, L.S.I. University Paul Sabatier. Toulouse 1984, N. 19 Págs.:68-82
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Creemos que consenso e inestabilidad son conceptos que van cada vez más
unidos y todav́ıa lo irán más en el futuro. Tanto es aśı, que en las nuevas ten-
dencias de la investigación cient́ıfica en el ámbito de la economı́a y la gestión de
las empresas, están tomando una posición cada vez más fundamental. Inestabili-
dad y volatibilidad de los mercados financieros, inestabilidad y fluctuación de los
precios, inestabilidad y precariedad de las ofertas de trabajo, son claros ejemplos.

Pueda resultar útil, en este contexto, una breve reflexión en torno a las po-
sibilidades que ofrecen las propuestas que llegan de los laboratorios en donde se
ensayan los nuevos hallazgos cient́ıficos. En ellos, podemos comprobar que la ac-
tividad cient́ıfica se halla en una encrucijada en la que está en juego el futuro de
la humanidad. Por un lado, la concepción geométrica del universo, por el otro,
la concepción darwiniana. De una parte la imposición de unas creencias prees-
tablecidas desde el esplendoroso amanecer newtoniano, en el que se soñaba con
reducir el funcionamiento del mundo a la predictibilidad de un mecano. De otra
parte, el vaćıo de lo desconocido. La atracción de la aventura, sólo guiados por
la esperanza de abrir nuevos horizontes. La respuesta a la llamada de Bertran
Russell, de Lukasiewicz, de Zadeh, de Lorenz, de Prigogine, de Kaufmann. El
rechazo al yugo de la predestinación y la proclamación de la libertad de decisión
que una y otra vez choca con el muro de la incertidumbre.

Incertidumbre. Vocablo casi proscrito hace sólo unos pocos decenios. Sujeto
a maltrato y objeto de confusión por quienes más deb́ıan ser celosos guardianes
del “grial” de la Ciencia. Hoy, gracias a los originales trabajos de Zadeh, resurge
acaparando un protagonismo que facilita nuevos cauces a tantos investigadores
deseosos de proporcionar respuestas a los interrogantes que la sociedad convulsa
de hoy plantea.

Aunque resulta dif́ıcil buscar las ráıces más profundas de las nuevas miradas
con que los investigadores escrutan el mundo, no existe la menor duda de que algo
importante estaba pugnando por emerger a la superficie de la actividad cient́ıfica
cuando destilaban las primeras esencias del evolucionismo, rica herencia del siglo
XIX.

En efecto, en su fundamental obra “El origen de las especies” publicada
en 1859, Darwin considera que las fluctuaciones en las especies biológicas,
gracias a la selección del medio, dan lugar a una evolución biológica irreversible.
De la asociación entre fluctuaciones (que asimila a la idea de azar, diŕıamos
nosotros incertidumbre) e irreversibilidad tiene lugar una autoorganización
de sistemas con una creciente complejidad.

Por su parte, Clausius formula, en 1865, la “ley de aumento de la en-
troṕıa”, con la correspondiente división entre procesos reversibles e irreversi-
bles. Esta distinción se hace expĺıcita en la segunda ley que postula la exis-
tencia de una función, la entroṕıa, la cual, en un sistema aislado, aumenta
cuando existen procesos irreversibles y se mantiene constante en presencia de pro-
cesos reversibles. Por lo tanto, la entroṕıa alcanza un valor máximo cuando el
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sistema está llegando al equilibrio y acaba el proceso irreversible.
Tanto en el caso de Darwin como en el de Boltzmann, azar (o si quiere

incertidumbre) y evolución se hallan estrechamente relacionados, pero el resul-
tado de sus respectivas investigaciones conducen a conclusiones contrapuestas.
En Boltzmann, la probabilidad llega a su máximo cuando se está alcanzando
la uniformidad, mientras que en Darwin la evolución conduce a nuevas es-
tructuras autoorganizadas.

En contraposición con estas perspectivas, el prototipo de la f́ısica clásica
y como consecuencia de la teoŕıa económica marginalista, es la mecánica del
movimiento, la descripción de procesos de carácter reversible y determinista,
en donde la dirección del tiempo no juega papel alguno, en la cual no existe
un lugar ni para la incertidumbre ni para la irreversibilidad. En definitiva, los
sistemas económicos y de gestión constituyen inmensos autómatas.

Es bien cierto que algunos fenómenos que surgen en la vida de los estados,
instituciones y empresas se pueden perfectamente describir mediante ecuacio-
nes deterministas pero, en cambio, otros comportan procesos inciertos o,
en todo caso, estocásticos. Podŕıa suceder que nuestra propia existencia, con
toda su complejidad, se hallara, también inscrita en las leyes generales desde
el momento primigenio del Big-Bang. Pero la ciencia, de tanto buscar las gene-
ralidades, las simetŕıas y las leyes, ha encontrado lo mutable, lo temporal
y lo complejo.

Nos encontramos, pues, en una encrucijada que podŕıa ser bautizada como
geometrismo – darwinismo, en cuyo epicentro se halla una querella que data
de más de dos mil años. En efecto, Aristóteles (384 - 322 a.C.) señalaba que:
“respecto de las cosas presentes o pasadas, las proposiciones, sean positivas o
negativas, son por necesidad verdaderas o falsas. Y de las proposiciones que
se oponen contradictoriamente debe ser una verdadera y una falsa”. En esta
misma ĺınea se situaba el pensamiento de los estoicos a una de cuyas figuras
centrales, Crisipo de Soli (� 281 -208 a.C.), se le atribuye la formulación del
llamado “principio del tercio excluso”. Los epicúreos, con su fundador Epicuro
(341 - 270 a.C.) al frente, contestaron con vigor este principio, señalado que sólo es
aceptable si no se da una tercera posibilidad “tertium non datur” (tercio excluso).

Tienen que transcurrir veintidós siglos para que Lukaciewicz, retomando la
idea de los epicúreos, señalara que existen proposiciones que no son ni verdaderas
ni falsas, sino indeterminadas. Esto le permite enunciar su “principio de valen-
cia” (cada proposición tiene un valor de verdad). Se inicia, aśı, el camino para
las llamadas lógicas multivalentes.

Con ocasión del Congreso Internacional SIGEF de Buenos Aires, intentamos
asentar la posición epicárea en las nuevas coordenadas surgidas de la importante
obra de Zadeh, enunciando el “principio de la simultaneidad gradual” (toda pro-
posición puede ser a la vez verdadera y falsa, a condición de asignar un grado
a su verdad y un grado a su falsedad). Antes y después, un buen número de
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cient́ıficos han ido colocando, piedra tras piedra, los cimientos de lo que puede ser
un nuevo edificio del saber económico. Desde nuestro ámbito de estudio, muchos
nombres jalonan este ya fruct́ıfero camino y numerosos grupos de investigación
pertenecientes a universidades de los cinco continentes han aceptado el testigo y
están trabajando en las distintas ramas del árbol de la ciencia, para proporcionar
a quienes se hallan inmersos en el intrincado mundo de las optimizaciones, unos
elementos teóricos y técnicos susceptibles de permitir una lucha más equilibrada
frente a las incertidumbres de hoy y de mañana.
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[1] Dihn, Xuân Bá.: A method for estimating the membership function of a
fuzzy set. Revue Busefal, L. S. I. University Paul Sabatier. Toulouse 1984.

[2] Gil Aluja, J.: “La incertidumbre en la economı́a y gestión de empresas”.
Actas del IV Congreso de la Asociación Española sobre Tecnoloǵıa y Lógica
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multiobjetivo

R. Caballero1, E. Cerdá2, M. M. Muñoz1, L Rey1
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1 Introducción

En este trabajo nos centramos en el estudio de problemas de decisión en los que
el número de objetivos es múltiple y algunos o todos los parámetros del problema
son variables aleatorias con distribución conocida. De esta forma, se relaja la
hipótesis frecuente cuando se plantea un modelo de optimización referente a que el
objetivo del proceso de decisión puede representarse a través de una única función
a optimizar. En general, un problema de programación estocástica multiobjetivo
se puede formular como:

Opt
x

z̃(x, ξ̃) = ((z̃1(x, ξ̃), (z̃2(x, ξ̃), . . . , (z̃q(x, ξ̃))

s.a : g̃i(x, ξ̃) ≤ 0, i = 1, 2, . . . ,m
x ∈ D ⊂ Rn

donde x ∈ Rn es el vector de variables de decisión del problema y ξ̃ es un vector
aleatorio definido sobre un conjunto E ⊂ R

n. Suponemos dada la familia F
de eventos, es decir, subconjuntos de E, y la distribución de probabilidad P
definida sobre F , de manera que para cualquier subconjunto de E, A ⊂ E, A ⊂
F , la probabilidad de A, P (A), es conocida. Además, se mantiene la hipótesis
de que la distribución de probabilidad, P , es independiente de las variables de
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decisión,x1, . . . , xn . Suponemos que las funciones z̃1(x, ξ̃), z̃2(x, ξ̃) . . . , z̃q(x, ξ̃) y
g̃1(x, ξ̃), g̃2(x, ξ̃), . . . , g̃m(x, ξ̃), están definidas en todo el espacio Rn × E.

A partir de los análisis realizados en art́ıculos previos, sabemos que la reso-
lución de problemas de programación estocástica pasa por la elección de criterios
para obtener, a partir del problema estocástico, un problema determinista equi-
valente cuya solución es considerada solución óptima del problema original. Esto
da lugar a que para un mismo problema estocástico se puedan obtener distin-
tas soluciones, una por cada uno de los criterios de obtención del determinista
equivalente, y que se puedan considerar todas ellas soluciones óptimas del pro-
blema estocástico de partida. La elección de un criterio u otro dependerá de las
caracteŕısticas del proceso de decisión a partir del cual se genera el problema.

Esta diversidad de criterios es trasladable al caso multiobjetivo, con la difi-
cultad añadida de que el número de objetivos del problema es mayor que uno.

Los estudios realizados hasta ahora en programación estocástica multiobjetivo
abordan la resolución del problema planteado desde distintos enfoques. Para cla-
sificar los trabajos realizados distinguiremos entre problemas con variables alea-
torias discretas y problemas con variables aleatorias continuas.

Dentro del caso discreto, cabe destacar los trabajos de Ben Abdelaziz (1992)
y Ben Abdelaziz, Lang y Nadeau (1994 y 1995) en los que se analiza la obtención
de soluciones eficientes de problemas de programación estocástica multiobjetivo
con variables aleatorias discretas. En estos trabajos se dan distintos conceptos
de eficiencia de problemas de programación estocástica multiobjetivo y el estudio
que se realiza es paralelo al análisis de eficiencia en programación estocástica (con
un solo objetivo). Por otro lado existen también estudios en los que se aborda la
resolución del problema planteado bajo la filosof́ıa de la programación recurso de
la programación estocástica. Aśı, Teghem, Dufrane, Thauvoye y Kunsch (1986)
plantean la resolución de problemas de programación estocástica multiobjetivo
con parámetros que son variables aleatorias discretas con distribución conocida.
Estos autores proponen el método STRANGE, un método interactivo de reso-
lución de problemas con las caracteŕısticas descritas. En este método, basado en
el método STEM de la programación multiobjetivo, se define una función que
penaliza la violación de las restricciones, que se añade al resto de objetivos del
problema determinista equivalente. Posteriormente, Urli y Nadeau (1990) propo-
nen el método PROMISE para resolver problemas de programación estocástica
multiobjetivo con información incompleta, esto es, para el caso en el que sólo
se conoce una medida de tendencia central y una de dispersión de cada uno de
los parámetros aleatorios que intervienen en el problema. Al igual que el ante-
rior, este método es interactivo, basado en el método STEM, y se utiliza una
función que penaliza la posible violación de las restricciones del problema, que se
incorpora como un objetivo más del problema determinista equivalente.

En cuanto al estudio de problemas de programación estocástica multiobje-
tivo con parámetros que son variables aleatorias continuas existen en la literatura
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múltiples trabajos que lo abordan. De entre ellos cabe destacar los trabajos de
Stancu-Minasian (1984), Stancu-Minasian y Tigan (1988), Leclerq (1982), Szida-
rovszky, Gershon y Duckstein (1986), Goicoechea, Hansen y Duckstein (1982) y
el libro de Slowinski y Teghem (1990). La mayor parte de los estudios realiza-
dos hasta ahora resuelven el problema estocástico multiobjetivo transformando el
problema en uno de optimización determinista equivalente y consideran solución
del problema estocástico multiobjetivo a la solución del problema transformado.
En general, esta transformación consta de dos etapas que constituyen una doble
transformación. En una de ellas se transforma el problema estocástico en uno
determinista equivalente y en la otra se transforma el problema multiobjetivo en
uno de optimización. El orden en que se lleven a cabo estas transformaciones
depende del método que se siga para resolver el problema. Aśı, Stancu-Minasian
(1984) plantea que para la resolución de estos problemas se pueden considerar
dos posibles formas de abordarlo:

• Transformar el problema de programación estocástica multiobjetivo en un
problema de programación estocástica con una única función objetivo y resolver
éste mediante alguno de los criterios que se utilizan en programación estocástica
con un solo objetivo.

• Transformar el problema de programación estocástica multiobjetivo en un
problema multiobjetivo determinista equivalente, fijando un criterio de trans-
formación para cada objetivo estocástico y, posteriormente, buscar soluciones
eficientes del problema multiobjetivo determinista obtenido.

En este sentido, Ben Abdelaziz (1992) clasifica los métodos de resolución de los
problemas en tres grupos, que denomina enfoques o aproximaciones, para la reso-
lución de problemas de programación estocástica multiobjetivo. Esta clasificación
se realiza en función del orden en el que se lleven a cabo las transformaciones an-
teriormente mencionadas y distingue:

• Enfoque multiobjetivo: En él se transforma el problema en uno multiobjetivo
determinista equivalente y posteriormente en uno de optimización.

• Enfoque estocástico: Consiste en reducir el problema a un problema de
programación estocástica con una función objetivo y, posteriormente, a uno un
problema de optimización determinista equivalente.

• Enfoque interactivo: Se combinan ambos enfoques para obtener, en inte-
racción con el decisor, una solución de compromiso. La siguiente figura muestra
las dos transformaciones básicas que generalmente se siguen para resolver proble-
mas de programación estocástica multiobjetivo.
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PROBLEMA

MULTIOBJETIVO

ESTOCÁSTICO

PROBLEMA DE

PROGRAMACIÓN

ESTOCÁSTICA

PROBLEMA

MULTIOBJETIVO

DETERMINISTA

EQUIVALENTE

PROBLEMA

DE OPTIMIZACIÓN

DETERMINISTA

EQUIVALENTE

Fig. 1 Transformaciones usuales de un problema multiobjetivo estocástico

A esta clasificación habŕıa que añadir los trabajos realizados para resolver el
problema mediante programación estocástica por metas. El primero de ellos se
debe a Contini (1968) y posteriormente aparecen otros trabajos debidos a Stancu-
Minasian (1984), Stancu-Minasian y Tigan (1988) y Ballestero (2001). El análisis
de estos trabajos nos ha llevado a considerarlos como un bloque aparte de la
clasificación anterior, si bien, algunos de los problemas planteados mediante este
enfoque se podŕıan encuadrar dentro de alguno de los enfoques que distingue Ben
Abdelaziz.

En cuanto a los métodos interactivos, hemos de señalar la importancia del
método PROTRADE, (Goicoechea, Hansen y Duckstein (1982)), basado en el
método STEM, y del método MULT propuesto por Leclerq (1982), y en el que
se abordan problemas de programación estocástica con restricciones estocásticas.
Para resolver este problema, Leclerq transforma las restricciones estocásticas en
restricciones de azar y las considera objetivos adicionales del problema. El pro-
blema resultante se resuelve mediante un método interactivo, que propone el
autor.

En adelante nos centraremos en el análisis de la resolución de problemas me-
diante el enfoque multiobjetivo y el enfoque estocástico, básicamente nos centra-
remos en los distintos conceptos de solución asociados y ofreciendo referencias de
las posibles relaciones que pueden existir en la resolución de problemas mediante
los mismos. El problema que abordaremos es:

Min
x

z̃(x, ξ̃) = ((z̃1(x, ξ̃), (z̃2(x, ξ̃), . . . , (z̃q(x, ξ̃))

s.a : x ∈ D
(PEM)
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en el que se supone que el conjunto de oportunidades es determinista o bien ha sido
transformado en su determinista equivalente siguiendo el criterio de restricciones
de azar separadas (obsérvese que la transformación del conjunto de oportunidades
es igual en programación estocástica y en programación estocástica multiobjetivo)
y se mantiene como criterio de optimización el de mı́nimo.

2 Enfoque Multiobjetivo

Abordamos la resolución de problemas de programación estocástica multiob-
jetivo mediante el enfoque multiobjetivo, es decir, siguiendo las siguientes etapas:

Etapa 1: Transformación del problema estocástico multiobjetivo en uno
multiobjetivo determinista equivalente, siguiendo algún criterio que se con-
sidera apropiado.

Etapa 2: Resolución del problema multiobjetivo determinista obtenido en
la etapa anterior, sin considerar el carácter estocástico del problema de
partida, salvo por la transformación realizada en la primera etapa.

Evidentemente, existen muchos posibles criterios para llevar a cabo la transfor-
mación del problema estocástico multiobjetivo siguiendo las dos etapas descritas.
Aśı, por ejemplo, en un problema de dos objetivos estocásticos es posible que se
considere adecuado el criterio valor esperado para transformar el primer objetivo
estocástico y el criterio mı́nimo riesgo para el segundo y, una vez obtenido el
problema biobjetivo determinista equivalente, obtener soluciones eficientes, satis-
facientes o de compromiso del mismo.

Sin embargo, existen en la literatura conceptos de solución eficiente de proble-
mas de programación estocástica multiobjetivo que se encuadran dentro de este
enfoque. Estos conceptos son generalizaciones de los criterios básicos de resolución
de problemas de programación estocástica: valor esperado, mı́nima varianza, va-
lor esperado desviación estándar, mı́nimo riesgo y Kataoka. La idea básica en
todos ellos es elegir un criterio de transformación de los objetivos estocásticos,
aplicarlo a cada uno de ellos y construir un problema multiobjetivo determinista
equivalente con las transformaciones obtenidas.

La mayor cŕıtica que se realiza a esta forma de resolver problemas de pro-
gramación estocástica multiobjetivo es que, al aplicar el criterio de obtención del
problema determinista equivalente a cada objetivo por separado, puede ocurrir
que no se tenga en cuenta la posible dependencia estocástica entre unos objetivos
estocásticos y otros, de manera que, en cierto modo, se prima la naturaleza mul-
tiobjetivo del problema sobre la naturaleza estocástica. Por otro lado, la mayor
ventaja del enfoque multiobjetivo es que es fácilmente aplicable para la resolución
de problemas estocásticos multiobjetivo.
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En este eṕıgrafe se recogen algunos conceptos de solución eficiente de proble-
mas de programación estocástica multiobjetivo y se analizan las relaciones entre
ellos. Como veremos a continuación, estos conceptos de eficiencia están relacio-
nados entre śı.

En Caballero, Cerdá, Muñoz y Rey (2002) se analizan con detenimiento los
procesos de obtención del determinista equivalente de un objetivo estocástico me-
diante algunos de los criterios más utilizados y se realizan comparaciones entre
ellos, por lo que en lo que sigue no nos detendremos en ese aspecto concreto
del problema que nos ocupa. Tampoco entraremos en la segunda de las etapas
anteriormente señaladas, esto es, la resolución del problema multiobjetivo deter-
minista equivalente resultante de aplicar estos criterios.

2.1 Conceptos de solución eficiente

Consideremos el problema de programación estocástica multiobjetivo:
Min
x

z̃(x, ξ̃) =
(
(z̃1(x, ξ̃), (z̃2(x, ξ̃), . . . , (z̃q(x, ξ̃)

)
s.a : x ∈ D

(PEM)

Se supone que el conjunto D de soluciones factibles es no vaćıo, compacto y
convexo.

Existen en la literatura distintos conceptos de solución eficiente de este pro-
blema multiobjetivo. Los conceptos que vamos a ver a continuación son aquellos
en los que se transforma el problema estocástico multiobjetivo en uno multiob-
jetivo determinista equivalente, fijando algún criterio de transformación de los
existentes en programación estocástica para transformar el objetivo estocástico
en determinista. Todos los conceptos que analizamos transforman cada una de las
funciones objetivo del problema en determinista mediante un mismo criterio de
transformación, que se aplica por separado a cada una de las funciones objetivo
del problema.
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Eficiencia en Esperanza

La definición de solución eficiente en esperanza no es más que una consecuencia
de uno de los métodos más utilizados para resolver el problema (PEM), que
consiste en la obtención del determinista equivalente del problema estocástico
tomando el valor esperado de cada una de las funciones objetivo del problema, es
decir:

Min
x

(
E{z̃1(x, ξ̃)}, E{z̃2(x, ξ̃)}, . . . , E{z̃q(x, ξ̃)}

)
s.a : x ∈ D

(E)

Una vez planteado este problema podemos definir el concepto de solución
eficiente valor esperado como sigue:

Definición 1: Solución eficiente valor esperado

Sea x ∈ D. x es eficiente valor esperado del problema de programación es-
tocástica multiobjetivo (PEM) si es solución eficiente en el sentido de Pareto del
problema (E).

Denotamos por εE al conjunto de soluciones eficientes valor esperado.
A partir del concepto que acabamos de definir, dado un problema de pro-

gramación estocástica multiobjetivo, podemos obtener soluciones eficientes del
mismo sin más que considerar el problema planteado anteriormente. Los obje-
tivos del problema determinista equivalente serán lineales si lo son las funciones
objetivo estocásticas y cuadráticos y convexos en el caso de que las funciones es-
tocásticas lo sean. En cuanto a la bondad de este criterio para resolver problemas
de programación estocástica multiobjetivo, mantenemos las mismas consideracio-
nes que se hacen en programación estocástica, esto es, consideramos que el valor
esperado no es más que una medida de tendencia central de la variable aleatoria y,
en este sentido, la elección de este criterio puede no ser adecuada en determinados
casos, puesto que sólo se recogen determinados aspectos del objetivo estocástico.

Al igual que en programación estocástica, la obtención de soluciones eficientes
valor esperado del problema (PEM) es posible siempre que se conozca el valor
esperado de cada una de las funciones objetivo del problema, aún si se desconoce
la distribución de probabilidad de alguna de las funciones objetivo estocásticas.
Sin embargo, al igual que en programación estocástica, este criterio recoge sólo el
valor esperado de las funciones objetivo estocásticas del problema y, por tanto,
recoge sólo una de las caracteŕısticas estocásticas de los objetivos aleatorios del
problema.

Eficiencia Mı́nima Varianza

Al igual que hemos definido el concepto de solución eficiente en esperanza, cabe
definir el concepto de solución eficiente mı́nima varianza sin más que plantear el
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problema de programación multiobjetivo de minimizar la varianza de cada una
de las funciones del problema de programación estocástica multiobjetivo (PEM),
es decir:

Min
x

(
V ar{z̃1(x, ξ̃)}, V ar{z̃2(x, ξ̃)}, . . . , V ar{z̃q(x, ξ̃)}

)
s.a : x ∈ D

(σ2)

Una vez planteado este problema, que será siempre de mı́nimo, independien-
temente de que el problema de partida sea de mı́nimo (como suponemos en este
trabajo) o de máximo, podemos definir el conjunto de soluciones eficientes mı́nima
varianza del problema de programación estocástica multiobjetivo (PEM) de la si-
guiente forma:

Definición 2. Solución eficiente mı́nima varianza

x ∈ D es solución eficiente mı́nima varianza del problema de programación
estocástica multiobjetivo (PEM) si es solución eficiente en el sentido de Pareto
del problema (σ2).

Denotamos por Eσ2 al conjunto de soluciones eficientes del problema σ2. Aśı
pues, para la obtención de soluciones eficientes mı́nima varianza del problema
(PEM) hemos de construir un problema de q funciones objetivo, formado por
cada una de las varianzas del problema multiobjetivo estocástico de partida. Es-
tas funciones son cuadráticas y convexas tanto en el caso de que los objetivos
estocásticos del problema sean lineales como en el caso de que sean cuadráticos.
Al igual que con el criterio valor esperado, podremos obtener soluciones eficientes
mı́nima varianza si conocemos la varianza de cada una de las funciones obje-
tivo estocásticas del problema, independientemente de que se conozca o no la
distribución de probabilidad de cada una de las funciones objetivo del problema
estocástico multiobjetivo de partida. La elección del criterio mı́nima varianza
supone buscar soluciones que acerquen el valor de cada una de las funciones ob-
jetivo estocásticas a su valor esperado y, en este sentido se puede considerar un
criterio poco arriesgado.

Eficiencia Valor Esperado Desviación Estándar

Al igual que en el caso de optimización estocástica monobjetivo considera-
mos la transformación del problema estocástico en uno determinista biobjetivo,
con objetivos el valor esperado y la desviación estándar de la función objetivo
estocástica, planteamos ahora la posibilidad de establecer estos dos criterios de
transformación de cada función objetivo estocástica y consideramos el siguiente
problema:

Min
x

(
E{z̃1(x, ξ̃)}, . . . , E{z̃q(x, ξ̃)},

√
V ar{z̃1(x, ξ̃)}, . . . ,

√
V ar{z̃q(x, ξ̃)}

)
s.a : x ∈ D

(Eσ)
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Una vez planteado este problema podemos definir el concepto de solución
eficiente valor esperado desviación estándar de la siguiente forma:

Definición 3

x ∈ D es solución eficiente valor esperado desviación estándar del problema
multiobjetivo estocástico (PEM) si es solución eficiente en el sentido de Pareto
del problema (Eσ).

Sea εEσ el conjunto de soluciones eficientes valor esperado desviación estándar
del problema de programación estocástica multiobjetivo (PEM).

Este concepto ha sido ampliamente utilizado en la literatura para resolver
problemas de programación estocástica. En algunos trabajos se ha considerado
el criterio de eficiencia valor esperado varianza. Para ello se plantea un pro-
blema con 2q objetivos que recoge el valor esperado de cada función objetivo y
la varianza de cada uno de ellos en lugar de su desviación estándar. En este tra-
bajo hemos preferido definirlo mediante la desviación estándar, dado que de esta
forma conseguimos establecer relaciones entre este concepto y otros conceptos de
solución eficiente de problemas de programación estocástica multiobjetivo que se
definen más adelante. En cualquier caso, es fácil demostrar que el conjunto de so-
luciones eficientes valor esperado desviación estándar coincide con el de soluciones
eficientes valor esperado varianza.

Las funciones objetivo del problema que se genera para la obtención de solu-
ciones eficientes valor esperado desviación estándar son funciones convexas, para
problemas estocásticos multiobjetivo lineales.

Eficiencia Mı́nimo Riesgo de niveles u1, u2, . . . , uq.

Definido por Stancu-Minasian y Tigan (1984), este concepto de solución consi-
dera soluciones eficientes del problema de programación estocástica multiobjetivo
(PEM) a las soluciones eficientes del problema multiobjetivo determinista que se
obtiene al aplicar a cada una de las funciones objetivo del problema el criterio
mı́nimo riesgo. Para aplicar este criterio hemos de fijar un nivel de aspiración
a alcanzar para cada uno de los objetivos estocásticos,u1, u2, . . . , uq, uk ∈ R,
k = 1, 2, . . . , q. Una vez fijados estos valores, el problema mı́nimo riesgo, equiva-
lente determinista del problema (PEM) consiste en maximizar la probabilidad de
que cada uno de los objetivos estocásticos no supere el nivel de aspiración fijado,
es decir:

Min
x

(
P (z̃1(x, ξ̃) ≤ u1), . . . , P (z̃q(x, ξ̃) ≤ uq)

)
s.a : x ∈ D

(MR(u))

Una vez planteado este problema, Stancu-Minasian y Tigan (1984) definen el
concepto de solución vectorial mı́nimo riesgo de nivel u del problema (PEM) de
la siguiente forma:
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Definición 4. Solución eficiente mı́nimo riesgo de niveles u1, u2, . . . , uq

x ∈ D es solución vectorial mı́nimo riesgo de nivel u si es solución eficiente en
el sentido de Pareto del problema (MR(u)).

En adelante nos referiremos a estas soluciones como soluciones eficientes mı́nimo
riesgo de niveles u1, u2, . . . , uq . Denotamos por εmr(u) al conjunto de soluciones
eficientes del problema (MR(u)).

Obsérvese que el problema multiobjetivo determinista que se obtiene al aplicar
este criterio, (MR(u)), depende, en general, del vector de niveles de aspiración
fijado, u, de tal forma que, podemos afirmar que en general, dados u, u’∈ Rq, si
u=u’ entonces los conjuntos de soluciones eficientes mı́nimo riesgo de niveles u
y u’ serán distintos: εmr(u) = εmr(u).

Puesto que para aplicar este criterio de eficiencia, hemos de fijar un nivel de
aspiración, uk ∈ R , para cada uno de los objetivos estocásticos del problema,
es necesaria la intervención del decisor para generar soluciones eficientes mı́nimo
riesgo. Además, dado que en el problema que se genera interviene la función
de distribución de cada una de las funciones objetivo estocásticas, la aplicación
de este criterio se centra en los casos ya conocidos en programación estocástica:
problemas estocásticos multiobjetivo lineales con hipótesis de normalidad o de
aleatoriedad simple. En ambos casos, los objetivos del problema determinista
equivalente son fraccionales. Puesto que esto sale del objetivo de este trabajo,
no plantearemos los problemas que se generan. Por otro lado, en los casos en
los que desconocemos la función de distribución de los objetivos estocásticos del
problema, podemos aplicar la desigualdad de Cantelli a la función de distribución
y obtener una cota inferior para la misma. Aśı, si sustituimos las funciones de
distribución por estas cotas en el problema (MR(u)) obtenemos el problema:

Max
x

(
(u1−E{z̃1(x,ξ̃)})2

V ar(z̃1(x,ξ̃))+(u1−E{z̃1(x,ξ̃)})2
, . . . ,

(uq−E{z̃q(x,ξ̃)})2

V ar(z̃q(x,ξ̃))+(uq−E{z̃q(x,ξ̃)})2
)

s.a : E{z̃1(x, ξ̃))} ≤ uk, k = 1, 2, . . . , q

x ∈ D

(AMR(u))

Evidentemente, el conjunto de soluciones eficientes del problema (AMR(u)),
que denotamos por εAMR(u), no coincide, en general, con el conjunto de solucio-
nes eficientes del problema (MR(u)), εAMR(u) = εMR(u), y sólo puede tomarse
como aproximación del mismo.

Eficiencia con Probabilidades β1, β2, . . . , βq

Finalmente, consideramos un concepto de solución que se basa en una idea
expresada en Goicoechea, Hansen y Duckstein (1982), el concepto de solución
estocástica no dominada de nivel β.
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Definición 5: Solución estocástica no dominada de nivel β

Sea zk(x) un valor perteneciente al rango o soporte de la variable aleatoria
z̃k(x), k = 1, 2, . . . , q. Se dice que x ∈ D es solución estocástica no dominada de
nivel β ∈ (0, 1) si:

(i) P{z̃k(x, ξ̃) ≤ zk(x)} = β para todo k ∈ 1, 2, . . . , q

(ii) no existe ningún vector y ∈ D tal que: P{z̃k(x, ξ̃) ≤ zk(x)} = β para todo
k ∈ 1, 2, . . . , q existe l ∈ 1, 2, . . . , q tal que z1(y) < z1(x), zk(y) ≤ zk(x),
para todo k ∈ 1, 2, . . . , q, k = 1

A partir de esta definición, dado el problema de programación estocástica mul-
tiobjetivo (PEM), si aplicamos el criterio de Kataoka a cada una de las funciones
objetivo estocásticas del problema para una probabilidad β , el problema que se
genera es:

Min
x,u

u = (u1, u2, . . . , uq)

s.a : P{z̃k(x, ξ̃) ≤ uk} = β, k = 1, 2, . . . , q
x ∈ D

y tenemos que el conjunto de soluciones eficientes de este problema es el conjunto
de soluciones no dominadas de nivel β que se ha definido anteriormente, puesto
que para cada k ∈ 1, 2, . . . , q la variable uk será una función zk(x) que se obtiene
a partir de la igualdad P{z̃k(x, ξ̃) ≤ uk} = β . Aśı, tenemos que el conjunto de
soluciones no dominadas de nivel β se obtiene a partir de aplicar el criterio de Ka-
taoka a cada una de las funciones objetivo del problema multiobjetivo estocástico,
fijando el mismo nivel de probabilidad para todas las funciones estocásticas. A
partir de aqúı, cabe la posibilidad de generalizar este concepto considerando dis-
tintos niveles de probabilidad para las funciones objetivo del problema, sin más
que plantearnos el problema:

Min
x,u

u = (u1, u2, . . . , uq)

s.a : P{z̃k(x, ξ̃) ≤ uk} = βk, k = 1, 2, . . . , q
x ∈ D

(K(β))

Una vez planteado el problema, definimos el concepto de solución eficiente con
probabilidades β1, β2, . . . , βq de la siguiente forma:

Definición 6. Solución eficiente con probabilidadesβ1, β2, . . . , βq

Sea x ∈ D. Se dice que x es solución eficiente con probabilidades β1,β2,. . . ,
βq si existe un u ∈ Rn tal que (xt,ut)t es solución eficiente del problema (K(β)).

Denotamos por εk(β) ⊂ Rn al conjunto de soluciones eficientes con probabili-
dades β1, β2, . . . , βq.
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Obsérvese que el concepto de solución eficiente con probabilidades β1,β2,. . . ,
βq se define para los vectores x, aunque las soluciones del problema (K(β)) sean
vectores (xt,ut)t ∈ Rn+q.

Al igual que en el caso mı́nimo riesgo, este concepto de eficiencia va asociado a
unos niveles de probabilidad fijados a priori, con lo cual, el problema multiobjetivo
determinista mediante el que se obtienen soluciones eficientes con probabilidades
β1, β2, . . . , βq , (K(β)), depende, en general, del vector de probabilidades fijado,
β = (β1, β2, . . . , βq)t, de tal forma que, podemos afirmar que en general, dados,
β, β

′ ∈ Rq , si β = β
′

entonces el conjunto de soluciones eficientes para β es
distinto del que se obtiene para β

′
:εk(β) �= εk(β

′
).

De nuevo, para poder aplicar este criterio de eficiencia, hemos de fijar una
probabilidad β ∈ (0, 1), para cada uno de los objetivos estocásticos del problema.
Esto hace necesaria la intervención del decisor para generar estas soluciones efi-
cientes. Además, en el problema interviene la función de distribución de cada
una de las funciones objetivo estocásticas. Consideramos los mismos casos an-
tes citados: funciones objetivo lineales bajo la hipótesis de normalidad o bajo la
hipótesis de aleatoriedad simple. En ambos casos es posible obtener soluciones
eficientes del problema de programación estocástica multiobjetivo y los problemas
resultantes son, bajo determinadas hipótesis, problemas convexos.

Por otro lado, en los casos en los que desconocemos la función de distribución
de los objetivos estocásticos del problema, podemos aplicar la desigualdad de
Cantelli a la función de distribución y obtener una cota inferior para la misma.
Aśı, si sustituimos las funciones de distribución por estas cotas en el problema
(K(β)) obtenemos el problema:

Min
x,u

u = (u1, u2, . . . , uq)

s.a : E{z̃k(x, ξ̃)}+
√

βk
1−βk

√
V ar{z̃k(x, ξ̃)}, k = 1, . . . , q

x ∈ D ⊆ Rn
(AK(β))

Al igual que en el caso mı́nimo riesgo, el conjunto de soluciones eficientes
del problema (AK(β)), que denotamos por (εAK(β)) será distinto del conjunto
de soluciones eficientes del problema K(β), (εAK(β)) �= (εK(β)), pero, podemos
tomar este conjunto como aproximación.

2.2 Relaciones entre los diferentes conceptos de solución
eficiente definidos

En Caballero, Cerdá, Muñoz y Rey (2000) se obtiene una relación entre las
soluciones eficientes mı́nimo riesgo de niveles u1, u2, . . . , uq y las soluciones efi-
cientes con probabilidadesβ1, β2, . . . , βq : Consideremos los problemas MR(u) y
K(β) definidos anteriormente. Supongamos que los conjuntos factibles de ambos
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problemas D ⊂ Rn y

(xt, ut) ∈ D × Rq/ P{z̃k(x, ξ̃) ≤ uk} = βk, k = 1, 2, . . . , q

son cerrados, acotados y no vaćıos, y por tanto ambos problemas tienen soluciones
eficientes. También suponemos que para cada k ∈ 1, 2, . . . , q, y cada x ∈ D, la
función de distribución de la variable aleatoria z̃k(x, ξ̃) es continua y estrictamente
creciente. Estas hipótesis implican que para cada probabilidad βk , existe un único
número real uk, tal que P{z̃k(x, ξ̃) ≤ uk} = βk.

El siguiente Teorema, cuya demostración se puede ver en la referencia dada,
relaciona los conjuntos de soluciones eficientes εmr(u) (del problema MR(u)) y
εk(β) (del problema K(β)).

Teorema 1: Supongamos que la función de distribución de la variable aleatoria
z̃k(x, ξ̃) es continua y estrictamente creciente. Entonces x es una solución eficiente
del Problema MR(u) si y sólo si (xt,ut)t es una solución eficiente del Problema
K(β), con u y β tales que

P{z̃k(x, ξ̃) ≤ uk} = βk, ∀k ∈ 1, 2, . . . , q

Corolario 1: ⋃
u∈Rq

(EMR(u)) =
⋃
β∈B

(Ek(β)

con B = {(β1, β2, . . . , βq)t ∈ Rq| βk ∈ (0, 1), k = 1, 2, . . . , q}.
De los resultados obtenidos se ve que las uniones de los conjuntos eficientes

de ambos problemas coinciden. Además, si x ∈ D es una solución eficiente del
Problema K(β), para ciertas probabilidades dadas β = (β1, β2, . . . , βq)t, por el
Teorema 1 sabemos que es también una solución eficiente mı́nimo riesgo de niveles
u1, u2, . . . , uq, manteniendo para los niveles de satisfacción y probabilidades la
relación que aparece en el enunciado del Teorema, y viceversa. Este resultado
permite realizar el análisis de estas soluciones eficientes por uno cualquiera de los
dos conceptos y, por el Teorema 1, obtener el nivel o probabilidad para el cual es
eficiente de acuerdo con el otro.

En Caballero, Cerdá, Muñoz, Rey y Stancu-Minasian (2001) se obtienen las si-
guientes relaciones entre soluciones eficientes valor esperado, soluciones eficientes
mı́nima varianza y soluciones eficientes valor esperado desviación estándar:

Teorema 2:

Se considera el problema (PEM). Sean los conjuntos de soluciones eficientes
valor esperado (EE), mı́nima varianza (Eσ2), y valor esperado desviación estándar
(EEσ). Sean Ed

E ,Ed
σ2 ,Ed

σ, los conjuntos de soluciones débilmente eficientes aso-
ciados a los problemas(Ed

E),(Ed
σ2),(Ed

σ) respectivamente.
Entonces,
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1. EE

⋂
Eσ2 ⊂ EEσ. Cada solución que es a la vez valor esperado eficiente

y mı́nima varianza eficiente es también solución valor esperado desviación
estándar.

2. EE

⋃
Eσ2 ⊂ Ed

Eσ. Cada solución eficiente valor esperado o mı́nima varianza
es solución débilmente eficiente valor esperado desviación estándar.

3. Ed
E

⋂
Ed
σ2 ⊂ Ed

Eσ. El conjunto de soluciones débilmente eficientes valor es-
perado desviación estándar incluye a la unión de los conjuntos de soluciones
débilmente eficientes valor esperado y mı́nima varianza.—

Asimismo, en el mismo art́ıculo se obtienen relaciones entre soluciones eficien-
tes valor esperado desviación estándar y soluciones eficientes con probabilidades
β1, β2, . . . , βq cuando las funciones objetivo son lineales y el vector de parámetros
aleatorios sigue una distribución normal o bien verifica la hipótesis de aleatori-
dad simple. Estas relaciones y la demostración del Teorema 2 se encuentran en
Caballero, Cerdá, Muñoz, Rey y Stancu-Minasian (2001).

3 Enfoque Estocástico

Nos centramos ahora en la resolución de problemas de programación estocástica
multiobjetivo mediante el enfoque estocástico. Como ya se ha comentado ante-
riormente, en la clasificación que realiza Ben Abdelaziz (1992) de los métodos
de resolución de problemas de programación estocástica multiobjetivo agrupa, en
lo que denomina enfoque estocástico, a todos los métodos de resolución de estos
problemas en los que se siguen las dos etapas siguientes:

Etapa 1: Transformación del problema estocástico multiobjetivo en un pro-
blema de programación estocástica con una única función objetivo siguiendo
alguno de los criterios existentes para ello en programación multiobjetivo.

• Etapa 2: Resolución del problema de programación estocástica obtenido
en la etapa uno mediante algún método de resolución de programación
estocástica. La solución obtenida en esta etapa es considerada, en estos
métodos, solución al problema estocástico multiobjetivo de partida. Abor-
daremos ahora la resolución de problemas de programación estocástica con
objetivos múltiples siguiendo estas dos etapas, tal y como se describe en la
Figura 2.
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PROBLEMA

MULTIOBJETIVO

ESTOCÁSTICO

PROBLEMA DE

PROGRAMACIÓN

POR METAS

PROBLEMA DE

OPTIMIZACIÓN

DETERMINISTA

EQUIVALENTE

Fig. 2 Transformación de un problema multiobjetivo estocástico mediante el enfoque

estocástico

Para resolver problemas de programación estocástica multiobjetivo siguiendo
los pasos descritos, pueden aplicarse distintos criterios de transformación de los
q objetivos estocásticos del problema en la etapa uno. Hecho ésto se obtiene un
problema de programación estocástica con una única función objetivo estocástica
y, para su resolución, es posible aplicar también distintos criterios. Por tanto,
el proceso de resolución de problemas de programación estocástica multiobjetivo
mediante este enfoque pasa por un proceso de decisión previo en el que se ha
de elegir la manera de transformar los objetivos del problema para obtener un
problema de programación estocástica y en la elección de un criterio de resolución
de este problema.

De todo lo anterior se desprende que la diversidad de criterios de transfor-
mación del problema en las dos etapas de resolución, dará lugar, en general, a
todo un conjunto de posibles soluciones al problema de programación estocástica
multiobjetivo que, de acuerdo con lo descrito, no son comparables.

En este trabajo hemos optado por fijar un único criterio de transformación en
la etapa uno del proceso y, al llegar a la etapa dos, resolver el problema obtenido
mediante algunos de los criterios para la programación estocástica. Aśı, dado el
problema de programación estocástica multiobjetivo, hemos considerado la apli-
cación del método de la ponderación al mismo. Hecho ésto, nos hemos planteado
su resolución mediante los criterios valor esperado, mı́nima varianza, mı́nimo
riesgo y Kataoka. No hemos considerado la resolución del problema ponderado
mediante el criterio de eficiencia valor esperado desviación estándar, puesto que
consideramos poco lógico transformar el problema multiobjetivo en un problema
ponderado y, posteriormente, considerar un problema bicriterio para resolverlo.
Para los criterios considerados analizaremos el problema de optimización determi-
nista equivalente que se obtiene tras aplicar las dos etapas e intentamos establecer
relaciones entre la solución obtenida mediante este proceso y los conceptos de so-
lución eficiente de problemas de programación estocástica multiobjetivo definidos
en la sección anterior.

Antes de abordar la resolución de este problema mediante el método de las
ponderaciones consideramos importante señalar que este mismo estudio ha sido
abordado por Stancu-Minasian (1984) para problemas con funciones objetivo es-
tocásticas lineales que verifican la hipótesis de aleatoriedad simple. En ese tra-
bajo, Stancu-Minasian aplica el criterio de Chebychev al problema multiobjetivo

Rect@ Monográfico 2 (2004)



66 Programación estocástica multiobjetivo

estocástico y, posteriormente, aplica al problema resultante el criterio mı́nimo
riesgo (véase Stancu-Minasian (1984), pág. 223-225).

Consideremos el problema de programación estocástica multiobjetivo (PEM).
Si aplicamos al problema anterior el método de las ponderaciones de la progra-
mación multiobjetivo, fijando unos pesos no negativos,µ1, µ2, . . . , µq, µk ≥ 0 ,
para todo k ∈ 1, 2, . . . , q, obtenemos el problema de programación estocástica:

Min
x

f̃(x, ξ̃) =
q∑

k=1

µ2
kz̃(x, ξ̃)

s.a : x ∈ D

(AE)

Para resolver este problema consideramos a continuación los criterios valor es-
perado, mı́nima varianza, mı́nimo riesgo y de Kataoka. Dividimos nuestro estudio
en función del criterio que apliquemos.

Criterio Valor Esperado

Sea el problema (AE) y consideremos la resolución del mismo mediante el
criterio valor esperado, que nos lleva a obtener el siguiente problema determinista
equivalente:

Min
x

f(x) =
q∑

k=1

µ2
kE{z̃(x, ξ̃)} =

q∑
k=1

µkzk(x)

s.a : x ∈ D

AEE)

Por tanto, si se aplica el criterio valor esperado al problema (AE), el pro-
blema resultante minimiza una combinación lineal de los valores esperados de
las funciones objetivo estocásticas del problema original, y los coeficientes de tal
combinación lineal no son más que los pesos asignados a los objetivos estocásticos
en la primera etapa de la resolución del problema. En otras palabras, el problema
que se obtiene es el mismo que resulta trasformando el problema original multiob-
jetivo en otro multiobjetivo en que cada objetivo es el determinista equivalente
que se obtiene al aplicar el criterio valor esperado a cada uno de los objetivos es-
tocásticos del problema (PEM) y aplicando entonces el método de la ponderación
para obtener las soluciones eficientes valor esperado.

Criterio mı́nima varianza

Sea el problema (AE) y consideremos la resolución del mismo mediante el cri-
terio mı́nima varianza, que nos lleva a obtener el siguiente problema determinista
equivalente:

Min
x

σ2(x) =
q∑

k=1

µkσ
2(x) + 2

q∑
k,s=1,k<s

µkµsσks(x)

s.a : x ∈ D

(AEV)
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La relación entre el problema estocástico obtenido al utilizar el método de
ponderación y el problema determinista equivalente multiobjetivo que se obtiene
al aplicar a cada objetivo estocástico el criterio de mı́nima varianza no es tan
directa como en el caso anterior. Distingamos dos casos:

(i) Las covarianzas de las funciones objetivo son cero. Es decir:

σks(x) = 0 para cada k, s ∈ {1, 2, . . . , q} con k = s y para cada x ∈ D.

Entonces el problema (AEV) resultante de aplicar el criterio de mı́nima
varianza al problema ponderado (AE) es:

Min
x

σ2(x) =
q∑

k=1

µkσ
2(x)

s.a : x ∈ D

y este problema es el mismo que se habŕıa obtenido resolviendo el problema
estocástico multiobjetivo mediante el enfoque multiobjetivo, es decir, apli-
cando a cada uno de los objetivos estocásticos el criterio de mı́nima varianza
y a continuación el método de ponderación al determinista equivalente mul-
tiobjetivo para obtener sus soluciones eficientes.

(ii) Las covarianzas de las funciones objetivo no son todas cero. En este caso
la solución obtenida al resolver el problema (AEV) no tiene por qué ser
eficiente mı́nima varianza al aplicar el enfoque multiobjetivo, como se ve en
un ejemplo que se presenta en Caballero, Cerdá, Muñoz y Rey (2004).

Criterios mı́nimo riesgo y Kataoka.

Para aplicar el criterio de mı́nimo riesgo al problema (AE) debemos fijar un
valor u (nivel de aspiración de la función objetivo del problema) y resolver:

Max
x

P

{
q∑

k=1

µkz̃(x, ξ̃) ≤ u

}
s.a : x ∈ D

Dado que f(x, ξ̃) =
∑q

k=1 µkz̃(x, ξ̃) es una función de las q funciones objetivo
para el problema, la elección del valor u no es nada sencilla. Nótese que este
nivel debe ser fijado para la variable aleatoria f(x, ξ̃) =

∑q
k=1 µkz̃(x, ξ̃) que ha

sido constrúıda a partir del problema original para resolverlo. Por consiguiente,
el valor u, que en programación estocástica es el nivel de aspiración del decisor
para el objetivo estocástico, no tiene ahora tal significado. Se puede determinar
el nivel de aspiración uk para cada función objetivo y tomar u =

∑q
k=1 µkuk y

entonces el problema determińıstico equivalente es:
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Max
x

P

{
q∑

k=1

µkz̃(x, ξ̃) ≤
q∑

k=1

µkuk

}
s.a : x ∈ D

(AEMR(u))

Por otra parte, si aplicamos el criterio de Kataoka al problema (AE), el pro-
blema determinista equivalente generado es el siguiente:

Min
x,u

u

s.a : P

{
q∑

k=1

µkz̃(x, ξ̃) ≤ u

}
= β

x ∈ D

(AEK(β))

Al igual que hemos hecho en el criterio de mı́nimo riesgo, podemos tomar
β =

∑q
k=1 µkβk considerando la posibilidad de pedir al decisor que fije una pro-

babilidad βk para cada uno de los objetivos estocásticos.
Una vez establecida una posible forma de fijar los niveles de aspiración y las

probabilidades en los dos criterios de máxima probabilidad, para plantear las
posibles relaciones que se obtienen en los dos enfoques, señalemos que se puede
aplicar el Teorema 1, tomando k = 1 , obteniendo relaciones entre los problemas
deterministas equivalentes (AEMR(u)) y (AEK(β)).

Para profundizar en el enfoque estocástico y en las relaciones entre las solucio-
nes por los enfoques estocástico y multiobjetivo véase Caballero, Cerdá, Muñoz
y Rey (2004).

4 Conclusiones

Este trabajo se centra en el análisis de los distintos conceptos de solución
eficiente que aparecen en la programación estocática multiobjetivo y en la trans-
formación del problema estocástico en uno determinista equivalente. A la hora de
abordar esta transformación, se observa que, ahora, ésta es ”doble”, y consiste,
básicamente, en pasar del problema de programación estocástica multiobjetivo a
uno determinista de un único objetivo. Basándonos en estudios previos, denomi-
namos enfoque multiobjetivo a la resolución del problema transformando, en una
primera etapa el problema multiobjetivo estocástico en uno determinista equiva-
lente y, posteriormente, centrándonos en la obtención de soluciones eficientes de
este último, y enfoque estocástico al conjunto de técnicas que, en una primera
etapa, transforman el problema en uno de programación estocástica con un solo
objetivo y, posteriormente, resuelven el problema estocástico obtenido mediante
cualquier técnica.

Evidentemente, la existencia de distintos criterios de transformación del pro-
blema en cada una de las etapas descritas da lugar a que se pueda obtener todo
un abanico de posibles problemas equivalentes del problema de partida. Una vez
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definidos estos conceptos, se analizan en este trabajo las posibles relaciones entre
los mismos.
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1 Introducción

Desde que en 1965, [26], el profesor estadounidense, aunque de origen irańı,
Lotfi A. Zadeh introdujera el concepto de conjunto borroso permitiendo la perte-
nencia de un elemento a un conjunto de forma gradual, y no de manera absoluta
como establece la teoŕıa conjuntista clásica, es decir, admitiendo pertenencias va-
loradas en el intervalo [0,1] en lugar de en el conjunto {0,1}, las aplicaciones y
desarrollos basados en este sencillo concepto han evolucionado de tal modo que,
hoy en d́ıa, es prácticamente imposible calcular el volumen de negocio que gene-
ran en todo el mundo, pudiendo encontrar productos cuyo funcionamiento está
directamente basado en dicho concepto desde los más usuales electrodomésticos,
lavadoras, microondas, cámaras fotográficas, ..., hasta los más sofisticados siste-
mas, frenado de trenes, control de hornos, navegación, ...

La necesidad de encontrar la solución optimal, o la mejor solución entre las
disponibles, en un problema correctamente planteado es por lo que se estudian las
teoŕıas, y se proponen metodoloǵıas adecuadas al campo cient́ıfico en el que surge
la cuestión que se ha de resolver. Desde un punto de vista más concreto, pero
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muy general, una importante clase de problemas son los conocidos con el nombre
de problemas de optimización, habitualmente asociados a tener que encontrar
el máximo, o el mı́nimo, valor que una determinada función puede alcanzar en
un cierto conjunto previamente especificado. Todo lo relativo a estos problemas
se enmarca dentro del cuerpo doctrinal denominado Programación Matemática,
que incluye una enorme variedad de situaciones, según que se consideren casos
lineales, no lineales, aleatoriedad, un solo decisor o varios decisores, etc.

Entre todos los modelos que se incluyen en la Programación Matemática, el
más y mejor estudiado, aśı como el que ha probado tener unas repercusiones
prácticas más importantes, es el correspondiente al caso lineal uni-objetivo, tema
del que se ocupa la Programación Lineal. Los métodos y modelos de la Progra-
mación Lineal tienen relevantes aplicaciones en las diferentes áreas de las Inge-
nieŕıas, la Economı́a, las Matemáticas, la Investigación Operativa, la Inteligencia
Artificial, y demás disciplinas más o menos relacionadas con la optimización,
y constituyen un sustrato teórico más que adecuado para abordar de un modo
elegante y eficiente situaciones muy complejas.

Aunque como se ha dicho, los modelos y técnicas de la Programación Li-
neal son los más y mejor estudiados, es justamente por ese motivo, junto con la
mencionada eficiencia y elegancia que los caracteriza, por lo que son fácilmente
adaptables a nuevos contextos tecnológicos, lo que impulsa a su vez el que sean
protagonistas en los más recientes desarrollos cient́ıficos, como es el caso de su
incorporación e implementación en los sistemas generadores de modelos de los
Sistemas de Ayuda a la Decisión. De este modo la Programación Lineal aparece
entroncada en una de las más prometedoras ĺıneas de desarrollo en el ámbito de
la Inteligencia Artificial, y consiguientemente, y a pesar de sus más de cincuenta
años de vida, a la vanguardia del avance cient́ıfico.

En ese contexto de Sistemas de Ayuda a la Decisión, dentro del marco de la
Inteligencia Artificial, lo que principalmente se persigue es disponer de sistemas
automáticos que, desde implementaciones que faciliten actuaciones lo más cer-
canas a la realidad de la inteligencia humana, sean capaces de actuar como lo
haŕıa en cada ocasión concreta una persona. Esto significa que los modelos de
Programación Lineal que vayamos a usar en esas condiciones no van a poder ser,
en general, los conocidos y bien desarrollados hasta ahora, porque van a tener
que ser redefinidos para adecuarlos a ese nuevo contexto.

Es de sobra conocido que habitualmente el planteamiento de un problema real
se hace en términos que, siendo perfectamente comprensibles, son dif́ıcilmente re-
presentables de forma eficaz: ”el costo del transporte será de unas 750 pesetas”,
”el beneficio es de un 30%”, ... Cuando hemos de manejar datos de esa natura-
leza, que obviamente no tiene porqué ser probabiĺıstica, generalmente se actúa
forzando los datos a tomar aquellos valores que entendemos son los más repre-
sentativos de los verdaderos, por ejemplo 750 y 30%, planteando de esta manera
problemas que podŕıamos denominar deformados, y que pueden llevarnos a ob-
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tener soluciones que, siendo optimales para el problema planteado, están muy
alejadas de la verdadera solución que correspondeŕıa al problema original, si este
se hubiera planteado sobre sus auténticos valores, que podŕıan haber sido 742 y
28.5%.

Es por todo esto que en el contexto de los Sistemas de Ayuda a la Decisión,
y de la Inteligencia Artificial entre otras disciplinas, la representación adecuada
de la información es una tarea primordial, como garant́ıa de corrección de las
soluciones que se persiguen y porque, además, según la versión que adoptemos
de imprecisión, podemos encontrarnos con diferentes conceptos de óptimo y, por
tanto, de optimización.

En todo lo que sigue, por imprecisión entenderemos lo que habitualmente se
conoce por borrosidad (fuzziness), es decir, esa vaguedad lingǘıstica que tiene
perfecto sentido para los seres humanos, a pesar de la falta de información exacta
que muestren (”no sé que edad tiene, pero es joven”). Escogemos esta versión
de imprecisión por entender que en general es la más cercana y apropiada para
los desarrollos que nos interesan en el ámbito de la Inteligencia Artificial, ya que
lo que habitualmente hacemos a la hora de definir algo, es extraer objetos de la
realidad como conceptos lingǘısticamente etiquetados en el dominio referencial
que se considere, reflejando la borrosidad de cualquier etiqueta lingǘıstica cierta
distancia entre los objetos etiquetados y algún punto referencial, que en cada caso
depende del contexto, por lo que modeliza bastante adecuadamente el modo de
razonamiento y comunicación humano.

En este marco, y desde un punto de vista mucho más concreto, en general un
problema de Programación Lineal (PL) se formula como

Max{z = cx/Ax ≤ b, x ≥ 0}

siendo A una matriz de números reales de dimensión m × n, b un vector en Rm

y c un vector de costos en Rn.
Sobre este planteamiento podemos suponer, a tenor de lo comentado con an-

terioridad, que el decisor se expresa, conoce o formula los datos del problema de
forma imprecisa, pero perfectamente clara para él: ”el rendimiento será superior
al del año pasado”, ”se trabajará un número elevado de horas”, ”el salario bruto
es de unos tres millones”, etc. En este ambiente de optimización con tal tipo de
datos, es en el que nace la Programación Lineal Borrosa (PLB).

Aunque la PLB tiene su antecedente teórico en 1970 en el magistral trabajo
sobre Teoŕıa de la Decisión de R. Bellman y L.A. Zadeh ya clásico en la literatura
cient́ıfica [1], los problemas de PLB nacen formalmente en 1974, año en que
separadamente en dos trabajos, [21] y [28], se propuso el mismo modelo para
tratar los problemas de PL en los que el conjunto de restricciones estaba dado
por un conjunto borroso. A pesar de la coincidencia, enfocaron su resolución
desde puntos de vista, y por tanto con métodos, diferentes que proporcionaban
una solución constituida por un único punto, y que por tanto puede considerarse
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ajena al contexto borroso en el que se calculaba. Más adelante se demostró que
tales métodos eran casos particulares de uno más general que permit́ıa obtener
una solución borrosa, contexto-dependiente, y que englobaba las que se hab́ıan
propuesto previamente en los referidos trabajos, [23].

Concretando, el problema central en PLB consiste en resolver un problema de
PL en el que el conjunto de restricciones es borrosa,

Max z = cx
s.a :

Ax ≤f b
x ≥ 0

es decir, donde se supone que el decisor puede aceptar violaciones moderadas sobre
el cumplimiento de las restricciones, evaluándose el grado con que se efectúan estas
violaciones mediante ciertas funciones de pertenencia,

µi : R→ [0, 1], i = 1, . . . ,m

que el mismo decisor establece.
Aunque desde este planteamiento inicial, las ĺıneas de trabajo que se han

seguido en este tema han sido muchas. De forma resumida pueden sintetizarse en
los siguientes apartados:

a) Extensiones del modelo anterior a problemas más complejos. Particular-
mente en el campo donde más se ha incidido ha sido en el de los problemas
multiobjetivo, aunque también es de destacar el trabajo realizado en otras
parcelas, como es el caso de la Programación Estocástica o la Fraccional.

b) Métodos de resolución de los diferentes problemas.

c) Aplicaciones en dominios concretos (transporte, juegos, poĺıtica hidráulica,
agricultura, razonamiento a partir de conocimiento proposicional, · · ·).

Inicialmente abordaremos aquellos elementos teóricos básicos que son nece-
sarios para el desarrollo del art́iculo. En este sentido, y sin profundizar hasta
conceptos que puedan resultar triviales, se presentan las ideas más elementales
relativas a conjuntos y números fuzzy. A continuación, pero dentro del contexto
borroso, introducimos los problemas más t́ıpicos de Programación Lineal Borrosa.

2 Conceptos básicos

Un concepto que se muestra básico es el de número borroso. Desde el punto
de vista de que un número borroso es un conjunto borroso en R, podemos decir
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que la noción de número borroso se introduce en 1965 en el célebre trabajo de
L.A. Zadeh, [26].

Sin embargo, los números borrosos no toman carta de naturaleza hasta apro-
ximadamente 1978 con los trabajos de S. Nahmias sobre variables borrosos y de
D. Dubois y H. Prade sobre el manejo de cantidades imprecisas. Desde entonces,
el estudio de las posibles definiciones de número borrosos y, sobre todo, el cómo
manipularlos y compararlos, es un tema de gran interés en el área de los conjuntos
borrosos, [25].

En esta sección se introducen las nociones y operaciones elementales entre
conjuntos borrosos para llegar al referido concepto de número. Establecida esta
noción, se dedica el resto de la sección al problema de comparar dos números
borrosos. Este es un problema complejo porque, dado el carácter impreciso de
las cantidades que se consideran, por ejemplo A y B, de antemano no puede
garantizarse el que A ≤ B, o el que B ≤ A, sino que, ambas propiedades van
a verificarse simultáneamente con ciertos grados de cumplimiento. Esto hace
que existan múltiples métodos de comparar dos números borrosos, lo que en
la literatura especializada se ha desarrollado mediante los llamados ı́ndices de
comparación.

2.1 Introducción al Concepto de Conjunto Borroso

Sea X un conjunto cuyos elementos notaremos por x, y sea A un subconjunto
de X. La pertenencia de un elemento x de X al conjunto A viene dada por la
función caracteŕıstica

µA(x) =
{

1 si y sólo si x ∈ A
0 si y sólo si x /∈ A

donde {0, 1} es el llamado conjunto valoración.
Si el conjunto valoración es el intervalo real [0, 1], A se denomina un conjunto

borroso ([26]) y µA mide el grado de pertenencia del elemento x a A. A se
caracteriza por el conjunto de pares {(x, µA(x)), x ∈ X}.

Dos conjuntos borrosos A y B se consideran iguales (A = B) si y sólo si:
∀x ∈ X, µA(x) = µB(x).

Definición 1 ([26]) Dado un conjunto borroso A = {(x, µA(x))}, se define su
soporte como el conjunto ordinario Sop(A) = {x ∈ X / µA(x) > 0}.

Definición 2 ([26]) Dado un conjunto borroso A, llamamos α-corte de dicho
conjunto, al conjunto ordinario Aα = {x ∈ X / µA(x) ≥ α} con α ∈ [0, 1].

Claramente se ve cómo los conjuntos Aα, α ∈ [0, 1] constituyen una sucesión
decreciente. Si α1 ≥ α2 ⇔ Aα1 ⊆ Aα2 , α1, α2 ∈ [0, 1].
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Teorema 1 (Teorema de Representación) Si A es un conjunto borroso y Aα sus
α-cortes, α ∈ [0, 1], se verifica que:

A =
⋃

α∈[0,1]

αAα

entendiendo esta notación formal como la igualdad entre las funciones de perte-
nencia de ambos conjuntos. Si µAα(x) nota la función caracteŕıstica de Aα, caso
particular de la función de pertenencia,

µAα
(x) =

{
1 si y sólo si x ∈ Aα

0 en otro caso

la función de pertenencia del conjunto borroso A puede expresarse en términos
de las funciones caracteŕısticas de sus α-cortes según la fórmula

µA(x) = sup
α∈[0,1]

mı́n(α, µAα(x))

Definición 3 ([26]) Un conjunto borroso es convexo si y sólo si sus α-cortes son
convexos.

Una definición equivalente a la convexidad es que A es convexo si y sólo si
∀x1, x2 ∈ X, ∀λ ∈ [0, 1], µA(λx1 + (1− λ)x2) ≥ mı́n(µA(x1), µA(x2)).

Definición 4 Se define la altura de un conjunto borroso Alt(A) = supx∈X µA(x).

Definición 5 Un conjunto borroso se dice normalizado si y sólo si ∃x ∈ X en el
que µA(x) = 1.

2.2 Números Borrosos

Definición 6 [10] Un número borroso A, es un conjunto µA de la recta real,
convexo, normalizado y tal que

a) ∃x0 ∈ R / µA(x0) = 1, que suele llamarse moda,y

b) µA es continua a trozos.

Todo número borroso está pues caracterizado por una función de pertenencia
µA : R → [0, 1] y toda función como la anterior engendra un número borroso
donde, ∀x ∈ R, µA(x) es el grado de pertenencia de x al número borroso A.

Notaremos por F (R) al conjunto de las funciones de pertenencia sobre R,
por tanto nos podemos referir al hablar de número borroso tanto al elemento
A ∈ F (R) como a µA ∈ F (R).
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Un número borroso A, se dice que es del tipo L−R, si y sólo si su función de
pertenencia µA es de la forma

µA(x) =


L

[
(m−x)

α

]
para x ≤ m, α > 0

R
[

(x−m)
β

]
para x ≥ m, β > 0

donde m es la moda de A y α (β) la amplitud por la izquierda (derecha), L y
R representan una función a la izquierda y derecha de m respectivamente, L no
decreciente y R no creciente. El número borroso A lo notaremos abreviadamente
por A = (m− α,m,m + β)LR.

Definición 7 [11] Un número borroso plano es un número borroso A tal que

∃(m1,m2) ∈ R, m1 < m2 y µA(x) = 1, ∀x ∈ [m1,m2]

Un número borroso plano puede modelar un intervalo borroso. Un número
borroso plano A de tipo L− R está definido como

µA(x) =



L
[

(m1−x)
α

]
para x ≤ m1, α > 0

R
[

(x−m2)
β

]
para x ≥ m2, β > 0

1 para m1 ≤ x ≤ m2

0 otro caso

(4.1)

Más brevemente, se va a notar por (m1 − α,m1,m2,m2 + β)LR.
Como es evidente, según sean las funciones L y R, obtendremos distintos tipos

de números borrosos.
Vamos a considerar números borrosos planos, lineales y normalizados, cuya

función de pertenencia anaĺıtica es la siguiente.
Un número borroso plano, que notaremos por ufj = (rj , uj , uj , Rj), tendrá

como función de pertenencia

∀v ∈ R, µuf
j
(v) =



(v−rj)
(uj−rj)

rj ≤ v ≤ uj

(Rj−v)
(Rj−uj) uj ≤ v ≤ Rj

1 uj ≤ v ≤ uj
0 otro caso

(4.2)
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En adelante, se utilizarán con bastante frecuencia números borrosos expresa-
dos como combinaciones lineales yf =

∑
j u

f
j xj con xj ∈ R, j = 1, . . . , n.

En [22] podemos encontrar la función de pertenencia de dichos números que
expresamos a continuación.

Proposición 1 Si yf =
∑

j u
f
j xj = ufx es una expresión lineal, en la que los

ufj , j = 1, . . . , n, son números borrosos con funciones de pertenencia lineales,
dados por ufj = (rj , uj , uj , Rj) y xj ≥ 0, j = 1, . . . , n, entonces la función de
pertenencia de yf es

µ(z) =



(z−rx)
(ux−rx) si x > 0 y rx ≤ z ≤ ux

(Rx−z)
(Rx−ux) si x > 0 y ux ≤ z ≤ Rx

1 si ux ≤ z ≤ ux
0 otro caso

donde r = (r1, . . . , rn), u = (u1, . . . , un), u = (u1, . . . , un) y R = (R1, . . . , Rn).

2.3 Formas de Comparar Números Borrosos

Un problema de constante actualidad a lo largo de los últimos 15 años ha sido
el de la ordenación de cantidades imprecisas, y por tanto el de la comparación
de números borrosos. Los diversos y múltiples enfoques con los que se puede
plantear el problema, justifican la existencia de un amplio catálogo de métodos
que permiten realizar la mencionada comparación. Al respecto, una excelente
recopilación de técnicas, métodos y enfoques puede encontrarse en [31], [25].

Utilizaremos las formas de comparar números sólo como un medio, para ana-
lizar la repercusión que, en un problema de Programación Lineal Borrosa, tiene
el empleo de diferentes métodos de comparación. Desde este punto de vista, no
es nuestro objetivo recoger aqúı todas las formas posibles que hay para la com-
paración.

La resolución del problema puede abreviarse por alguna de las 2 siguientes v́ıas,
según se emplee un método basado en la definición de una función ordenadora o
basado en la comparación de alternativas.

Métodos Basados en la Definición de una Función Ordenadora

Consideramos A, B ∈ F (R). Un método simple de comparación entre ellos
consiste en la definición de una función g : F (R)→ R. Si se conoce esta función
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g(·), entonces
g(A) < g(B)⇔ A es menor que B
g(A) > g(B)⇔ A es mayor que B
g(A) = g(B)⇔ A es igual que B

Usualmente, g se llama función de ordenación lineal si

1) ∀A,B ∈ F (R), g(A + B) = g(A) + g(B)

2) ∀r ∈ R, r > 0, g(rA) = rg(A), ∀A ∈ F (R)

En este caso los ı́ndices pueden clasificarse conforme a que la función ordena-
dora sea lineal o no.

Métodos Basados en la Comparación de Alternativas

Estos métodos, consisten en obtener el conjunto borroso de las alternativas
optimales:

Of = {i, µOf (i)}, µOf (i) = µOf (Ai), Ai ∈ F (�)

donde µOf (i) representa el grado con el cual la alternativa i-ésima puede ser
considerada la mejor.

Destaquemos finalmente que a pesar de la extraordinaria abundancia de métodos
para comparar números borrosos, aún son pocos los ı́ndices que se han estudiado,
puesto que es perfectamente justificable el que cada decisor humano que se con-
sidera tenga su propio método de comparación, que no tendrá porque ajustarse a
ninguno de los métodos teóricos descritos en la literatura. Un estudio detallado
sobre este aspecto puede encontrarse en [19] donde se emplea una red neuronal
artificial que aprende el criterio de ordenación de cada decisior que se considere.

3 Programación Lineal Borrosa

En general un problema de PL se plantea como

Max{z = cx/Ax ≤ b, x ≥ 0}

donde A es una matriz m× n de números reales, b ∈ Rm y c ∈ Rn.
Como es obvio, se está asumiendo que el decisor dispone de una información

exacta sobre los elementos que intervienen en el problema. Sin embargo, aunque
esto fuera aśı, es usual que dicho decisor se encuentre más comodo expresando
su conocimiento en términos lingǘısticos, es decir, mediante etiquetas lingǘısticas
convencionales [27], que utilizando datos numéricos de precisión exacta. Por tanto
tiene perfecto sentido que hablemos de problemas de optimización planteados
a partir de ese tipo de predicados vagos, entendiendo que esa vaguedad está

Rect@ Monográfico 2 (2004)
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producida por la forma de expresar el conocimiento que posee el decisor, y no
como causa de una cierta naturaleza aleatoria que, para nada, será considerada.
En definitiva se trata de suponer que la imprecisión de los datos que definen al
problema es borroso.

El primer antecedente sobre problemas de optimización con planteamiento
borroso que existe en la literatura se remonta a más de tres decadas, [1]. De ese
art́ıculo provienen los conceptos clave de restricción, objetivo y decisión optimal
borrosa que ya son clásicos.

Igual que ocurre con la PL en el contexto de la optimización convencional,
los métodos de PLB han sido uno de los temas más estudiados en el ámbito
borroso. Como ya se dijo, sin ser exhaustivos hay tres tipos más importantes de
problemas de PLB, según que la imprecisión se establezca en las restricciones,
en los coeficientes de la matriz tecnológica o en los costos que definen la función
objetivo. Dedicamos el resto de este apartado a estudiar cada uno de ellos.

Existen en la literatura muchos modelos y métodos para la resolución de estos
problemas, fundamentalmente para el caso en que f y gi, i ∈ M , son funciones
lineales [7], [8], [14], [30]. Se obtienen soluciones puntuales en algunos casos
y soluciones borrosas en otros, más acordes con el planteamiento impreciso de
los problemas. Estas últimas recogen un conjunto de buenas alternativas, que
engloban a las soluciones puntuales obtenidas con otros métodos. En cualquier
caso, el decisor debe tomar la decisión final para su problema.

Aunque en la literatura podemos encontrar muchos modelos de PLB, [12],
[4], [6], [15], [7], [18], [17], . . ., la mayoŕıa de ellos suponen vaguedad sólo en
algunos de los elementos descritos en el modelo. Al final de esta sección se pre-
senta un modelo general de PLB en el que todos los elementos que intervienen
son borrosos. Para ello se presentarán los tipos de modelos más importantes en
programación lineal borrosa y el modelo general de PLB, [3]. De este modelo, se
deriva cada caso particular del problema de PLB fácilmente y resulta conforme a
sus caracteŕısticas.

3.1 Programación Lineal con Restricciones Borrosas

Consideramos el caso en el que un decisor asume que puede haber cierta to-
lerancia en el cumplimiento de las restricciones, en el sentido de estar dispuesto
a tolerar cierto margen de violación que él mismo establece, [3]. Para cada res-
tricción esta suposición se puede representar de la forma

aix ≤f bi, i ∈M = {1, 2, . . . ,m},

Rect@ Monográfico 2 (2004)
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y modelizarla por medio de una función de pertenencia

µi : R→ [0, 1] / µi(aix) =


1 si aix ≤ bi

fi(aix) si bi ≤ aix ≤ bi + ti

0 si aix ≥ bi + ti

Estas funciones expresan que el decisor tolera violaciones en cada restricción
hasta un valor bi + ti, i ∈ M . Por otra parte, las funciones fi se asumen no
decrecientes y continuas para estas restricciones.

La función µi se define para cada x ∈ X y da el grado de cumplimiento de la
i-ésima restricción para x ∈ X.

El problema asociado se representa de la siguiente forma

Max z = cx
s.a :

Ax ≤f b
x ≥ 0

(4.3)

donde c ∈ Rn, b ∈ Rm, A es una matriz m× n de números reales.
Aunque el origen de (4.3) se encuentra en [1], este problema fue desarrollado en

[21] y [29], donde se consideraron algunas hipótesis adicionales sobre la naturaleza
de la función objetivo, que aqúı no son relevantes.

Para resolver (4.3), se pueden considerar tres aproximaciones diferentes [21],
[29] y [23]. En particular, y haciendo uso del Teorema de Representación para
conjuntos borrosos, en [23] se demuestra cómo encontrar una solución borrosa a
(4.3) por medio del problema auxiliar de PL paramétrica.

Max z = cx
s.a :

Ax ≤ g(α)
x ≥ 0, α ∈ [0, 1]

donde g(α) ∈ Rm es un vector columna definido por las funciones inversas de las
fi, i ∈ M . Obviamente, la linealidad y la dimensión de (4.3) se conserva en este
último modelo.

Las soluciones propuestas en [21] y [29] aparecen de la solución borrosa pro-
puesta en [23] para valores particulares del parámetro α ∈ [0, 1].

Suponiendo la linealidad de las fi, tenemos que el modelo auxiliar que resuelve
(4.3) es

Max z = cx
s.a :

Ax ≤ b + t(1− α)
x ≥ 0, α ∈ [0, 1]

(4.4)
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con t = (t1, . . . , tm) ∈ Rm.

Si notamos S(α) = {x ∈ Rn / z(x) = máx cx, x ∈ X(α)} con X(α) = {x ∈
R
n / Ax ≤ b+ t(1− α), α ∈ [0, 1]}, definimos una solución borrosa a (4.3) como,

Definición 8 La solución borrosa a (4.3) es un conjunto borroso con función de
pertenencia

λ(x) =

 sup
x∈S(α)

α si x ∈
⋃
α

S(α)

0 otro caso

Consideramos (4.3) y la imprecisión de las restricciones representada por fun-
ciones de pertenencia no lineales

µ
′

i(x) =


1 si aix ≤ bi
f ′i(aix) si bi ≤ aix ≤ bi + ti
0 si aix ≥ bi + ti

donde la función f ′i(·) se supone estrictamente decreciente y continua, f ′i(bi) = 1
y f ′i(bi + ti) = 0.

Si usamos la aproximación propuesta en [23] y con una discusión similar a la
anterior para el caso lineal, la solución optimal borrosa para (4.3) puede obtenerse
de la solución paramétrica optimal del problema

Max z = cx
s.a :

Ax ≤ g′(α)
x ≥ 0, α ∈ [0, 1]

donde g′(α) = f ′−1(α), ∀α ∈ [0, 1].
En [9], se muestra una relación entre las soluciones obtenidas del caso lineal

y el no lineal. Los siguientes resultados se demuestran en [9].

Proposición 2 Sea [a, b] un intervalo real y f : [a, b] → [0, 1] continua, lineal y
estrictamente decreciente con f(a) = 1 y f(b) = 0. Para cualquier otra función
continua, estrictamente decreciente f ′ : [a, b]→ [0, 1], tal que f ′(a) = 1 y f(b) =
0, existe una función r : [0, 1]→ [0, 1] tal que r(·) ◦ f(·) = f ′(·).

Proposición 3 Consideramos el problema de PLB (4.3). Notamos x(·) y x′(·) a
las soluciones optimales borrosas para este problema, usando funciones de perte-
nencia lineales y no lineales, respectivamente, para la imprecisión de las restric-
ciones. Entonces x′(α) = x(r−1(α)), donde r(·) es la obtenida en la proposición
anterior.

Con estos resultados, el valor de la función objetivo será z′(α) = cx′(α) =
cx(r−1(α)).
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Esto demuestra que resolver un problema de PL con restricciones borrosas
modelizadas por funciones de pertenencia lineales pueden obtener la solución
borrosa del mismo problema modelizado por funciones de pertenencia no lineales.
Para el caso en que el problema de PL tiene restricciones borrosas modelizadas por
funciones de pertenencia definidas a trozos obtenemos un resultado similar, [9].
Aśı, no se pierde generalidad si siempre suponemos el problema de restricciones
borrosas con funciones de pertenencia lineales.

3.2 Programación Lineal con Costos Borrosos

En este caso, el decisor no conoce con exactitud los valores de los coeficientes
c, representando esta situación por el problema de PLB siguiente, [3].

Max z = cfx
s.a :

Ax ≤ b
x ≥ 0

(4.5)

con cf ∈ (F (R))n y suponiendo funciones de pertenencia de la forma

µj : R→ [0, 1], j ∈ N / µj(v) =


0 si v ≤ rj ó v ≥ Rj

hj(v) si rj ≤ v ≤ cj
gj(v) si cj ≤ v ≤ Rj

1 si cj ≤ v ≤ cj

(4.6)

donde hj(·) y gj(·) son funciones continuas estrictamente crecientes y decrecientes,
respectivamente, tales que, hj(cj) = gj(cj) = 1, ∀j ∈ N .

Aunque existe una gran gama de funciones hj y gj (lineales, exponenciales,
logaŕıtmicas, parabólicas cóncavas y convexas, etc.) se suelen considerar los costos
borrosos como números borrosos planos con funciones hj(·) y gj(·) lineales. Aśı
para el número (rj , cj , cj , Rj) estas funciones vendrán dadas de la forma:

hj(v) =

{
v−rj
cj−rj

rj ≤ v ≤ cj

0 otro caso
, gj(u) =

{
Rj−u
Rj−cj cj ≤ u ≤ Rj

0 otro caso

Para resolver (4.5) hay diferentes aproximaciones [6], [20], [22]. En [8] se
demuestra que el método propuesto en [6] da un contexto formal para encontrar
la solución de (4.5) englobando las soluciones de las métodos propuestos por [20],
[22], [18].

La solución borrosa propuesta en [6] para este problema se puede obtener de
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la solución del siguiente problema paramétrico multiobjetivo

Max z = [c1x, c2x, . . . , c2
n

x]
s.a :

Ax ≤ b, x ≤ 0
ckj ∈ {h−1

j (1− α), g−1
j (1− α)}

α ∈ [0, 1], k = 1, . . . , 2n, j ∈ N

3.3 Programación Lineal con Números Borrosos en la Ma-
triz Tecnológica

Ahora, consideramos que los coeficientes en la matriz tecnológica y los coefi-
cientes de la parte derecha se representan por números borrosos, siendo números
reales los costos que definen la función objetivo, [3].

Este tipo de problema de PLB se plantea en los siguientes términos,

Max z = cx
s.a :

afi x ≤f bfi , i ∈M
x ≥ 0

(4.7)

donde para cada i ∈ M , afi = (afi1, . . . , a
f
in), afij ∈ F (R), j ∈ N , bfi ∈ F (R),

x ∈ X = {x ∈ Rn / afi x ≤f bfi , i ∈M , x ≥ 0} y c ∈ Rn.

Una versión casi idéntica de (4.7) fue el punto de partida de este tipo de
modelos (en [22] se presentó un problema similar a éste, pero suponiendo también
imprecisión en el objetivo). Ahora bien, para resolver (4.7), con la intención de
obtener una solución borrosa y no una puntual, como se haćıa en (4.3) podemos
suponer que se admiten violaciones en el acoplamiento de sus restricciones, hasta
una amplitud máxima de valor tfi , i ∈ M . [7]. Nótese que, a diferencia de (4.3),
tfi ha de ser un número borroso debido a la naturaleza de los coeficientes que
toman parte en cada restricción.

Desde este punto de vista, en [7] se propone un método de resolución para el
modelo general (4.7). La aproximación consiste en la sustitución del conjunto de
restricciones de (4.7) por el siguiente conjunto borroso convexo:

afi x ≤g b
f
i + tfi (1− α), i ∈M, α ∈ [0, 1]

donde afi = (afi1, . . . , a
f
in), tfi es un número fijado por el decisor que nos da la

violación tolerada en la restricción, y ≤g es una relación entre tales números.
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Aśı el problema (4.7) queda de la siguiente forma

Max z = cx
s.a :

afi x ≤g b
f
i + tfi (1− α), i ∈M

x ≥ 0, α ∈ [0, 1]

En [5], la solución al problema originalmente planteado se obtiene por parti-
cularización, en el problema auxiliar, de la relación para cada diferente método
de comparación de números borrosos.

3.4 Un Modelo General de Programación Lineal Borrosa

Un modelo general de PLB, [3], en el que consideramos todos los casos ante-
riores es un problema del tipo:

Max z =
n∑
j=1

cfj xj

s.a :
n∑
j=1

afijxj ≤f bfi

xj ≥ 0, i ∈M, j ∈ N

(4.8)

donde los elementos borrosos se consideran dados por:

a) Para cada costo ∃µj ∈ F (R) tal que µj : R → [0, 1], j ∈ N las cuales
definen el vector de costos borrosos.

b) Para cada fila ∃µi ∈ F (R) tal que µi : R→ [0, 1], i ∈ M las cuales definen
el número borroso en la parte derecha.

c) Para cada i ∈ M y j ∈ N ∃µij ∈ F (R) tal que µij : R → [0, 1] las cuales
definen los números borrosos en la matriz tecnológica.

d) Para cada fila ∃µi ∈ F [F (R)] tal que µi : F (R)→ [0, 1], i ∈ M que nos da
para cada x ∈ Rn, el grado de acoplamiento del número borroso afi1x1 +
afi2x2 + . . . afinxn, i ∈ M con respecto a la i-ésima restricción, es decir,
la adecuación entre estos números borrosos y el correspondiente bfi con
respecto a la i-ésima restricción.

Un método de resolución, [2], para el modelo general (4.8) consiste en la
sustitución del conjunto restricción de (4.8) por un conjunto borroso convexo.
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Sea g una función ordenadora de números borrosos y sea la función ψ : F (R)×
F (R)→ F (R) tal que

ψ(afi x, b
f
i ) =


tfi si afi x ≤g b

f
i

tfi � afi x⊕ bfi si bfi ≤g a
f
i x ≤g b

f
i ⊕ tfi

0 si afi x ≤g b
f
i ⊕ tfi

con tfi ∈ F (R) tal que su soporte esté incluido en R+ y ≤g una relación que mide
el que A ≤g B, ∀A,B ∈ F (R), y � y ⊕ las operaciones usuales entre números
borrosos.

Definición 9 La función de pertenencia asociada a la restricción borrosa afi x ≤f
bfi , con tfi un número borroso, dando la violación máxima en la verificación de la
i-ésima restricción, es la siguiente:

µi : F (R)→ [0, 1] / µi(afi x, b
f
i ) =

g(ψ(afi x, b
f
i ))

g(tfi )
(4.9)

donde g es una función ordenadora de números borrosos.

Si consideramos el problema (4.8), ≤f con funciones de pertenencia (4.9) y
utilizando el teorema de representación para números borrosos, obtenemos que

µi(afi x, b
f
i ) ≥ α⇔ g(f(afi x, b

f
i ))

g(tfi )
≥ α⇔ g(tfi � afi x⊕ bfi ))

g(tfi )
≥ α⇔

g(tfi )− g(afi x) + g(bfi ) ≥ g(tfi )α⇔ g(afi x) ≤ g(bfi ⊕ tfi (1− α))⇔

afi x ≤g b
f
i + tfi (1− α)

donde ≤g es la relación correspondiente a g.
Con lo cual, un problema auxiliar para resolver (4.8) es el siguiente:

Max

n∑
j=1

cfj xj

s.a :
n∑
j=1

afijxj ≤g b
f
i + tfi (1− α), i ∈M

x ≥ 0, α ∈ [0, 1], j ∈ N

(4.10)
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Si en el problema (4.8) no hubiera números borrosos en su formulación, sino
sólo restricciones borrosas, este enfoque coincide con el correspondiente modelo

Max z = cx
s.a :

Ax ≤ b + t(1− α)
x ≥ 0, α ∈ [0, 1]

Es decir, en el caso de una restricción borrosa aix ≤f bi la función de perte-
nencia asociada a esta restricción será de la forma:

µi : F (R)→ [0, 1] / µi(aix, bi) =
g(f(aix, bi))

g(ti)

donde g es el orden clásico en R y ti es la violación máxima en el acoplamiento
de la i-ésima restricción (ti ∈ R).

µi(aix, bi) =


1 aix ≤ bi
(1− aix−bi

ti
) bi ≤ aix ≤ bi + ti

0 aix ≥ bi + ti

Se pueden utilizar, para resolver dicho problema, las distintas relaciones de
comparación de números borrosos, tanto en las restricciones como en el objetivo,
o relaciones de comparación en las restricciones y α-cortes en el objetivo, que nos
llevarán a obtener distintos modelos convencionales, lo que permite la obtención
de una solución propiamente borrosa.

4 Ejemplos

Ejemplo 1 Un pais productor de un cierto mineral se ve obligado a exportar
anualmente una cantidad del producto no inferior a 2000 toneladas apoximada-
mente ni superior a 4000 toneladas aproximadamente. La venta del producto se
puede hacer en el mercado internacional a 2500 unidades monetarias la tonelada
o bien a un pais vecino a un precio de 2000 unidades monetarias por tonelada.
El gobierno desea saber qué parte del mineral producido (x2) debe de vender en el
mercado internacional y qué parte (x1) al páıs vecino si su objetivo es maximizar
los ingresos.

Si x1 y x2 son las cantidades de mineral vendidas al páıs vecino y en el mercado
internacional, respectivamente, y teniendo en cuenta que las ventas en general no
pueden ser inferiores a 2000 toneladas aproximadamente ni superiores a 4000
aproximadamente, tendremos que la suma de las cantidades que nos reflejará el
total exportado deberá verificar

x1 + x2 ≥f 2000
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x1 + x2 ≤f 4000

donde estamos suponiendo que se permite vender un poco menos de 2000 tone-
ladas (25 toneladas) y un poco más de 4000 toneladas (100 toneladas). Estas
restricciones borrosas podŕıan modelarse como

µ1(x1, x2) =


0 si x1 + x2 ≤ 1975
x1+x2−1975

25 si 1975 ≤ x1 + x2 ≤ 2000
1 otro caso

µ2(x1, x2) =


1 si x1 + x2 ≤ 4000
4100−x1−x2

100 si 4000 ≤ x1 + x2 ≤ 4100
0 otro caso

Como el gobierno tiene que decidir sobre las cantidades que vende en cada
mercado, y debe vender como mı́nimo 100 toneladas al páıs vecino y 200 toneladas
al mercado internacional, las variables xi, i = 1, 2 deberán ser mayores o iguales
a 100 y 200, respectivamente. Puesto que el gobierno quiere calcular x1 y x2 con
objeto de maximizar sus ingresos, deberá de resolver el problema

Max 2000x1 + 2500x2

s.a :
x1 + x2 ≥f 2000
x1 + x2 ≤f 4000
x1 ≥ 100
x2 ≥ 200

El modelo auxiliar, utilizando [23], para resolver el problema es el siguiente
problema paramétrico:

Max 2000x1 + 2500x2

s.a :
x1 + x2 ≥ 2000− 25(1− α)
x1 + x2 ≤ 4000 + 100(1− α)
x1 ≥ 100
x2 ≥ 200
α ∈ [0, 1]

donde 25 y 100 son los márgenes de la violaciones permitidas en el verificación
de las restricciones.

La solución optimal es

x∗α = (100, 4000− 100α)

y el valor optimal de

10200000− 250000α unidades monetarias
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para α ∈ [0, 1].

Ejemplo 2 Dos productos, A y B, para la exportación deben producirse utili-
zando tres procesos diferentes (corte, doblado y empaquetado). La producción
de una unidad del producto A (B) requiere 10 (6) minutos de tiempo de trans-
formación en el departamento del corte, 5 (10) minutos en el departamento de
doblaje, y sobre 7 (7) minutos en el departamento de empaquetado. El tiempo
total disponible para cada proceso de producción es 2500 minutos para el corte,
como máximo 2000 minutos para doblar (aunque se permiten violaciones hasta
2064 minutos) y alrededor de 2050 minutos para empaquetar (dependiendo de la
urgencia del envio), pero este tiempo de empaquetado total nunca puede excederse
de 2124 minutos. Cuando se vende al exterior, el producto A (B) tiene un bene-
ficio alrededor de 23 euros (32 euros) por unidad, dependiendo del cambio actual.
Si los encargados desean maximizar el beneficio, podrán resolver el problema:

Max 23fx1 + 32fx2

s.a :
10x1 + 6x2 ≤ 2500
5x1 + 10x2 ≤f 2000
7fx1 + 7fx2 ≤ 2050f

xj ≥ 0, j = 1, 2

La segunda restricción puede modelarse como

µ(x1, x2) =


1 si 5x1 + 10x2 ≤ 2000
2064−5x1−10x2

64 si 2000 ≤ 5x1 + 10x2 ≤ 2064
0 otro caso

y la tercera restricćıón nunca puede exceder del número borroso 2124f = (2094, 2124, 2154).
Suponemos que los números borrosos están definidos por funciones de perte-

nencia lineales: 23f = (22, 23, 25), 32f = (31, 32, 34), 7f = (6, 7, 8.5) y 2050f =
(2025, 2050, 2075).

El primero modelo auxiliar para resolver el problema es el siguiente problema
paramétrico:

Max 23fx1 + 32fx2

s.a :
10x1 + 6x2 ≤ 2500
5x1 + 10x2 ≤ 2000 + 64(1− α)
7fx1 + 7fx2 ≤g 2050f + 74f (1− α)
xj ≥ 0, j = 1, 2, α ∈ [0, 1]

donde 64 y 74f son los márgenes de la violaciones permitidas en el verificación
de la segunda y tercera restricción, respectivamente, y ≤g es la relación asociada
con la función de ordenación lineal g.

Rect@ Monográfico 2 (2004)



90 Métodos y Modelos de Programación Lineal Borrosa

Puesto que hay diferentes aproximaciones y métodos para resolverlo, pode-
mos obtener diferentes soluciones. En cualquier caso, y siendo coherente con la
naturaleza imprecisa del problema, todas las soluciones serán borrosas.

Por ejemplo, si elegimos como función de ordenación lineal g para la res-
tricción tercera el primer ı́ndice de Yager, [31], y como función de ordenación
para números borrosos de la función objetivo el segundo ı́ndice de Yager, [31],
obtenemos el siguiente problema auxiliar

Max 24x1+34x2
2x1+2x2+1

s.a :
10x1 + 6x2 ≤ 2500
5x1 + 10x2 ≤ 2000 + 64(1− α)
7.16x1 + 7.16x2 ≤ 2050 + 74(1− α)
xj ≥ 0, j = 1, 2, α ∈ [0, 1]

cuya solución optimal es
x∗α = (0, 206.4− 6.4α)

y el valor optimal alrededor de

6604.8− 204.8α euros

(definido por el número borroso (6398.4−198.4α, 6604.8−204.8α, 7017.6−217.6α))
para un α fijado.

5 Conclusión y eṕılogo

Los métodos de optimización basados en la lógica borrosa no terminan en la
PLB. En efecto, la facilidad de resolver problemas reales de dimensión cada vez
mayor, gracias a la mayor potencia y el menor costo de los computadores, la impo-
sibilidad de conocer en todos los casos las soluciones exactas que les corresponden
a esos problemas, y la necesidad de dar respuestas a las situaciones prácticas con-
templadas en multitud de casos (problemas de secuenciación, de diseño de rutas,
de localización, etc.), han motivado que los algoritmos de tipo heuŕıstico sean
empleados cada vez más, como valiosas herramientas capaces de proporcionar
soluciones donde los algoritmos exactos no son capaces de encontrarlas. Aśı en
los últimos años ha aparecido un enorme catálogo de técnicas diversas, animadas
por el principio de que es mejor satisfacer que optimizar, o lo que es lo mismo
que, antes que no poder dar la solución optima a un problema, es mejor dar una
solución que satisfaga al usuario en algún sentido que previamente habrá especi-
ficado, y que se han demostrado extraordinariamente efectivas. Ejemplos de esas
técnicas pueden ser los algoritmos de Búsqueda Tabú, Enfriamiento Simulado,
GRASP (”Greedy Randomized Adaptive Search Procedure”), Genéticos, o los

Rect@ Monográfico 2 (2004)
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mas recientes: Meméticos, VNS (Búsqueda por Entornos Variables), Colonias de
Hormigas, Búsqueda Dispersa, Programación por Restricciones, que en definitiva,
demuestran el gran interés de este campo, y la falta de un mínimo marco teórico
en el que encuadrar, relacionar y poder comparar estos algoritmos.

Se puede decir que en la mayoŕıa de los casos, estas heuŕısticas se han inspi-
rado en algún modelo real de la naturaleza, la sociedad, la f́ısica, ... para producir
modelos teóricos que se ajustan a las circunstancias consideradas. Desde esta
perspectiva se ha conseguido proporcionar solución a casos que, hace muy poco
tiempo, eran intratables con las técnicas convencionales. Sin embargo, las solu-
ciones conseguidas no han sido en la inmensa mayoŕıa de los casos las óptimas.
Han sido soluciones ”cercanas a las óptimas”, que frecuentemente se han obtenido
con cargo a criterios distintos del clásico ”conseguir el mejor valor de la función
objetivo”, al considerar caracteŕısticas subjetivamente establecidas por el decisor.

Como a lo largo de este trabajo ha quedado patente, cuando hablamos de sub-
jetividad asociada a personas humanas, o incluso de cercańıa a un valor óptimo,
la forma mejor contrastada de modelizar ese tipo de situaciones es mediante los
conjuntos borrosos. Sin embargo esa forma de modelización de la subjetividad,
tan desarrollada en otros ámbitos, prácticamente no ha sido aplicada al caso del
diseño de algoritmos heuŕısticos, [24], a pesar de todo apunta que este puede
ser un enfoque muy prometedor porque, aparte de proporcionar soluciones tan
cercanas al óptimo como las otras heuŕısticas convencionales ya conocidas,

a) encuentran la solución del problema en cuestión con un menor costo que los
demás métodos, y

b) como es habitual en el marco de las metodoloǵıas borrosas, generalizan
las heuŕısticas ya conocidas (que deben ser casos particulares de las aqúı
presentadas, en los valores 0 o 1 del grado de cumplimiento que se considere).

Estos aspectos describen de forma general el contexto por el que parece que
discurrirán las investigaciones en el futuro mas inmediato, para poder abordar
diferentes tareas:

1. De generalización: mediante el estudio, diseño e implementación de nuevos
algoritmos heuŕısticos basados en la lógica borrosa, que se demuestren ope-
rativos sobre problemas reales. A su vez, estos nuevos algoritmos podrán
obtenerse desde diferentes perspectivas: Considerando reglas de parada bo-
rrosas, suponiendo que los conjuntos solución están definidos de forma vaga,
midiendo el rendimiento de los objetivos de forma cualitativa, etc.

2. De sistematización: desarrollando estructuras comúnes (”templates”, es-
queletos, esquemas, ...) para incluir tantas heuŕısticas como sea posible, y
que permitan diseñar metaheuŕısticas h́ıbridas o ajustar los parámetros de
cada una de ellas. Con estos se podrá realizar la implementación de procedi-
mientos que contemplen los aspectos efectivos de las diversas heuŕısticas, y
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que permitan al usuario o el propio sistema decidir que componentes incluir
y que valores asignar a los parámetros. Estas tareas de sistematización,
a su vez, debeŕıan contemplar los casos uni y multi-objetivo, aśı como la
viabilidad de paralelizar las componentes del ”template” para facilitar la
labor del usuario a la hora de elegir una v́ıa de solución.

3. De implementación: para obtener Sistemas de Ayuda a la Decisión que,
incorporando en sus Sistemas Gestores de Modelos esos u otros templates
integrados por Algoritmos Heuŕısticos basados en metodoloǵıas borrosas,
resuelvan efectivamente problemas de tanta trascendencia hoy d́ıa como los
de Diseño de Redes, de Planificación Loǵıstica o de Bioinformática.
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difusos. Tesis doctoral, Universidad de Granada
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1 Introducción

En muchos problemas de optimización, en especial en aquellos que evolucio-
nan en el tiempo a lo largo de un horizonte de planificación dado, es habitual que
algunos de los coeficientes de la función objetivo y del vector del término inde-
pendiente e, incluso, de la matriz de restricciones, no se conozcan con exactitud
en el momento de tomar las decisiones correspondientes, aunque se disponga de
alguna información sobre ellos.

Supongamos que es posible representar la incertidumbre de estos coeficientes
mediante un árbol de escenarios, ver más abajo. En este caso, una de las dis-
ciplinas más apropiadas para tratar el problema es la Programación Estocástica
(Stochastic Programming, SP) v́ıa análisis de escenarios. La gran ventaja de este

Rect@ Monográfico 2 (2004)



96 Branch-and-fix coordinado

enfoque es que, con el, se puede considerar el riesgo de una mala decisión en
el propio modelo. La contraposición a la SP es una mala utilización de la Pro-
gramación Determinista en cualquiera de sus modalidades (programación lineal,
nolineal, entera, combinatoria, etc.). Esta mala utilización se pone de relieve en
el caso muy frecuente en el que se reemplazan los parámetros inciertos por su
propio promedio, y se optimiza el nuevo modelo para obtener la solución óptima
a proponer al decisor. Se puede observar que dicha solución sólo es la solución op-
tima del escenario promedio que, incluso, puede no existir como tal escenario. La
implantación de dicha solución en los diversos escenarios puede dar un resultado
muy malo en la función objetivo e, incluso, la solución puede ser infactible para
algunos de ellos. En cambio, la SP contempla todos los escenarios, sin subordi-
narse a ninguno, de forma que el riesgo de una mala decisión viene reflejado en el
mismo modelo. El campo de aplicación de la SP es, pues, el mismo campo de la
Programación Determinista, pero con incertidumbre en algunos parámetros. Para
una panorámica general sobre los modelos y técnicas de SP pueden consultarse
los libros [6, 10, 11, 17].

El tratamiento de las variables 0-1 en SP es más reciente que el tratamiento
del caso continuo, pero su campo de aplicación es enorme, como lo es el campo de
aplicación de la programación mixta 0-1, sobre todo en los entornos con horizonte
temporal. La mayoŕıa de los enfoques hoy d́ıa existentes también se basan en
el análisis de escenarios para aprovechar la estructura del Modelo Determinista
Equivalente (Deterministic Equivalent Model, DEM) del programa estocástico 0–
1 mixto de recurso completo. Un punto clave será la descomposición del DEM en
lo que llamaremos clusters de escenarios.

Es interesante destacar la aparición reciente de trabajos en la literatura en
los que la función a optimizar (sea, minimizar) no es sólo el valor esperado de la
función objetivo, sino que se contempla una función compuesta, de forma ponde-
rada, por dicho valor esperado y la probabilidad de que la solución a implantar
permita valores no deseables en la función objetivo. Esta alternativa permite
considerar la variabilidad del valor de la función objetivo al obtener la solución
que minimiza su valor esperado.

En este caṕıtulo se estudia la utilización del procedimiento llamado Branch-
and-Fix Coordinado (BFC) para obtener la solución óptima 0–1 mixta del pro-
blema estocástico original. Se puede utilizar tanto la descomposición Lagrangiana
como la descomposición de Benders, entre otras metodoloǵıas, para aprovechar la
estructura del DEM. Estos tipos de descomposiciones permiten obtener solucio-
nes factibles continuas una vez obtenidas soluciones factibles 0–1, de forma que
todas ellas satisfagan las llamadas condiciones de no anticipación en la solución
óptima.

El resto del caṕıtulo se estructura de la forma siguiente: La sección 2 revisa
algunos conceptos importantes en programación estocástica 0–1, analizando la
minimización del valor esperado de la función objetivo. La sección 3 trata algunas
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medidas de riesgo que permitan valorar la bondad de la solución obtenida. La
sección 4 revisa la descomposición Lagrangiana como medio de acotación en una
metodoloǵıa Branch-and-Bound. Por último, la sección 5 estudia el esquema
Branch-and-Fix Coordinado.

2 Minimización del valor esperado

Sea el siguiente modelo determinista

mı́n cx + ay

s.a. Ax + By = b

x ∈ {0, 1}nc, y ≥ 0,

(5.1)

donde c y a son los vectores de coeficientes de la función objetivo, b es el vec-
tor (de dimension m) del término incdependiente, A y B son las matrices de
restricciones (de dimensiones m × n y m × nc respectivamente), x e y son los
vectores (de dimensiones nc y n, respectivamente) de las variables 0 − 1 y con-
tinuas, respectivamente, a optimizar sobre un conjunto de etapas T, y m, n y
nc son el número de restricciones, variables 0–1 y variables continuas, respectiva-
mente. El modelo debe extenderse para recoger la incertidumbre en los valores de
algunos parámetros; por tanto, se precisa un procedimiento para modelizar dicha
incertidumbre.

Como se ha mencionado antes, la Programación Estocástica 0–1 (S01P) es
más reciente que la SP continua, pudiendose encontrar numerosas aplicaciones
prácticas, en campos como la planificación de la producción [1, 2, 3, 14], la pla-
nificación energética [8, 12, 15, 21] y finanzas [7, 22], entre otros muchos.

Fig. 1 Scenario tree
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Sean las siguientes definiciones básicas:
Definición 1. Dado un horizonte temporal, se llama etapa a un conjunto

de periodos de tiempo en el que los parámetros inciertos toman un determinado
valor.

Al inicio de cada etapa se suponen conocidos los valores que toman todos los
parámetros del problema para todos los periodos de tiempo incluidos en dicha
etapa.

Definición 2. Un escenario es una realización de los parámetros inciertos,
junto con los parámetros determińısticos, a lo largo de las etapas del horizonte
temporal.

Definición 3. Un grupo de escenarios para una etapa dada es el conjunto de
escenarios para los que los parámetros inciertos toman el mismo valor hasta la
etapa considerada.

Muchos de los enfoques actuales en SP y, desde luego, en S01P, gestionan la
incertidumbre a partir del análisis de escenarios. Para ilustrar este concepto, sea
la Figura 1: cada nodo representa un punto en el tiempo donde puede tomarse
una decisión. Una vez que la decisión está tomada, pueden ocurrir distintas
eventualidades (e.g., en este ejemplo tenemos tres posibles eventualidades en el
periodo t = 2), y la información relativa a dichas eventualidades está disponible al
principio de la etapa siguiente (en este caso, periodo de tiempo). Esta información
se suele representar por medio de un árbol, donde cada camino de la ráız a las
hojas representa un escenario, y se corresponde con una realización de todo el
conjunto de parámetros inciertos. Cada nodo en el árbol ha de asociarse con
un grupo de escenarios, de forma que dos escenarios pertenecen al mismo grupo
en una etapa dada si tienen las mismas realizaciones de los parámetros inciertos
hasta dicha etapa. De acuerdo con el principio de no-anticipación, ver [18], las
variables con ı́ndices de tiempo correspondientes a las etapas anteriores hasta la
etapa considerada inclusive deben tomar el mismo valor para ambos escenarios.

Sea la siguiente notación relacionada con el árbol de escenarios:

T, conjunto de etapas (en este caso, periodos de tiempo) del horizonte tem-
poral dado. T1 ≡ T − {|T|}.
Ω, conjunto de escenarios.

G, conjunto de grupos de escenarios.

Gt, conjunto de grupos de escenarios en la etapa t, para t ∈ T (Gt ⊆ G).

Ωg,] conjunto de escenarios en el grupo g, para g ∈ G (Ωg ⊆ Ω).

π(g), nodo predecesor inmediato del nodo g, para g ∈ G.

Ng, conjunto de grupos de escenarios {k} tales que Ωg ⊆ Ωk, para g ∈ G

(Ng ⊂ G). Es decir, conjunto de grupos de escenarios (uno por cada etapa)
cuyos conjuntos de escenarios contienen el subconjunto de escenarios del

Rect@ Monográfico 2 (2004)



A. Alonso Ayuso et al. 99

grupo g. Nótese que el (único) camino desde el nodo asociado con el grupo
de escenarios g hasta el nodo ráız en el árbol de escenarios correspondiente
atraviesa todos los nodos asociados con grupos de escenarios en Ng. Por
motivos técnicos, se supone que g ∈ Ng.

wg, peso asociado al grupo de escenarios g, para g ∈ G. Nota: wg =∑
ω∈Ωg wω, donde wω representa el peso que el modelizador asocia al esce-

nario ω, ω ∈ Ω, y
∑

ω∈Ω wω = 1 y
∑

g∈Gt wg = 1∀t ∈ T.

Dependiendo del tipo de recurso que se considere, simple, parcial o completo,
pueden construirse distintos tipos de modelos. En este trabajo sólo se considera el
recurso completo, y, en primer lugar, se trata la minimización del valor esperado.
En ese caso, la versión estocástica del programa (5.1) resulta

mı́n QE =
∑
ω∈Ω

wω(cωxω + aωyω)

s.a. Axω + Byω = bω ∀ω ∈ Ω

v ∈ N

xω ∈ {0, 1}n, yω ≥ 0 ∀ω ∈ Ω,

(5.2)

donde cω y aω son los vectores de coeficientes de la función objetivo y bω es
el vector del término independiente para el escenario ω, xω e yω son las varia-
bles correspondientes, v = (x, y) y N es el espacio factible correspondiente a las
condiciones de no anticipación para las variables x e y, tal que

v ∈ N = {vωt |vωt = vω
′

t ∀ω ∈ Ωg : g ∈ Gt, t ∈ T1}, (5.3)

donde vωt es tal que vω = (vωt , ∀t ∈ T) y ω′ ∈ Ωg.
Nota: Los modelos de recurso completo son aquellos que satisfacen las condiciones
de no anticipación para todas las variables, exigiendo una variable única para cada
grupo de escenarios, sin subordinarse a ninguno de ellos.

Para modelizar las condiciones (5.3) pueden utilizarse dos enfoques distintos:
la representación con variables divididas y la representación compacta. En el pri-
mer caso se pueden utilizar dos tipos de formulaciones. Una de ellas es la conocida
como representación asociada a los nodos (o asociada a los grupos de escenarios).
Dicha formulación requiere utilizar copias de las variables con elementos no nega-
tivos en las restricciones que pertenecen a etapas distintas. La otra formulación,
conocida como representación asociada a los escenarios, requiere utilizar copias
de todas las variables del modelo. En ambos casos, las condiciones de no antici-
pación deben incorporarse expĺıcitamente al modelo, pero la segunda formulación
preserva la estructura del modelo de una forma más adecuada para el enfoque
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considerado en este trabajo; el modelo asociado es el siguiente,

mı́n QE =
∑
ω∈Ω

wω(cωxω + aωyω)

s.a. Axω + Byω = bω ∀ω ∈ Ω

vωt − vω
′

t = 0,dondeω′ ∈ Ωg, ∀ω ∈ Ωg : g ∈ Gt, t ∈ T1

xω ∈ {0, 1}n, yω ≥ 0 ∀ω ∈ Ω.

(5.4)

La representación compacta requiere modelizar con más detalle las relaciones
entre las variables. Como ilustración, se supone que el vector de variables vωt
tiene coeficientes no negativos en las restricciones correspondientes a las etapas t
y t+1, de forma que el modelo determinista pude escribirse de la forma siguiente,

mı́n cx + ay

s.a. A−t xt−1 + Atxt + B−t yt−1 + Btyt = bt ∀t ∈ T

xt ∈ {0, 1}n
′
, yt ≥ 0 ∀t ∈ T,

(5.5)

donde xt e yt son los vectores de variables para la etapa t tal que x = (xt, ∀t ∈ T)
e y = (yt, ∀t ∈ T), n′ es la dimensión de los vectores xt, y A−t , At, B

−
t y Bt son las

correspondientes matrices de restricciones. Abusando ligeramente de la notación,
la versión estocástica del modelo puede escribirse de la siguiente forma,

mı́n QE =
∑
g∈G

wg(cgxg + agyg)

s.a. A−t xπ(g) + Atxg + B−t yπ(g) + Btyg = bg ∀g ∈ Gt, t ∈ T

xg ∈ {0, 1}n
′
, yg ≥ 0 ∀g ∈ G,

(5.6)

donde cg y ag son los vectores de coeficientes de la función objetivo, bg es el vector
del término independiente, y xg e yg son los vectores de las variables del grupo de
escenarios g, con cg = cωt , ag = aωt y bg = bωt donde, en general, dω = (dωt , ∀t ∈ T),
para ω ∈ Ωg : g ∈ Gt, t ∈ T.

3 Minimización de las funciones objetivo valor
esperado–riesgo y CaR

Los modelos contemplados en la sección anterior buscan la minimización del
valor esperado de la función objetivo. Sin embargo, existen otros enfoques que
se ocupan también de medidas de riesgo, por medio de semi-desviaciones [16] y
probabilidades de exceso [20]. Estos enfoques son más adecuados que los clásicos
de media–varianza, sobre todo cuando aparecen variables 0–1. Ver también [19].
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Sea φ un umbral preestablecido para la probabilidad de exceso, QP , tal que

QP = P (ω ∈ Ω : cωxω + aωyω > φ). (5.1)

Aśı, como alternativa a la minimización de QE (5.2), donde

QE =
∑
ω∈Ω

wω(cωxω + aωyω), (5.2)

la función de valor esperado–riesgo a minimizar es,

QE + βQP , (5.3)

donde β es un parámetro de peso no negativo.
Una expresión más manejable que (5.3), a efectos computacionales al menos,

puede ser
mı́n QE + β

∑
ω∈Ω

wωνω

s.a. cωxω + aωyω ≤ φ + Mνω ∀ω ∈ Ω

νω ∈ {0, 1} ∀ω ∈ Ω,

(5.4)

donde νω es una variable 0–1, que toma el valor 1 si el valor en la función objetivo
para el escenario ω es mayor que el umbral φ, y toma el valor 0 en otro caso, y
M es el valor más pequeño que no elimina ninguna solución factible bajo ningún
escenario en el problema estocástico.

Como alternativa a mı́n QE y mı́n QE + βQP , la función de Cost-at-Risk
(CaR) a optimizar para un nivel de riesgo α dado puede expresarse como

mı́n CaR

s.a. cωxω + aωyω ≤ CaR + Mνω ∀ω ∈ Ω∑
ω∈Ω

wωνω ≤ α,

(5.5)

con 0 ≤ α < 1.
Nótese que la sustitución de la función de valor esperado QE (5.2) por el

sistema de valor esperado–riesgo (5.4) no modifica la estructura del modelo. Por
el contrario, la minimización de CaR (5.5) śı destruye dicha estructura, ya que
la restricción

∑
ω∈Ω wωνω ≤ α incluye variables de todos los escenarios y no

es separable. Sin embargo, puede advertirse que la relajación Lagrangiana que
resulta de su dualización recupera la separabilidad del modelo y permite el uso
del esquema BFC, ver sección 5. Nuestra conjetura es que su solución puede
proporcionar un buen CaR.
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4 Acotación del Branch-and-Bound

Los casos del DEM 0–1 mixto (5.4) pueden ser de dimensiones tan grandes que
la utilización de las herramientas estándar de optimización no puedan resolverlos.
Puede utilizarse el esquema de la descomposición de Benders [5], al menos para
casos de tamaño mediano; ver [6, 13] para problemas enteros, entre otros.

Como alternativa, se considera un esquema de tipo Branch-and-Bound (BB)
para optimizar el DEM en el caso de variables enteras, de forma que se pueda uti-
lizar la Descomposición Lagrangiana en cada nodo BB, dualizando las condiciones
de no anticipación

vωt − vω
′

t = 0,dondeω′ ∈ Ωg, ∀ω ∈ Ωg : g ∈ Gt, t ∈ T1, (5.1)

ver [8, 12, 15, 19, 21], entre otros. En cualquier caso, seŕıa preciso utilizar
heuŕısticas Lagrangianas.

El modelo Lagrangiano es el siguiente,

mı́n
∑
ω∈Ω

wω(cωxω + aωyω + βνω) +
∑

t∈T1,ω∈Ωg:g∈Gt

µωt (vωt − vω
′

t )

s.a. cωxω + aωyω ≤ φ + Mνω ∀ω ∈ Ω

Axω + Byω = bω ∀ω ∈ Ω

0 ≤ xω ≤ 1, yω ≥ 0 ∀ω ∈ Ω,
(5.2)

donde µωt , ∀ω ∈ Ωg : g ∈ Gt, t ∈ T1 es el vector de multiplicadores de Lagrange
asociados a las condiciones de no anticipación (5.1).

Nótese que el número de multiplicadores de Lagrange depende del número de
variables del vector v y del número de grupos de escenarios, |G|, a lo largo del
horizonte temporal T.

5 Branch-and-Fix Coordinado

5.1 Enfoque general

Como alternativa al enfoque de tipo Branch-and-Bound, consideremos el en-
foque denominado Branch-and-Fix Coordinado (BFC), que trata de forma coor-
dinada los |Ω| modelos independientes

mı́n cωxω + aωyω + βνω

s.a. cωxω + aωyω ≤ φ + Mνω

Axω + Byω = bω

xω ∈ {0, 1}n, νω ∈ {0, 1}, yω ≥ 0,

(5.1)
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que aparecen tras la relajación de las condiciones (5.1). En cualquier caso, pueden
incluirse técnicas Lagrangianas en el desarrollo de la metodoloǵıa. BFC está
diseñado especialmente para coordinar la selección de la variable y el nodo sobre
el que ramificar en el árbol Branch-and-Fix (BF) correspondiente a cada escenario,
de forma que las condiciones (5.1), que han sido relajadas, se satisfagan al fijar
las variables adecuadas a cero o a uno. El procedimiento también coordina y
refuerza la fase de eliminación de nodos activos, aśı como la fijación de variables
y la acotación de la función objetivo del subproblema correspondiente a cada
nodo.

En [4] puede encontrarse el desarrollo de los resultados en los que se asienta
BFC. En [3] pueden encontrarse aplicaciones a problemas bietápicos 0-1 mixtos
donde en la primera etapa sólo aparecen variables 0–1, y en [2] aplicaciones a pro-
blemas multietápicos 0–1 puros. En [7] se presenta un enfoque para la resolución
de un problema bietápico con variables 0–1 y variables continuas en la primera
etapa y variables continuas en la segunda etapa; se utiliza el esquema de la des-
composición de Benders para resolver los subproblemas LP correspondientes a
ciertos nodos en los árboles BF, aquellos llamados Familias de Nodos Gemelos
Enteros, que definiremos más adelante. En la actualidad, estamos trabajando
en algunos desarrollos de problemas multietápicos con variables 0–1 y continuas
en todas las etapas; para resolverlos se está desarrollando un algoritmo h́ıbrido
que utiliza tanto el esquema BFC como algunos esquemas de descomposición tipo
Benders y Lagrangianos.

Para presentar el esquema BFC, sea Rω el árbol BF asociado al escenario ω,
Eω el conjunto de nodos activos en Rω para ω ∈ Ω, I el conjunto de ı́ndices de
las variables x en cualquier grupo de escenarios, y (xωt )i la variable i-ésima del
vector xωt , para t ∈ T, i ∈ I, ω ∈ Ω. Nota: n′ ≡ |I|.

Definición 4. Dos variables (xωt )i y (xω
′

t )i, se llamarán variables comunes
para los escenarios ω y ω′, si ω, ω′ ∈ Ωg : g ∈ Gt, para ω �= ω′, t ∈ T1, i ∈ I.
Nótese que dos variables comunes tienen elementos no nulos en la condición de
no anticipación correspondiente a un grupo de escenarios dado.

Definición 5. Diremos que dos nodos activos, e ∈ Eω y e′ ∈ Eω
′

son nodos
gemelos respecto a un grupo de escenarios dado si los caminos desde sus nodos
ráız hasta ellos en sus árboles BF Rω y Rω

′
, respectivamente, o bien todav́ıa no

han ramificado en sus variables comunes o bien tienen los mismos valores 0–1 en
las variables comunes ya ramificadas/fijadas (xωt )i y (xω

′
t )i para ω, ω′ ∈ Ω, t ∈

T1, i ∈ I.
Definición 6. Llamamos Familia de Nodos Gemelos (Twin Node Family,

TNF), Jf , a un conjunto de nodos tales que cualquiera de ellos es gemelo de
todos los demás nodos de la familia, para f ∈ F, donde F es el conjunto de
familias. Nota 1: Por motivos prácticos, se considerará que todos los nodos BF
pertenecen al menos a una TNF, aunque sea de cardinal uno. Nota 2: Puede
haber nodos gemelos en el mismo árbol BF. Seŕıa el caso de nodos cuyos caminos
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desde la ráız hasta ellos en su propio árbol BF han ramificado en alguna variable
común cuyo grupo de escenarios pertenece a una etapa posterior al conjunto de
etapas a las que pertenecen las otras variables ramificadas.

Definición 7. Una TNF candidata es una TNF cuyos miembros todav́ıa
no han ramificado/fijado todas sus variables comunes relativas a un grupo de
escenarios dado.

Definición 8. Una TNF entera es una TNF en la que todas las variables
x y ν toman valores enteros, y se satisfacen las condiciones de no anticipación
(xωt )i − (xω

′
t )i = 0 ∀ω, ω′ ∈ Ωg : g ∈ Gt, ω �= ω′, t ∈ T1, i ∈ I.

Sea el árbol de escenarios y los árboles BF que se muestran en la Figura 2,
donde xωh es una variable subindicada h bajo el escenario ω, y xh es la notación
genérica de dicha variable. Para simplificar la exposición, se supone que se está
optimizando sólo el valor esperado de la función objetivo (i.e., no hay variables
ν). A t́ıtulo ilustrativo, sea el siguiente orden de ramificación es x1, x2, x3, x4.
Las TNFs son: J1 = {1, 2, 3}, J2 = {4, 6, 8}, J3 = {5, 7, 9}, J4 = {4, 6}, J5 = {8},
J6 = {10, 12}, J7 = {11, 13}, J8 = {14}, J9 = {15}, J10 = {16, 18}, J11 =
{17, 19}, J12 = {20}, J13 = {21}, J14 = {22, 26, 30}, . . . , J16 = {22, 26, 32}, J17 =
{22, 27, 30}, . . . , J19 = {22, 27, 32}, and J20 = {24, 28, 30}, . . . , J22 = {24, 28, 32}.

Se puede observar que la primera TNF candidata es J1, ya que la variable de la
etapa 1 es una variable común a todos los nodos ráız. Además, J2 es una familia
que ha ramificado en el mismo valor de la variable común x1. Nótese que el nodo 7
es no factible, y, por tanto, también lo es la TNF J3. Como sólo hay una variable
en el nodo ráız del árbol de escenarios, J2 no es una TNF candidata. Adviértase
que los nodos 4 y 6 también forman una TNF, ya que aún no se ha ramificado en
sus variables comunes, x2 y x3, ni éstas han sido fijadas. Por otro lado, el nodo 8
es el único nodo en la TNF J5. Ramificando en la variable x2 resultan las TNFs
J6, . . . , J9. Se toma la decisión de ramificar independientemente en las TNFs J7

y J9 considerando x3 la variable de ramificación, y, de esta forma, se construyen
las TNFs J10, J11, J12 y J13. Finalmente, se ramifica en la variable x4. Como
resultado, supóngase que los nodos 23, 25, 29 y 33 son no factibles. Por otro
lado, surgen las siguientes TNFs enteras: J14, . . . , J22, y la TNF J6 se elimina (se
supone que la cota dada por la TNF es peor que el valor de la mejor TNF entera).
Finalmente, a t́ıtulo ilustrativo, nótese que los nodos 22 y 27 son gemelos para el
grupo de escenarios b (i.e., han ramificado en los mismos valores de sus variables
comunes x1, x2, x3), y los nodos 22, 27, 32 son gemelos para el grupo de escenarios
a (i.e., han ramificado en el mismo valor de su variable común x1).
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Árbol de escenarios

etapa 1 2 3
variables x1 x2, x3 x4

Fig. 2 Esquema del Branch-and-Fix Coordinado

Es claro que no es necesario relajar las condiciones de no anticipación (5.1)
para todos los pares de escenarios al objeto de resolver el problema original. El
número de escenarios a considerar conjuntamente en un modelo dado depende
básicamente de las dimensiones del modelo correspondiente a los escenarios (5.1).

Definición 9. Un cluster de escenarios es un conjunto de escenarios cuyas
condiciones de no anticipación están consideradas expĺıcitamente en el modelo.

El criterio para la formación de los clusters Ω1, . . . ,Ωq, donde q es el número
de clusters de escenarios, depende de cada caso. De cualquier forma, nótese que
Ωp

⋂
Ωp′ = ∅, p, p′ = 1, . . . , q : p �= p′ y Ω =

∑
p=1,...,q Ωp.

El modelo a considerar para cada cluster de escenarios p = 1, . . . , q puede
escribirse utilizando la representación compacta (5.2), donde ω para d ∈ G|T| es
el único escenario tal que ω ∈ Ωd y, por otro lado, Gp = {g ∈ G : Ωg

⋂
Ωp �= ∅}.

mı́n
∑

d∈G|T|
⋂

Gp

wω
∑
g∈Nd

(
cgxg + agyg

)
+ β

∑
ω∈Ωp

wωνω

s.a.
∑

g∈Nd

(
cgxg + agyg

)
≤ φ + Mνω ∀d ∈ G|T|

⋂
Gp

A−t xπ(g) + Atxg + B−t yπ(g) + Btyg = bg ∀g ∈ Gt
⋂

Gp, t ∈ T

xg ∈ {0, 1}n
′
, yg ≥ 0, ∀g ∈ Gp

νω ∈ {0, 1} ∀ω ∈ Ωp.
(5.2)
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Adviértase que Nd es el conjunto de nodos en el camino predecesor desde el nodo
hoja d hasta el nodo ráız en el árbol de escenarios.

Los modelos correspondientes a los cluster de escenarios (5.2) están relacio-
nados mediante las condiciones de no anticipación:

xgp − xgp′ = 0 (5.3)

ygp − ygp′ = 0, (5.4)

∀p, p′ = 1, . . . , q : p �= p′, donde gp ∈ Gp, g
p′ ∈ Gp′ y gp = gp

′
.

En [2] se presenta un procedimiento heuŕıstico para obtener (posibles) buenas
soluciones para el modelo (5.2)–(5.4), mediante un procedimiento que modifica el
esquema BFC explorando de forma selectiva sólo algunas TNFs. Este esquema es
útil especialmente para resolver problemas dinámicos de gran tamaño (i.e., casos
con docenas de miles de restricciones y variables en un horizonte temporal).

5.2 Acotación del Branch-and-Fix Coordinado

Para mayor simplicidad en la exposición, se considera el caso sin clusters de
escenarios, ni probabilidad de exceso. Se puede obtener la acotación de una TNF
dada, Jf , f ∈ F, mediante la resolución de |Jf | modelos LP independientes asocia-
dos con los nodos en la familia. Sin embargo, puede obtenerse una acotación me-
jor utilizando la Descomposición Lagrangiana (Lagrangian Decomposition, LD).
Abusando ligeramente de la notación sea el modelo LD,

ZD(µ) = mı́n
∑
j∈Jf

wj(cjxj + ajyj) +
∑
j∈Jf

µj(vj − vj+1)

s.t. Axj + Byj = bj ∀j ∈ Jf

0 ≤ xj ≤ 1, yj ≥ 0 ∀j ∈ Jf ,

(5.5)

donde wj , cj y aj , y bj son el peso, los vectores de coeficientes de la función ob-
jetivo y el vector del término independiente para el escenario correspondiente al
nodo gemelo j, respectivamente, A y B son las matrices de restricciones, xj y yj

son los vectores de variables x e y, respectivamente, v = x para una TNF candi-
data y v = y para una TNF entera, y µj denota el vector de los multiplicadores de
Lagrange asociados a las condiciones de no anticipación vj−vj+1 = 0 ∀j ∈ Jf , tal
que j+1 ∈ Jf para j = |Jf |. El modelo se puede descomponer en modelos LP in-
dependientes. Nótese que ya se han ramificado/fijado algunas variables del vector
xj en los caminos desde los nodos ráız en los árboles BF hasta los nodos miembros
de la TNF. Nótese también que el número de multiplicadores de Lagrange es el
número de variables no ramificadas/fijadas en el vector vj multiplicado por el
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número de nodos, |Jf |, en la familia. Este número es menor (y puede ser mucho
menor) que el número de multiplicadores en un nodo de BB, véase la sección 4.

La acotación LD puede expresarse como

ZD(µ∗), (5.6)

donde
µ∗ = argmax{ZD(µ)}. (5.7)

Alternativamente, puede obtenerse otra acotación usando una estrategia de
sustitución Lagrangiana. En nuestro caso, consiste en agregar [9] las condiciones
de no anticipación, de forma que el nuevo término Lagrangiano puede expresarse

λ
∑
j∈Jf

(wj − P/r)vj , (5.8)

donde λ es el vector de los nuevos multiplicadores de Lagrange, r ≡ |Jf | y P =∑
j∈Jf

wj . Nótese que la dimensión de los multiplicadores de Lagrange es n′, la
dimensión de los vectores vt. Y, finalmente, la nueva cota no es peor que la cota
proporcionada por la relajación lineal del modelo. La nueva acotación, alternativa
al modelo (5.6), se puede expresar como

ZD(λ∗), (5.9)

donde
λ∗ = argmax{ZD(λ)}. (5.10)
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1 Introducción

Las técnicas de descomposición tiene sentido aplicarlas a un problema de opti-
mización cuya estructura espećıfica permite identificar partes del mismo que son
fácilmente resolubles de modo individual. Los problemas multietapa y los pro-
blemas estocásticos de gran tamaño son ejemplos de problemas cuya resolución
se puede abordar mediante técnicas de descomposición. Los problemas enteros
mixtos tales que la relajación de un conjunto de restricciones reduce la dificultad
del mismo son también ejemplos en los que el uso de técnicas de descomposición
puede ser preferible a la resolución del problema de un modo directo.

Este documento describe una implantación de la Descomposición de Benders
[2, 14] y de la Relajación Lagrangiana [8, 9] en el lenguaje de modelado algebraico
GAMS [4]. La descripción se centra en problemas lineales deterministas aunque
su extensión para problemas estocásticos [11, 7] (en el caso de Benders) o para
problemas mixtos (en el caso de Relajación Lagrangiana) es inmediata. A lo largo
del documento se describe brevemente cada una de las dos descomposiciones y su
implantación en GAMS para la resolución de problemas académicos concretos.
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2 Descomposición de Benders

EL método de descomposición de Benders [2, 14] se centra en la interpre-
tación de un problema de optimización como un problema bietapa PL-2. Para
este tipo de problemas, las variables de decisión aparecen claramente separadas
en dos bloques: las variables de la primera etapa y las variables de la segunda
etapa. Esta división induce de modo natural un algoritmo iterativo de resolución
en el que los problemas asociados a las variables de la primera etapa (problema
maestro) y los asociados a las variables de la segunda etapa (subproblema) son
resueltos consecutivamente. Este método de descomposición recibe también el
nombre de descomposición primal (porque el problema maestro fija variables del
primal), descomposición en L (porque se aplica a problemas con matriz de restric-
ciones con dicha forma) y descomposición por recursos (porque el maestro asigna
directamente las decisiones sobre los recursos al subproblema).

Un problema lineal bietapa PL-2 se representa matemáticamente de la forma
siguiente,

mı́n
x,y

cTx + qT y

Ax = b
Tx + Wy = h
x, y ≥ 0

(6.1)

donde x representa el conjunto de variables de la primera etapa e y representa
el conjunto de variables de la segunda etapa. Supondremos que A ∈ �m1×n1

y W ∈ �m2×n2 y que las restantes dimensiones son conformes con éstas1. El
tamaño del problema completo es (m1 + m2) × (n1 + n2). La estructura de la
matriz de restricciones del problema (denominada triangular inferior por bloques)
se presenta en la figura 6.1. Las restricciones Ax = b afectan únicamente a las
variables de la primera etapa x, mientras que las restricciones Tx + Wy = h
afectan a ambos conjuntos de variables x e y.

El problema lineal bietapa PL-2 (6.1) se puede interpretar también de esta
manera:

mı́n
x

cTx + θ(x)

Ax = b
x ≥ 0

(6.2)

donde la función de recurso, θ(x), representa la función objetivo de la segunda
etapa como función de las decisiones de la primera etapa y tiene la siguiente
expresión:

1Por convención en la formulación los vectores son columna, su transposición se representa
por un supeŕındice T , las variables se ubican a la izquierda de las expresiones y los coeficientes
de las variables preceden a éstas.
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A

T W

Figura 6.1: Estructura de la matriz de coeficientes de las restricciones en proble-
mas lineales bietapa.

θ(x) = mı́n
y

qT y

Wy = h− Tx : π
y ≥ 0

(6.3)

donde π son las variables duales de las restricciones.
El problema (6.2) se conoce en la literatura como problema maestro y el pro-

blema (6.3), que evalúa la función de recurso para las decisiones de la primera
etapa, como subproblema de la descomposición de Benders. El problema maestro
puede ser reformulado de modo lineal utilizando la representación dual de sub-
problema. Con esta reformulación, el algoritmo de descomposición resuelve en
cada iteración un problema maestro lineal.

2.1 Representación lineal del problema maestro

El subproblema, expresado en su forma dual es:

θ(x) = máx
π

(h− Tx)Tπ

WTπ ≤ q
(6.4)

Sea Π =
{
π1

2 , π
2
2 , . . . , π

ν
2

}
el conjunto finito de vértices del poliedro convexo

definido por la región factible WTπ ≤ q. Obsérvese que la región factible del
problema dual no depende del valor de x. Dado que la solución óptima de un
problema lineal reside en un vértice el problema se puede resolver por enumeración
de todos ellos:

θ(x) = máx{(h− Tx)Tπl} l = 1, . . . , ν (6.5)

De la ecuación anterior se deriva que la función de recurso θ(x) es una función
poligonal convexa de las variables x. El subproblema de Benders puede ser refor-
mulado como:
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θ(x) = mı́n
θ

θ

θ ≥ (h− Tx)Tπ1

...
θ ≥ (h− Tx)Tπν

(6.6)

con θ ∈ �. Obsérvese que la variable θ es libre. Las restricciones de esta formu-
lación se denominan cortes de Benders y constituyen una aproximación exterior
de la función de recurso. Como el número de vértices (soluciones duales del sub-
problema de Benders) es finito, esta aproximación exterior es una función convexa
a tramos. El problema original PL-2 se puede expresar como:

mı́n
x,θ

cTx + θ

Ax = b
θ ≥ (h− Tx)Tπ1

...
θ ≥ (h− Tx)Tπν

x ≥ 0

(6.7)

Esta formulación se denomina problema maestro completo, ya que contiene
todos los cortes posibles. Presenta todas las restricciones de la primera etapa más
todas las condiciones necesarias derivadas de la segunda etapa. Desde el punto de
vista práctico, la resolución del problema maestro completo implica disponer de
forma expĺıcita de todos los cortes de Benders, lo cual es prácticamente imposible
en problemas de tamaño realista. Por esta razón, la resolución del problema
original PL-2 es reemplazada por la resolución iterativa del problema maestro
relajado2 definidos como:

mı́n
x,θ

cTx + θ

Ax = b
θ ≥ (h− Tx)Tπl l = 1, . . . , j
x ≥ 0

(6.8)

donde θ ∈ � y l representa el ı́ndice de iteraciones3. De cara a una implan-
tación eficiente del algoritmo de descomposición, los cortes de Benders aceptan
la siguiente formulación como linealización de la función de recurso en torno a
los valores de las variables de la primera etapa y de los valores de la variable θ
obtenidos en cada iteración:

2Por simplicidad de la exposición, se denomina como problema maestro al problema maestro
relajado.

3Se entiende por iteración un ciclo maestro-subproblema, en este orden.
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θ ≥ πjT (h− Tx) = πjT (h− Tx + Txj − Txj) =
= πjT

[
h− Txj − T (x− xj)

]
= πjT (h− Txj)− πjTT (x− xj) =

= f j − πjTT (x− xj)
(6.9)

siendo xj y f j = πjT (h − Txj) los valores de las variables de la primera etapa
y el de la función de recurso para la iteración j. De este modo el corte para la
iteración j también se expresa como

θ − f j ≥ πjTT (xj − x) (6.10)

o de modo equivalente como

θ + πjTTx ≥ f j + πjTTxj (6.11)

Esta expresión indica que πjTT es un subgradiente del valor de la función de
recurso θ(x) para la propuesta xj del maestro.

Con esta formulación el problema maestro relajado de Benders tiene ahora
esta expresión:

mı́n
x,θ

cTx + θ

Ax = b
θ + πlTTx ≥ f l + πlTTxl l = 1, . . . , j
x ≥ 0

(6.12)

y el subproblema de Benders para cada iteración j se formula como:

f j = mı́n
y

qT y

Wy = h− Txj : πj

y ≥ 0
(6.13)

2.2 Cortes de infactibilidad

La descripción anterior del algoritmo de Benders ha supuesto que el subpro-
blema de Benders es factible y acotado para cualquier propuesta del problema
maestro. Esta hipótesis, conocida en la literatura como recurso parcialmente
completo4, no suele satisfacerse en la práctica y el algoritmo de descomposición
es modificado cuando esto ocurre. La modificación del algoritmo consiste en la
construcción de otro tipo de corte, corte de infactibilidad, que elimina la solución
propuesta en el problema maestro. La construcción de este corte se comenta a
continuación.

4en un problema bietapa por recurso completo se entiende que el subproblema de la segunda
etapa es siempre factible para cualquier valor de las variables de la primera etapa.
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Si el subproblema es factible para un valor de x los valores duales de las restric-
ciones forman un corte en el problema maestro denominado corte de optimalidad
tal como se ha presentado anteriormente. El caso en el que un subproblema es
no acotado carece de interés algoŕıtmico, puesto que esta situación implica que
el problema bietapa PL-2 es no acotado. La situación que debe ser destacada
es aquélla en la que el subproblema es infactible para la propuesta del maestro.
En ese caso se puede generar un corte de infactibilidad derivado de la Fase I
del simplex [14]. El subproblema de minimización de infactibilidades se formula
como:

θ∗(x) = mı́n
v+,v−

eT v+ + eT v−

Wy + Iv+ − Iv− = h− Txj : π
y, v+, v− ≥ 0

(6.14)

siendo eT =
(

1 · · · 1
)
, I matriz identidad (m2×m2) y π las variables duales

de las restricciones para la solución óptima. θ∗(x) representa la función de recurso
asociada a la fase I del subproblema de Benders.

El corte de optimalidad que el subproblema de minimización de infactibili-
dades obtiene (siguiendo la metodoloǵıa descrita hasta el momento) viene dado
como:

θ∗ ≥ πjT (h−Wx) (6.15)

Reemplazando la variable de recurso θ∗ por 0 se obtiene una condición ne-
cesaria para aquellas soluciones del problema maestro que son factibles en el
subproblema de Benders. Esta condición indica que la suma de infactibilidades
para esas soluciones debe ser menor que 0. Linealizando en torno a la solución
obtenida en el problema maestro se obtiene la siguiente expresión para el corte
de infactibilidad, similar a la del corte de optimalidad:

πjTTx ≥ f j + πjTTxj (6.16)

donde f j representa el valor del subproblema de minimización de infactibilidades
para la solución propuesta.

El problema maestro relajado considerando ambos tipos de cortes se formula
de la siguiente manera:

mı́n
x,θ

cTx + θ

Ax = b
δlθ + πlTTx ≥ f l + πlTTxl l = 1, . . . , j
x ≥ 0

(6.17)

siendo δl = 1 para los cortes de optimalidad y δl = 0 para los de infactibilidad.
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2.3 Algoritmo de descomposición de Benders

El algoritmo de descomposición de Benders resuelve en cada iteración el pro-
blema maestro relajado y pasa el valor de las variables de la primera etapa xj

al subproblema. La resolución del subproblema de Benders con el término de la
derecha (RHS) (h−Txj) genera unas variables duales πj que se usan para generar
un nuevo corte de Benders que se añade al problema maestro relajado. En cada
iteración, el valor obtenido por la función objetivo del problema maestro relajado
z es una cota inferior del problema completo PL-2. La sucesión de estas cotas
inferiores es monótona creciente dado que en cada iteración en problema maestro
relajado contiene mayor número de restricciones. Por otra parte, una cota supe-
rior z̄ del valor óptimo de la función objetivo del problema original PL-2 viene
dada en cada iteración por (cTxj + qT yj) siendo xj e yj soluciones factibles en
maestro y subproblema en esa iteración. El criterio de parada del algoritmo es la
coincidencia de ambas cotas con una tolerancia relativa ε (por ejemplo, 10−4).

|z̄ − z|
|z̄| =

∣∣qT yj − θj
∣∣

|cTxj + qT yj | ≤ ε (6.18)

En cada iteración del algoritmo de Benders, la variable dual generada en el
subproblema es distinta del conjunto de variables duales generadas con anterio-
ridad por el algoritmo [14]. Dado que el conjunto de posibles valores duales es
finito, el algoritmo de descomposición de Benders converge en un número finito
de iteraciones.

Para obtener el valor x0 de las variables de la primera etapa en la primera
iteración del algoritmo de descomposición, se suele proceder a la resolución del
problema maestro relajado sin cortes, lo que equivale a fijar el valor de la variable
de recurso a cero, θ = 0. Otra alternativa consiste en estimar razonablemente
este valor en caso de que la naturaleza del problema sea conocida.

Para el caso en que las variables de la primera etapa sean continuas, en cada
iteración se dispone de una base del problema maestro relajado que es infactible
sólo por una variable básica, la variable de holgura del nuevo corte. Cuando se
soluciona el dual del problema maestro relajado los cortes aparecen como colum-
nas. Al añadir una nueva columna la solución previa sigue siendo factible y la
nueva solución óptima puede obtenerse en pocas iteraciones del simplex. Por ello
es teóricamente conveniente resolver el maestro mediante el simplex dual. Por
otra parte, cada subproblema sólo cambia las cotas de las restricciones en cada
iteración. Por esta razón, suponiendo que ninguna solución del maestro ocasiona
infactibilidad en el subproblema, es conveniente resolverlo mediante el método
simplex primal (siempre que su tamaño lo aconseje).

Esquemáticamente el algoritmo se formula a continuación:

1. Inicialización: j = 0, z =∞ z = −∞, ε = 10−4
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2. Resolución del problema maestro

mı́n
x,θ

cTx + θ

Ax = b
δlθ + πlTTx ≥ f l + πlTTxl l = 1, . . . , j
x ≥ 0

(6.19)

Obtener la solución xj+1, θj+1 y evaluar la cota inferior z = (cTxj+1+θj+1)

3. Resolución del subproblema de suma de infactibilidades

f j+1 = mı́n
v+,v−

eT v+ + eT v−

Wy + Iv+ − Iv− = h− Txj+1 : π
y, v+, v− ≥ 0

(6.20)

Si f j+1 ≥ 0, obtener πj+1, formar un corte de infactibilidad y añadirlo al
problema maestro, incrementar el numero de iteraciones j = j + 1 e ir al
paso 2.

Si f j+1 = 0, ir al paso 4.

4. Resolución del subproblema de Benders

f j+1 = mı́n
y

qT y

Wy = h− Txj+1 : π
y ≥ 0

(6.21)

Obtener yj+1 y actualizar cota superior z̄ = (cTxj+1 + qT yj+1)

5. Regla de parada Si |z̄−z||z̄| ≤ ε detener el algoritmo. En otro caso, obte-
ner πj+1, formar un corte de optimalidad y añadirlo al problema maestro,
incrementar el numero de iteraciones j = j + 1 e ir al paso 1.

Mientras no se haya generado ningún corte de optimalidad, se fija el valor
de la variable de recurso θ a cero, pues en otro caso el problema maestro es no
acotado. Una vez obtenido algún corte de infactibilidad, esta variable pasa a ser
libre.

La siguiente sección presenta con un ejemplo los pasos del algoritmo de des-
composición de Benders.

Rect@ Monográfico 2 (2004)
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2.4 Ejemplo

Supongamos que se desea resolver el siguiente problema de programación li-
neal:

mı́n
x1,x2,y1,y2

−x1 − 2x2 − 2y1 − 3y2

x1 + x2 ≤ 600
x1 − 2x2 ≤ 0

x1 + x2 + y1 + y2 ≤ 1000
x1 + y1 ≤ 500

−2y1 + y2 ≤ 0
x1, x2, y1, y2 ≥ 0

entonces,

c =
(
−1
−2

)
, q =

(
−2
−3

)
, b =

(
600

0

)
, h =

 1000
500

0

,

A =
(

1 1
1 −2

)
, T =

 1 1
1 0
0 0

 y W =

 1 1
1 0
−2 1


El algoritmo comienza con un problema maestro que no contiene ningún corte

de Benders, por lo que el valor de la variable de recurso θ está fijado a cero.
La resolución del primer problema maestro obtiene la siguiente solución para las
variables de la primera etapa:

x =
(

0
600

)
Para estos valores de la primera etapa, el subproblema es factible. Como

solución se obtiene

y =
(

133.3
266.7

)
y π =

 −2.667
0.000
−0.333


y un valor para la cota superior z = −2266.7. Como la diferencia entre ambas
cotas es elevada (la cota superior es este momento es infinito) se continúa iterando.
Con los valores duales se forma un corte para el problema maestro dado por:

θ − 2.667x1 − 2.667x2 ≥ −2666.7
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La resolución del problema maestro obtiene una nueva solución

x =
(

0.000
0.000

)
y un valor para la cota inferior z = −2666.7. Al introducir en el subproblema
estos valores se obtiene como solución

y =
(

333.3
666.7

)
y π =

 −2.667
0.000
−0.333


Se calcula la cota superior en esta iteración, siendo z = −2666.7. La diferencia

entre ambas cotas es ahora nula y, por lo tanto, acaba el algoritmo. La función
objetivo es z∗ = −2666.7 y la solución óptima es:

x∗ =
(

0.000
0.000

)
e y∗ =

(
333.3
666.7

)

2.5 Descomposición de Benders en GAMS

Dentro del lenguaje GAMS la descomposición de Benders puede implantarse
creando un modelo para el problema maestro y un modelo para el subproblema.
La adición de cortes para el problema maestro dentro del proceso iterativo se
consigue declarando la ecuación de cortes de Benders sobre un ı́ndice estático
sobre el que se construye un conjunto dinámico que representa el conjunto de
cortes activos en cada iteración. Posteriormente, la ecuación de cortes se cons-
truye sobre este conjunto dinámico, de modo que durante el proceso iterativo la
activación incremental del conjunto dinámico implica la inclusión incremental de
estas restricciones adicionales en el problema maestro. Estas ideas se presentan a
continuación en el siguiente código que resuelve el problema académico de la ante-
rior sección. Se ha seguido en la manera de lo posible la notación y la formulación
presentada anteriormente.

$TITLE Descomposición de Benders (Bd)

SETS
I ı́ndice de variables de la primera etapa / i1 * i2 /
L ı́ndice de variables de la segunda etapa / l1 * l2 /
M ı́ndice de restricciones de la primera etapa / m1 * m2 /
N ı́ndice de restricciones de la segunda etapa / n1 * n3 /

J ı́ndice de iteraciones / j1 * j20 /
JJ(j) subconjunto de iteraciones
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* Datos del problema

PARAMETERS
C(i) coeficientes función objetivo primera etapa

/ i1 -1
i2 -2 /

Q(l) coeficientes función objetivo segunda etapa
/ l1 -2

l2 -3 /
B(m) cotas restricciones primera etapa

/ m1 600
m2 0 /

H(n) cotas restricciones segunda etapa
/ n1 1000

n2 500
n3 0 /

TABLE A(m,i) matriz de restricciones primera etapa
i1 i2

m1 1 1
m2 1 -2

TABLE T(n,i) matriz de restricciones segunda etapa
i1 i2

n1 1 1
n2 1 0
n3 0 0

TABLE W(n,l) matriz de restricciones segunda etapa
l1 l2

n1 1 1
n2 1 0
n3 -2 1

* Fin datos del problema

POSITIVE VARIABLES
X(i) variables primera etapa
Y(l) variables segunda etapa

VARIABLES
Z1 función objetivo primera etapa
Z2 función objetivo segunda etapa
theta función de recurso

SCALARS
TOL tolerancia relativa / 1e-6 /
Z_INF cota inferior / -INF /
Z_SUP cota superior / INF /

PARAMETERS
PI(n,j) variables duales restricciones segunda etapa en la iteración j
DELTA(j) tipo de corte (infactible 0 óptimo 1) de la iteración j
X_J(i,j) valores de las variables de la primera etapa en la iteración j
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Z2_J(j) valor de la función objetivo del subproblema en la iteración j;

* Declaración de las ecuaciones

EQUATIONS
EQ_OBJ función objetivo problema completo
EQ_Z1 función objetivo primera etapa
EQ_Z2 función objetivo segunda etapa
EQ_R1(m) restricciones primera etapa
EQ_R2(n) restricciones segunda etapa
CORTES(j) cortes de Benders ;

* Construcción de las ecuaciones

EQ_OBJ .. Z1 =E= SUM(i, C(i)*X(i)) + SUM(l, Q(l)*Y(l)) ;

EQ_Z1 .. Z1 =E= SUM(i, C(i)*X(i)) + theta ;

EQ_Z2 .. Z2 =E= SUM(l, Q(l)*Y(l)) ;

EQ_R1(m) .. SUM(i, A(m,i)*X(i)) =L= B(m) ;

EQ_R2(n) .. SUM(i, T(n,i)*X(i)) + SUM(l, W(n,l)*Y(l)) =L=
H(n) ;

CORTES(jj) .. DELTA(jj) * theta =G= Z2_J(jj) +
SUM(n $(ORD(n) < 3), PI(n,jj)*SUM(i, T(n,i)*(X_J(i,jj) - X(i)))) ;

MODEL MAESTRO / EQ_R1, CORTES, EQ_Z1 / ; MODEL SUBPROBLEMA /
EQ_R2, EQ_Z2 / ; MODEL COMPLETO / EQ_R1, EQ_R2, EQ_OBJ
/ ;

FILE COPT / cplex.opt / ;

PUT COPT PUT ’scaind -1’/’lpmethod 1’ / ’preind 0’ / ’epopt
1.1e-9’ / ’eprhs 1.1e-9’ PUTCLOSE COPT ;

MAESTRO.OPTFILE = 1 ; SUBPROBLEMA.OPTFILE = 1 ;

* Algoritmo de Descomposición de Benders

* Inicialización de parámetros del problema
JJ(j) = NO ;
theta.FX = 0 ;
DELTA(j) = 0 ;
Z2_J(j) = 0 ;
X_J(i,j) = 0 ;
PI(n,j) = 0 ;
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* Iteraciones del algoritmo

LOOP(j $(ABS(1-Z_INF/Z_SUP) > TOL),

* Resolución del problema maestro
SOLVE MAESTRO USING LP MINIMIZING Z1 ;

* Adquisición de la solución
X_J(i,j) = X.L(i) ;

* Fijación de la variable de la primera etapa y
* Resolución del subproblema

X.FX(i) = X.L(i) ;
SOLVE SUBPROBLEMA USING LP MINIMIZING Z2;

* Adquisición de los parámetros para formar un nuevo corte
IF(SUBPROBLEMA.MODELSTAT = 4,

* Subproblema infactible
DELTA(j) = 0 ;
Z2_J(j) = SUBPROBLEMA.SUMINFES;

ELSE
* Actualización de la cota inferior

Z_INF = Z1.L ;
DELTA(j) = 1 ;
theta.LO = -INF ; theta.UP = INF ;

* Actualización de la cota superior
Z_SUP = SUM(i, C(i)*X.L(i)) + SUM(l, Q(l)*Y.L(l)) ;

) ;

Z2_J(j) = Z2.L;
PI(n,j) = EQ_R2.M(n) ;
X.LO(i) = 0 ; X.UP(i) = INF;

* Incremento del conjunto de cortes
JJ(j) = YES;

) ;

Los lenguajes de modelado algebraico como GAMS permiten el uso de diferen-
tes optimizadores para resolver los problemas. En el caso anterior, el optimizador
escogido ha sido CPLEX [10]. Para que las variables duales devueltas por el sub-
problema de Benders sean correctas para generar un corte de Benders tanto en el
caso de optimalidad como en el de infactibilidad, para este optimizador deben ser
desactivadas las opciones de preproceso (preind 0) y de escalado (scaind -1) y
el subproblema debe ser resuelto mediante el algoritmo simplex primal (lpmethod
1). Con el uso de otros optimizadores se debe comprobar la corrección de las
variables duales tanto para optimalidad como para infactibilidad. Si las variables
duales no son las adecuadas para generar un corte de infactibilidad, el subpro-
blema de minimización de infactibilidades debe de ser planteado expĺıcitamente
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y resuelto en el código GAMS.

2.6 Problema de transporte con coste fijo mediante des-
composición de Benders

Veamos a continuación un caso ejemplo caracteŕıstico de la aplicación del
método de descomposición de Benders. Se trata del problema de transporte
donde algunos o todos los arcos tienen un coste fijo asociado a la decisión de su
instalación o a su uso. El problema consiste en la minimización de los costes
fijos y variables sujeto a las restricciones de respetar las ofertas máximas de los
oŕıgenes y las demandas en los destinos. El problema se formula de la siguiente
manera

mı́n
xij

∑
ij(cijxij + fijyij)∑

j xij ≤ ai∑
i xij ≥ bj

xij ≤Mijyij
xij ≥ 0, yij ∈ {0, 1}

(6.22)

siendo cij el coste variable unitario de transporte, fij el coste fijo asociado a la
decisión de inversión en el arco ij, ai la oferta máxima de producto en el origen i,
bj la demanda del destino j, xij la variable que indica el flujo que recorre el arco
ij, yij la variable que representa la decisión de inversión en el arco ij y Mij un
cota superior de cualquier flujo en dicho arco ij (por ejemplo, Mij = mı́n{ai, bj}).

Las variables yij son binarias. Una vez conocidas el problema anterior es un
problema clásico de transporte. Las variables yij son las variables que complican
la resolución y, por consiguiente, son asignadas al problema maestro en un entorno
de descomposición de Benders. El subproblema se formula de la siguiente manera

mı́n
xij

∑
ij cijxij∑

j xij ≤ ai∑
i xij ≥ bj

xij ≤Mijy
j
ij : πij

xij ≥ 0

(6.23)

y el problema maestro como

mı́n
yij ,θ

∑
ij(θ + fijyij)

θ +
∑

ij(π
l
ijMijyij) ≥ f l +

∑
ij(π

l
ijMijy

l
ij) l = 1, . . . , k

yij ∈ {0, 1}
(6.24)

A continuación se expresa en GAMS este problema para un caso ejemplo
en el que se suponen cuatro oŕıgenes del producto y tres puntos de demanda. El
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problema debe decidir la combinación óptima de arcos de entre todos los posibles,
dados en la figura 2.

Fig. 2: Arcos posibles.

$TITLE Problema de transporte con coste fijo (Bd)

OPTION OPTCR = 0

SETS
J ı́ndice de iteraciones / j1 * j20 /
JJ(j) subconjunto de iteraciones
I orı́genes / i1 * i4 /
L destinos / l1 * l3 /

* Datos del problema

PARAMETERS
A(i) ofertas de producto

/ i1 10, i2 30, i3 40, i4 20 /
B(l) demandas de producto

/ l1 20, l2 50, l3 30 /

TABLE C(i,l) coste variable unitario de transporte
l1 l2 l3

i1 1 2 3
i2 3 2 1
i3 2 3 4
i4 4 3 2

TABLE F(i,l) coste fijo de transporte
l1 l2 l3

i1 10 20 30
i2 20 30 40
i3 30 40 50
i4 40 50 60
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* Fin datos del problema

ABORT $(SUM[i, A(i)] < SUM[l, B(l)]) ’Problema infactible’

POSITIVE VARIABLES
X(i,l) flujo por los arcos

BINARY VARIABLE
Y(i,l) decisiones de inversión en los arcos

VARIABLES
Z1 función objetivo primera etapa
Z2 función objetivo segunda etapa
theta función de recurso

SCALARS
TOL tolerancia relativa / 1e-6 /
Z_INF cota inferior / -INF /
Z_SUP cota superior / INF /

PARAMETERS
Y_J(i,l,j) valores de las variables de la primera etapa en la iteración j
PI(i,l,j) variables duales restricciones segunda etapa en la iteración j
DELTA(j) tipo de corte (infactible 0 óptimo 1) de la iteración j
Z2_J(j) valor de la función objetivo del subproblema en la iteración j;

* Declaración de las ecuaciones

EQUATIONS
EQ_Z1 función objetivo primera etapa
EQ_Z2 función objetivo segunda etapa
EQ_OBJ función objetivo problema completo
OFERTA(i) ofertas de los orı́genes
DEMANDA(l) demanda de los destinos
LIMITE(i,l) lı́mite de uso del arco
CORTES(j) cortes de Benders ;

EQ_Z1 .. Z1 =E= SUM[(i,l), F(i,l)*Y(i,l)] + theta ;

EQ_Z2 .. Z2 =E= SUM[(i,l), C(i,l)*X(i,l)] ;

EQ_OBJ .. Z1 =E= SUM[(i,l), F(i,l)*Y(i,l)] + SUM[(i,l),
C(i,l)*X(i,l)];

OFERTA(i) .. SUM[l, X(i,l)] =L= A(i) ;

DEMANDA(l) .. SUM[i, X(i,l)] =G= B(l) ;
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LIMITE(i,l) .. X(i,l) =L= MIN[A(i),B(l)] * Y(i,l) ;

CORTES(jj) .. DELTA(jj) * theta - Z2_J(jj) =G=
- SUM[(i,l), PI(i,l,jj) * MIN[A(i),B(l)] * (Y_J(i,l,jj) - Y(i,l))] ;

MODEL MAESTRO / EQ_Z1, CORTES / ;

MODEL SUBPROBLEMA / EQ_Z2, OFERTA, DEMANDA, LIMITE / ;

MODEL COMPLETO / EQ_OBJ, OFERTA, DEMANDA, LIMITE / ;

X.UP(i,l) = MIN[A(i),B(l)] ;

FILE COPT / cplex.opt / ;

* para que los resultados de un problema infactible sean los correctos con CPLEX sólo
* se puede utilizar el método simplex y sin preproceso ni escalado

PUT COPT PUT ’scaind -1’/ ’lpmethod 1’ / ’preind 0’ / ’epopt
1.1e-9’ / ’eprhs 1.1e-9’ PUTCLOSE COPT ;

MAESTRO.OPTFILE = 1 ; SUBPROBLEMA.OPTFILE = 1 ;

* inicialización de parámetros del problema

JJ(j) = NO ; theta.FX = 0 ; DELTA(j) = 0 ; Y_J(i,l,j) = 0
; Z2_J(j) = 0 ; PI(i,l,j) = 0 ;

* Iteraciones del algoritmo
LOOP(j $(ABS(1-Z_INF/Z_SUP) > TOL),

* Resolución del problema maestro
SOLVE MAESTRO USING MIP MINIMIZING Z1 ;

* Adquisición de la solución
Y_J(i,l,j) = Y.L(i,l) ;

* Fijación de la variable de la primera etapa y
* Resolución del subproblema

Y.FX(i,l) = Y.L(i,l) ;
SOLVE SUBPROBLEMA USING RMIP MINIMIZING Z2;

* Adquisición de los parámetros para formar un nuevo corte
IF(SUBPROBLEMA.MODELSTAT = 4,

DELTA(j) = 0 ;
Z2_J(j) = SUBPROBLEMA.SUMINFES;

ELSE
* Actualización de la cota inferior
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Z_INF = Z1.L;
DELTA(j) = 1 ;
theta.LO = -INF; theta.UP = INF;

* Actualización de la cota superior
Z_SUP = SUM[(i,l), F(i,l)*Y.L(i,l)] + SUM[(i,l), C(i,l)*X.L(i,l)];
Z2_J(j) = Z2.L;

) ;

PI(i,l,j) = LIMITE.M(i,l) ;
Y.LO(i,l) = 0 ; Y.UP(i,l) = 1 ;

* Incremento del conjunto de cortes
JJ(j) = YES;

) ;

Fig. 3: Evolución de arcos propuestos por el algoritmo de Benders.

La solución óptima es y11 = y23 = y31 = y32 = y42 = 1 y se alcanza en
15 iteraciones con un coste total fijo más variable de 380. La evolución de las
combinaciones de arcos propuestas por el algoritmo de descomposición se presenta
en la figura 3. Debe destacarse que solamente las propuestas de las iteraciones 7,
10 y 15 son factibles para el subproblema, de modo que la mayoŕıa de cortes que
el algoritmo genera son de infactibilidad y sólo dos cortes son de optimalidad. Por
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Iteración Cota Inferior Cota Superior
1 -∞ ∞
2 -∞ ∞
3 -∞ ∞
4 -∞ ∞
5 -∞ ∞
6 -∞ ∞
7 140 390
8 140 390
9 120 390
10 360 380
11 360 380
12 360 380
13 360 380
14 360 380
15 380 380

Tabla 6.1: Evolución de cotas en el algoritmo de Benders

último, el cuadro 6.1 presenta la evolución de la cota superior y la cota inferior del
problema durante el algoritmo. En este ejemplo, el algoritmo converge cuando
la cota inferior es exactamente la misma que la cota superior. La convergencia
se alcanza también cuando aparece una propuesta repetida. En este ejemplo, la
propuesta de arcos de la última iteración es de hecho la propuesta de la iteración
10.

3 Relajación Lagrangiana

La Relajación Lagrangiana [9] es una de las técnicas más extendidas en opti-
mización discreta. Se emplea principalmente cuando en un problema de progra-
mación matemática aparece un conjunto de ecuaciones que complica la resolución
del problema. Esto es, la resolución del problema sin esas ecuaciones tiene una
estructura cuya resolución es más sencilla. Esta técnica se basa en la dualización
de esas ecuaciones y en la formulación de un problema dual cuya resolución pro-
porciona una aproximación del valor óptimo del problema original mejor que la
resolución de su relajación lineal5. En caso de que el problema sea lineal y que
el conjunto de ecuaciones de complicación sean el conjunto de restricciones del
problema, este problema dual es el problema dual del problema original.

Se considera el siguiente problema de optimización lineal:

5Por relajación lineal de un problema P se entiende el problema P en el que las variables
enteras son sustituidas por variables continuas.

Rect@ Monográfico 2 (2004)
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mı́n
x

cTx

Ax = b
Dx ≤ d
x ≥ 0

(6.25)

y supongamos que Ax = b son el conjunto de restricciones de complicación.
Supondremos que A ∈ �m1×n, D ∈ �m2×n y que el resto de dimensiones son
conformes con éstas.

Dado λ ∈ �m1 se formula la función de Lagrange L(x, λ) como:

L(x, λ) = cTx + λT (Ax− b) (6.26)

y la función dual ω(λ) como evaluación del siguiente problema, subproblema de
Lagrange:

ω(λ) = mı́n
x

cTx + λT (Ax− b)

Dx ≤ d
x ≥ 0

(6.27)

Para todo λ ∈ �m1 es inmediato observar que ω(λ) ≤ cTx∗, siendo x∗ la
solución óptima del problema (25). El problema dual consiste en buscar el vector
de multiplicadores λ para el cual esta cota inferior dada por la función dual es
máxima:

máx
λ

ω(λ)

λ ∈ �m1
(6.28)

La función dual es cóncava independientemente de que el problema original sea
lineal o lineal entero mixto. Por esta razón, las técnicas basadas en subgradientes
aparecen de modo natural a la hora de maximizar la función dual [13, 12]. Estas
técnicas actualizan los valores de los multiplicadores siguiendo la dirección del
subgradiente, utilizando diferentes longitudes de paso en cada iteración [1]. Nótese
que si xj es la solución óptima del subproblema de Lagrange para un valor λj del
multiplicador, Axj−b es un subgradiente de la función dual. Una alternativa a las
técnicas basadas en el subgradiente es la representación lineal del problema dual,
lo que induce de modo natural un algoritmo de aproximación exterior similar
al algoritmo de descomposición de Benders. La próxima sección presenta este
algoritmo que posteriormente es formulado en GAMS.

La Relajación Lagrangiana recibe también el nombre de descomposición dual
o descomposición por precios porque se basa en la evaluación del subproblema
para distintos precios o variables duales.

Se describe a continuación la formulación del algoritmo de aproximación exte-
rior de la función dual, que denominaremos algoritmo de descomposición basado
en Relajación Lagrangiana.
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3.1 Representación lineal del problema dual

Consideremos de nuevo el subproblema de Lagrange que evalúa la función
dual ω(λ):

ω(λ) = mı́n
x

cTx + λT (Ax− b)

Dx ≤ d
x ≥ 0

(6.29)

En caso de disponer de forma expĺıcita del conjunto de soluciones factibles
de la región {Dx ≤ d, x ≥ 0}, el anterior problema podŕıa ser resuelto mediante
enumeración de todas ellas como:

ω(λ) = mı́n cTxl + λT (Axl − b) l = 1, . . . , ν (6.30)

La expresión anterior indica que la función dual es cóncava y que el problema
dual puede reformularse como el siguiente problema lineal, denominado problema
maestro de la Relajación Lagrangiana:

máxω
ω ≤ cTx1 + λT (Ax1 − b)
...
ω ≤ cTxν + λT (Axν − b)

(6.31)

Cada restricción del problema anterior se denomina Corte de Lagrange. Dado
que para problemas realistas disponer del conjunto de soluciones es prácticamente
imposible, la optimización del problema dual se reemplaza por la resolución ite-
rativa de problemas maestros relajados6, cuyo número de cortes de Lagrange
aumenta con cada iteración. Cada resolución de un problema maestro relajado
propone un nuevo valor del multiplicador λ que, una vez evaluado en la función
dual a través del subproblema de Lagrange, propone un nuevo corte de Lagrange
que aumenta el problema maestro relajado7.

De modo similar a la posibilidad de subproblemas infactibles en el algoritmo
de descomposición de Benders, el algoritmo de descomposición debe afrontar la
posibilidad de encontrar subproblemas de Lagrange no acotados. Cuando esto
ocurre, el multiplicador propuesto no es válido y se debe ser introducir una res-
tricción en el problema maestro que lo elimine del conjunto de multiplicadores
posibles. Este tipo de corte se denota Corte de Acotamiento y su construcción se
comenta en la siguiente sección.

6Relajado hace referencia a que no se dispone de la totalidad de los cortes, sino solamente
de un conjunto de ellos

7Por simplicidad de la exposición, se denomina como problema maestro al problema maestro
relajado.
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3.2 Cortes de acotamiento

Consideremos un valor del multiplicador λ y consideremos de nuevo el sub-
problema de Lagrange

ω(λ) = mı́n
x

cTx + λT (Ax− b)

Dx ≤ d
x ≥ 0

(6.32)

Supongamos que para este valor λ del multiplicador existe v ≥ 0 y Dv ≤ 08 tal
que cT −λTA < 0. Entonces, si x0 es una solución del subproblema de Lagrange,
observando que tv ≥ 0 y Dtv ≤ 0 para cualquier valor positivo de t se tiene que

cT (x0 + tv) + λT (A(x0 + tv)− b) = cTx0 + λTA(x0 − b) + t(cT − λTA)v (6.33)

con lo que el subproblema no está acotado dado que toma valores muy pequeños
cuando t tiende a infinito.

Del razonamiento anterior se deduce que el conjunto de multiplicadores acep-
tables debe verificar que

(cT + λTA)x ≥ 0 ∀x ∈ {x ≥ 0, Dx ≤ 0} (6.34)

La condición anterior, una vez propuesto un valor para el multiplicador, puede
ser comprobada resolviendo el siguiente problema, que denotamos subproblema de
acotamiento:

ω∗(λ) = mı́n
x

cTx + λTAx

Dx ≤ 0
0 ≤ x ≤ 1

(6.35)

y en caso de que tenga un valor negativo, se debe ser introducir un corte de
acotamiento en el problema maestro de la Relajación Lagrangiana de la forma:

0 ≤ cTxj + λTAxj (6.36)

De este modo, el algoritmo de la Relajación Lagrangiana itera entre un pro-
blema maestro, formado por cortes de Lagrange y cortes de acotamiento, y un
subproblema de Lagrange que evalúa los multiplicadores propuestos por el maes-
tro. El problema maestro, considerando ambos tipo de corte, puede ser formulado
de la siguiente forma

máxω
δjω ≤ cTxj + λT (Axj − δjb) j = 1, . . . , k (6.37)

8Es decir v ∈ {x ≥ 0, Dx ≤ 0} que es el sistema homogéneo asociado a {x ≥ 0, Dx ≤ d}
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considerando δj = 1 para los cortes de Lagrange y δj = 0 para los cortes de
acotamiento. Con esta formulación, el algoritmo de Relajación Lagrangiana se
describe esquemáticamente en la siguiente sección.

3.3 Algoritmo de Relajación Lagrangiana

El algoritmo de la Relajación Lagrangiana, considerando la interpretación
lineal del problema dual anterior, es descrito en los siguientes pasos.

1. Inicialización: j = 0, ε = 10−4

2. Resolución del problema maestro de la Relajación Lagrangiana

máx
λ,ω

ω

δjω ≤ cTxj + λT (Axj − δjb) j = 1, . . . , k
(6.38)

Obtener valor de λ e ir al paso 3

3. Resolución del problema de acotamiento

ω∗(λ) = mı́n
x

cTx + λTAx

Dx ≤ 0
0 ≤ x ≤ 1

(6.39)

Si ω∗(λ) ≥ 0 ir al paso 4. En otro caso obtener la solución xj y formar corte
de acotamiento

0 ≤ cTxj + λTAxj (6.40)

Ir al paso 2.

4. Resolución del subproblema de Lagrange

ω(λ) = mı́n
x

cTx + λT (Ax− b)

Dx ≤ d
x ≥ 0

(6.41)

Obtener la solución xj , y formar corte de Lagrange

ω ≤ cTxj + λT (Axj − b) (6.42)

Ir al paso 5.
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5. Regla de parada

Cálculo de la diferencia entre los multiplicadores propuestos en la iteración
j y la anterior j − 1.

Si d(λj − λj−1) < ε detener9.

En otro caso, ir al paso 2.

En el algoritmo de la Relajación Lagrangiana, los multiplicadores λ en el
problema maestro están acotados por valores suficientemente amplios que impiden
que éste sea no acotado. El problema lineal resuelto por Benders es ahora resuelto
mediante el algoritmo de Relajación Lagrangiana para ver en detalle los pasos del
algoritmo.

3.4 Ejemplo

Se desea resolver el siguiente problema lineal:

mı́n
x1,x2,y1,y2

−x1 − 2x2 − 2y1 − 3y2

x1 + x2 ≤ 600
x1 − 2x2 ≤ 0

x1 + x2 + y1 + y2 ≤ 1000
x1 + y1 ≤ 500

−2y1 + y2 ≤ 0
x1, x2, y1, y2 ≥ 0

entonces,

c =


−1
−2
−2
−3

, A =

 1 1 0 0
1 −2 0 0
0 0 −2 1

, b =

 600
0
0

,

D =
(

1 1 1 1
1 0 1 0

)
y d =

(
1000
500

)

esto es, se está considerando que las ecuaciones x1 + x2 + x3 + x4 ≤ 1000 y
x1 + x4 ≤ 500 son de complicación.

Para este ejemplo académico, codificado en GAMS tal como se presenta en
la próxima sección, las variables λ que representan los multiplicadores han sido
acotadas entre 0 y 10. El algoritmo comienza resolviendo un problema maestro

9d(λj − λj−1) representa distancia entre λj y λj−1
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de Relajación Lagrangiana sin ningún corte, proponiendo un primer valor para
los multiplicadores dado por

λ =
(

0
0

)
Este valor de los multiplicadores no es adecuado y el subproblema de acota-

miento lo rechaza introduciendo un corte en el problema maestro dado por

0 ≤ −5 + 2λ1 + 2λ2

Una nueva resolución del problema maestro propone

λ =
(

2.5
0

)
y el subproblema de acotamiento

0 ≤ −4 + 1.5λ1 + 0.5λ2

con lo que una nueva resolución del maestro obtiene

λ =
(

2.667
0

)
Este valor de multiplicadores es aceptado por el problema de acotamiento y

el algoritmo pasa a resolver el subproblema de Lagrange. Una vez resuelto, éste
propone un corte de Lagrange para el problema maestro que es

ω ≤ −1000λ1 − 500λ2

La nueva resolución del maestro propone el mismo multiplicador de Lagrange,
por lo que el algoritmo termina.

Para problemas lineales, el algoritmo de Relajación Lagrangiana termina con
una solución que es óptima para el dual del problema lineal. Esta solución viene
dada como el opuesto de este multiplicador óptimo. Este hecho puede apreciarse
en este ejemplo. Los valores de las variables duales de las ecuaciones relajadas
son (cuando se resuelve el problema completo):

π =
(
−2.667

0

)
Una desventaja de este método de descomposición es la pérdida de factibili-

dad de la solución primal durante las sucesivas iteraciones del método. En este
ejemplo, la última solución primal, aunque factible ( x1 x2 x3 x4 ) = ( 0 0 0 0 ) no
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es óptima. Sin embargo, puede comprobarse que la solución óptima, ( x1 x2 x3

x4 ) = ( 0 0 333.333 666.667 ) es una solución alternativa del último subproblema
de Lagrange resuelto.

Cuando la Relajación Lagrangiana se aplica a problemas lineales, la sucesión
de los valores óptimos del problema maestro (que siempre es decreciente) converge
al valor óptimo del problema lineal. Por el contrario, esto no se satisface cuando
el problema es entero mixto. Este valor al que la sucesión decreciente converge
es simplemente una cota inferior del valor óptimo del problema. Esta diferencia
entre el valor óptimo del problema y el valor obtenido por la Relajación Lagran-
giana es lo que se conoce en la literatura como intervalo de dualidad (duality gap).
La aparición del intervalo de dualidad origina que la solución primal propuesta
por la Relajación Lagrangiana pueda ser infactible. Una alternativa para evitar
esta situación consiste normalmente en realizar un postprocesado de las solucio-
nes obtenidas para encontrar la solución factible. Este postprocesado depende
del problema concreto que se resuelva y suele estar basado en el conocimiento
espećıfico de dicho problema. Otra alternativa para obtener una solución facti-
ble consiste en aumentar la función objetivo del subproblema de Lagrange con
un término cuadrático que penalize las infactibilidades asociadas a las ecuaciones
relajadas. Esta técnica es conocida como Relajación Lagrangiana Aumentada y
existen numerosas aplicaciones en la literatura.

Las próximas secciones presentan la implantación en GAMS del algoritmo de
descomposición basado en Relajación Lagrangiana para el ejemplo académico an-
terior y para el problema de coste fijo que anteriormente ha sido resuelto mediante
la descomposición de Benders.

3.5 Relajación Lagrangiana en GAMS

La implantación en GAMS de un código de Relajación Lagrangiana es similar
a la implantación de la descomposición de Benders. Se formula un modelo para el
problema maestro y otro para el subproblema, y éstos son resueltos sucesivamente
en un bucle de iteraciones. Las ecuaciones que representan los cortes de Lagrange
(una única ecuación que engloba a los dos tipos de corte) es declarada sobre un
conjunto estático de ı́ndices y construida sobre un conjunto dinámico. Durante el
proceso algoŕıtmico, este conjunto dinámico se va actualizado, aumentando por
tanto el número de cortes de Lagrange que contiene el problema maestro.

$TITLE Relajación Lagrangiana en GAMS (RL)

OPTION OPTCR = 0

SETS
J ı́ndice de iteraciones /j1 * j100 /

Rect@ Monográfico 2 (2004)
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JJ(j) subconjunto de ı́ndices
I ı́ndice de variables /i1 * i4 /
M ı́ndice de restricciones /m1 * m2/
N ı́ndice de restricciones /n1 * n3/

* Datos del problema

TABLE A(m,i) matriz A
i1 i2 i3 i4

m1 1 1 1 1 m2 1 0 1 0

TABLE D(n,i) matriz D
i1 i2 i3 i4

n1 1 1 n2 1 -2 n3 -2 1

PARAMETERS
C(i) coeficientes objetivo

/ i1 -1, i2 -2, i3 -2, i4 -3 /
B(m) término B

/ m1 1000, m2 500 /
Dd(n) matriz d (notación matemática)

/ n1 600, n2 0, n3 0 /

* Fin datos del problema

SCALARS
TOL tolerancia relativa / 1e-6 /
Z_INF cota inferior / -INF /
Z_SUP cota superior / INF /
DELTA 0 para subproblema de acotamiento 1 para Lagrange
DIF diferencia en iteraciones

PARAMETERS
W_J(j) función objetivo del problema dual en la iteración j
X_J(i,j) valores de las variables de flujo en la iteración j
DELTAJ(j) tipo de corte (acotación 0 óptimo 1) de la iteración j
LAMBDA_J(m,j) multiplicadores en la iteración j

POSITIVE VARIABLES
X(i) variables
LAMBDA(m) multiplicador

VARIABLES
Z variable objetivo primal (subproblema)
W variable dual

* Declaración de las ecuaciones
EQUATIONS

EQ_OBJ función objetivo problema
EQ_R1(m) restricciones que se relajan
EQ_R2(n) resto de restricciones
CORTES_LR(j) cortes de Relajación Lagrangiana
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CORTE_RE corte redundante;

EQ_OBJ .. Z =E= SUM(i, C(i)*X(i)) + SUM(m,
LAMBDA.L(m)*(SUM(i,A(m,i)*X(i))-DELTA*B(m))) ;

EQ_R1(m) .. SUM(i,A(m,i)*X(i)) =L= B(m) ;

EQ_R2(n) .. SUM(i,D(n,i)*X(i)) =L= DELTA*Dd(n) ;

CORTES_LR(jj).. DELTAJ(jj)*W =L= SUM(i, C(i)*X_J(i,jj)) +
SUM(m, LAMBDA(m)*(SUM(i,A(m,i)*X_J(i,jj))-DELTAJ(jj)*B(m))) ;

CORTE_RE .. W =L= 10000 ;

MODEL MAESTRO_LR / CORTES_LR , CORTE_RE / ;

MODEL SUB_LR / EQ_OBJ, EQ_R2 / ;

MODEL COMPLETO / EQ_OBJ, EQ_R1, EQ_R2 / ;

FILE COPT / cplex.opt / ;

PUT COPT PUT ’scaind -1’/ ’lpmethod 1’ / ’preind 0’ / ’epopt
1.1e-9’ / ’eprhs 1.1e-9’ PUTCLOSE COPT ;

MAESTRO_LR.OPTFILE = 1 ; SUB_LR.OPTFILE = 1 ; COMPLETO.OPTFILE = 1
;

* inicialización de parámetros del problema

JJ(j) = NO ; DELTAJ(j) = 0 ; DELTA = 0 ;
X_J(i,j) = 0 ; LAMBDA.LO(m) = 0 ; LAMBDA.UP(m) = 10 ; DIF =
INF;

* Iteraciones del algoritmo
LOOP(j $(DIF>TOL),

* Resolución del problema maestro de Relajación Lagrangiana
IF(ORD(j) > 1,

SOLVE MAESTRO_LR USING LP MAXIMIZING W;
W_J(j) = W.L;

ELSE
LAMBDA.L(m) = 0 ;

) ;
LAMBDA_J(m,j) = LAMBDA.L(m) ;

* Resolución del subproblema de acotamiento
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* Normalización de las cotas no nulas de las variables
X.UP(i) = 1 ;
DELTA = 0 ;
SOLVE SUB_LR USING RMIP MINIMIZING Z;

* Si la solución es negativa, generar un corte de acotamiento
IF(Z.L < -TOL,

X_J(i,j) = X.L(i) ;
DELTAJ(j) = 0 ;

* En caso contrario resolver el subproblema de Relajación Lagrangiana
ELSE

X.UP(i) = INF ;
DELTA = 1 ;
SOLVE SUB_LR USING RMIP MINIMIZING Z;
X_J(i,j) = X.L(i) ;
DELTAJ(j) = 1 ;

) ;

* Actualización del conjunto de cortes de Lagrange
JJ(j) = YES;

* Actualización de la diferencia de multiplicadores
IF(ORD(j)>1,

DIF = SUM(m, MAX(LAMBDA_J(m,j)-LAMBDA_J(m,j-1),
LAMBDA_J(m,j-1)-LAMBDA_J(m,j))) ;

) ;
) ;

X.UP(i) = INF ; LAMBDA.FX(m) = 0 ; DELTA = 1 ; SOLVE COMPLETO
USING RMIP MINIMIZING Z ;

Debe destacarse la necesidad de resolver independientemente el subproblema
de acotamiento y el subproblema de Lagrange. En el código presentado esto se
ha simplificado introduciendo un scalar (DELTA) que, declarado como 0 o bien
como 1, genera el subproblema de acotamiento o el subproblema de Lagrange
respectivamente. Otra caracteŕıstica de este código es la introducción de una
ecuación redundante para el problema maestro ω ≤ 10000. Esta ecuación es
introducida en el maestro para que la variable objetivo que es maximizada, ω, no
desaparezca del problema. La desaparición de la variable objetivo de un problema
es interpretado por este lenguaje como un error.

En la siguiente sección se presenta un código en GAMS orientado a resolver el
problema de coste fijo anteriormente descrito mediante Relajación Lagrangiana.
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3.6 Problema de coste fijo mediante Relajación Lagran-
giana

Consideremos el problema de transporte con coste fijo de la sección 2 y su-
pongamos que son las restricciones de capacidad ĺımite las que son relajadas e
introducidas en la función objetivo a través del lagrangiano. Para un valor λij el
subproblema de Lagrange presenta la forma:

mı́n
xij

∑
ij(cijxij + fijyij) + λij(xij −Mijyij)∑

j xij ≤ ai∑
i xij ≥ bj

xij ≥ 0, yij ∈ {0, 1}

(6.43)

que reformulado queda como

mı́n
xij

∑
ij(cij + λij)xij + (fij − λijMij)yij∑

j xij ≤ ai∑
i xij ≥ bj

xij ≥ 0, yij ∈ {0, 1}

(6.44)

Esta reformulación permite observar que el subproblema es separable en dos
problemas. Un problema de transporte en el que el coste variable es ligeramente
modificado por el multiplicador y un segundo problema que es entero puro y cuya
solución puede obtenerse de modo inmediato.

Problema de transporte

mı́n
xij

∑
ij(cij + λij)xij∑

j xij ≤ ai∑
i xij ≥ bj

xij ≥ 0

(6.45)

Problema entero puro

mı́n
yij

∑
ij(fij − λijMij)yij

yij ∈ {0, 1}
(6.46)

Esta formulación de la Relajación Lagrangiana para el problema del transporte
con coste fijo puede implantarse en GAMS con el siguiente código.

$TITLE Problema de transporte con coste fijo (RL)

OPTION OPTCR = 0
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SETS
J ı́ndice de iteraciones / j1 * j100 /
JJ(j) subconjunto de ı́ndices
I orı́genes / i1 * i4 /
L destinos / l1 * l3 /

* Datos del problema

PARAMETERS
A(i) ofertas de producto

/ i1 10, i2 30, i3 40, i4 20 /
B(l) demandas de producto

/ l1 20, l2 50, l3 30 /

TABLE C(i,l) coste variable unitario de transporte
l1 l2 l3

i1 1 2 3
i2 3 2 1
i3 2 3 4
i4 4 3 2

TABLE F(i,l) coste fijo de transporte
l1 l2 l3

i1 10 20 30
i2 20 30 40
i3 30 40 50
i4 40 50 60

* Fin datos del problema

ABORT $(SUM[i, A(i)] < SUM[l, B(l)]) ’Problema infactible’

SCALARS
TOL tolerancia relativa / 1e-6 /
Z_INF cota inferior / -INF /
Z_SUP cota superior / INF /
DIF diferencia en iteraciones

PARAMETERS
X_J(i,l,j) valores de las variables de flujo en la iteración j
Y_J(i,l,j) valores de las variables de inversión en la iteración j
DELTA(j) tipo de corte (acotación 0 óptimo 1) de la iteración j

POSITIVE VARIABLES
X(i,l) flujo por los arcos
LAMBDA(i,l) multiplicador

BINARY VARIABLE
Y(i,l) decisiones de inversion en los arcos

VARIABLES
Z variable objetivo primal (subproblema)
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W variable dual

* Declaración de las ecuaciones
EQUATIONS

EQ_OBJ función objetivo problema completo
OFERTA(i) ofertas de los orı́genes
DEMANDA(l) demanda de los destinos
LIMITE(i,l) lı́mite de uso del arco
CORTES_LR(j) cortes de Relajación Lagrangiana ;

EQ_OBJ .. Z =E= SUM[(i,l), F(i,l)*Y(i,l)] + SUM[(i,l),
C(i,l)*X(i,l)]

+ SUM[ (i,l), LAMBDA.L(i,l)*(X(i,l)-MIN[A(i),B(l)] * Y(i,l))];

OFERTA(i) .. SUM[l, X(i,l)] =L= A(i) ;

DEMANDA(l) .. SUM[i, X(i,l)] =G= B(l) ;

LIMITE(i,l) .. X(i,l) =L= MIN[A(i),B(l)] * Y(i,l) ;

CORTES_LR(jj).. DELTA(jj)*W =L= SUM[(i,l), F(i,l)*Y_J(i,l,jj)] +
SUM[(i,l), C(i,l)*X_J(i,l,jj)] +

SUM[(i,l), LAMBDA(i,l)*(X_J(i,l,jj)-MIN[A(i),B(l)] * Y_J(i,l,jj))];

MODEL MAESTRO_LR / CORTES_LR / ;

MODEL SUB_LR / EQ_OBJ, OFERTA, DEMANDA / ;

MODEL COMPLETO / EQ_OBJ, OFERTA, DEMANDA, LIMITE / ;

X.UP(i,l) = MIN[A(i),B(l)] ;

FILE COPT / cplex.opt / ;

* para que los resultados de un problema infactible sean los correctos con CPLEX sólo
* se puede utilizar el método simplex y sin preproceso

PUT COPT PUT ’scaind -1’/ ’lpmethod 1’ / ’preind 0’ / ’epopt
1.1e-9’ / ’eprhs 1.1e-9’ PUTCLOSE COPT ;

MAESTRO_LR.OPTFILE = 1 ; SUB_LR.OPTFILE = 1 ; COMPLETO.OPTFILE = 1
;

* inicialización de parámetros del problema

JJ(j) = NO ; DELTA(j) = 0 ; Y_J(i,l,j) = 0 ;
X_J(i,l,j) = 0 ; LAMBDA.LO(i,l) = 0 ; LAMBDA.UP(i,l) = 10 ;
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DIF = INF;

* Iteraciones del algoritmo
LOOP(j $(DIF>TOL),

* Resolución del problema maestro de Relajación Lagrangiana
IF(ORD(j) > 1,

SOLVE MAESTRO_LR USING LP MAXIMIZING W;
ELSE

LAMBDA.L(i,l) = 0 ;
) ;
LAMBDA_J(i,l,j) = LAMBDA.L(i,l) ;

* Resolución del subproblema de acotamiento
* Normalización de las cotas no nulas de las variables

X.UP(i,l) = 1 ;
SOLVE SUB_LR USING RMIP MINIMIZING Z ;

* Si la solución es negativa, generar un corte de acotamiento
IF(Z.L < 0,

X_J(i,l,j) = X.L(i,l) ;
Y_J(i,l,j) = Y.L(i,l) ;
DELTA(j) = 0 ;

* En caso contrario resolver el subproblema de Relajación Lagrangiana
ELSE

X.UP(i,l) = MIN[A(i),B(l)] ;
SOLVE SUB_LR USING MIP MINIMIZING Z;
X_J(i,l,j) = X.L(i,l) ;
Y_J(i,l,j) = Y.L(i,l) ;
DELTA(j) = 1 ;

) ;

* Actualización del conjunto de cortes de Lagrange
JJ(j) = YES;

* Actualización de la diferencia de multiplicadores
IF(ORD(j)>1,

DIF = SUM((i,l), MAX(LAMBDA_J(i,l,j)-LAMBDA_J(i,l,j-1),
LAMBDA_J(i,l,j-1)-LAMBDA_J(i,l,j))) ;

) ;
) ;

X.UP(i,l) = MIN[A(i),B(l)] ; LAMBDA.FX(i,l) = 0 ; SOLVE COMPLETO
USING MIP MINIMIZING Z ;

En este ejemplo, la sucesión de valores del problema maestro y la sucesión de
óptimos de los subproblemas convergen a la solución dada por la relajación lineal
del problema, véase la figura. En este caso, la cota inferior del valor óptimo del
problema dada por la relajación lineal del mismo no puede ser superada por la
aplicación de la Relajación Lagrangiana10. Por otra parte, los valores obtenidos

10Cuando esto ocurre se dice que el problema satisface la propiedad de integralidad (integrality
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por las variables de decisión no son factibles en ninguna de las iteraciones del
método. Se necesita un método de postprocesado de estas soluciones para obtener
una solución. En este problema, una posibilidad consiste en considerar la solución
dada para las variables continuas xij por el problema de transporte (lineal), y
adecuar las variables binarias a esta solución, es decir

uij = 1 si xij > 0

Con este procesado de las soluciones puede comprobar que en la iteración 51
(el algoritmo converge en la iteración 55) la solución obtenida es en este caso la
solución óptima del problema entero mixto:

y11 = y23 = y31 = y32 = y42 = 1

Fig. 4: Evolución de cotas en Relajación Lagrangiana.

4 Implantación en grandes modelos

GAMS fue desarrollado para permitir la implantación rápida de modelos de
optimización concentrando la labor del modelador en su formulación. Además,
dada la potencia del lenguaje permite la creación de modelos complejos con un
número reducido de instrucciones. Esto hace que el mantenimiento o la modi-
ficación de un modelo sea muy sencilla. De la misma manera estas ventajas se
extienden a la escritura de métodos de descomposición. Sin embargo, el tiempo
de resolución de un problema en GAMS por métodos de descomposición es muy
elevado. Las razones son las siguientes:

property) y tiene poco sentido el uso de la Relajación Lagrangiana como técnica de aproximación
del valor óptimo del problema.
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• el paso de un problema definido en GAMS al optimizador encargado de su
resolución se hace escribiéndolo en disco en lugar de a través de memoria
principal. Esto hace que se consuma mucho tiempo cuando esta tarea se
debe hacer repetidas veces para cada maestro o subproblema. Este inconve-
niente se puede soslayar parcialmente recurriendo a la creación de un disco
virtual en memoria principal mediante un controlador RAMDISK.

• cada maestro o subproblema se crea de nuevo cada vez aunque las modifi-
caciones entre una iteración y la siguiente para cada problema son menores.
Precisamente este idea de resolución iterativa de problemas muy similares
es el núcleo central de la descomposición y es la que se debeŕıa poder apro-
vechar computacionalmente tanto en la fase de creación del problema como
en el algoritmo de resolución (mediante el simplex dual). GAMS genera
desde cero cada problema aunque śı permite guardar la base previa.

En conclusión, GAMS puede ser utilizado para el desarrollo de prototipos de
modelos de optimización y de métodos de descomposición. Sin embargo, una
vez validados estos prototipos se deben utilizar lenguajes alternativos de menores
tiempos de computación.
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1 Introducción

La vida de una planta petroqúımica o de producción de eneǵıa comienza con
su estudio de viabilidad, dimensionamiento y localización. Siguen el diseño, la
construcción, depués la puesta en marcha que es algo que por su problemática
podemos separar del funcionamiento normal, pasamos a la fase de producción o
funcionamiento normal, durante la que puede tener lugar alguna modificación de
la misma con vistas a su posible ampliación de capacidad o mejora de rendimiento
y finalmente su cierre por obsolescencia económica o tecnológica.

Nos centraremos en la fase de diseño de una nueva planta o en la modificación
de una existente, si bien las ideas son aplicables también al funcionamiento.

Cuando abordamos el diseño de una planta debemos determinar que unidades
vamos a construir, que forma y dimensiones tendrá cada unidad y de qué materia-
les estará construida, como estarán interconectadas, en que lugares f́ısicos hemos
de situarlas, como será el sistema de control, y un sin número de caracteŕısticas
fáciles de imaginar. Los modelos que habitualmente aplicamos, sean mas o menos
sencillos o complejos, son deterministas. Solemos analizar: una hipótesis básica
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que es la recomendada, una pesimista y otra optimista. Aśı nos cubrimos algo en
salud pero pasamos ”el muerto” de la decisión última a nuestro jefe.

Generalmente disñamos la planta para unas ”condiciones nominales” de fun-
cionamiento. Fijamos factores tales como la capacidad de producción del producto
o productos principales y secundarios, las materias primas que vamos a consumir.
En el cálculo de las unidades de que consta suponemos conocidos parámetros tales
como velocidades de reacción y/o coeficientes de transferencia de materia, funcio-
namiento de hornos, calderas, turbinas, perdidas de presión en tubeŕıas, cargas
que afectarán a la estructura y otros similares. Y ”por si acaso” tomamos un
coeficiente de seguridad con el que nos cubrimos en salud. Ésto era aceptable en
una época en la que los algoritmos de cálculo y la capacidad de los ordenadores,
cuando les hab́ıa, no permit́ıan otra cosa. Pero la realidad no es esa, y en la era
de la globalización y de la competencia creciente no queda mas remedio que afinar
todo lo que podamos. Con ello no solo salvaremos a nuestra empresa o entidad
en la que trabajamos, sino que estaremos beneficiando a toda la colectividad.

Pero, ¿como podemos lograrlo?, ¿qué debemos hacer para mejorar nuestros
diseños?

Está claro que acercarnos mas a la realidad. Lo dif́ıcil no es decir ésto sino
saber llevarlo a la práctica. Trataremos de daros algunas ideas que os ayuden a
hacerlo.

En primer lugar, por el método clásico damos valores fijos a los parámetros que
intervienen en el diseño, pero la realidad es que solo podemos indicar la frecuencia
con la que esperamos que tomen uno u otro valor. Disponemos de la distribución
de probabilidades de que esto suceda. Si esta distribucuón de probabilidades tiene
una desviación t́ıpica reducida respecto del valor que toma su media, el adoptar
ésta como valor del parámetro en cuestión no origina una desviación apreciable
en los resultados, pero si no es éste el caso, estamos ante la posibilidad de mejorar
el diseño teniendo en cuenta en los cálculos la incertidumbre existente.

Al llegar a este punto pensamos en la incertidumbre existente en las previsiones
de demanda y precios de nuestros productos principales y subproductos, que
pueden alcanzar uno u otro valor, en la probabilidad de que la competencia decida
llevar a efecto un proyecto complementario o competitivo con el nuestro, de la
probabilidad de que dispongamos de ciertas materias primas y de los precios que
puedan alcanzar, o de que en un futuro no lejano aparezca un producto o proceso
ventajoso que origine la obsolescencia económica del nuestro. Todo ello afectará
al diseño de nuestra planta.

Pero hay mas incertidumbres. ¿Porqué sobredimensionamos tanto las unida-
des de extracción ĺıquido-ĺıquido o los cristalizadores? ¿Y ciertos reactores?

La respuesta es sencilla: porque los modelos que representan su funciona-
miento son poco exactos. Cuando determinamos los coeficientes de velocidad
de reacción a partir de resultados experimentales, lo que realmente obtenemos
-aunque no lo sepamos- es el valor mas probable y la desviación t́ıpica con la que
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evaluamos dicho valor, que suele seguir una distribucuión normal. Si la relación
entre el valor mas probable y la desviación t́ıpica es grande, el valor aludido es
altamente probable que coincida con el real y podemos usar un modelo deter-
minista en el cálculo de nuestro reactor. Si la relación aludida es pequeña la
incertidumbre en la velocidad de reacción es alta y deberemos utilizar en nuestros
cálculos un modelo que tenga en cuenta esta incertidumbre, esto es, un modelo
estocástico. Pero incluso en el primer caso, tampoco está claro que el modelo de-
terminista sea suficiente, pues segúramente exista incertidumbre en los caudales y
composiciones de las corrientes que alimentan el reactor, por no hablar de costes,
flujos internos y muchos otros factores.

Hasta con los valores de los parámetros exactos, podemos tener la incertidum-
bre en la bondad del propio modelo. El reactor antes aludido puede no compor-
tarse como reactor de mezcla perfecta ni de flujo de pistón perfecto, sino como
algo intermedio, acercándose mas o menos a uno u otro tipo de flujo, en función
de una pluralidad de factores de imposible control durante el funcionamiento.

Los factores inciertos no solo son de los tipos hasta ahora expuestos. ¿Podemos
estar seguros de que no va a salir un producto con mejores propiedades que el que
nosotros vamos a fabricar y mas barato que el nuestro o de que no sale un proceso
que desplaza al nuestro por fabricar lo mismo que nosotros con menores costes?
Y ¿como protegernos contra esto al diseñar nuestra planta? ¿Quizá disen̄ando
nuestra planta para que puede fabricar tembién otros productos diferentes?

Ni que decir tiene que nosotros estamos del lado de los modelos que contemplen
la incertidumbre existente, esto es, de los modelos estocásticos por una razón
muy sencilla: el mundo es aśı, la predestinación no existe. Pero para poder
aplicar en este momento las técnicas de optimización estocástica a problemas
reales medianos o grandes, tales como procesos completos o partes importantes
de los mismos no queda mas remedio que transformar nuestro modelo en uno
lineal entero mixto.

La solución que proporciona un modelo de programación matemática es-
tocástica (que es el nombre de la optimización estocástica) debemos denominarla
solución inmunizada contra la incertidumbre o solución robusta en vez de solución
óptima.

Cuando transcurre el tiempo se suceden los acontecimientos. Si hab́ıamos
hecho un modelo determinista y la casualidad hace que las cosas ocurran de
acuerdo con nuestros supuestos, estamos de enhorabuena. Ahora bien, lo mas
probable es que las cosas no sucedan asíı. Lo normal es que no podamos celebrarlo.

En cambio, si hab́ıamos utilizado un modelo en el que contemplábamos las
probabilidades de que las cosas sucedan de una u otra forma, es fácil que lo que
ocurra no nos pille desprevenidos. Quizá nuestra solución no sea la óptima pero
si suficientemente buena. Es casi seguro que lo celebraremos.

La optimización determinista ha sido estudiada por muchos autores. La es-
tocástica está de moda pero es mucho mas compleja y los éxitos son menores. En
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relación con la śıntesis de procesos citaremos [3], [9], [11], [15], [18], [27], [33], [14].
Exponen aspectos de la śıntesis de procesos aplicando técnicas no lineales [5], [6],
[7], [28], [29]. Un buen libro de śıntesis de procesos es [1]. Otro que aborda la opti-
mización de procesos desde la óptica no lineal, con revisión de algunos algoritmos
es [12].

En [21], [22] mostramos nuestros primeros trabajos encaminados a la optimi-
zación determinista del diseño de procesos. Nuestros planteamientos estocásticos
aparecen en [26], [24], [25], [23], y [10].

2 Las ideas

En la optimización del diseño, mejora y/o funcionamiento de un proceso en-
contramos elementos cuyo valor es incierto tanto en factores externos -precios,
demandas de productos, disponibilidades de materias primas- como internos re-
lacionados con su funcionamiento. Además, en ocasiones, mediante el proceso
resultante deberemos ser capaces de fabricar mas de un producto.

Planteando nuestro modelo de una forma que pudiéramos llamar exacta, lle-
gamos a un sistema que es: no lineal, tanto en la función objetivo (a veces mas
de una) como en las restricciones; las mas de las veces fuertemente no convexo;
con variables reales (que pueden tomar cualquier valor comprendido entre dos
ĺımites) y binarias (que toman solo los valores 0 ó 1); y algunos de los que nor-
malmente seŕıan parámetros han sido sustituidos por funciones de distribución de
probabilidades. Este tipo de modelos solo funcionará en casos de muy reducidas
dimensiones. Como ĺınea de investigación básica es muy interesante, pero para
resolver problemas reales no.

Para poder tratar casos medianos y grandes, nosotros consideraremos la in-
certidumbre v́ıa escenarios y transformaremos el modelo no lineal en otro lineal
entero mixto, en el que intervengan variables reales -continuas que pueden to-
mar cualquier valor comprendido entre dos ĺımites- y binarias -que solo toman los
valores 0 y 1-. El modelo resultante será generalmente de muy grandes dimen-
siones. El tratar con muchas variables binarias no será algo fácil pero si factible.
Es un sistema que hemos aplicado con éxito a plantas petroqúımicas reales y es
el método que vamos a aplicar aqúı.

3 Metodoloǵıa

En nuestro sistema distinguiremos las:

• Variables de diseño, que determinan todo lo que interviene en el diseño del
proceso. Son las que debemos determinar en el momento diseñarle. Tales
son en un intercambiador de calor el diámetro, longitud, y disposición de
los tubos, el número de pasos por la carcasa y la disposición de las pantallas
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deflectoras, los materiales empleados, los rangos máximos de temperatura
y presión de funcionamiento, las unidades a las que conectamos cada una
de sus entradas y salidas de fluido y otros detalles constructivos. Existirá
un único diseño, común a todos los escenarios.

• Variables de funcionamiento, que indican como funcionará nuestro proceso
en cada escenario. Para cada escenario el proceso funcionará de una manera
diferente, y lo único que conocemos es la probabilidad de que esto suceda.
Debemos prever en nuestro modelo la posibilidad de que en algunos esce-
narios ciertas restricciones sean flexible. Aśı, el modelo debe poder decidir
para una planta de etileno una capacidad de producción de 500.000 t/año,
en tanto que la demanda prevista para algunos escenarios sea de 700.000
t/año, teniendo en cuenta los posibles efectos que puede originar el que no
suministremos 200.000 t/año. En el intercambiador antes aludido, varia-
bles de funcionamiento seŕıan para cada escenario los fluidos y caudales que
circulan por los tubos y por la carcasa y sus temperaturas de entrada y
salida.

Nuestro modelo utilizará:

• Variables reales que pueden tomar cualquier valor comprendido entre dos
ĺımites que por defecto son 0 e ∞. A este tipo pertenecen variables tales
como caudales, temperaturas, presiones, concentraciones.

• Variables binarias que toman únicamente los valores 0 ó 1, cuyo significado
es ”si” o ”no” instalamos, conectamos o colocamos algo, y en general las
utilizaremos para imponer condiciones lógicas.

Nuestro modelo estocástico, tendŕıa la forma compacta siguiente:

• Función objetivo a maximizar o minimizar, según el caso:

máx ĉX · xD + ĉY · yD +
∑
g∈G

ŵg · ĉXg · xFg +
∑
g∈G

ŵg · ĉYg · yFg (7.1)

• sujeta a:

bg ≤ ÂD
g · xD + B̂D

g · yD + ÂF
g · xFg + B̂F

g · yFg ≤ bg (7.2)
∀g ∈ G

• con los ĺımites:

xD ≤ xD ≤ xD (7.3)
yD ∈ {0, 1} (7.4)

xFg ≤ xFg ≤ xFg (7.5)

yFg ∈ {0, 1} (7.6)
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Recomendamos seguir los siguientes pasos:

1. Definición del problema.

No es sencillo definir el problema en el caso del diseño de un proceso o de
una parte del mismo. Tenemos que decidir el conjunto de materias primas
de posible utilización, el conjunto de productos de entre los que el sistema
decidirá cuales produce, si deseamos que el proceso sea multiproducto en
cuyo caso es como si tuviéramos ”varios procesos en uno”. El objetivo
perseguido parece claro que es el beneficio máximo, pero generalmente no
es el único. Aspectos tales como el impacto medioambiental, los riesgos en
el abastecimiento de ciertas materias primas, la diversificación de riesgos y
otros de poĺıtica de empresa la complementan.

2. Elaboración de un primer esbozo de superestructura.

La superestructura es un diagrama de flujo que contemplará muchas si no
todas las alternativas. Veamos un ejemplo sencillo que nos aclare las ideas.

Supongamos que disponemos de una corriente A que es una mezcla de los
compuestos C1, C2 y C3 en concentración y caudal variable entre ciertos
ĺımites. Deseamos obtener tres corrientes cuyas concentraciones mı́nimas
limitativas son: 98% de C1 la B, 97% de C2 la C y 99% de C3 la D.
Supongamos también que utilizamos para ello una red de columnas de des-
tilación.

Una columna de destilación, como bien sabemos, dispone de varios platos,
un condensador en la parte superior en el que extraemos calor y un hervidor
en la inferior mediante el que proporcionamos calor. El condensador y el
hervidor son intercambiadores de calor. Para una columna de destilación
dada, la temperatura de la corriente a calentar en el hervidor es mayor que la
temperatura de la corriente a enfriar en el condensador. En un plato pasan
los productos mas volátiles desde la fase liquida a la fase vapor y los menos
volátiles desde la fase vapor a la ĺıquida. La corriente de vapor asciende
por la columna y se enriquece progresivamente en compuestos volátiles,
empobreciéndose en compuestos menos volátiles. A la corriente ĺıquida,
que circiula en sentido inverso, le sucede lo contrario. El vapor que sale
por la parte superior de la columna se condensa en el condensador. Una
parte es reciclado a la columna y otra es la corriente que sale por cabeza.
Por el fondo sale una corriente ĺıquida, parte de la cual se evapora en un
hervidor y se devuelve a la columna, constituyendo el resto la corriente
de fondo que sale de la misma. En ocasiones existen salidas laterales por
las que salen corrientes de composiciones intermedias. El resultado es que
por la parte superior salen los productos mas volátiles y por la inferior los
menos volátiles. Si hay salidas intermedias, por ellas salen corrientes cuya
volatilidad es menor a medida que la salida está mas próxima al fondo.
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Un intercambiador de calor es un dispositivo formado por tubos por el que
circulan dos corrientes, una de las cuales -llamada fŕıa- se calienta y otra
-denominada caliente y cuya temperatura es mayor que la de la anterior- se
enfŕıa. El calor que pierde la corriente caliente es igual al calor que pasa a
la corriente fŕıa.

La figura 7.1 muestra la superestructura del ejemplo expuesto. Por simpli-
cidad hemos dibujado solamente las columnas de destilación y sus interco-
nexiones pero no las de la red de intercambiadores de calor (de la que si
aparecen los condensadores y hervidores de las columnas) y otros elementos
necesarios para un buen aprovechamiento energético. Columnas de desti-
lación con su condensador y hervidor asociados estarán representadas en los
lugares U − 1,U − 2 y U − 2. Tubeŕıas de conexión son las ĺıneas L1, L2, ...
, L11.

Figura 7.1: Ejemplo de superestructura

Nuestro modelo deberá decidir de que elementos constará nuestro proceso
de entre los mostrados en la superestructura: columnas de destilación; in-
tercambiadores de calor; fuentes de vapor y de agua de refrigeración; si
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debemos o no emplear turbinas de vapor de contrapresión para mejorar el
rendimiento energético. Deberá aśımismo decidir que diseño e interconexio-
nes deberá tener cada una de estas piezas.

3. Elaboración de los escenarios y de sus probabilidades asociadas.

La elaboración de escenarios conlleva hacer previamente una lista de parámetros
inciertos. Para cada uno de ellos debemos determinar la distribución de fre-
cuencias, o mas exactamente, de probabilidades de que tomen uno u otro
valor.

En el caso de las demandas y precios de productos que posiblemente fabri-
quemos y de las materias primas que consumamos y sus restricciones los
escenarios, podemos emplear para su predicción modelos estad́ıticos tales
como los econométricos o los de Box-Jenkins. La distribución de probabi-
lidades deseada nos la proporcionan directamente. Lo mismo sucede con
parámetros de tipo técnico obtenidos experimentalmente, como coeficientes
de velocidad de reacción. El uso de técnicas estad́ısticas como son sencillas
regresiones.

Pero en otras ocasiones no queda mas remedio que recurrir a probabilida-
des de carácter subjetivo. Tel sucede por ejemplo en la inversión de un
equipo con un diseño dado. Podemos solicitar valores de la inversión: mas
probable, y los ĺımites razonables superior e inferior (con probabilidades
respectivas del 10% de ser o no superados), y ajustar una distribución Beta
de probabilidades con estos datos.

Hemos de tener presente que hay parámetros interrelacionados, cuyos valo-
res, si bien inciertos, no son independientes.

Supongamos que únicamente existe incertidumbre significativa en: la can-
tidad de producto q1, q2 y q3 a ser producida por nuestro proceso, cuyas
respectivas probabilidades son w11, w21 y w31; y en las probabilidades de
que los precios de venta sean p1 y p2, siendo con probabilidades w12 y w22.
Sean independientes ambos parámetros -cantidades y precios-. Resultarán
los 6 escenarios mostrados en la figura 7.2. Aśı: el escenario 1, de probabi-
lidad w1 = w11 ·w12, conllevará una producción q1 y un precio de venta p1;
el escenario 2, de probabilidad w2 = w11 · w22, conllevará una producción
q1 y un precio de venta p2; y el escenario 6, de probabilidad w6 = w31 ·w22,
conllevará una producción q3 y un precio de venta p2.

El problema surge cuando del caso académico pasamos al real. La primera
gran sorpresa es que el número de escenarios es infinito, o mas exáctamente,
varios millones, para no exagerar. La manera de resolver tal problema es
generar escenarios equiprobables y extraer aleatoriamente un número ra-
zonable de ellos. Si somos un poco hábiles no necesitaremos generarles
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Figura 7.2: Ejemplo de escenarios

f́ısicamente. Elaboraremos aleatoriamente solo los que necesitemos. Usa-
remos por tanto en nuestro modelo una muestra del colectivo total de es-
cenarios. Esto implicará que nuestros resultados tendrán un cierto nivel
de significación, pero por bajo que sea este, nuestra solución siempre será
mejor que la obtenida por métodos deterministas.

4. Elaboración de la superestructura.

A la vista del resultado y consideraciones hechas en el paso 3 puede ser
necesario retocar la superestructura elaborada en el paso 2. Llegamos a la
superestructura que vamos a utilizar en nuestro modelo.

5. Determinación de los ĺımites de funcionamiento de cada unidad.

En la superestructura de nuestro ejemplo (figura 7.1) encontramos que en
los lugares U − 1, U − 2 y U − 3 habrá unidades importantes -columnas
de destilación- cuya existencia y caracteŕısticas deberá decidir el modelo.
Habida cuenta de la superestructura y de los escenarios, determinaremos el
conjunto de ĺımites que englobarán las distintas maneras de funcionamiento
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de cada unidad, en caso de que exista. Es fácil realizar modelos basados en
flujos en redes con diferentes funciones objetivo, que nos den dichos ĺımites.
Aśı en nuestro ejemplo, la unidad U−1, cuando exista, podrá separar, según
los casos por cabeza C1 o bien C1 y C2, por el centro C2 o nada, y por el
fondo C3 o C2 y C3.

6. Determinación del catálogo de diseños de las unidades.

Esta es una de las fases cŕıticas de nuestro método. Conocemos la superes-
tructura y los ĺımites de funcionamiento de cada una de las unidades de que
consta.

Una forma de abordar el problema es incluir en nuestro modelo los ”mode-
los” de disen̄o y funcionamiento de cada una de las unidades. El problema
es que son modelos generalmente no lineales fuertemente no convexos. Ni
siquiera un modelo determinista de una planta real medianamente compleja
que los incluyera funcionaŕıa. Si el lector ha usado modelos comerciales de
simulación de, por ejemplo, columnas de destilación, recordará sin esfuerzo
lo que le ha costado obtener resultados, ¡y lo único que hacen es resolver un
sistema no lineal de ecuaciones!.

Pero cuando, por ejemplo, calculamos una tubeŕıa o una estructura metálica
lo que hacemos es decidir que tubeŕıa o viga a usamos en cada lugar, se-
leccionándola de entre un catálogo de tubeŕıas o vigas disponibles norma-
lizadas. Ahora bien, ¿porqué las tubeŕıas y vigas están normalizadas y las
columnas de destilación o reactores qúımicos no? La respuesta es sencilla:
porque las tubeŕıas y vigas se consumen mucho y las columnas de destilación
no.

Nuestra propuesta es aplicar el principio de divit el vincit. Elaboramos a
nuestra medida un catálogo o conjunto de diseños de cada una de las unida-
des de nuestra superestructura. Para cada unidad y diseño determinamos
un conjunto de modos de funcionamiento. Un diseño podrá funcionar de
distintos modos. Cada modo será tal que pueda ser representado con su-
ficiente precisión mediante un modelo lineal. Lo que hacemos con esto es
separar el problema de diseño y funcionamiento de las unidades por un lado
y la parte combinatoria estocástica de optimización, que es la realmente
compleja, por otro.

Para determinar el diseño y funcionamiento de las unidades puedes usar los
simuladores existentes y en caso de que fuera necesario resultados experi-
mentales. Si usamos simuladores recomendamos hacer un sencillo programa
que los maneje al objeto de elaborar de forma automática el conjunto de
diseños de cada unidad.

El conjunto de diseños de cada unidad debe ser tal que cubran los ĺimites
de funcionamiento marcados en el paso 5.
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7. Determinación de los modos de funcionamiento de cada diseño.

Para cada diseño de cada unidad deberemos determinar un conjunto de
modos de funcionamiento. Cada modo tendrá unos ĺımites tales que el
funcionamiento pueda ser representado mediante un modelo lineal con la
suficiente precisión. Es como si ajustáramos mediante facetas la función que
representa el funcionamiento. Esto conlleva el uso de técnicas estad́ıticas,
que en los casos sencillos se reduce a regresiones. Debemos de terminar
simultáneamente las funciones lineales y los ĺımites.

Dedicaremos un apartado a aclarar este punto mas adelante.

8. Elaboración del modelo determinista.

Elaboraremos un modelo determinista que contemple todos los diseños y
modos de funcionamiento de las distintas unidades, su posible existencia o
no, sus interconexiones y todos los demás aspectos necesarios. Tendrá una
o mas funciones objetivo.

El modelo determinista estará constituido por la función objetivo (7.1), las
restricciones (7.2), los ĺımites de variables (7.5) y (7.6) cuando sustituimos
el conjunto de escenarios G por el escenario g ∈ G objeto de estudio, y
además añadimos los ĺımites de variables (7.3) y (7.4).

Pasaremos este modelo determinista para las condiciones espećıficas de cada
escenario. Esto nos permitirá:

• Detectar los errores en el modelo. Es siempre mas fácil en este modelo
que en el estocástico mas complejo.

• Analizar la solución proporcionada para cada escenario. Obtenemos
una primera idea de la situación del problema y de la filosof́ıa subya-
cente.

• Servir de paso previo al modelo estocástico. Las soluciones de cada
escenario nos ayudan a elaborar una buena solución estocástica inicial
o al menos una cota inicial que nos permita reducir el tiempo de cálculo.

9. Elaboración del modelo estocástico.

El modelo estocástico, como ya dijimos, está constituido por la función obje-
tivo (7.1), las restricciones (7.2), y los ĺımites de variables (7.3), (7.4), (7.5)
y (7.6). Es generalmente un modelo de muy grandes dimensiones. Una ma-
nera de resolverlo en menor tiempo de cálculo es aplicar la descomposición
de Benders, conservando en el problema maestro las variables binarias yD e
yFg , ∀g ∈ G. El problema maestro le resolvemos en el ordenador mas rápido
de que dispongamos y los problemas derivados en paralelo en todos los que
podamos.
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Sobre el modelo estocástico trataremos mas detenidamente en siguientes
apartados.

10. Análisis de los resultados del modelo estocástico.

Llamamos solución robusta o solución inmunizada contra incertidumbre a
la solución óptima del modelo estocástico. Es una solución que quizá para
ningún caso o escenario sea la óptima, pero casi siempre suficientemente
buena.

En nuestro ejemplo, la solución robusta podŕıa ser la mostrada en la figura
7.3. Lógicamente, la solución robusta contiene mucha mas información que
la incluida en esa figura. Parte de la solución es: el diseño de las unidades
U − 1 y U − 2 (la U − 3 no se construye) que será el mismo sea cual fuere el
o los escenarios que después ocurran, y para cada escenario temperaturas,
presiones, flujos y composiciones de todas las corrientes que circulan dentro
de las citadas unidades y por las tubeŕıas que las interconectan, entre las
que se encuentran las que abastecen de materias primas el proceso (L1 en
nuestro caso) y sacan de la misma los productos obtenidos (L9, L10 y L11).
Y a la hora de analizar la solución robusta no olvidemos tener en cuenta
uno de los datos: la probabilidad de que suceda cada escenario.

4 Modelización de unidades: Diseños y modos de
funcionamiento

Hemos comentado que debemos modelar las unidades de forma que el modelo
resultado sea lineal. Veamos unas ideas o metodolog´́i de como hacerlo. Nos
valdremos de un sencillo ejemplo de un intercambiador de calor.

El problema

Sea un intercambiador de calor cuyo diagrama y esquema de funcionamiento
indicamos en la figura 7.4. Supongamos que es un intercambiador de calor en
contracorriente de un paso por la tubeŕıa y otro por la carcasa. Las corrientes
entrada y salida del fluido caliente son CE y CS respectivamente. Las corrientes
de entrada y salida del fluido fŕıo son FE y FS respectivamente. Denominemos
CC1 al intercambiador.

Suponemos que cuando no exista el intercambiador conectamos la corriente
fŕıa de entrada con la de salida y la caliente de entrada con la de salida.

Por simplicidad suponemos que únicamente hay transferencia de calor sensible,
si bien incluir el calor latente no ofrece ningún problema.
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Figura 7.3: Ejemplo de solución robusta

La modelización exacta o casi exacta

Supondremos que: ĉCE = ĉCS y ĉFE = ĉFS
Señalaremos que las variables que definen el diseño son: la existencia o no de

cada unidad Yu, el área Au, y la inversión Iu que depende del área.
Las variables que definen el funcionamiento dependen del escenario que tenga

lugar, y son: el calor intercambiado Qug, los caudales másicos de las corrientes
Fcg, y sus temperaturas Tcg de las corrientes.

Empezamos por elaborar un modelo sencillo del intercambiador CC1 de nues-
tro ejemplo.

• En todos los casos:

FCE,g = FCS,g (7.7)
FFE,g = FFS,g (7.8)

• Si existe el intercambiador CC1 será YCC1 = 1, y se cumplirá:
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Figura 7.4: Ejemplo de intercambiador de calor: Diagrama y esquema

– Calor cedido por la corriente caliente:

QCC1,g = FCE,g · ĉCE (TCE,g − TCS,g) (7.9)
g ∈ G

– Calor tomado por la corriente fŕıa:

QCC1,g = FFE,g · ĉFE (TFS,g − TFE,g) (7.10)
g ∈ G

– Calor transferido en el intercambiador:

QCC1,g = ÛCC1 ·ACC1
TCE,g − TFS,g − TCS,g + TFE,g

ln
(
TCE,g−TFS,g

TCS,g−TFE,g

) (7.11)

g ∈ G

– Inversión:

ICC1 = α̂1 (ACC1)
α̂2 (7.12)
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– Relaciones entre temperaturas:

TFS,g ≥ TFE,g (7.13)
g ∈ G

TCE,g ≥ TCS,g (7.14)
g ∈ G

TCE,g ≥ TFS,g (7.15)
g ∈ G

TCS,g ≥ TFE,g (7.16)
g ∈ G

• Si no existe el intercambiador CC1 será YCC1 = 0. Se cumplirá entonces
que:

– El área del intercambiador es nula:

ACC1 = 0 (7.17)

– El calor intercambiado es nulo:

QCC1,g = 0 (7.18)
g ∈ G

– En las corrientes implicadas no hay variaciones de temperatura, ni de
estado, ni de entalpia:

TFE,g = TFS,g (7.19)
g ∈ G

TCE,g = TCS,g (7.20)
g ∈ G

En nuestro modelo observamos no linealidades en las ecuaciones (7.9), (7.10),
(7.11) y (7.12). Estas no linealidades nos van a complicar el proceso de optimi-
zación, ¡y el modelo exacto es mucho mas complejo que este!

En efecto. El modelo exacto debe proporcionar además: la longitud, diámetro,
distancia y disposición de las tubeŕıas; la distancia entre pantallas deflectoras; el
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diseño de los cabezales y de las conexiones de entradas y salidas de los fluidos;
los soportes; los aislantes térmicos; y los espesores y tipo de material de todos los
elementos de que consta.

Incluso esto no es todo, pues durante el funcionamiento ”se mancha o ensucia”
con mayor o menor rapidez y a una velocidad que oscila entre ciertos ĺımites. De
éstas resistencias de ensuciamiento no es dif́ıcil encontrar datos en la bibliograf́ıa,
aunque puede que en muchos casos no tengamos mas remedio que basarnos en re-
sultados de ensayos en planta real o piloto, en cuyo caso el tipo de modelos ”exacto
o casi exacto” del tipo del expuesto en este apartado no es el mas adecuado.

La modelización suficientemente aproximada pero resoluble

Una manera de abordar el problema de las no linealidades es linealizar por
facetas con la ayuda de variables binarias las ecuaciones en las que se encuentran.

Otra forma es el método que exponemos a continuación. Consiste en linealizar
la unidad en su conjunto. Es mas ventajoso cuanto mas compleja es la unidad.

Continuemos con nuestro intercambiador de calor (unidad u = CC1). Inter-
vienen las variables: Yu, Au, Iu, Qug, {Fcg, Tcg,∀c ∈ Cu}, y los parámetros: ĉCE ,
ĉFE , Ûud.

Las restricciones que en nuestro nuevo modelo debemos conservar por cum-
plirse siempre y ser lineales son:

• las ecuaciones (7.7) y (7.8)

• las ecuaciones limitativas (7.13), (7.14), (7.15) y (7.16)

• las ecuaciones (7.17), (7.18), (7.19) y (7.20) aplicables cuando el intercam-
biador no existe.

En la figura 7.5 mostramos las variables que intervienen en una unidad de
proceso, concretamente en un intercambiador de calor.

Las ecuaciones no lineales: (7.9), (7.10), (7.11) y (7.12) son las que debemos
sustituir por facetas. Los siguientes pasos pueden servirnos de gúıa:

1. Definir y discretizar las variables de diseño.

Tratamos aqúı de definir un conjunto de diseños que cubran lo comprendido
entre los ĺımites bajo los que sea posible que en algún momento tenga que
funcionar la unidad en cuestión. Esto forma parte del paso 5 (página 157)
de la metodoloǵıa. Es recomendable que incluso haya solapamientos entre
las zonas cubiertas por cada uno.

En nuestro caso elaboraremos un subconjunto DCC1 de diseños tales que
cada uno de ellos d ∈ DCC1 vendrá definido por su área Âud, su inversión
Îud, e incluso elementos de detalle como longitud, disposición y materiales
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Figura 7.5: Ejemplo de intercambiador de calor: Clasificación de variables

de los tubos y deflectores, y todos los detalles constructivos que creamos ne-
cesarios. Podemos fijar las áreas en progresión geométrica e incluso realizar
varios diseños diferentes para el mismo área.

Por tanto, en el momento de establecer un diseño fijamos todas las variables
de diseño, como son en nuestro caso Âud, Îud,∀u, d ∈ UQ ×Du.

Observemos que con éste truco hemos eliminado de un plumazo restricciones
no lineales como la expresada por la ecuación (7.12).

2. Elaborar la tabla de datos básicos.

Denominamos ensayo a los resultados obtenidos mediante: un ensayo reali-
zado en laboratorio o en planta piloto; las medidas efectuadas en una unidad
de una planta industrial; un modelo de simulación mas o menos complejo;
un análisis de tipo estad́istico; o una mezcla de todo lo anterior.

En nuestro caso podemos realizar los cálculos mediante las ecuaciones antes
mostradas o bien con otro modelo mas exacto y complejo, complementado
si acaso con medidas en planta de los incrementos de las resistencias (de
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Tabla 7.1: Resultados de ensayos con diseño d de unidad u

e FCE,e TCE,e TCS,e FFE,e TFE,e TFS,e QCC1,e

J7 554 230 87 987 48 180 126.442
...

...
...

...
...

...
...

...
B5 320 150 74 477 56 140 338.871

transmisión de calor) debidas al progresivo ensuciamiento a lo largo del
tiempo.

Para cada diseño d de cada unidad u (tales que u, d ∈ UQ×Du) elaboramos
un subconjunto Eud de ensayos cuyos resultados dispondremos en forma de
tabla que nos permita linealizar por facetas el funcionamiento de la unidad.
Cada faceta será un modo de funcionamiento, representado en nuestro nuevo
modelo por un conjunto de ecuaciones lineales. Cada fila de la tabla corres-
ponderá a un ensayo e|e ∈ Eud. Las columnas de la tabla serán el ensayo e y
las variables FFE,e FCE,e, TFE,e, TCE,e, TFS,e, TCS,e, QCC1,e. También for-
marán parte de los resultados del ensayo otras variables y parámetros como
Ûud, ĉCE , ĉFE , de gran interés, que no mencionamos aqúı expĺıcitamente
por no intervenir directamente en nuestro modelo estocástico de diseño del
proceso. En cada ensayo debemos fijar 4 de estas variables, pues tenemos
un total de 7 y un número de ecuaciones de restricción de 3. Decidimos fijar
como exógenas o independientes las variables FFE,e FCE,e, TFE,e, TCE,e,
y en función de ellas determinar las variables endógenas o dependientes:
TFS,e, TCS,e, QCC1,e. Para cada u, d|u, d ∈ UQ ×Du llegamos a una tabla
como la 7.1 de nuestro ejemplo.

3. Análisis estad́ıstico de los datos básicos y determinación de las facetas.

A partir del contenido de la tabla 7.1 determinaremos los coeficientes âudmij

de nuestro modelo lineal, que sustituirá al expresado mediante las (7.9),
(7.10), (7.11) y (7.12). La forma mas sencilla de obtenerlos es:

(a) Definir el subconjunto de modos de funcionamiento Mud de forma
que no se solapen y cubran el espacio completo de funcionamiento
del diseño d de la unidad m. Lo mas sencillo es establecer una malla
dividiendo cada variable explicativa en intervalos que no tienen porqué
estar uniformemente distribuidos.

(b) Agrupar los ensayos en subconjuntos Eudm, de acuerdo con la definición
de de modos.
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(c) Determinar los coeficientes âudmij mediante:

mı́n
∑

e∈Eudm

[
(εumde1)

2 + (εumde2)
2 + (εumde3)

2
]

(7.21)

Sujeto a:

TFS,e = âudm10 + âudm11 · FFE,e + âudm12 · FCE,e
+âudm13 · TFE,e + âudm14 · TCE,e + εumde1 (7.22)

∀e ∈ Eudm

TCS,g = âudm20 + âudm21 · FFE,g + âudm22 · FCE,g
+âudm23 · TFE,g + âudm24 · TCE,g + εumde2 (7.23)

∀g ∈ G

QCC1,g = âudm30 + âudm31 · FFE,g + âudm32 · FCE,g
+âudm33 · TFE,g + âudm34 · TCE,g + εumde3 (7.24)

∀g ∈ G

(d) Si las desviaciones εumde1, εumde2 y εumde3 son aceptables y pensamos
que no es posible reducir el número de modos de funcionamiento sin
que ello las deteriore, terminamos el ajuste.
En caso contrario volvemos al punto 3a, modificando el subconjunto
de modos de funcionamiento Mud.

En muchas ocasiones no te será tan fácil distinguir las variables significativas
de las que no lo son ni las explicativas de las explicadas. Para ello tendrás
que aplicar técnicas estad́ısticas que te permitan:

• reducir al máximo el número de variables que explique de manera sig-
nificativa el funcionamiento del diseño de la unidad,
• diferenciar las exógenas de las endógenas, y
• estimar de que variables exógenas depende cada una de las endógenas,

En casos complejos, las técnicas de cluster, componentes principales, análisis
discriminante nos pueden ayudar en el intento. En [19] hay una buena
descripción de ellas.

4. Ecuaciones del modelo.

Nuestro proceso estará compuesto por varias unidades, una de las cuales es el
intercambiador de calor que venimos poniendo como ejemplo. Mostramos a
continuación la parte del modelo del proceso correspondiente a esta unidad.
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• Función objetivo:

mı́n z = . . . +
∑

d∈DCC1

ĉFCC1,d · YCC1,d (7.25)

Si en vez costes representara beneficios, cambiaŕıamos el signo de este
término y maximizaŕıamos esta función.

• Ecuaciones de restricción:
Balances de materia:

FCE,g − FCS,g = 0 (7.26)
∀g ∈ G

FFE,g − FFS,g = 0 (7.27)
∀g ∈ G

Ecuaciones lineales de la unidad que sustituirán a las no lineales (7.9),
(7.10), (7.11) y (7.12)::

TFS,g −
∑
d∈Du

∑
m∈Mud

[âudm10 + âudm11 · FFE,g

+âudm12 · FCE,g + âudm13 · TFE,g
+âudm14 · TCE,g] · YCC1,d,m,g = 0 (7.28)

∀u, g ∈ U× G

TCS,g −
∑
d∈Du

∑
m∈Mud

[âudm20 + âudm21 · FFE,g

+âudm22 · FCE,g + âudm23 · TFE,g
+âudm24 · TCE,g] · YCC1,d,m,g = 0 (7.29)

∀u, g ∈ U× G

QCC1,g −
∑
d∈Du

∑
m∈Mud

[âudm30 + âudm31 · FFE,g

+âudm32 · FCE,g + âudm33 · TFE,g
+âudm34 · TCE,g] · YCC1,d,m,g = 0 (7.30)

∀u, g ∈ U× G

Recordemos que los términos cuadráticos formados por el producto
de una variable real por una binaria que aparecen en estas ecuaciones
se transforman sin problema en lineales añadiendo una variable real
adicional.
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• Transformamos las ecuaciones (7.13) y (7.19) en:

TFS,g − TFE,g − uFS,FE,g = 0 (7.31)
uFS,FE,g −M · YCC1 = 0 (7.32)

∀g ∈ G

y las ecuaciones (7.14) y (7.20) en:

TCE,g − TCS,g − uCE,CS,g = 0 (7.33)
uCE,CS,g −M · YCC1 = 0 (7.34)

∀g ∈ G

• Las ecuaciones (7.15) y (7.16) las escribimos como:

TFS,g − TCE,g + M · YCC1 ≤M (7.35)
∀g ∈ G

TFE,g − TCS,g + M · YCC1 ≤M (7.36)
∀g ∈ G

Señalaremos que en la modelización de una unidad hay ecuaciones que depen-
den de ciertas hipótesis. En nuestro ejemplo pod́ıamos haber supuesto que si no
exist́ıa el intercambiador las corrientes afectadas tendŕıan flujo nulo. Teńıamos
entonces que sustituir algunos de las restricciones impuestas.

5 Nomenclatura

Utilizamos la siguiente nomenclatura:
Conjuntos e (́ındices):

C Conjunto de corrientes, (c)
Una corriente puede ser una tubeŕıa por la que circulan flui-
dos, un transportador de solidos, un conductos que trans-
porta enerǵıa eléctrica, un cable de fibra óptica por el que
circulan señales. Empiezan en una unidad y terminan en
otra.

Cu Cu ⊆ C, conjunto de corrientes que llegan o salen de la
unidad u, para u,∈ U

En nuestro ejemplo es: C = {CE,CS, FE, FS}
D Conjunto de diseños de las unidades del proceso, (d)

En tubeŕıas, bombas y otros elementos los diseños están
normalizados. Aquellos tipos de unidades que no lo estén,
podemos ”normalizarlos” nosotros de acuerdo con la con-
veniencia de nuestro caso.
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Du Du ⊆ U, conjunto de diseños del intercambiador u, para
u ∈ U

E Conjunto de ensayos y/o resultados de cálculos realizados
con los modelos de simulación, (e)

Eu Eu ⊆ E, subconjunto de ensayos y/o resultados de cálculos
realizados con los modelos de simulación para la unidad u,
para u ∈ U

Eud Eud ⊆ Eu, subconjunto de ensayos y/o resultados de
cálculos realizados con los modelos de simulación para el
diseño d de la unidad u, para u, d ∈ UQ ×Du

Eudm Eudm ⊆ Eud, subconjunto de ensayos y/o resultados de
cálculos realizados con los modelos de simulación para el
diseño d de la unidad u en el modo o forma de funciona-
miento m, para u, d,m ∈ U×Du ×Mud

G Conjunto de escenarios contemplados, (g)
M Conjunto de modos o formas de funcionar las diversas uni-

dades, (m)
Mud Mud ⊆M, subconjunto de modoss o formas de funcionar el

diseño d de la unidad u, para u, d ∈ U×Du

U Conjunto de unidades del proceso, (u)
Una unidad de proceso puede ser una operacón básica, un
reactor, una caldera, un tanque, un almacén, un nodo en el
que confluyen varias tubeŕıas, un controlador, e incluso el
”exterior” de la planta, proceso o parte de los mismos que
estamos analizando.
En nuestro proceso, por el motivo que fuere, podemos des-
glosar en unidades independientes lo que habitualmente
constituye una unidad. Aśı, nos puede interesar conside-
rar como una unidad independiente cada plato de una co-
lumna de destilación, si el hecho de que existe además en
él reacción qúımica con o sin la ayuda de un catalizador es
importante.

UQ UQ ⊆ U, subconjunto de unidades del proceso que son in-
tercambiadores de calor
En nuestro ejemplo es: UQ = {CC1}

Sub́ındices especiales:

d̂e d̂e ⊆ D, diseño de una unidad de proceso u utilizado en el
ensayo e, para e ∈ E

Para un u ∈ U, debe ser: d̂e ⊆ Du y e ∈ Eu
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Parámetros:

α̂1, α̂2 Coeficientes usados para el cálculo de la inversión de un
intercambiador de calor en función de su área

âudmij Coeficiente de la variable j en la ecuación lineal que deter-
mina la variable i en el modelo del diseño d de la unidad u
cuando el punto de funcionamiento se halla en el modo de
funcionamiento m, para u, d,m ∈ U×Du ×Mud

Los coeficientes âudmij aparecen en modelos como el repre-
sentado por las ecuaciones 7.25, 7.26 y 7.27

ÂD
g , B̂D

g Matrices de coeficientes de las restricciones del escenario g
correspondientes a las variables de diseño reales y binarias,
para g ∈ G

Âud Área del intercambiador u para el diseño d, para u, d ∈
UQ ×Du

bg, bg Vectores de ĺımites superior e inferior de las restricciones
correspondientes al escenario g, para g ∈ G

ĉX , ĉY Vectores de coeficientes de la función objetivo de las varia-
bles de diseño reales y binarias

ĉc Calor espećıfico de la corriente c, para c ∈ C

ĉXg , ĉYg Vectores de coeficientes de la función objetivo de las va-
riables de funcionamiento reales y binarias del escenario g,
para g ∈ G

ĉFud Coste fijo anual del diseño d del intercambiador u, para
u, d ∈ UQ ×Du

Está compuesto por las cargas de capital mas el coste anual
de mantenimiento, calculándose ambos como un porcentaje
de la inversión

Îud Inversión del diseño d del intercambiador u, para u, d ∈
UQ ×Du

M Valor positivo que excede a la mayor diferencia de tempe-
ratura entre los diversos pares de corrientes del intercam-
biador de que se trate

Ûu Coeficiente global de transferencia de calor del intercam-
biador u, para u ∈ UQ

Ûud Coeficiente global de transferencia de calor del intercam-
biador u para el diseño d, para u, d ∈ UQ ×Du

ŵg Probabilidad de que suceda el escenario g, para g ∈ G

Observemos que:
∑
g∈G

ŵg = 1
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xD, xD Vector de ĺımites superior e inferior de las variables de
diseño reales

xFg , xFg Vector de ĺımites superior e inferior de las variables de fun-
cionamiento reales, para g ∈ G

Variables:

εudmei Desviación en la ecuación de ajuste de la variable endógena
i del ensayo e con el diseño d de la unidad de proceso u,
para u, d,m, e ∈ UQ ×Du ×Mud × Eudm

Au Área del intercambiador u, para u ∈ UQ

Iu Inversión del intercambiador u, para u ∈ UQ

Fce Caudal másico de la corriente c en el ensayo e, para
u, d, c, e ∈ UQ ×DuC× Eud

Fcg Caudal másico de la corriente c en el escenario g, para c, g ∈
C× G

Qude Calor transferido en el ensayo e del diseño d de la unidad
(intercambiador) u, para u, d, e ∈ UQ ×Du × Eud

Qug Calor transferido en la unidad (intercambiador) u en el es-
cenario g, para u, g ∈ UQ × G

Tce Temperatura de la corriente c en el ensayo e, para u, d, e ∈
UQ ×Du × Eud

Tcg Temperatura de la corriente c en el escenario g, para c, g ∈
C× G

ucc′g 0 ≤ ucc′g ≤ ∞, variable auxiliar utilizada en una ecuación
en la que intervienen las corrientes c y c′ en el escenario g,
para c, c′, g ∈ C× {C− c} × G

xD Vector de variables de diseño reales (que toman valores con-
tinuos)

xFg Vector de variables de funcionamiento reales (que toman
valores continuos) del escenario g, para g ∈ G

yD Vector de variables de diseño binarias (que toman valores
0 ó 1)

yFg Vector de variables de funcionamiento binarias (que toman
valores 0 ó 1) del escenario g, para g ∈ G

Yu Yu ∈ {0, 1}, variable binaria que indica que la unidad u
existe (Yu = 1) o no (Yu = 0) en la solución del modelo,
para u ∈ UQ

Yud Yud ∈ {0, 1}, variable binaria que indica que la unidad u
(si, Yud = 1) o (no, Yud = 0) existe y tiene el diseño d en la
solución del modelo, para u, d ∈ UQ ×Du
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Yudmg Yudmg ∈ {0, 1}, variable binaria que indica que la unidad
u (si, Yud = 1) o (no, Yud = 0) existe, tiene el diseño d
y funciona en el modo m en el escenario g en la solución
robusta del modelo, para u, d,m, g ∈ UQ ×Du ×Mud × G

6 Los métodos de optimización

La fuerte no linealidad que en ocasiones tienen las unidades del proceso hace
que hoy d́ıa no sea viable la optimización estocástica no lineal para problemas
que excedan las dimensiones académicas. En el mejor de los casos nunca tendre-
mos la certeza de que el óptimo hallado sea global y no local. Śı es posible, sin
embargo, transformar el modelo no lineal en uno lineal entero mixto, no sencillo
de resolver por el gran número de variables binarias que aparecen. Nos pueden
prestar gran ayuda en esta tarea aplicar, además de las técnicas que están habi-
tualmente disponibles como la ramificación y limitación, la de planos secantes, y
las heuŕısticcas de generación de columnas, y la de relajar y fijar. Técnicas de
descomposición como la de Benders y la lagrangeana aumentada nos permiten
paralelizar los cálculos acortando tiempos de proceso.

En [13], [8], [4], [17], [30], [32], [31] encontramos amplia información sobre
técnicas de programación lineal entera mixta.

En [16], [2], [20] hallamos técnicas de optimización estocástica.

7 Conclusiones

Tener en cuenta la incertidumbre existente a la hora de diseñar un proceso nos
proporciona una solución con mas garant́ıas de éxito durante su futuro funciona-
miento que la proporcionada por los métodos deterministas de corte tradicional,
en los que consideramos como máximo el escenario base y uno o dos pesimistas y
optimistas.

Basar el modelo en técnicas de programación matemática estocástica lineal
entera mixta es un camino que nos permite hoy d́ıa llegar a una buena solución
en casos reales de grandes dimensiones.

8 Agradecimiento
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Narćıs Nabona, Adela Pagès
Dept. Statistics and Operations Research
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1 Introduction and Motivation

Long-term generation planning is a key issue in the operation of an electricity
generation company. Its results are used both for budgeting and planning fuel
acquisitions and to provide a framework for short-term generation planning.

The long-term problem is a well-known stochastic optimisation problem be-
cause several of its parameters are only known as probability distributions (for
example: load, availability of thermal units, hydrogeneration and generations
from renewable sources in general).

A long-term planning period (e.g., a natural year) is normally subdivided
into shorter intervals (e.g., a week or a month), for which parameters (e.g., the
load-duration curve) are known or predicted, and optimized variables (e.g., the
expected energy productions of each generating unit) must be found.

Predicted load-duration curves (LDC’s) — equivalent to cumulative probabi-
lity load distributions — for each interval are used as data for the problem, which
is appropriate since load uncertainty can be suitably described through the LDC.
The probability of failure for each thermal unit is assumed to be known.

Bloom and Gallant [3] proposed a linear model (with an exponential number of
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inequality constraints) and used an active set methodology [18] to find the optimal
way of matching the LDC of a single interval with thermal units only, when there
are load-matching and other operational non-load-matching constraints. These
could be, for example, limits on the availability of certain fuels, or environmental
maximum emission limits. The optimal loading order obtained with Bloom and
Gallant’s method may include permutations with respect to the merit order and
splittings in the loading of units [3, 14]. In this way the energies generated satisfy
the limitations imposed by the non-load-matching constraints while having the
best possible placement, with respect to generation cost, in the matching of the
LDC.

When the long-term planning power problem is to be solved for a generation
company operating in a competitive market, the company has not a load of its own
to satisfy, but it bids the energies of its units to a market operator, who selects the
lowest-price among biding companies to match the load. In this case, the scope
of the problem is no longer that of the generation units of a single generation
company but that of all units of all companies biding in the same competitive
market, matching the load of the whole system. This makes planning problems
much larger than before and is a reason for developing more efficient codes to
solve them.

The Bloom and Gallant model has been successfully extended to multi-interval
long-term planning problems using either the active-set method [18], the Dantzig-
Wolfe column-generation method [8, 23], or the Ford-Fulkerson column-generation
(FFcg) method [9, 21]. The FFcg and the Dantzig-Wolfe procedures have many
common steps. The model has also been coded using the modeling language
AMPL [10] and has been solved with a linear/quadratic programming package
Cplex 7.5 [5] as carried out in [20] for a single interval.

A quadratic model is put forward here to formulate the long term profit maxi-
mization of generation companies in a liberalized electricity market [19] and the
performance of several solutions procedures for solving this problem is compared
[22].

2 The load-duration curve

The LDC is the most sensible way to represent the load of a future interval.
The main features of an LDC (corresponding to the ith interval) can be described
through 5 characteristics: the duration T i, the peak load power P̂ i, the base load
power P i, the total energy Êi and the shape, which is not a single parameter
and is usually described through a table of durations and powers, or through a
function.

The LDC for future intervals must be predicted. For a past interval, for which
the hourly load record is available, the LDC is equivalent to the load over time
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curve sorted in order of decreasing power. It should be noted that in a predicted
LDC, random events such as weather, shifts in consumption timing, etc., that
cause modifications of different signs in the load tend to cancel out, and that the
LDC keeps all the power variability of the load.

3 Thermal Units

As far as loading an LDC is concerned, the relevant parameters of a thermal
unit are:

J power capacity: (Cj for the jth unit) maximum power output (MW) that
the unit can generate

J outage probability: (qj for the jth unit) probability of a unit not being
available when it is required to generate

J linear generation cost: (f̃j for the jth unit) production cost in C /MWh

Other associated concepts are:

J merit order: units are ordered according to their efficiency in generating
electric power ( C /MWh); all units will work at their maximum capacity
since no unit should start to generate until the previous unit in the merit
order is generating at its maximum capacity,

J loading order: units will have load allocated to them in a given order;
loading order and merit order may not coincide when there are other cons-
traints to be satisfied.

4 Matching the load-duration curve

Due to the outages of thermal units (whose probability is >0), the LDC does
not coincide with the estimated production of thermal units. It is usual for the
installed capacity to be higher than the peak load:

∑nu
j=1 Cj>P̂ .

The generation-duration curve is the expected production of the thermal units
over the time interval to which the LDC refers. The energy generated by each
unit is the slice of area under the generation-duration curve which corresponds
to the capacity of the thermal unit.

The probability that there are time lapses within the time interval under
consideration, where, due to outages, there is not enough generation capacity
to cover the current load, is not null. Therefore, external energy (from other
interconnected utilities) will have to be imported and paid for at a higher price
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than the most expensive unit in ownership. The peak power of the generation-
duration curve is

∑nu
j=1 Cj+P̂ and the area above power

∑nu
j=1 Cj is the external

energy.

4.1 Convolution method of finding the generation-duration
curve

The loading of thermal units in an LDC was first formulated in [1] and prac-
tical procedures to compute the expected generation can be found in [26]. Analy-
tically, given the probability density function of load p(x), the cumulative load
distribution function L0(x) (see Fig. ??) is calculated as follows:

L0(x) = 1−
∫ x

0

p(y) dy

Fig. 1 Probability density function of load p(x) (left), and cumulative
load distribution function L0(x) (right).

The method calculates the production of each thermal unit, given a loading
order. The load is modeled through its distribution L0(x), which is the probability
of requiring x MW, or more. Let:

Cj : maximum power capacity in MW of unit j
qj : outage probability of unit j

1− qj : in-service probability of unit j
Uj : set of unit indices 1, 2, . . . , j

LUj−1(x) : probability distribution of uncovered load after loading units 1, 2, ..., j − 1
LUj

(x) : probability distribution of load still to be matched after loading
units 1, 2, ..., j − 1, j

x : load in MW

the convolution computes LUj (x) from LUj−1(x) as [1, 26]:

LUj (x) = qj LUj−1(x) + (1− qj) LUj−1(x + Cj) (8.1)

Recalling that E=P ·T , the expected energy generated by unit j is [1]:

Ej = (1− qj) T
∫ Cj

0

LUj−1(x) dx . (8.2)
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4.2 Unsupplied load after a set of thermal units is loaded

Let L0(x) be the cumulative probability distribution of the power load corres-
ponding to the LDC. It is not difficult to derive that, given a set of units whose
indices 1,2, etc. are the elements of the set of indices Ω, the unsupplied load after
loading all the units in Ω will have a cumulative probability distribution LΩ(x)

LΩ(x) = L0(x)
∏
m∈Ω

qm +
∑
U⊆Ω

(
L0(x +

∑
i∈U

Ci)
∏
i∈U

(1− qi)
∏

i∈Ω\U
qi

)
(8.3)

We can thus say that the cumulative probability distribution LΩ(x) of the
unsupplied load is the same no matter the order in which the units in Ω have
been loaded.

The unsupplied energy W (Ω) is computed as:

W (Ω) = T

∫ P̂

0

LΩ(x) dx (8.4)

The integration in (8.4) is to be carried out numerically.

5 Bloom & Gallant’s model for matching the load-
duration curve when there are non-load-matching
constraints

Let the Bloom & Gallant formulation (for a single interval) [3] be given by:

mı́n
Ej

nu+1∑
j=1

f̃j Ej (8.5)

subject to
∑
j∈U

Ej ≤ Ê −W (U) ∀ U ⊂ Ω = {1, . . . , nu} (8.6)

A≥E ≥ R≥ (8.7)
A= E = R= (8.8)
nu+1∑
j=1

Ej = Ê (8.9)

Ej ≥ 0 j = 1, . . . , nu, nu + 1 (8.10)

where:
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nu+1 : index representing the external energy
n≥ : total number of non-load-matching inequality constraints
A≥ : ∈Rn≥×nu matrix of non-load-matching inequality constraints
R≥ : rhs of non-load-matching inequality constraints
A= : ∈Rn=×nu matrix of non-load-matching equality constraints
R= : rhs of non-load-matching equality constraints
U : subset of Ω

W (U) : unsupplied energy after loading all units j ∈ U ⊂ Ω

The objective function (8.5) can be simplified using (8.9), which leads to:
nu∑
j=1

fj Ej + f̃nu+1Ê where fj = f̃j − f̃nu+1

with f̃nu+1Ê being a constant.

5.1 The case where no constraint (8.7) is active

Constraints (8.7) and (8.8) are the non-load-matching constraints. The Ap-
pendix of [14] contains a proof that the merit-order loading energies correspond
to a minimum of the formulation (8.5–8.10) when there are no active constraints
(8.7) and in case that there should be no non-load-matching equality constraints
(8.8).

Assuming that units are ordered in order of merit, the active constraints at
the minimizer of the set of inequalities (8.6) would be:

E1 = Ê −W (1)

E1 + E2 = Ê −W (1, 2) (8.11)

E1 + E2 + E3 = Ê −W (1, 2, 3)
. . .

E1 + E2 + E3 + . . . + Enu = Ê −W (1, 2, . . . , nu)

5.2 The case with equalities (8.8) or where a constraint
(8.7) or nonnegativity bound (8.10) is active

In this case, the equalities (8.8) or at least one of the constraints in (8.7) or
nonnegativity bound (8.10) will be active, which means that at least one of the
active constraints in (8.11) will not be satisfied as an equality.

5.3 The multi-interval Bloom and Gallant model

As power planning for a long time period cannot take into account changes
over time of some parameters, the time period is subdivided into shorter intervals
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in which all parameters can be assumed to be constant. We will use superscript
i to indicate that variables and parameters refer to the ith interval.

Therefore some constraints refer only to variables of a single interval, while
others may refer to variables in several intervals. E.g., constraints on the minimum
consumption of gas may affect several or all the intervals, while emission limit
constraints, or the constraint associated with the units composing a combined-
cycle unit refer to each single interval.

The overhauling of thermal units must be taken into account. Therefore, there
will be intervals where some units must remain idle. The set of available units
in each interval may be different. Let Ωi be the set of available units in the ith

interval, and let niu be niu=|Ωi| (the cardinality of this set).
The Bloom and Gallant linear optimization model extended to ni intervals,

with inequality and equality non-load-matching constraints, can thus be expressed
as:

mı́n
Eji

ni∑
i=1

nu∑
j=1

fjE
i
j (8.12)

subject to:
∑
j∈U

Ei
j ≤ Êi −W i(U) ∀U ⊂ Ωi i = 1, . . . , ni (8.13)

Ai
≥E

i ≥ Ri
≥ i = 1, . . . , ni (8.14)∑

i

A0i
≥ Ei ≥ R0

≥ (8.15)

Ai
= Ei = Ri

= i = 1, . . . , ni (8.16)∑
i

A0i
= Ei = R0

= (8.17)

Ei
j ≥ 0 j = 1, . . . , nu, i = 1, . . . , ni (8.18)

where:

Ai
≥ : ∈Rni≥×nu matrix of inequalities that refer only to interval i

A0i
≥ : ∈Rn0

≥×nu matrix of inequalities that refer to more than one interval
Ri
≥ : ∈Rni≥ rhs of inequalities that refer only to energies of interval i

R0
≥ : ∈Rn0

≥ rhs of inequalities that refer to more than one interval
Ai

= : ∈Rni=×nu matrix of equalities that refer only to energies of interval i
A0i

= : ∈Rn0
=×nu matrix of equalities that refer to more than one interval

Ri
= : ∈Rni= rhs of equalities that refer only to energies of interval i

R0
= : ∈Rn0

= rhs of equalities that refer to energies of more than one interval
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The number of variables is now
∑ni

i niu and there are
∑ni

i (2n
i
u−1) load-

matching constraints plus n==n0
=+

∑
i n

i
= non-load-matching equalities, and n≥=n0

≥+
∑

i n
i
≥

non-load-matching inequalities. Note that supraindices 0 indicate constraints
which affect variables of more than one interval.

Should constraint sets (8.15) and (8.17), which are the multi-interval cons-
traints, be empty, the problem would be separable into ni subproblems, one for
each interval. Otherwise a joint solution must be found.

5.4 Approximate model of long-term hydrogeneration

The long term model described is appropriate for thermal generation units but
not for hydrogeneration, which requires additional variables to represent the va-
riability of water storage in reservoirs and discharges necessary for the calculation
of the hydroenergy generated.

A coarse model of hydrogeneration, which does not consider any of the reser-
voir dynamics, can be employed. All or a part of the reservoir systems of one or
several basins are considered as a single pseudo-thermal unit H with cost f̃H=0,
outage probability qH=0 and capacity CH (normally lower than the maximum
installed hydropower capacity), with a constraint binding the intervals’ hydroge-
nerations over the successive intervals so that they add up to a total expected
hydrogeneration R0

H for the whole period:

ni∑
i

Ei
H = R0

H , (8.19)

6 Long-term maximization of profit in a “com-
petitive” market

In the classical electricity markets, utility companies have both generation and
distribution of power. These companies have their own load to supply, correspon-
ding to their clients plus other contracts, and try to minimize their generation
cost. In “competitive” electricity markets, generation companies have no distri-
bution, and therefore no load of their own. Generation companies must bid their
generation to the market operator and a market price is determined for each hour
by matching the demand with the generation of the lowest bids. Generation com-
panies are no longer interested in generating at the lowest cost but in obtaining
the maximum profit, which is the difference between market price and generation
cost for all accepted generation bids. In long-term operation all accepted bids in
a time interval (a week, or a month) must match the LDC of this interval.

There is no specific load to be matched by a specific generation company
(SGC). The only known loads are the predicted LDC’s for the whole market in
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each interval. As all generation companies pursue their maximum profit, it is
natural to attempt to maximize the profit of all generation companies combined.

The SGC must thus solve the problem of the maximization of profit of all
generation companies, taking into account the total market load. The SGC should
introduce its own operation constraints (fuel and emission limits, contracts, etc.)
and may also introduce a market-share constraint for its units in one or several
intervals. (The Lagrange multiplier value of this constraint will tell whether the
market share imposed, though feasible, is reasonable or not.) The long-term
results will indicate how the SGC should program its units so that its profit be
maximized while meeting all its operation constraints.

6.1 Long-term market price function of a given interval

From the records of past market-price and load series (see Fig. ??) it is possible
to compute a market-price function for a given interval. This function is to be
used with expected generations that match the LDC of the interval, so market
prices should correspond in duration with the duration of loads, from peak to
base load in the interval.

Fig. 2 Hourly loads (continuous curve) and market prices (dashed).

Both the load and the market price series should be reordered in decreasing
load order obtaining a LDC and a price-duration curve that corresponds to the
loads in the LDC. The price-duration-curve obtained will be nonsmooth and may
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even be nondecreasing (see Fig. ??). However, fitting a straight line or a low order
polynomial to it, a decreasing line or function will generally be obtained. Given
the variability of the price-duration curve, it seems reasonable to fit a straight
line to it. Let bi and li be the basic and linear coefficient of such line for the ith

interval. (Predictions of bi and li could be obtained taking into account both the
series corresponding to the same interval in several successive years and that of
successive intervals.)

6.2 Maximum profit objective function

In order to determine the maximum-profit objective function, a simplifying
assumption is convenient regarding the shape of the unit contributions in the
generation-duration curve. Instead of having some units (particulary those with
the lowest loading order) with an irregular shape in its right side, it will be
assumed that the contribution of all units will have a rectangular shape with
height Cj (for unit j) and base length Ei

j/Cj as in Fig. 4.

Fig. 3 Market prices ordered by decreasing load power (thin con-
tinuous curve) in weekly interval, market-price linear function (thick
line), and LDC (dashed).

The profit (price minus cost) of unit j in interval i will be:∫ Ei
j/Cj

0

Cj

{
bi + lit− f̃j

}
dt =

(
bi − f̃j

)
Ei
j +

li

2Cj
Ei
j

2
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and adding for all intervals and units, taking into account the external energy
and using (8.9) we get the profit function to be maximized:

ni∑
i

[ nu∑
j

{(
bi − fj

)
Ei
j +

li

2Cj
Ei
j

2

}
− f̃nu+1Ê

i

]
(8.20)

with fj=f̃j−f̃nu+1, which is quadratic in the generated energies. Given that

Fig. 4 Long-term price function for a time interval and contribution
of jth unit.

fnu+1Ê
i is a constant, the problem to be solved is:

mı́n
Eji

ni∑
i

nu∑
j

{(
fj − bi

)
Ei
j −

li

2Cj
Ei
j

2

}
(8.21)

subject to:
∑
j∈U

Ei
j ≤ Êi −W i(U) ∀U ⊂ Ωi i = 1, . . . , ni (8.22)

Ai
≥E

i ≥ Ri
≥ i = 1, . . . , ni (8.23)∑

i

A0i
≥ Ei ≥ R0

≥ (8.24)
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Ai
= Ei = Ri

= i = 1, . . . , ni (8.25)∑
i

A0i
= Ei = R0

= (8.26)

Ei
j ≥ 0 j = 1, . . . , nu, i = 1, . . . , ni (8.27)

It should be noted that, should all bi and li be zero, the solution of the
maximum profit problem (8.24) would be the same as that of the minimum cost
problem (8.12-8.18). Otherwise, the cost of the maximum profit solution is higher
than that of the minimum cost solution.

Given that li<0 , the quadratic of the objective function of (8.24) is positive
definite, thus problem (8.24) has a unique global minimizer.

7 Coding the load-matching constraints

The main difficulty of the direct solution of the Bloom and Gallant model is the
exponential number of load-matching inequality constraints (8.13). These cons-
traints are avoided in the application of the Ford-Fulkerson [22] or the Dantzig-
Wolfe column generation method [23, 21, 22], or are generated as they are required
in the active set method [18]. In a direct solution by linear or quadratic program-
ming all ni×(2nu−1) constraints must be explicitly created.

Leaving aside the storage and processing time for these many load-matching
inequality constraints, their creation has two parts: the linear coefficients, which
is fast [19], and the rhs’s, which is very time consuming as it requires lots of
calculation.

For each interval i and for the units of each subset U of the set Ωi we must
first calculate LiU (x) starting from Li0(x) by successive convolution for all units j
in U using (8.1), and then compute

Êi −W i(U) = Êi − T i

∫ P̂ i

0

LiU (x)dx

using numerical integration. This means a lot of arithmetic operations.

8 The Ford-Fulkerson column-generation method
applied to the multi-interval problem

Constraints (8.22) and (8.27) define, for each interval, a convex polyhedron
whose vertices can be easily calculated. To apply the Ford-Fulkerson procedure,
energies Ei∈Rnu must be expressed as convex combinations of all vertices V i

k of
the ith interval polyhedron:

Ei = V iΛi , V i ∈ Rnu×niV Λi ≥ 0, II′Λi = 1 ∀ i
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II′=
[

1 1 . . . 1
]

being the all one vector.
The number niV of vertices of one such polyhedron is very high as the number

of constraints (8.22) that define it, jointly with the nonnegativity bounds (8.27),
is exponential: 2nu (which is over a million for nu=20). Note that no account is
made of extreme-rays as the nature of the constraints and nonnegativity bounds
prevents these.

Subtracting surpluses Si∈Rni≥ , i=0, 1, . . . , ni in the inequalities, problem (8.21-
8.27) can be rewritten as:

mı́n
S0, Si, Λi

ni∑
i=1

{
(f − bi)′V iΛi +

1
2
Λi′V i′QiV iΛi

}
(8.28)

subject to: II′Λi = 1 i = 1, . . . , ni (8.29)
Ai

=V
iΛi = Ri

=

Ai
≥V

iΛi − Si = Ri
≥

}
i = 1, . . . , ni (8.30)

ni∑
i=1

A0 i
= V iΛi = R0

= (8.31)

ni∑
i=1

A0 i
≥ V iΛi − S0 = R0

≥ (8.32)

S0 ≥ 0 Si ≥ 0 , Λi ≥ 0 i = 1, . . . , ni . (8.33)

which is quadratic in Λi and lends itself to being solved by the column-generating
method of Ford-Fulkerson [9].

The convex coefficients Λi∈RniV , i=1, . . . , ni and the surpluses Si∈Rni≥ , i=0, 1, . . . , ni
of the inequalities are the variables in the problem. In (8.29-8.33) there are linear
equality constraints and non-negativity bounds only.

9 Murtagh and Saunders algorithm using a Co-
lumn Generation procedure

Given a problem such as (8.28-8.33) we apply the Murtagh and Saunders
algorithm [12] using the column generation procedure. The outline of the method
is:

0.- k := 0; Given an initial feasible point Λ0, S0, classify each variable as basic,
superbasic or nonbasic. Let nU be the number of superbasic variables.

1.- Compute the projected gradient, ‖Z ′G‖

2.- If ‖Z ′G‖ ≤ ε
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· Compute the Lagrange multipliers Σ of the active non-negativity bounds.

· Look for a constraint cl, having a negative multiplier, σl < 0

· If there is any σl < 0 then

- nU := nU + 1
- Update ‖Z ′G‖

else

END

3.- If ‖Z ′G‖ > ε

· Compute a descent direction for the basic and superbasic variables, dk
· Determine the step length, αk
· Update the variables:

- Λk+1 := Λk + αkdΛk

- Sk+1 := Sk + αkdSk

· Update the basic, superbasic and nonbasic sets

· k := k + 1; go to step 1.-

9.1 Obtaining an initial feasible point

Obtaining a feasible point is not trivial when there are non-load-matching
constraints.

As with the active set methodology [18], the feasible point is obtained from
a point satisfying only the load-matching constraints of all intervals and adding
one constraint at a time, plus either a non-zero surplus for the constraint added
or a new vertex, until all constraints are satisfied. The details of this process can
be found in [21].

9.2 Variable classification

In an active set methodology (such as Murtagh and Saunders is), the active
constraints at a feasible point Λk, Sk are either general linear constraints or simple
bounds.

At a typical iteration, the matrix of active constraints Â will contain all the
general linear constraints and an additional set of rows of the identity matrix that
corresponds to variables at zero.

It is important to mention that in this problem there are only lower (non-
negativity) bounds because the upper bound 1 for the convex coefficients λik is
implicit in the convexity constraints (II′Λi = 1 ∀i).
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As we are in quadratic programming, there is no a priori number of fixed va-
riables. Let nN denote the number of fixed (=0) variables at the current iteration.
Then the constraints matrix is (conceptually) partitioned as follows

Fig. 5 General constraint matrix partitioned into basic, superbasic
and nonbasic matrices.

The nB × nB (where nB = n= + n≥ + ni) “basis” matrix B is square and
non-singular, and its columns correspond to the basic variables. The nN columns
of N correspond to the nonbasic variables (those fixed at 0). The nU = (nV +
n≥)− nB − nN columns of the U matrix correspond to the remaining variables,
which will be termed superbasic.

9.3 The projected gradient

A necessary (but not sufficient) condition to be at the optimizer is that the
projected gradient vanishes:

‖Z ′G‖ ≤ ε

We define the matrix of the null space Z, such that ÂZ = 0, as

Z =

 −B−1U
1l
00


1l is the identity matrix of size nU , number of superbasics.

G is the gradient of the objective function. As we are dealing with a quadratic
function, the gradient at the point Λk, Sk for each group of variables is:

· GΛB
= (f − b)′VB + V ′BQVBΛB + V ′BQVUΛU + V ′BQVNΛN GSB = 0

· GΛU
= (f − b)′VU + V ′UQVBΛB + V ′UQVUΛU + V ′UQVNΛN GSU = 0

· GΛN
= (f − b)′VN + V ′NQVBΛB + V ′NQVUΛU + V ′NQVNΛN GSN = 0

The terms where ΛN appears, vanish because ΛN = 0. The final expression
of the projected gradient is as follows:

Z ′G = GU − U ′B−1′GB = GU − U ′Π (8.34)

where GB and GU refer to the gradient with respect to the basic and superbasic,
GN to that of the nonbasic, and Π comes from solving system B′Π = GB .
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9.4 Computation of the multipliers and generation of new
vertices

The overdetermined system Â′
[

Π
Σ

]
= G is compatible when Z ′G = 0. The

detailed subsystem
[

B′

N ′ 1l

] [
Π
Σ

]
=

[
GB

GN

]
is:

II

(A=VB)′ (A≥VB)′ 00

II

00 −1̂l
′
B

II

(A=VN )′ (A≥VN )′ 1l

II

00 −1̂l
′
N



πΛ

πA=

πA≥

Σ



=



GB

GN


(8.35)

The solution procedure solves first

B′
[

ΠΛ

ΠA

]
= GB

for ΠΛ ∈ Rni , which are the multipliers of the convexity constraints, and ΠA ∈
R
n=+n≥ , which are the multipliers of the non-load-matching constraints. This

calculation is already performed in the projected gradient computation (8.34).
From the equations that yield the multipliers Σ two possible types of equation

follow. Either:

πiλ + vi
′

Nk(A
′ΠA)i + σik = Gi

Nk i = 1, . . . , ni (8.36)

hence (recall that Gi
Nk = (f − bi)′viNk + vi

′

NkQ
iV i

BΛi
B + vi

′

NkQ
iV i

UΛi
U ):

σik = ((f − bi) + QiV i
BΛi

B + QiV i
UΛi

U − (A′ΠA)i)′viNk − πiλ (8.37)

i.e., there is a nonbasic vertex of interval i if σik<0, and this will be so if for the
modified costs f̂ i = (f−bi)+QiV i

BΛi
B+QiV i

UΛi
U−(A′ΠA)i the vector of energies

viNk yields a cost lower than πiλ.
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The other equation we obtain from the Σ equations is:

−πi≥ k + σik = 0 → σik = πi≥ k i = 0, 1, . . . , ni (8.38)

which tells that the surplus si≥ k i=1, 2, . . . , ni, 0 will become superbasic (relaxing
the active constraint Ai

≥ k) whenever πiA≥ k<0 .
The problem of finding a (nonbasic) vertex viNk loading order, and compute

the elements of viNk by successive convolution (8.1) and integration (8.2). (And
checking whether f̂ i

′
viNk<π

i
λ for some interval i .)

It is in the calculation of vertices that the nonavailability of units — by pro-
grammed overhauling during the interval — is taken into account.

9.5 Finding a descent direction

If we have not reached the optimizer, we must find another feasible point
that decreases the objective function value. As we are dealing with a constrai-

ned problem, a feasible direction is d = Zpz, for any pz: d =

 −B−1U
1l
00

 pz = −B−1Upz
pz
00

 =

 dB
dU
dN

 where the nonbasic variables do not change their va-

lue. The projected gradient direction, pz = −Z ′G′, can be employed or Newton’s
method:

Z ′HZpz = −Z ′G′ (8.39)

where H = V ′QV is the Hessian matrix.
Our computational experience is that the projected gradient direction has a

poor convergence. Newton’s direction is computationally harder to obtain but is
much more efficient. When the step length applied is 1, only one iteration is re-
quired to achieve ‖Z ′G′‖ < ε. However, the computational experience shows that,
when applying a step length of 1 using Newton’s direction, sometimes rounding
errors make necessary more than one iteration.

9.6 Computation of the step length

Given a feasible point Λk, Sk and a direction dk, we choose a new point
as Λk+1 := Λk + αkdΛk

and Sk+1 := Sk + αkdSk where dΛk
and dSk are the

components of dk related to Λk and Sk respectively. The optimal step length

α∗k =
−G′Λk

dΛk

d′Λk
V ′QV dΛk
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should be α∗k = 1 if we use Newton’s direction. α∗k may lay beyond the upper
limits due to the basic and superbasic variable change.

The variables must be nonnegative, thus:

αBk = mı́n
{ λj

Bk

|djΛBk
| ∀j | d

j
ΛBk

< 0 ,
Sj
Bk

|dj
SBk
| ∀j | d

j
SBk

< 0
}

αUk = mı́n{ λj
Uk

|djΛUk
| ∀j | d

j
ΛUk

< 0, Sj
Uk

|dj
SUk
| ∀j | d

j
SUk

< 0}

The step length is αk = mı́n{αBk, αUk, α∗k}. Depending on which one gives
αk, changes in the basic, superbasic and nonbasic sets may occur.

9.7 Changes in the variable sets

this section we will use variable both to refer to Λ or to S) reaches its bound.
In the first case, where all step length can be done, any change in the basic,
superbasic and nonbasic sets is needed. In the second case, when some variable
limits the step length, there are some changes in the groups.

Also, each variable is upper bounded by 1, but we do not have to take care
about this because there are the coefficient convexity constraints (

∑
Λi = 1 ∀i)

explicitly in the model.
nonbasic set. No more changes happen. basic set is defined as a set of varia-

bles related to columns of the constraints matrix which form a base. For so, a
superbasic has to be chosen in order to belong to the basic set.

Should αk be αk = α∗k, no changes occur in the working set. Should αk be
αk = αUk, a superbasic variables becomes zero and changes to nonbasic.

The case of αk = αBk is more complicated because a basic variable becomes
zero, and changes to nonbasic while a superbasic variable changes to basic to
substitute it. The new basis has to be refactorized.

In theory, the superbasic chosen to be basic has only to be linearly independent
from the remaining basics. In practice, sometimes we can get stuck without any
apparent reason.

9.8 Choosing a superbasic variable to enter the basis

choosing one of them but not all of them work properly. Not only we have
to get a new basis (so the column related to the new basic must be linearly
independent from the older ones) but also the condition number of the new B
should be low enough.

the direction and multipliers computations, both crucial for the suitable on-
going of the algorithm).

The choice of superbasic to enter the basis is important for the solution accu-
racy and convergence. It is convenient to keep the condition number of B as low
as possible in order to get accurate calculations of Π and dB .
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Once known the basic variable l that leaves the basis, which of the superbasic
ones will perform better?

The new basis B̃ will be as the former one B except the leaving column l.
The change using an η matrix, can be expressed

B̃ = Bη

different from the unit matrix is in position l.

η =



1 w1

1 w2

. . .
...
wl

...
. . .

wnB 1


with the components wi obtained from the vector w that solves Bw = Ue. Ue
being the entering column of the superbasic set. It is easy to find an upper bound
to the condition number of the new basis:

cond(B̃) ≤ cond(B) · cond(η)

The eigenvalues of η are all ones except wl, thus its condition number is

cond(η) =
{

if wl ≤ 1 → 1/wl

if wl > 1 → wl

The calculation of the lth row of B−1U is at no cost if using Newton’s direction,
since the explicit calculation of the upper part of Z is required.

9.9 Management of the nonbasic set. Differences between
Ford-Fulkerson algorithm and Dantzig-Wolfe algorithm

The main advantage of the column-generation procedure is that vertices (co-
lumns) are only generated when they are required. The basic and superbasic
vertices have to be generated and stored properly. At the beginning, there is no
nonbasic vertex but as the procedure evolves some nonbasic vertices are known.
We can do two things with them: get rid of them or store them (and in a next
iteration any known nonbasic vertex can become superbasic again).

The version in which the known nonbasic vertexs are deleted is called the
Ford-Fulkerson algorithm (FF) and the one that keeps them is called the Dantzig-
Wolfe algorithm (DW). In the DW algorithm, before generating a new vertex,
the multipliers of the known nonbasic vertices are computed and if there is any
negative, it is reentered as a superbasic. In the results section both methods are
compared.
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10 Computational results

10.1 Test cases

The characteristics of the test cases employed are summarized in Table 8.1.
The fourth column,

∑
i n

i
u , is the number of variables and the last but two co-

lumn contains
∑

i(2
niu − 1), which is the number of load-matching inequality

constraints. All cases except ltp06 correspond to a certain Spanish generation
company together with the rest of the Spanish power pool with a different de-
gree of desaggregation of the generation units; the loads satisfied are those of the
Spanish power pool. Case ltp06 refers to the planning of a single German genera-
tion company considering only its own load. One or more pseudo-units represent,
in all cases, the hydrogeneration of one or several basins using the approximate
hydromodel of section 5.4.

Tabla 8.1: Test cases for long-term electric power planning

ni nu
∑

i n
i
u

∑
i n

i
= n0

=

∑
i n

i
≥ n0

≥
∑

i(2
niu−1)

∑
i

∑nu+1
j fjE

i
j

c”se solver ( C )
ltp01a 11 13 140 0 2 0 2 79861 Cplex 4837512292
ltp01b 11 13 140 0 2 1 4 79861 Cplex 4854704625
ltp02a 11 15 162 0 2 33 3 319477 Cplex 3587429530
ltp02b 11 15 162 0 2 34 5 319477 Cplex 3622023526
ltp03a 11 17 183 0 2 54 5 1245173 Cplex 3580260681
ltp03b 11 17 183 0 2 55 7 1245173 Cplex 3624657306
ltp04a 11 18 193 0 2 64 6 2457589 Cplex 3579624419
ltp04b 11 18 193 0 2 65 8 2457589 Cplex 3624160513
ltp06 15 29 416 0 1 15 3 3758096369 ac.set 1070527267

Market-share constraints can be imposed. Cases whose name ends with “a”
do not have any market-share constraint imposed. Cases ending with “b” have
market-share constraints associated to the units of the SGC imposed and active.

As mentioned earlier, the purpose of these problems and computational tests
is twofold:

• to test the models developed, described in this work, and to observe the
influence of several parameters associated with the models, and

• to have reliable results (obtained with a reliable code for linear and quadra-
tic programming: Cplex 7.5) for the problems posed with which to check
alternative specialised algorithms to solve the same problems, specifically
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the Dantzig-Wolfe and Ford-Fulkerson column generation algorithms, the
active set algorithm, and other algorithms to be developed.

10.2 Performance of the Ford-Fulkerson procedure and com-
parison with the active set method

Tabla 8.2: Comparison of the active set, and the Ford-Fulkerson column genera-
tion method

active set method Ford-Fulkerson cg Cplex 7.5
feas. total time dig. feas. total time ver. ver. dig. total time rhs

case iters. iters. (s) ag. iters. iters. (s) gen. opt. ag. iters. (s) (h)
ltp01a 193 246 6.6 10 21 79 7.2 147 15 10 781 1.3 0.44
ltp01b 239 312 9.0 9 21 224 16.4 396 18 9 2354 2.35 0.44
ltp02a 450 642 62.5 10 128 357 14.4 254 20 10 3285 11.0 2.28
ltp02b 513 734 80.1 9 128 516 16.1 293 24 10 7646 16.9 2.28
ltp03a 672 964 197.1 10 310 831 20.5 348 23 10 12622 56.8 9.52
ltp03b 781 1096 348.0 9 310 1213 21.6 354 33 9 23213 86.2 9.52
ltp04a 938 1233 508.2 10 400 796 23.7 383 25 9 17447 115.1 19.27
ltp04b 1075 1404 756.6 10 400 1768 38.5 603 45 9 42785 212.0 19.27
ltp06 1803 2646 24.3 – 51 585 5.0 466 31 10 n.a. n.a. n.a.

Both the active set and the FFcg methods require a considerable number of
iterations to reach a feasible solution. Their numbers appear under the heading
“feas. iters.” (feasibility iterations) in Table 8.2; the number of iterations to
achieve the optimizer is shown next. After that, the required CPU time, and the
number of figures of agreement of the objective function value with that obtained
with a different solver are shown, as indicated in the last two columns of Table
8.1. The last three columns in Table 8.2 show the results obtained using an
AMPL plus Cplex 7.5 solution [19], the last column giving the long computation
times required, in hours(!), to have the rhs’s of the

∑
i(2

niu−1) load-matching
constraints (8.13).

Several conclusions can be drawn from the results of Table 8.2. The first
is that the FFcg method is quicker to get to the solution and that the rate of
increase of the time required with problem size is lower in the case of FFcf than
with the active set or the direct linear programming solution.

The next issue is precision. Direct linear programming, the active set method
and the FFcg procedure reach practically the same optimizer (the number of
agreement digits of these methods’ solution is 9 or more for all cases). Four
agreement digits would be fairly acceptable from an engineering view-point, given
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that many data in this problem are approximations or predictions. Therefore
it could be thought that the optimization process could be stopped when the
objective function does not change in the first five or six figures over a number
of iterations. It must be borne in mind that the active set method for a linear
program behaves like linear programming, and obtaining the right set of active
constraints produces exactly the same optimizer. However, the FFcg procedure
generates the optimizer as the convex combination of vertices of the polyhedrons
of feasible points (one for each interval in long-term power planning). Thus the
calculation of the optimizer, and its objective function value, requires many more
arithmetic operations. The column with header “ver. opt.” contains the number
of vertices at the optimizer. On average, we have 2 vertices for each interval.

Through the -pg option in the Fortran compilation of the programs and the
standard Unix program gprof (profiling), it is possible to analyze where the
CPU time is spent during execution. It was found that most of the execution
time of the active set implementation (over 90%) went to calculating the rhs’s of
the new active constraints tried and, on average, about 20 new constraints are
tried per iteration. With the FFcg implementation almost as much computation
(about 80%) is due to calculating new vertices, which involve the same routines
of convolution and integration as the calculation of the rhs’s. However in the
FFcg the number of vertices generated per iteration is less than one, as in many
iterations a slack variable is made active, and the number of iterations required
has been always below that of the active set procedure.

It is not surprising that case ltp06, though bigger than cases ltp02 and ltp03,
and requiring more iterations than former cases, takes less time to convergence.
This is because the convolutions are much shorter in ltp06 than in the other cases
because the load to be matched (of a single company in Germany) is much lower
than that of the Spanish power pool, and a uniform 1 MW step is taken for storing
the probability distributions of load still to be supplied, and for integration.

All test cases have been solved with two different objective functions: the
linear minimum cost (8.12) and the quadratic of maximum profit (8.20). The
linear cost problems have been solved using the linear programming code in Cplex
7.5 package [5], while for the quadratic profit problem the barrier separable QP
solver [27] in Cplex 7.5 package is employed, both through an AMPL [10] model
and data files. Prior to the solution, the rhs’s of the load-matching inequality
constraints (8.13) have been calculated using an separate program, whose required
CPU time is reported in the last column of Table 8.1. The calculated rhs’s are a
part of the AMPL data files used.

The solutions obtained with the Ford-Fulkerson column generation, which is
the most efficient [22], are compared with those obtained through AMPL plus
Cplex 7.5 quadratic programming and with Dantzig-Wolfe column generation..

The second column of Table 8.3 has the input times required by the AMPL
data files. These times are important because the data files, due to the rhs’s of
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Tabla 8.3: Comparison of AMPL plus Cplex, and the Dantzig-Wolfe and Ford-
Fulkerson column generation methods

AMPL plus Cplex 7.5 Dantz-Wl. Ford-Fulk. column gen.
input b qp b. qp obj. fun. (8.21) D.W. F.F. obj. fun. (8.21)

case (s) iters. (s) ( C ) ites. (s) ites. (s) ( C )
ltp01a 1.3 34 97.56 9552335013 289 12.1 262 11.6 9552335013
ltp01b 46 55.09 9536489728 258 9.1 240 9.5 9536489725
ltp02a 5.69 59 183.5 10986157177 842 41.4 629 36.5 10986157163
ltp02b 56 176.9 10961049191 1248 51.8 893 44.1 10961049198
ltp03a 24.47 78 1020.3 11004938184 1321 82.3 957 60.4 11004938185
ltp03b 75 977.7 10977720297 1934 97.4 1341 77.9 10977720295
ltp04a 46.88 87 4393.2 11006374461 1423 91.8 1132 79.1 11006374462
ltp04b 116 5787.0 10979064726 2063 109.0 1545 92.0 10979064723
ltp06 1103 558.3 838 423.4 936301399

the load-matching constraints, are very large, e.g., the data file for case ltp04a is
over 100Mbyte.

It can be observed that the Ford-Fulkerson column generation proves to be
systematically more efficient in itarations and CPU time than Dantzig-Wolfe’s.
In the table, the enormous time required to calculate the rhs terms of the load-
matching constraints when using AMPL plus Cplex 7.5 is not included.

10.3 Solutions of long-term maximum profit planning and
comparison with the minimum cost solution

Tabla 8.4: Minimum cost and maximum profit solutions with an approximate
and linearized full hydromodel

It is clear from the results in Table 8.4 that the maximization of profit with
respect to the minimum cost solution brings about a greater increase in generation
cost than an increase in profits.

10.4 Effect of market-share constraints

Three market-share constraints have been introduced in cases whose name
ends with “b”: one for the first interval, one for the intervals corresponding to
the rest of the first year (intervals 2 to 7), and a third for the intervals of the
second year (8 to 11). These three sets of successive intervals will be referred to
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with the supraindices I , II and III associated to the variables. The market-share
constraints refer to the units of the SGC, and force their generation to add up to
over a given percentage of the load in the corresponding intervals.

∑
i∈Ik

∑
j∈SGC

Ei
j ≥ µIk

∑
i∈Ik

Êi Ik : I, II, III , (8.40)

which are of type (8.15), except set I (a single interval) which is of type (8.14).

The criterion employed to fix a market-share µIk for the units in the set SGC
is based on the Lagrange multiplier values of the market-share constraints λIkm−s
and the expected profit rate in the power pool rIk: total profit over total load.
The Lagrange multipliers λIkm−s express the rate of change in pool profit due
to a market-share increase by the SGC. The reaction of competitor generating
companies to a market-share increase by the SGC would be proportional to the
resulting λIkm−s/r

Ik. Therefore, attainable market-shares are those that produce
a small enough value λIkm−s/r

Ik. In the cases reported in Table 8.5 the market-
shares µIk of the SGC have been pushed up until the ratio λIkm−s/r

Ik was close
to but did not exceed 1

3 .

Tabla 8.5: Effect of market share constraints on the profit of the SGC

µI λIm−s rI µII λIIm−s rII µIII λIIIm−s rIII total profit SGC profit
case % % % ( C ) ( C )
ltp01a 3.75 0.0 3.36 0.0 3.44 0.0 9552335013 263380937
ltp01b 4.2 8.25 26.12 4.2 8.93 27.39 4.2 8.24 25.10 9538257985 268453956
ltp02a 1.85 0.0 1.94 0.0 2.2 0.0 10986157177 174506646
ltp02b 3.4 9.64 29.31 3.3 10.24 31.12 3.4 9.45 29.14 10963147542 206313710
ltp03a 2.08 0.0 2.25 0.0 2.57 0.0 11004938184 205156894
ltp03b 3.6 9.58 29.35 3.6 10.14 31.17 3.8 9.64 29.20 10981583153 235282378
ltp04a 2.08 0.0 2.25 0.0 2.59 0.0 11006374461 205051615
ltp04b 3.6 9.35 29.36 3.6 9.84 31.18 3.7 8.94 29.21 10985461774 232575618

There are also cases whose name ends with “a” in Table 8.5. These cases
are the same as those ending in “b” but without the market-share constraints.
They are thus equivalent to having imposed a nonactive market share, lower than
the share the SGC gets in the solution. It should be noted that the market-
share constraints imposed slightly decrease the overall profit, but they noticeably
increase the SGC profit.
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11 Conclusions

• The long-term hydrothermal planning of the electricity generation problem
has been presented and an extension of the Bloom and Gallant model has
been put forward in order to solve it. multicommodity network flow model,
has been described and a comparative analysis with classical scenario based
stochastic programming has been presented. renewable energy sources) in
long-term planning has been described.

• A new way of formulating the long-term profit maximization of generating
companies in a competitive market has been described.

• An implementation of the Ford-Fulkerson and of Dantzig-Wolfe column ge-
neration procedures for solving a quadratic or a linear problem has been
presented.

• Implementation details of the solution with AMPL of the minimum cost
and the maximum profit long-term planning problems have been given.

• The computational experience with the Ford-Fulkerson and of Dantzig-
Wolfe column generation procedures and with AMPL plus Cplex 7.5 linear
programming and barrier quadratic programming has been reported. This
includes:

– The calculation of the rhs’s of the load-matching constraints for the
data files required by AMPL, which is extremely time-consuming, and
which is fairly time-consuming to be read in the solution process. This
lengthy calculation, requiring extremely long files to store the results,
makes this procedure impractical to use for real cases (where the num-
ber of units to consider may be well above one hundred).

– The solution of the minimum cost and the maximum profit long-term
problems.

– The comparison of the three procedures implemented for a set of real
cases, using the approximate hydrogeneration representation, showing
that the Ford-Fulkerson column generation is the most efficient, and
that AMPL plus Cplex 7.5 is not practical for big cases.

– The analysis of the effect of market-share constraints for a SGC in the
maximum profit solution.
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Santiago Cerisola, Andrés Ramos
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1 Introducción

Los sistemas de enerǵıa eléctrica siempre han sido un campo habitual de apli-
caciones de optimización en general (véanse los art́ıculos [5, 8, 12, 20] o el libro
[17]) y, en particular, de optimización estocástica [7]. Después de la desregulación
que está ocurriendo en numerosos sistemas eléctricos surgen de nuevo oportuni-
dades de modelado resueltas mediante optimización estocástica.

En este caṕıtulo se van a presentar varios ejemplos caracteŕısticos de planifi-
cación y operación de sistemas de enerǵıa eléctrica para cuya resolución se utili-
zan frecuentemente técnicas de descomposición. Existen numerosas referencias de
aplicaciones espećıficas, pero la presentación que se realiza en este caṕıtulo está
orientada a mostrar los problemas de una forma didáctica eliminando o simplifi-
cando algunas de las complejidades que pueden encontrarse cuando se modelan
sistemas eléctricos reales espećıficos. Las dos primeras aplicaciones, planificación
de la expansión de la generación y programación semanal, son clásicas en la lite-
ratura de sistemas eléctricos. La tercera, generación de ofertas, corresponde a un
modelo espećıfico de programación semanal para mercados eléctricos.

Por otra parte, la introducción de la incertidumbre en el modelado de los pro-
blemas de optimización, incrementa el tamaño de los mismos aśı como la dificultad
de su resolución. En este caṕıtulo, se sugieren estrategias de descomposición de
los problemas propuestos para abordar su resolución numérica.
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2 Planificación de la expansión de la generación

Un modelo de planificación de la expansión de la generación o modelo de
inversión tiene por objetivo determinar la composición óptima de las nuevas in-
versiones de generación (denominada poĺıtica óptima) para satisfacer la demanda
de electricidad con el mı́nimo coste total de inversión en las nuevas instalaciones
más el coste de operación de todo el sistema. Otras funciones objetivo alternativas
o complementarias pueden ser: medidas de fiabilidad del sistema, emisiones con-
taminantes, requisitos financieros [15, 19], etc. que pueden ser combinadas bajo
técnicas de decisión multicriterio. Las nuevas inversiones pueden estar originadas
por varios factores: la retirada de equipos al alcanzar su vida útil, el crecimiento
de la demanda de electricidad, la aparición de nuevas tecnoloǵıas competitivas
que reemplazan a las actuales, la evolución de los costes de combustibles que in-
fluyen en los costes de operación de los equipos actuales, etc. La influencia de
la demanda se produce no sólo por la enerǵıa total solicitada sino también por
la potencia máxima asociada. El modelo de planificación que se presenta aqúı se
orienta a entornos regulatorios tradicionales, aunque ya están surgiendo modelos
de expansión de la generación para entornos desregulados [13].

Un modelo de planificación de expansión de la generación minimiza los costes
totales (fijos y variables) de expansión del equipo generador para un alcance de
varios años t1, t = 1, . . . , T . Un alcance razonable puede ser de 5 a 15 años. Se
trata de un modelo de planificación dinámica, donde se considera expĺıcitamente
la cronoloǵıa de las decisiones de inversión a lo largo del tiempo. Las decisiones
principales que se toman con ayuda de este modelo son la potencia a instalar de
cada tipo de generación o generador en cada año del alcance del modelo.

La demanda de electricidad tiene un comportamiento estacionario cuyo valor
vaŕıa a lo largo del tiempo. El modelado habitual en problemas de planificación
utiliza la curva denominada duración-carga o monótona de carga. La monótona de
demanda de un año t se representa dividida en periodos p, p = 1, . . . , P . Sea Ds

tp

la demanda de potencia de cada periodo p para cada escenario s2, s = 1, . . . , S,
siendo Probs la probabilidad del escenario y sea Durtp la duración de dicho
periodo. La demanda se supone constante en dicho periodo. Esto hace que el
problema de optimización sea lineal.

Por simplicidad, sólo se considera generación térmica. El sistema de gene-
ración se caracteriza mediante un coste fijo, un coste variable y una tasa de
disponibilidad, que indica la proporción del tiempo en que el grupo se encuentra
disponible. Sea Fti el coste fijo anualizado de inversión de cada generador candi-
dato i, i = 1, . . . , I, a ser instalado, depende del año de instalación t; V s

pi el coste
variable de producción del generador en cada periodo y escenario y Ai la tasa de

1Se utiliza el ı́ndice t para la unidad temporal más relevante en este problema, t́ıpicamente
el año.

2Los escenarios pueden contemplar entre otros parámetros (como se verá en la siguiente
sección) las variaciones de la demanda o de los costes de combustibles a lo largo del tiempo.
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disponibilidad de cada grupo. El coste anualizado de inversión se calcula como
el coste total de inversión del equipo repartido a lo largo de su vida económica
teniendo en cuenta la tasa de descuento del dinero. Utilizando este coste anuali-
zado se simplifica el tratamiento de los efectos finales del modelo. Las tecnoloǵıas
o grupos a instalar dependen de los costes fijos y variables de cada uno de ellos,
de los costes de los combustibles y de las estrategias de abastecimiento energético
del páıs. Los costes variables incluyen los costes de combustible más los costes
variables de operación y mantenimiento.

Las variables del problema serán la potencia a instalar de cada generador
en cada año del alcance del modelo xti (son variables enteras) y la potencia de
operación de cada generador en cada periodo y escenario pstpi. Obsérvese que
la potencia a instalar no depende del escenario, mientras que las potencias de
operación dependen del escenario. La potencia acumulada instalada al comienzo
del alcance del modelo se considera conocida y0i.

Habitualmente se tienen en cuenta estas restricciones en las decisiones de
expansión: potencia instalada inicial conocida, máxima (y/o mı́nima) potencia
instalable, inversión máxima (y/o mı́nima), número máximo (y/o mı́nimo) de
generadores instalables en cada año. Además, también se consideran entre otras
estas restricciones de operación: el balance generación demanda en cada año.

2.1 Formulación determinista

Se considera un sistema generador puramente térmico. En la formulación del
problema se consideran los siguientes conjuntos de ı́ndices, parámetros, variables
y ecuaciones.

Conjuntos
T Conjunto de años
P Conjunto de periodos
I Conjunto de grupos térmicos
S Conjunto de escenarios

Índices
t Índice de años
p Índice de periodos
i Índice de grupos térmicos
s Índice de escenarios
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Parámetros
Ds
tp Demanda de potencia

en el periodo p del año t [MW]
Durtp Duración en el periodo p del año t [h]
Fti Coste fijo anualizado del grupo i

en el año t [ C /MWaño]
V s
pi Coste variable del grupo i

en el periodo p para el escenario s [ C /MWh]
Ai Tasa de disponibilidad del grupo i [p.u.]
Probs Probabilidad del escenario s [p.u.]
Rt Coeficiente de margen de reserva en el año t [p.u.]
M t Presupuesto máximo anual en el año t [ C ]
Xti Potencia mı́nima a invertir en el año t

para el grupo i [MW]

Variables
xti Potencia a instalar del grupo i

en el año t (variable entera) [MW]
yti Potencia acumulada instalada del grupo i

en el año t [MW]
pstpi Potencia producida por el grupo i

en el periodo p del año t para el escenario s [MW]

Para facilitar la comprensión del modelo vamos a ver en primer lugar un esce-
nario determinista cualquiera. Es decir, s′ es un escenario conocido de demanda,
por ejemplo el de demanda media o cualquier otro. En este caso, la función ob-
jetivo será minimizar la suma de costes fijos de inversión más costes variables de
operación para dicho escenario para el alcance del modelo.

mı́n
xti,yti,ps

′
tpi

T∑
t=1

I∑
i=1

(
Ftiyti +

P∑
p=1

V s′

piDurtpp
s′

tpi

)
(9.1)

siendo yti la potencia acumulada instalada cuyo cálculo se formula como

yti =
∑
t′≤t

xt′i ∀t, i (9.2)

o bien expresándolo con ecuaciones de continuidad para cada año y tecnoloǵıa

yti = yt−1 i + xti ∀t, i (9.3)

siendo la potencia instalada al comienzo del alcance del modelo y0i conocida.
Las decisiones de instalación de los generadores son enteras. Luego el problema

de optimización es lineal entero mixto.
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Las restricciones que condicionan este problema las podemos separar en dos
grupos. Uno, las restricciones de inversión que sólo afectan a las variables de
inversión. Dos, las restricciones de operación, que representan la operación del
sistema.

Restricciones de inversión

Entre las primeras conviene mencionar, por ejemplo, una limitación en la po-
tencia mı́nima a invertir en cada año del alcance del modelo Xti y un presupuesto
máximo anual disponible M t.

xti ≥ Xti ∀t, i (9.4)

I∑
i=1

Ftixti ≤M t ∀t (9.5)

Éstas ecuaciones deben incluir también, aunque no está puesta en ellas, la
retirada de potencia de generadores al final de su vida útil.

También se puede incluir una restricción que indique que la potencia instalada
total en cada año debe ser superior a la demanda máxima más un cierto margen
de reserva

I∑
i=1

(y0i + yti) ≥ Rt máx
p

(ds
′

tp) ∀t (9.6)

siendo Rt un coeficiente de margen de reserva anual.

Restricciones de operación

Entre las restricciones de operación están la cobertura de la demanda y la que
relaciona la potencia instalada en cada año con la potencia de operación utilizable
para satisfacer la demanda.

La restricción de cobertura de la demanda se formula para cada periodo p de
cada año t

I∑
i=1

ps
′

tpi = Ds′

tp ∀t, p (9.7)

Se supone que se dispone de potencia de operación suficiente para cubrir la
demanda en cualquier periodo y año. Para ello se asume que siempre existe un
generador con potencia suficiente y coste de operación muy elevado (denominado
potencia no suministrada) al que se puede recurrir. De esta manera el modelo es
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de recurso completo, es decir, cualquier decisión de inversión es factible desde el
punto de vista de la operación del sistema.

La potencia de operación en cualquier periodo de un año debe ser inferior a
la potencia instalada acumulada en ese año reducida por su disponibilidad Ai

ps
′

tpi ≤ Ai (y0i + yti) ∀t, p, i (9.8)

Esta ecuación liga las decisiones de inversión con las de operación.
Además de estas restricciones principales están el conjunto detallado de con-

diciones de funcionamiento de los grupos entre ĺımites, entre otras.

2.2 Formulación estocástica

Entre los parámetros que pueden considerarse estocásticos en un modelo de
expansión de la generación podemos citar: los costes fijos y variables de las tec-
noloǵıas, la demanda, la fecha de disponibilidad de las nuevas tecnoloǵıas, incluso
la vida útil de los equipos y por consiguiente su fecha de retirada, ver [10, 11, 14].
Los dos más importantes suelen ser la demanda y los costes variables de los ge-
neradores. La evolución de la demanda está influenciada por diferentes factores
como son: la actividad industrial, el crecimiento económico, las poĺıticas de aho-
rro energético o las tarifas. Los costes variables están influidos principalmente por
la evolución de los costes de los combustibles. Existe otro tipo de incertidumbre
que resulta más dif́ıcilmente representable en modelos de optimización estocástica
como es la incertidumbre regulatoria pero que puede afectan las decisiones de in-
versión en sistemas desregulados.

En la formulación de este problema estocástico se suponen los escenarios inde-
pendientes entre śı. Las decisiones de inversión deben ser únicas para el conjunto
de escenarios, luego es un problema de planificación bietapa siendo las decisiones
de inversión las de la primera etapa y las de operación las de la segunda.

La función objetivo recoge los costes de inversión más los costes esperados de
operación del conjunto de todos los escenarios

mı́n
xti,yti,pstpi

T∑
t=1

I∑
i=1

(
Ftiyti +

S∑
s=1

P∑
p=1

ProbsV s
piDurtpp

s
tpi

)
(9.9)

Las ecuaciones que afectan únicamente a las decisiones de inversión permane-
cen idénticas.

xti ≥ Xti ∀t, i (9.10)

I∑
i=1

Ftixti ≤M t ∀t (9.11)
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yti = yt−1 i + xti ∀t, i (9.12)

I∑
i=1

(y0i + yti) ≥ Rt máx
p

(Ds′

tp) ∀t (9.13)

mientras que las ecuaciones de operación ahora se repiten para cada escenario

I∑
i=1

pstpi = Ds
tp ∀s, t, p (9.14)

pstpi ≤ Ai (y0i + yti) ∀s, t, p, i (9.15)

Este problema de expansión de la generación es de recurso fijo puesto que los
coeficientes de las variables de inversión y de operación en las restricciones no
dependen del escenario.

Descomposición de Benders

Aparte de la formulación directa del problema de optimización anterior cuando
las dimensiones lo requieren se puede utilizar el método de descomposición de
Benders [3, 4, 16]. El lector interesado puede encontrar la descripción del método
de descomposición de Benders en el caṕıtulo de este libro titulado Modelado de
algoritmos de descomposición con GAMS. En este método el problema maestro o
problema de inversión env́ıa propuestas de inversión al subproblema o problema
de operación y éste devuelve las variables duales de las restricciones donde éstas
aparecen. El problema maestro es un problema lineal entero mixto mientras que
el subproblema es lineal. El subproblema resulta separable por escenarios y años3

y resoluble independientemente.
El problema maestro se formula como

mı́n
xti,yti,pstpi

∑T
t=1

∑I
i=1 Ftiyti +

∑S
s=1

∑T
t=1 Prob

sθst(x)

xti ≥ Xti ∀t, i∑I
i=1 Ftixti ≤M t ∀t

yti = yt−1 i + xti ∀t, i∑I
i=1 (y0i + yti) ≥ Rt máxp(Ds′

tp) ∀t

(9.16)

y el subproblema para cada escenario s y año t

3Según la formulación matemática presentada el problema también resulta separable por
periodo. Sin embargo, en formulaciones más realistas existen restricciones de acoplamiento
entre periodos que aqúı, por ser poco detallada no se han presentado.
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θst(x) = mı́n
ps
tpi

∑P
p=1

∑I
i=1 V

s
piDurtpp

s
tpi∑I

i=1 p
s
tpi = Ds

tp ∀p
pstpi ≤ Ai

(
y0i + yjti

)
∀p, i

(9.17)

siendo θst(x) la función de recurso del subproblema para el escenario s y yjti la
propuesta de decisión de inversión acumulada para la iteración j..

2.3 Caso ejemplo

Veamos a continuación un caso de estudio muy sencillo escrito en GAMS
con las ecuaciones presentadas en las formulaciones determinista y estocástica
anteriores. Sus resultados se utilizan de forma pedagógica para mostrar la validez
de la solución estocástica frente a las deterministas. El alcance del modelo es
de 1 año dividido en 3 periodos. El sistema de generación está compuesto de 4
generadores y se consideran 3 escenarios de demanda con probabilidades 0.2, 0.5
y 0.3.

$TITLE Planificación óptima de la expansión de la generación

SETS
J periodos / per-1 * per-3 /
I generadores / gen-1 * gen-4 /
S escenarios de demanda / s-1 * s-3 /

PARAMETERS
F(i) coste fijo de inversión [euro]
/ gen-1 10

gen-2 7
gen-3 16
gen-4 6 /

PROB(s) probabilidad de cada escenario [p.u.]
/ s-1 0.2

s-2 0.5
s-3 0.3 /

DEM(j) demanda para un escenario [MW]

TABLE V(i,j) coste variable de operación [euro por MW]

per-1 per-2 per-3
gen-1 40 24 4
gen-2 45 27 4.5
gen-3 32 19.2 3.2
gen-4 55 33 5.5

TABLE DEMS(s,j) demanda estocástica [MW]

per-1 per-2 per-3
s-1 3 3 2
s-2 5 3 2
s-3 7 3 2
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SCALARS
POTMIN potencia mı́nima a instalar [MW] / 12 /
PRSPTO lı́mite presupuestario [euro] / 120 /

VARIABLES
X(i) potencia a instalar [MW]
Y(j,i) potencia en operación [MW]
YS(s,j,i) potencia en operación estocástica [MW]
COSTE coste total

POSITIVE VARIABLES X, Y, YS

EQUATIONS
COST coste total [euro]
COSTS coste total estocástico [euro]
PRESUP limitación presupuestaria [euro]
INSMIN potencia mı́nima instalada [MW]
BALPOT potencia en operación menor que instalada [MW]
BALPOTS potencia en operación menor que instalada estocástica [MW]
BALDEM balance de demanda [MW]
BALDEMS balance de demanda estocástico [MW] ;

COST .. COSTE =E= SUM(i, F(i) * X(i))
+ SUM((j,i), V(i,j) * Y(j,i)) ;

COSTS .. COSTE =E= SUM(i, F(i) * X(i))
+ SUM((s,j,i), PROB(s) * V(i,j) * YS(s,j,i)) ;

PRESUP .. SUM(i, F(i) * X(i)) =L= PRSPTO ;

INSMIN .. SUM(i, X(i)) =G= POTMIN ;

BALPOT(j,i) .. Y(j,i) =L= X(i) ;
BALPOTS(s,j,i) .. YS(s,j,i) =L= X(i) ;

BALDEM(j) .. SUM(i, Y(j,i)) =G= DEM(j) ;
BALDEMS(s,j) .. SUM(i, YS(s,j,i)) =G= DEMS(s,j) ;

MODEL DETERM / COST, INSMIN, PRESUP, BALPOT, BALDEM / ;
MODEL ESTOCA / COSTS, INSMIN, PRESUP,BALPOTS, BALDEMS / ;

* este bucle resuelve cada escenario determinista por separado

LOOP (s,
DEM(j) = DEMS(s,j) ;
SOLVE DETERM MINIMIZING COSTE USING LP ;

) ;

* ahora se resuelve el escenario de demanda media

DEM(j) = SUM(s, PROB(s) * DEMS(s,j)) ;
SOLVE DETERM MINIMIZING COSTE USING LP ;

* ahora se resuelve el problema estocástico

SOLVE ESTOCA MINIMIZING COSTE USING LP ;

El problema se resuelve en primer lugar de forma determinista para cada
escenario de demanda por separado. Los resultados aparecen en las tres primeras
columnas de la siguiente tabla. A continuación se resuelve el problema para
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Escenario Escenario Escenario Escenario Problema
Determinista 1 Determinista 2 Determinista 3 Medio Estocástico

Generador 1 . 0.33 3.67 0.67 0.67
Generador 2 . . . . 2
Generador 3 3 4.67 3.33 4.53 4.33
Generador 4 9 7 5 6.8 5

Coste total 262 346.67 437.33 355.73 362.47

el valor medio ponderado de la demanda (siguiente columna) y finalmente el
problema estocástico (en la última columna). Obsérvese que en este ejemplo
sencillo no hay coincidencia entre la solución de ningún escenario y la del problema
estocástico.

La función objetivo del problema estocástico es el coste fijo de las decisiones
de la primera etapa más el valor esperado de la operación asociada a las deci-
siones de la segunda etapa (362.47 en el ejemplo). A continuación se calculan
algunos parámetros caracteŕısticos que ayudan a valorar la utilidad del problema
estocástico frente a soluciones de escenarios deterministas. El valor de la solución
estocástica (value of stochastic solution VSS) es la diferencia entre la función ob-
jetivo del problema estocástico y la del problema determinista para el valor medio
de los parámetros (362.47-355.73=6.73). Se denomina valor esperado con infor-
mación perfecta (expected value with perfect information EVWPI) a la suma
ponderada para cada escenario de la función objetivo total sabiendo que dicho
escenario va a ocurrir con certeza (356.93 para el ejemplo). Es decir, el valor
esperado si se revela la incertidumbre antes de tomar las decisiones de la primera
etapa. Este valor siempre será menor o igual, en un problema de minimización,
que la función objetivo del problema estocástico. Para cada escenario, la solución
del problema estocástico es siempre peor o igual que la solución con información
perfecta (la función es 280, 349.33 y 439.33 respectivamente). Se denomina valor
esperado de la información perfecta (expected value of perfect information EVPI)
o arrepentimiento a la diferencia entre ambas (280-262=18, 349.33-346.67=2.66,
439.33-437.33=2).

2.4 Caso español

Vamos a estimar a continuación las dimensiones del problema estocástico pre-
sentado previamente para un sistema eléctrico de tamaño como el español. Su-
pongamos un alcance del estudio de 10 años, T = 10. Cada año la monótona de
carga considera periodos de punta, llano y valle en laborable y festivo para cada
mes, siendo un total de 72 periodos en cada año, P = 72. Suponemos 10 esce-
narios de demanda, S = 10, y un sistema de generación con 80 grupos térmicos,
I = 80.
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Las restricciones de la primera etapa (potencia mı́nima a invertir en cada
año y cada generador, presupuesto máximo anual disponible, margen de potencia
instalada con respecto a la demanda, más las restricciones de cálculo de la potencia
instalada acumulada) suman un total de TI+T+TI+T = 2(TI+T ) = 1620. Las
restricciones que acoplan decisiones de la primera y segunda etapa son STPI =
576000. Las restricciones de operación de la segunda etapa son STP = 7200.

Las decisiones de inversión de la primera etapa son 2TI = 1600 variables ente-
ras mientras que las de la segunda etapa son STPI = 576000 variables continuas.

Este tamaño está muy al ĺımite o excede las capacidades actuales de los op-
timizadores lineales enteros mixtos, luego se necesitaŕıa recurrir a métodos de
descomposición para la resolución del problema de planificación de la expansión
del sistema eléctrico peninsular español.

3 Programación semanal

El problema de la programación semanal (unit commitment) consiste en de-
terminar el conjunto de grupos de generación que se deben conectar y sus niveles
de operación para minimizar el coste total de operación sujeto a la satisfacción
de la demanda y de una cierta reserva de generación. Para la resolución de este
problema, tradicionalmente se han utilizado técnicas de optimización ordinal aśı
como técnicas basadas en programación dinámica. Recientemente, debido a la
evolución de los optimizadores para problemas lineales enteros mixtos, este pro-
blema es formulado y resuelto como un problema lineal entero mixto de gran
tamaño. Sin embargo, esta mejora posibilita la exigencia de modelos de pro-
gramación semanal más complejos que incluyan incertidumbre en los parámetros
modelados. Por otra parte, los nuevos entornos regulatorios modifican el plan-
teamiento de los problemas de programación semanal como problemas de mini-
mización de costes. Ahora se plantea como un problema de determinación de la
oferta óptima formulando un problema de maximización del beneficio obtenido.

Estas nuevas caracteŕısticas de los problemas de programación semanal com-
plican el modelado tradicional de los mismos aśı como su resolución algoŕıtmica.
En esta sección se presenta el modelado tradicional de un problema de progra-
mación semanal y el planteamiento de la Relajación Lagrangiana como método
de resolución. Posteriormente se describe un problema estocástico en el que la
estocasticidad en la demanda se introduce mediante un árbol de escenarios. La
siguiente sección de este caṕıtulo está dedicada a los problemas de programación
semanal en mercados eléctricos.

3.1 Formulación determinista

Se considera un sistema generador puramente térmico. En la formulación del
problema se consideran los siguientes conjuntos de ı́ndices, parámetros, variables
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y ecuaciones.

Conjuntos
T Conjunto de periodos
I Conjunto de grupos térmicos

Índices
t Índice de periodos
h Índice auxiliar de periodos
i Índice de grupos térmicos

Parámetros
Dt Demanda del periodo t [MW]
Rt Coeficiente de margen de reserva térmica

del periodo t [p.u.]
Durt Duración del periodo t [h]
Pmax
i Potencia máxima del grupo i [MW]

Pmin
i Potencia mı́nima del grupo i [MW]

Lupi Ĺımite rampa subida del grupo i [MW/h]
Ldowni Limite rampa bajada del grupo i [MW/h]
Fi Coste fijo del grupo i [ C /h]
Vi Coste variable de combustible del grupo i [ C /MWh]
Cup
i Coste de arranque del grupo i [ C ]

Cdown
i Coste de parada del grupo i [ C ]

τi Tiempo mı́nimo de parada del grupo i [h]
κi Tiempo mı́nimo de acoplamiento del grupo i [h]

Variables
pti Potencia producida por el grupo i en el periodo t [MW]
uti Acoplamiento del grupo i en el periodo t {0,1}
supti Arranque del grupo i en el periodo t [0,1]
sdownti Parada del grupo i en el periodo t [0,1]

El problema de programación semanal debe satisfacer la demanda de potencia
en cada uno de los periodos4 del alcance temporal

I∑
i=1

pti = Dt ∀t (9.18)

imponiendo un margen de reserva que es modelado como
4Obsérvese que se utiliza el ı́ndice t para la unidad temporal más relevante en este problema,

t́ıpicamente una hora.

Rect@ Monográfico 2 (2004)



S. Cerisola et al. 219

I∑
i=1

(Pmax
i uti − pti) ≥ RtDt ∀t (9.19)

Para cada grupo térmico, los valores de potencia producida están acotados
entre su mı́nimo técnico y su máxima capacidad disponible

Pmin
ti uti ≤ pti ≤ Pmax

ti uti ∀t, i (9.20)

Los cambios en la potencia producida por los grupos térmicos vienen limitados
por las ecuaciones de rampa5

Ldowni Durt ≤ pti − pt−1 i ≤ Lupi Durt ∀t, i (9.21)

Las decisiones de arranque y parada de los grupos son gestionadas mediante
el siguiente grupo de ecuaciones

uti − ut−1 i = supti − sdownti ∀t, i (9.22)

Algunos modelos de programación semanal más avanzados incluyen requeri-
mientos de tiempo mı́nimo para unidades que han sido acopladas o desacopladas.
En caso de que hayan sido acopladas, se exige un tiempo mı́nimo de acoplamiento
y por el contrario, en caso de que hayan sido desacopladas, debe transcurrir un
cierto número de horas hasta que puedan ser acopladas de nuevo. Estas restric-
ciones de tiempo mı́nimo de parada son modeladas mediante el siguiente conjunto
de ecuaciones

ut+ht i ≤ 1 + uti − ut−1 i ∀t, ht, i (9.23)

donde el conjunto de periodos desplazados, controlados por el ı́ndice ht, puede
ser restringido para valores de ht ≥ 1 tales que

τi ≤
ht−1∑
l=0

Durt+l (9.24)

De modo similar, las restricciones de mı́nimo tiempo de funcionamiento son
modeladas como

ut+ht i ≥ uti − ut−1 i ∀t, ht, i (9.25)

limitando, en este caso, el conjunto de periodos desplazados a aquellos ht ≥ 1
tales que

5La ecuación siguiente aparece simplificada y supone que las duraciones de los periodos son
iguales. La ecuación de rampa se debeŕıa aplicar únicamente a la potencia producida por encima
del mı́nimo técnico, aunque en la ecuación 9.21 por simplicidad se aplica a la potencia producida
total.

Rect@ Monográfico 2 (2004)



220 Aplicaciones en sistemas de enerǵıa eléctrica

κi ≤
ht−1∑
l=0

Durt+l (9.26)

Dado el anterior conjunto de restricciones, el problema de programación se-
manal minimiza el coste total de explotación que viene dado como

T∑
t=1

I∑
i=1

{DurtFiuti + DurtVipti + Cup
i supti + Cdown

i sdownti } (9.27)

El problema de programación semanal, formulado anteriormente, puede ser
resuelto mediante técnicas de programación entera mixta como las técnicas de
ramificación y acotamiento (branch and bound) o técnicas de ramificación y corte
(branch and cut). En la literatura, también es común encontrar el problema de la
programación semanal resuelto mediante la técnica de la Relajación Lagrangiana.
Esta técnica es revisada en la siguiente sección, particularizada para el problema
de programación semanal anteriormente descrito.

Relajación Lagrangiana

La Relajación Lagrangiana explota la estructura matricial de un problema
de optimización en el que un conjunto de ecuaciones complican la resolución del
mismo. Para el problema de la programación semanal, este conjunto de restric-
ciones son las ecuaciones de balance de potencia para cada uno de los periodos
del alcance temporal (tradicionalmente una semana).

La Relajación Lagrangiana maximiza la función dual obtenida al minimizar
la función objetivo dada por el lagrangiano sobre el conjunto de restricciones que
definen el problema de optimización.

Considérese el problema de programación semanal descrito en la sección an-
terior. Por simplicidad en la exposición supongamos también que no se incluyen
las restricciones asociadas a la reserva de potencia ni las restricciones de mı́nimo
tiempo de acoplamiento o parada. En este caso, el lagrangiano es formulado como

L(pti, uti, s
up
ti , s

down
ti , λt) =∑T

t=1

∑I
i=1{DurtFiuti + DurtVipti + Cup

i supti + Cdown
i sdownti }+∑T

t=1 λt(
∑I

i=1 pti −Dt)
(9.28)

siendo λ = λt, t = 1, . . . , T el conjunto de multiplicadores de Lagrange. Esta
expresión, una vez reordenados los términos, se plantea como

L(pti, uti, s
up
ti , s

down
ti , λt) =∑T

t=1

∑I
i=1{DurtFiuti + (DurtVi + λt)pti + Cup

i supti + Cdown
i sdownti }−∑T

t=1 λtDt

(9.29)
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La función dual ω(λ) se obtiene al evaluar el lagrangiano para un valor es-
pećıfico λ del multiplicador sobre el conjunto de restricciones que definen el pro-
blema salvo la ecuación de complicación.

ω(λ) = mı́n
pti,uti,s

up
ti
,sdown
ti

L(pti, uti, s
up
ti , s

down
ti , λt)

Pmin
ti uti ≤ pti ≤ Pmax

ti uti ∀t, i
Ldowni Durt ≤ pti − pt−1 i ≤ Lupi Durt ∀t, i
uti − ut−1 i = supti − sdownti ∀t, i

(9.30)

El anterior problema de optimización, llamado subproblema de Lagrange, es
separable en I problemas de optimización, uno por cada grupo térmico conside-
rado, dados como

mı́n
pti,uti,s

up
ti
,sdown
ti

∑T
t=1{DurtFiuti + (DurtVi + λt)pti + Cup

i supti + Cdown
i sdownti }

Pmin
ti uti ≤ pti ≤ Pmax

ti uti ∀t
Ldowni Durt ≤ pti − pt−1 i ≤ Lupi Durt ∀t
uti − ut−1 i = supti − sdownti ∀t

(9.31)
Existen numerosas técnicas en la literatura orientadas a obtener el máximo

de la función dual. Se destacan las técnicas basadas en el subgradiente aśı como
aquellas de aproximación exterior. No es el objetivo de este caṕıtulo presentar
una revisión extensa de estos métodos. El lector interesado puede encontrar la
descripción del método de aproximación exterior de la función dual en el caṕıtulo
de este libro titulado Modelado de algoritmos de descomposición con GAMS.

El modelado presentado del problema de programación semanal no incorpora
estocasticidad en ninguno de los parámetros del problema. En la siguiente sección
se presenta un modelado estocástico del problema de la programación semanal
en el cual la estocasticidad ha sido introducida en el parámetro de la demanda
a través de una distribución de probabilidad discreta dada como un árbol de
escenarios.

3.2 Formulación estocástica

Consideremos el problema de programación semanal en el que la variable
de demanda es introducida como un parámetro aleatorio. Se considera que la
distribución de dicho parámetro tiene soporte finito (distribución discreta) y viene
dada a través de un árbol de escenarios. En la figura 9.1 se muestra un ejemplo
de un árbol de cuatro escenarios para un caso realista en el que se considera una
ramificación del árbol de escenarios en la hora 25 y otra en la hora 49.

Cuando se introducen parámetros aleatorios en un problema de optimización,
normalmente se formula y resuelve el problema determinista equivalente. Este pro-
blema introduce copias de las variables para cada uno de los posibles escenarios
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Figura 9.1: Árbol de 4 escenarios

que la realización del parámetro estocástico produce. Esto aumenta drásticamente
el tamaño del problema complicando, por tanto, su resolución. Esta represen-
tación del problema equivalente puede formularse de modo compacto o mediante
la introducción de restricciones de no anticipatividad. En el primero de los casos,
sólo se generan variables para las ramas diferentes del árbol del escenarios. Para
el ejemplo de la figura, se genera una copia para cada una de las variables de las
primeras 24 horas, dos copias para cada una de las variables de las segundas 24
horas y cuatro copias para el resto de las variables. Por el contrario, una formu-
lación no compacta genera una copia para cada uno de los escenarios6 posibles.
Las restricciones de no anticipatividad se introducen para igualar los valores de
aquellas variables que comparten parte común del árbol.

Para mostrar el modelado de un problema de optimización introduciendo res-
tricciones de no anticipatividad se utiliza el problema de programación semanal
anteriormente presentado. El conjunto de ı́ndices y parámetros es prácticamente
el mismo que en el caso determinista y el conjunto de variables incorpora el su-
peŕındice escenario.

Conjuntos
T Conjunto de periodos
I Conjunto de grupos térmicos
S Conjunto de escenarios

6En optimización estocástica un escenario se define como cualquiera de los caminos que van
desde el periodo inicial al final (de la ráız a las hojas).
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Índices
t Índice de periodos
h Índice auxiliar de periodos
i Índice de grupos térmicos
s Índice de escenarios

Parámetros
Ds
t Demanda del periodo t en escenario s [MW]

Rs
t Reserva térmica del periodo t en escenario s [MW]

Durt Duración del periodo t [h]
Pmax
i Potencia máxima del grupo i [MW]

Pmin
i Potencia mı́nima del grupo i [MW]

Lupi Ĺımite rampa subida del grupo i [MW/h]
Ldowni Limite rampa bajada del grupo i [MW/h]
Fi Coste fijo del grupo i [ C /h]
Vi Coste variable de combustible del grupo i [ C /MWh]
Cup
i Coste de arranque del grupo i [ C ]

Cdown
i Coste de parada del grupo i [ C ]

τi Tiempo mı́nimo de parada del grupo i [h]
κi Tiempo mı́nimo de acoplamiento del grupo i [h]
Probs Probabilidad del escenario s [p.u.]

Variables para cada escenario s
psti Potencia producida por el grupo i en el periodo t [MW]
usti Acoplamiento del grupo i en el periodo t {0,1}
sup sti Arranque del grupo i en el periodo t [0,1]
sdown s
ti Parada del grupo i en el periodo t [0,1]

El conjunto de restricciones del problema estocástico de programación semanal
coincide con el del planteamiento determinista. Debe tenerse en cuenta que cada
ecuación es duplicada tantas veces como número de escenarios tiene el problema.
Juntamente con estas restricciones, las de no anticipatividad son modeladas como

psti = ps
′
ti si s, s′ ∈ N(t)

usti = us
′
ti si s, s′ ∈ N(t)

sup sti = sup s
′

ti si s, s′ ∈ N(t)
sdown s
ti = sdown s′

ti si s, s′ ∈ N(t)

(9.32)

donde N(t) representa los diferentes conjuntos de escenarios que comparten la
misma parte del árbol para el periodo t. En las ecuaciones anteriores es conve-
niente considerar s como el escenario de ı́ndice menor que pertenece a N(t) y
s < s′ de modo que el número de restricciones generadas sea el menor posible.
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La función objetivo minimiza el coste esperado de explotación y es formulada
como

S∑
s=1

Probs
T∑
t=1

I∑
i=1

{DurtFiuti + DurtVipti + Cup
i supti + Cdown

i sdownti } (9.33)

Para la resolución del problema con restricciones de no anticipatividad una
alternativa muy popular en la literatura consiste en la relajación de estas restric-
ciones, obteniendo para cada escenario un problema de programación semanal
(modificando ligeramente su función objetivo). Esta idea, conocida como des-
composición por escenarios (scenario decomposition), es presentada brevemente
en la próxima sección.

Descomposición por escenarios del problema estocástico

Considérese el problema anteriormente planteado y sean λsti , µsti, γ
up s
ti , γdown s

ti

las variables duales de las restricciones de no anticipatividad presentadas en la
sección anterior. La formulación del lagrangiano para este problema tiene la
siguiente expresión

∑S
s=1 Prob

s
∑T

t=1

∑I
i=1{DurtFiu

s
ti + DurtVip

s
ti + Cup

i sup sti + Cdown s
i sdownti }

+λsti(p
s
ti − ps

′
ti)

+µsti(u
s
ti − us

′
ti)

+γup sti (sup sti − sup s
′

ti )
+γdown s

ti (sdown s
ti − sdown s′

ti )
(9.34)

La reordenación de los términos de la función objetivo anterior obtiene una
expresión del lagrangiano similar a la función objetivo del problema estocástico de
programación semanal. La diferencia aparece en la modificación de los coeficientes
que acompañan a las variables de decisión. Esta modificación queda reflejada en
la siguiente expresión, donde la notación ha sido simplificada para facilitar su
comprensión7

∑S
s=1 Prob

s
∑T

t=1

∑I
i=1{(DurtFi + µ̄sti)u

s
ti + (DurtVi + λ̄sti)p

s
ti+

(Cup
i + γ̄up sti )sup sti + (Cdown

i + γ̄down s
ti )sdown s

ti } (9.35)

El problema de minimización del lagrangiano sobre el conjunto de restricciones
del problema estocástico semanal, es claramente separable en S problemas inde-
pendientes, una vez que se han relajado las restricciones de no anticipatividad.
Cada uno de estos problemas puede ser formulado como

7Los coeficientes µ̄, λ̄, γ̄, γ̄ reflejan las manipulaciones realizadas para simplificar la expresión
de la función objetivo del subproblema lagrangiano.
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mı́n
ps
ti
,us

ti
,sup s
ti

,sdown s
ti

∑T
t=1

∑I
i=1{(DurtFi + µ̄sti)u

s
ti + (DurtVi + λ̄sti)p

s
ti+

(Cup
i + γ̄up sti )sup sti + (Cdown

i + γ̄down s
ti )sdown s

ti }∑I
i=1 p

s
ti = Ds

t ∀t
Pmin
ti usti ≤ psti ≤ Pmax

ti usti ∀t
Ldowni Durt ≤ psti − pst−1 i ≤ Lupi Durt ∀t
uti − ut−1 i = sup sti − sdown s

ti ∀t
(9.36)

con lo que se obtiene un problema similar al problema de programación semanal.
Para cada valor del multiplicador propuesto, la resolución del anterior problema
proporciona el valor de la función dual. Tal como se ha comentado anteriormente,
esta función dual es maximizada utilizando técnicas de optimización basadas en
el subgradiente o técnicas de aproximación exterior. Para la posterior búsqueda
de una solución factible (i.e., una que satisfaga las condiciones de no anticipa-
tividad relajadas), es necesario el uso de heuŕısticos basados en el conocimiento
del problema. Recientemente, se han utilizado técnicas basadas en ramificación
y acotamiento para tal fin [18].

4 Programación semanal en mercados eléctricos

La diferencia principal en un mercado eléctrico de cara a la planificación se-
manal reside en que las empresas de generación son responsables de su propia
producción total. La demanda de potencia, que en los modelos tradicionales apa-
rece como un parámetro, debe ser introducida como una variable de decisión que
un problema de maximización del beneficio debe optimizar. El beneficio obtenido
B(p) viene dado por el nivel de ingresos, que depende del precio de mercado π, y
por el coste de generación de la producción total determinada c(p).

B(p) = πp− c(p) (9.37)

En un entorno de mercado, el precio viene determinado como función de la
demanda. Para una empresa estratégica (no tomadora de precio), la parte de
demanda que es capaz de cubrir viene dada por la curva de demanda residual8,
p = R(π), de modo que la función objetivo aparece como una función no lineal
de la cantidad de potencia producida.

B(p) = R−1(p)p− c(p) (9.38)

La función de demanda residual es una función escalonada que puede ser
aproximada como una función poligonal. Por otra parte, la función de ingresos es

8La función de demanda residual se define como el resultado de substraer de la función de
demanda agregada la producción del resto de las empresas.
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Figura 9.2: Representación poligonal de la curva de demanda residual y de la
curva de ingresos

en general una función no cóncava [9] que puede ser modelada como una función
poligonal (figura 9.2). Para ello se utiliza una conjunto de variables binarias que
representa la cantidad producida como suma de las cantidades asociadas a los
tramos individuales. El precio, dado por la función de demanda residual aśı como
la función de ingresos siguen el mismo patrón. Este modelado de la producción,
precio y curva de ingresos, utilizando dicho conjunto de variables binarias es
presentado en la siguiente sección.

En caso de que supongamos conocida la curva de demanda residual, el pro-
blema de determinación de la cantidad de producción óptima es un problema
determinista similar al problema de programación semanal. Por el contrario, en
caso de que esta curva de demanda residual no sea conocida, su estimación a
través de una distribución de probabilidad discreta conduce a la formulación de
un problema de optimización que lleva a la determinación, en cada periodo, de una
curva de producción dependiente del precio. Esta curva es exactamente la curva
óptima de oferta en el mercado. Estas dos situaciones, la situación determinista
y la situación estocástica, son descritas en las siguientes secciones.

4.1 Situación determinista: determinación de la producción
óptima

Supongamos un conjunto de periodos dado por el conjunto T y una curva
conocida de demanda residual para cada periodo, t ∈ T . El siguiente conjunto
de ı́ndices, parámetros y variables extienden la formulación determinista del pro-
blema de la programación semanal para el caso de maximización del beneficio.

Rect@ Monográfico 2 (2004)



S. Cerisola et al. 227

Conjuntos
J Conjunto de tramos para representar

la curva de demanda residual

Índices
j Índice de tramos

Parámetros
δtj Pendiente del tramo j de la curva de demanda

residual en el periodo t [ C /MW]
δtj Pendiente del tramo j de la curva de beneficio

en el periodo t [ C /MW]
πtj Precio asociado al tramo j de la curva

de demanda residual en el periodo t [ C /MWh]
p̄tj Cantidad asociada al tramo j de la curva

de demanda residual en el periodo t [MW]
b̄tj Beneficio asociado al tramo j de la curva

de beneficio en el periodo t [ C ]

Variables
vtj Variable binaria asociada al tramo j en el periodo t {0,1}
ptj Producción total asociada al tramo j en el periodo t [MW]
πt Precio en el periodo t [ C ]
bt Beneficio en el periodo t [ C ]

El problema de maximización del beneficio para un conjunto T de periodos
considera una función objetivo que viene dada como

máx
T∑
t=1

bt − c(pt) (9.39)

considerando que el beneficio está modelado como

bt = b̄t0 +
J−1∑
j=1

γtjptj (9.40)

y que la producción viene dada como

pt = pt0 +
J−1∑
j=1

ptj (9.41)

Las producciones totales asociadas a cada uno de los tramos j está acotada
de modo natural por
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(p̄tj − p̄tj−1)vt+1 j ≤ ptj ≤ (p̄tj − p̄tj−1)vtj (9.42)

imponiendo una condición de monotońıa al conjunto de variables representativas
de los tramos que puede ser modelada como

vtj ≥ vtj+1 j = 1, . . . , J − 1 (9.43)

En esta formulación, la ecuación de balance de potencia en cada periodo im-
pone que la suma de las producciones de los grupos sea la producción total. La
introducción de la variable de producción total reemplaza el parámetro Dt del
modelo tradicional de programación semanal (o programación multiperiodo en
un caso general).

I∑
i=1

pti = pt ∀t (9.44)

El resto de restricciones del problema de maximización, como las restricciones
de potencia máxima y mı́nima, ecuaciones de rampa y ecuaciones de gestión de
arranques y paradas son aquéllas del problema de programación semanal (pre-
sentadas en la sección 3 de este caṕıtulo) son introducidas en el problema de
maximización del beneficio.

4.2 Situación estocástica: determinación de la curva de
oferta

En caso de que la curva de demanda residual sea desconocida, o exista una
cierta incertidumbre en torno a su realización, el modelado determinista de la
sección anterior no es suficientemente válido. La empresa generadora debe tener
en cuenta este abanico de posibilidades y su decisión de generación se transforma
en una curva de producción dependiente del precio resultante en el mercado.
En cada periodo, la decisión de producción de una empresa no se limita a un
valor fijo de cantidad producida. Por cada realización de la curva de demanda
residual (que ahora se considera como una variable aleatoria), existe una variable
de decisión (producción en dicho periodo) que determina un precio óptimo para
dicha decisión de producción. Este conjunto de parejas de cantidades y precios
constituye la curva de oferta, (figura 9.3).

Al introducir estocasticidad en la representación de la curva de demanda re-
sidual, se deben tener en cuenta dos caracteŕısticas de modelado. Por una parte,
la función objetivo pasa a ser considerada como la maximización del beneficio es-
perado. El modo de interpretar la incertidumbre aśı como la manera de modelar
la función objetivo se comentará más adelante. Por otra parte, la curva de oferta
debe ser una función monótona creciente, y se debe introducir espećıficamente en
el modelo de maximización tal cualidad.
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Figura 9.3: Demanda residual estocástica y curva de oferta para una hora par-
ticular

En los problemas de generación en mercado eléctricos, es posible identificar
d́ıas tipo en función de la forma de las funciones de demanda residual de las 24
horas del d́ıa [2]. Esto es, al identificar que la curva de demanda residual para
una hora particular t se comporta según un determinado patrón, la colección de
demandas residuales para el resto de las horas se comporta de modo similar al
patrón de d́ıa en que se encuentra incluida esa hora t. Esto lleva a considerar una
representación de la incertidumbre identificando escenarios compuestos por d́ıas
tipo.

En las figuras 9.4 y 9.5 está representada la interpretación del modelado de la
incertidumbre. Un escenario o situación determinista consiste en un conjunto de
funciones de demanda residual desde el primero de los periodos hasta el último.
Por el contrario, en una situación estocástica son considerados una colección de
escenarios que no comparten parte común en ningún momento. Debe observarse
el diferente tratamiento de la incertidumbre en este problema con respecto al
tratamiento de la incertidumbre dada en modo de árbol de escenarios, más ade-
cuada para otros modelos. Esta diferencia es trasladada al modelado utilizando
el sub́ındice k para representar cada una de las realizaciones de la incertidumbre
asociada a la demanda residual (en lugar de utilizar el sub́ındice s).

Dada esta representación, consideremos el siguiente conjunto de ı́ndices, parámetros
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Figura 9.4: 1 escenario de curvas de demanda residual

Figura 9.5: K escenarios de curvas de demanda residual

y variables que es posteriormente utilizado para la representación estocástica del
problema de maximización.

Conjuntos
T Conjunto de periodos
I Conjunto de grupos térmicos
J Conjunto de tramos para representar la curva

de demanda residual
K Conjunto de escenarios

Índices
t Índice de periodos
i Índice de grupos térmicos
j Índice de tramos
k Índice de escenarios
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Parámetros deterministas
Durt Duración del periodo t [h]
Pmax
i Potencia máxima del grupo i [MW]

Pmin
i Potencia mı́nima del grupo i [MW]

Lupi Ĺımite rampa subida del grupo i [MW/h]
Ldowni Limite rampa bajada del grupo i [MW/h]
Fi Coste fijo del grupo i [ C /h]
Vi Coste variable de combustible del grupo i [ C /MWh]
Cup
i Coste de arranque del grupo i [ C ]

Cdown
i Coste de parada del grupo i [ C ]

Parámetros estocásticos
δktj Pendiente del tramo j de la curva de demanda

residual en el periodo t y escenario k [ C /MW]
δktj Pendiente del tramo j de la curva de beneficio

en el periodo t y escenario k [ C /MW]
πktj Precio asociado al tramo j de la curva

de demanda residual en el periodo t y escenario k [ C ]
p̄ktj Cantidad asociada al tramo j de la curva

de demanda residual en el periodo t y escenario k [MW]
b̄ktj Beneficio asociado al tramo j de la curva

de beneficio en el periodo t y escenario k [ C ]
Probk Probabilidad del escenario k

Variables
vktj Variable binaria asociada al tramo j

en el periodo t y escenario k {0,1}
pkt Producción total en el periodo t y escenario k [MW]
pktj Producción total asociada al tramo j

en el periodo t y escenario k [MW]
pkti Potencia producida por el grupo i en el periodo t

y escenario k [MW]
πkt Precio en el periodo t y escenario k [ C ]
bkt Beneficio en el periodo t y escenario k [ C ]
ukti Acoplamiento del grupo i en el periodo t y escenario k {0,1}
sup kti Arranque del grupo i en el periodo t y escenario k [0,1]
sdown k
ti Parada del grupo i en el periodo t y escenario k [0,1]
xkk

′
t Variable binaria asociada a la monotońıa de la oferta

en el periodo t y escenarios k y k′ {0,1}

La ecuación de balance de potencia es pues modelada como
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I∑
i=1

pkti = pkt ∀t, k (9.45)

siendo modelada la cantidad total pkt producida en un periodo t para una reali-
zación k de la incertidumbre como

pkt = p̄kt0 +
J−1∑
j=1

pktj (9.46)

La curva de ingresos es modelada a tramos de igual modo que en la situación
determinista

bkt = b̄kt0 +
J−1∑
j=1

γktjp
k
tj (9.47)

extendiendo las cotas de las variables de la producción por tramo t a la situación
estocástica

(p̄ktj − p̄ktj−1)v
k
t+1 j ≤ pktj ≤ (p̄ktj − p̄ktj−1)v

k
tj (9.48)

e imponiendo la condición de monotońıa del conjunto de variables binarias re-
presentativas de los tramos, que ahora en la situación estocástica depende del
escenario k

vktj ≥ vktj+1 j = 1, . . . , J − 1 (9.49)

Dada la representación de la incertidumbre considerada, las restricciones de
potencia máxima y mı́nima, las restricciones de rampa y las restricciones de
gestión de arranques y paradas son introducidas de modo independiente para
cada escenario k.

Pmin
ti ukti ≤ pkti ≤ Pmax

ti ukti ∀t, k (9.50)

Ldowni Durt ≤ pkti − pkt−1 i ≤ Lupi Durt ∀t, k (9.51)

ukti − ukt−1 i = sup kti − sdown k
ti ∀t, k (9.52)

El conjunto de restricciones anterior forman el bloque principal de ecuaciones
del modelo de determinación de la producción óptima bajo incertidumbre (curva
de oferta). La curva de oferta debe ser monótona creciente y por ello el siguiente
conjunto de ecuaciones es introducido en el modelo con tal propósito.
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El precio obtenido al considerar la producción óptima pkt de un periodo t y
una realización k de la incertidumbre dada por la demanda residual, es modelada
mediante tramos utilizando la siguiente representación.

πkt = π̄kt0 +
J−1∑
j=1

δktjp
k
tj (9.53)

Con esta formulación, debe imponerse la condición de que el conjunto de
parejas (pkt , π

k
t ), k ∈ K, formen una curva monótona creciente. Esta condición,

que puede ser modelada mediante una restricción no lineal, admite la siguiente
formulación lineal entera mixta, mediante la introducción de un conjunto auxiliar
de variables binarias [1]

pkt − pk
′

t ≥ −xkk
′

t Mp ∀t, k, k′ k′ > k (9.54)

πkt − πk
′

t ≥ −xkk
′

t Mπ ∀t, k, k′ k′ > k (9.55)

pkt − pk
′

t ≥ −(1− xkk
′

t )Mp ∀t, k, k′ k′ > k (9.56)

πkt − πk
′

t ≥ −(1− xkk
′

t )Mπ ∀t, k, k′ k′ > k (9.57)

Una vez determinado el conjunto de restricciones que dan forma a la curva
de oferta y determinan el sistema generador, resta introducir la función objetivo
que el problema estocástico de maximización del beneficio considera. Para el
problema presentado, se considera la función objetivo que maximiza el beneficio
esperado, modelada como

máx
T∑
t=1

K∑
k=1

Probk[bkt − c(pkt )] (9.58)

Este conjunto de restricciones modela la toma de decisión de un problema
de programación multiperiodo cuando se considera incertidumbre en la curva de
demanda residual. El conjunto final de decisión es una curva de oferta para
cada uno de los periodos considerados en el alcance temporal. Este problema ha
sido modelado como un problema de programación entera mixta de gran tamaño,
pudiendo ser resuelto por optimizadores comerciales para tamaños intermedios del
mismo. Por simplicidad en la exposición ha sido considerado un parque generador
compuesto únicamente por grupos térmicos, si bien la formulación anterior es
extensible a sistemas generadores más complejos que incluyan grupos hidráulicos
aśı como contratos de medio y largo plazo y opciones de compra [2].
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Esta sección finaliza con una breve indicación sobre la posibilidad de descom-
poner el problema anteriormente propuesto. Entre las posibilidades de descom-
posición del problema anterior figuran la Relajación Lagrangiana (mediante la
relajación de la ecuación de balance de potencia) o descomposición bietapa en
un problema maestro que genera la oferta y un subproblema que determina la
factibilidad de la oferta propuesta dado un sistema generador existente.

Descomposición bietapa del problema estocástico

El modelado anterior presenta dos bloques bien diferenciados de restricciones.
Aquéllas dirigidas a la construcción de la curva de oferta y las representativas
del sistema generador. Entre el primer conjunto de restricciones figuran aquéllas
de representación a tramos de la variable de producción total por periodo, de la
variable de ingresos y de la variable precio. También figuran aquellas restricciones
de monotońıa de las variables binarias de representación de los tramos y mono-
tońıa de la curva de oferta. Un segundo grupo de ecuaciones son aquéllas que,
dada una producción pkt por periodo t y escenario k, determinan el conjunto de
grupos y niveles de operación para satisfacer ese requerimiento de potencia. Esta
diferenciación entre los dos tipos de restricciones da lugar a la descomposición del
problema en un problema maestro que determina y propone una curva de oferta
para cada periodo t y un subproblema que evalúa la factibilidad del conjunto de
soluciones propuestas.

De este modo, se considera un problema maestro dado como

máx
∑T

t=1

∑K
k=1 Prob

k(bkt ) + θ(pkt )
pkt = p̄kt0 +

∑J−1
j=1 pktj

bkt = b̄kt0 +
∑J−1

j=1 γktjp
k
tj

πkt = π̄kt0 +
∑J−1

j=1 δktjp
k
tj

(p̄ktj − p̄ktj−1)v
k
t+1 j ≤ pktj ≤ (p̄ktj − p̄ktj−1)v

k
tj

vktj ≥ vktj+1 j = 1, . . . , J − 1
pkt − pk

′
t ≥ −xkk

′
t Mp ∀t, k, k′ k′ > k

πkt − πk
′

t ≥ −xkk
′

t Mπ ∀t, k, k′ k′ > k

pkt − pk
′
t ≥ −(1− xkk

′
t )Mp ∀t, k, k′ k′ > k

πkt − πk
′

t ≥ −(1− xkk
′

t )Mπ ∀t, k, k′ k′ > k

(9.59)

y un subproblema que evalúa el coste de esa decisión

θ(pkt ) = máx−
∑K

k=1 Prob
kc(

∑I
i=1 p

k
ti)∑I

i=1 p
k
ti = pkt ∀t, k

Pmin
ti ukti ≤ pkti ≤ Pmax

ti ukti ∀t, k
Ldowni Durt ≤ pkti − pkt−1 i ≤ Lupi Durt ∀t, k
ukti − ukt−1 i = sup kti − sdown k

ti ∀t, k

(9.60)

Rect@ Monográfico 2 (2004)



S. Cerisola et al. 235

La función de coste, c(p), sintetiza de modo general la suma de los costes
asociados a cada grupo: coste variable de combustible, coste de acoplamiento y
coste de arranque. Es inmediato observar que el problema anterior es separable
en K subproblemas independientes, uno por cada escenario de demanda residual
considerado para representar la incertidumbre, dados como

θ(pkt ) = máx−Probkc(
∑I

i=1 p
k
ti)∑I

i=1 p
k
ti = pkt ∀t

Pmin
ti ukti ≤ pkti ≤ Pmax

ti ukti ∀t
Ldowni Durt ≤ pkti − pkt−1 i ≤ Lupi Durt ∀t
ukti − ukt−1 i = sup kti − sdown k

ti ∀t

(9.61)

debido a que todas las restricciones que ligan los escenarios han sido incorporadas
en el problema maestro.

Esta descomposición en dos etapas es caracteŕıstica de los algoritmos de des-
composición de Benders. La diferencia esencial radica en que en este caso en el
carácter entero de alguna de las variables que aparecen en el subproblema (o en
los subproblemas). Bajo ciertas hipótesis de modelado es posible relajar esta con-
dición de integralidad impuesta sobre las variables de acoplamiento de los grupos
térmicos. Otra posibilidad consiste en la generalización de los algoritmos de des-
composición de dos etapas (para problemas lineales) a algoritmos enteros mixtos.
Se están realizando avances en este campo, como puede observarse en [6].
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1 Introducción

Los problemas discretos de localización tratan de seleccionar las ubicaciones
óptimas para un conjunto de centros de servicios (plantas) entre un conjunto de
ubicaciones potenciales que es conocido a priori. Desde las plantas seleccionadas
deberá satisfacerse la demanda de un conjunto de clientes conocido. Por tanto,
la decisión a tomar es doble y requiere identificar cuál es el conjunto de plantas
que se debe abrir y cómo se debe satisfacer la demanda de los clientes.

Hay distintos factores que pueden intervenir en un problema discreto de loca-
lización y que dan lugar a una gran variedad de problemas de este tipo. Los más
relevantes están relacionados con la forma en la que se dotará el servicio a los
clientes y con la existencia o no de una capacidad limitada en los centros de servi-
cio. En algunas situaciones, el servicio se realiza en las propias plantas, de manera
que los clientes deben acudir a ellas. Esto ocurre cuando los centros de servicio
son hospitales, escuelas, oficinas de correo, etc. En estos casos la decisión sobre
el servicio a clientes da lugar a problemas de localización-asignación (LA) que
se han estudiado en numerosos contextos (ver, por ejemplo, [23]). Sin embargo,
en otras situaciones el servicio se realiza donde se sitúan los clientes. En estos
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casos, cuando la naturaleza de los servicios admite que se realice una secuencia
de ellos sin volver a la planta, la decisión sobre el servicio a los clientes da lugar a
problemas combinados de localización-rutas (LR). Hay que señalar que en el caso
de los problemas LR también es necesario realizar una asignación de clientes a
plantas abiertas previa al propio diseño de la ruta, para saber desde qué planta
se realizará la ruta que atienda a cada cliente. Tradicionalmente los problemas
LR han sido menos estudiados que los problemas LA, aunque recientemente han
recibido mayor atención (ver p.ej. [15, 21]).

Dada la naturaleza discreta tanto de los problemas LR como de los problemas
LA normalmente éstos se estudian en el ámbito de la Programación Entera. En
ambos casos a menudo se supone que los problemas son deterministas. Es decir,
que todos los datos que intervienen son conocidos a priori. Sin embargo, con
frecuencia estos problemas son en la práctica de naturaleza estocástica y en el
momento de tomar las decisiones hay elementos de incertidumbre. Una alterna-
tiva clásica es utilizar estimaciones de los datos aleatorios y resolver el problema
estocástico como en el caso determinista. Otra alternativa consiste en incorporar
expĺıcitamente la incertidumbre a los modelos dando lugar a problemas de Pro-
gramación Estocástica. El aumento en la literatura de Programación Estocástica
([13, 25, 6]) ilustra el interés de tales modelos.

Dentro de los elementos aleatorios que suelen presentarse en problemas LA y
LR cabe resaltar la demanda de los clientes, ya que ésta no suele ser conocida en
el momento de decidir las ubicaciones de las plantas y la forma de servicio de los
clientes. En estos casos podemos modelar la demanda mediante variables alea-
torias y considerar los problemas en el contexto de la Programación Estocástica
Entera ([27, 14, 17, 19]).

En este caṕıtulo abordamos el estudio de algunos problemas discretos de lo-
calización en los que supondremos que las plantas en caso de abrirse tendrán una
capacidad limitada conocida. Para los problemas LR supondremos además que
desde cada planta abierta se realiza una única ruta para atender a los clientes
asignados a la planta. Finalmente, supondremos que la demanda de cada cliente
se ajusta a una variable aleatoria Bernouilli, que tiene el mismo parámetro (p)
para todos los clientes. Es decir, supondremos que los clientes requieren o no
servicio con una determinada probabilidad p, pero que cuando existe demanda
la cantidad de servicio requerido es irrelevante para el problema (o, equivalen-
temente, que todos los clientes que solicitan servicio tienen la misma cantidad
de demanda). En este contexto la capacidad de una planta representa una limi-
tación sobre el número máximo de clientes que pueden servirse desde ella en caso
de abrirse. Este tipo de demanda ha sido considerada en problemas estocásticos
de rutas [5, 16] aśı como en problemas estocásticos de asignación generalizada
[22, 1, 3]. Conocemos un único trabajo donde se haya abordado un problema
estocástico LA (ELA) [24], donde se usa un problema ELA sin capacidades como
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ejemplo ilustrativo y muy pocos trabajos sobre problemas estocásticos LR (ELR)
(algunos ejemplos son [7, 10, 18]). Que nosotras sepamos, el único trabajo sobre
SLR en el que se considera el tipo de demanda descrito anteriormente es [2].

En el tratamiento de problemas estocásticos de programación matemática
existen distintas alternativas: el uso de restricciones probabiĺısticas, el estudio
de escenarios, y la programación con recurso. En este trabajo, trataremos tanto
los problemas ELA como los ELR siguiendo este último enfoque. En la progra-
mación con recurso los problemas se estructuran según un esquema binivel que
distingue las decisiones que se toman antes de conocer los valores de los elementos
estocásticos del problema (solución a priori) de aquellas que se toman a posteriori
para adaptar la solución a priori al escenario que tiene lugar. En los dos casos,
la solución a priori consistirá en un conjunto de plantas a abrir junto con una
asignación de los clientes a las plantas abiertas. Una vez conocidas las deman-
das, si para la instancia en cuestión la demanda total asignada a alguna planta
abierta excede su capacidad la solución a priori no será factible para esa instancia
concreta y aplicaremos la acción de recurso.

Para los problemas ELA la acción de recurso consiste en reasignar algunos
clientes asignados a una planta violada a otra planta abierta con capacidad dis-
ponible a un coste prefijado. Para una instancia dada puede ocurrir que la de-
manda total supere la capacidad total de las plantas abiertas. En ese caso parte
de los clientes se perderán (no serán servidos) y se generará un coste adicional,
que puede entenderse como la penalización por perder al cliente o como el coste
de adquisición de recursos adicionales para poder proporcionar el servicio.

Por el contrario, la asignación de los clientes no cambia en la acción de recurso
para los problemas ELR, aunque la capacidad de alguna planta esté violada por
la solución a priori. Para definir la acción de recurso, suponemos que cuando
el número de clientes asignados a una planta que solicitan servicio supera su
capacidad, alguno de ellos se perderá (no será servido) generándose un coste
adicional que se intrerpreta de forma análoga al caso de los problemas ELA. Los
clientes no servidos se eligen aleatoriamente para no priorizar aquellos clientes
con una posición privilegiada en la ruta a priori. Una vez se haya establecido el
conjunto de clientes que recibirán servicio, éstos son visitados en el orden definido
por las rutas a a priori como se muestra en la Figura 1(b).

En ambos casos el objetivo es minimizar el coste total, que se define como la
suma de los costes fijos de apertura de las plantas más el coste esperado de la
acción de recurso. A su vez, el coste esperado de la acción de recurso consta de
dos términos: el coste esperado de la solución a posteriori más el coste esperado
de las penalizaciones debidas a los clientes no atendidos.
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Cliente

Planta abierta

Planta cerrada

3

4

Servicio requerido

Cliente no servido

Ruta final

(a) Solución a priori (b) Solución a posteriori

Fig 1: Acción de recurso

En la siguiente sección presentamos la notación que usaremos a lo largo del
caṕıtulo, y los elementos comunes de los modelos ELD. El modelado y las pro-
piedades de las distintas funciones de recurso para problemas ELA y probemas
ELR se tratan en las Secciones 3 y 4, respectivamente, mientras que en las Sec-
ciones 5 y 6 describimos los algoritmos que se han desarrollado para los dos
tipos de problemas. Para los problemas ELA (Sección 5) describimos dos algo-
ritmos de solución, uno heuŕıstico y uno exacto, mientras que para problemas
ELR (Sección 6) proponemos una heuŕıstica y una cota inferior. Finalizamos el
caṕıtulo con una sección de conclusiones donde, además, se presentan algunas
ĺıneas de investigación futura.

2 Modelos de recurso para Problemas Estocásti-
cos de Localización Discreta

En esta sección formulamos un Problema Estocástico de Localización Discreta
(PELD) mediante un modelo de recurso. El modelo considerado permite dar un
tratamiento unificado para problemas ELA y ELR. Una instancia de un PELD
viene dada por los siguientes datos:

• Los conjuntos de ı́ndices de plantas y clientes: I y J , respectivamente. Sean
m = |I| y n = |J |.

• El coste no negativo de viaje entre pares de clientes o entre clientes y plantas:
cij . Para los problemas ELA supondremos que cij representa el coste de
asignación del cliente j a la planta i;

• El coste fijo de apertura para la planta i ∈ I: fi;

• Capacidad de la planta i ∈ I en caso de ser abierta: bi;

• La probabilidad de que un cliente dado solicite servicio y su complementario:
p y q = 1 − p, respectivamente. Suponemos que las peticiones de servicio
de los clientes son independientes y todos con la misma probabilidad p;
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• El vector que representa la demanda de los clientes: (ξj , j ∈ J). Puede
modelarse mediante variables aleatorias Bernouilli de parámetro común p;

• El coste de reasignación del cliente j ∈ J : rj ≥ 0;

• La penalización en la que se incurre cuando se rechaza la petición de servicio
de un cliente: g ≥ 0. Suponemos que esta penalización es la misma para
todos los clientes.

Las soluciones a priori para un PELD se caracterizan por:

• Unas variables binarias yi, i ∈ I que representan si la planta i está o no
abierta;

• Para cada i ∈ I con yi = 1:

- J(i) ⊆ J , conjunto de clientes asignados a la planta i;

- di = |J(i)|, número de clientes asignados a la planta i;

- xi, vector de incidencias que representa la asignación a priori para la
planta i.

Dada una realización ξ del vector de demandas, para cada i ∈ I con yi = 1,
sea ηi =

∑
j∈J(i) ξj , la demanda total asignada a la planta i. Puesto que las

peticiones de servicio son variables aleatorias Bernouilli i.i.d., tenemos que

ηi ∼ Binomial(di, p). (10.1)

El objetivo que se plantea en un PELD es encontrar el conjunto de plantas a
abrir y la asignación de los clientes a las plantas abiertas que minimice el coste
total esperado. Con la notación anterior podemos modelar la función objetivo
como: ∑

i∈I
fiyi + Q(y, x),

donde la función de recurso Q(y, x) está definida por

Q(y, x) = Eξ [v(y, x, ξ)] (10.2)

siendo Eξ [v(y, x, ξ)] el valor esperado de la solución a posteriori para la solución
a priori (y, x) y el vector de demandas ξ.

Por tanto, un problema ELD puede formularse utilizando el siguiente modelo
de recurso en dos etapas:
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(PDE1) Min
∑
i∈I

fiyi + Q(y, x) (10.3)∑
i∈I

xij = 1 j ∈ J (10.4)

xij ≤ yi i ∈ I, j ∈ J (10.5)
xij ∈ {0, 1} i ∈ I, j ∈ J (10.6)
yi ∈ {0, 1} i ∈ I (10.7)

Las ecuaciones (10.4) garantizan que cada cliente es asignado a una única
planta, mientras que las restricciones (10.5) aseguran que ningún cliente está
asignado a una planta que no esté abierta. Nótese que la solución a priori permite
que haya más clientes asignados a una determinada planta que su capacidad. Si
esto no fuese aśı, todas las soluciones de la primera etapa seŕıan factibles para
cualquier realización del vector de demandas con lo que nunca se realizaŕıa la
acción de recurso.

La estructura de (10.3) permite abordarlo mediante algoritmos del tipo L-sha-
ped en los que aprovechando las buenas propiedades de la función de recurso, ésta
se aproxima inferiormente de forma lineal mediante cortes de optimalidad. Este
método, que está basado en la descomposición de Benders ([4]), fue inicialmente
propuesto por Van Slyke y R. Wets [26] para problemas estocásticos con variables
continuas y es también válido para problemas en los que únicamente las variables
de la primera etapa tengan limitaciones de integridad. Sin embargo, cuando la
función de recurso está definida por problemas enteros, sus buenas propiedades
se pierden. A pesar de ello, en problemas como los que nos ocupan, es posible ex-
tender la función de recurso a una función convexa de forma que la aproximación
inferior por una función lineal a trozos es de nuevo un enfoque viable. En esta
dirección, Laporte y Louveaux ([17]) desarrollaron una nueva familia de cortes
para problemas con variables binarias en el primer nivel. Las primeras aplica-
ciones para el caso de variables binarias tanto en la primera como en segunda
etapa se deben a Wollmer [27] y Laporte y Louveaux ([17]). En particular, sea
F = {(y, x) : que satisfacen (10.4) − (10.7)} el conjunto de soluciones posibles
para el modelo (PDE1) que suponemos indexadas en un con junto K. Entonces,
(PDE1) es equivalente al modelo

(PDE2) Min
∑
i∈I

fiyi + θ (10.8)∑
i∈I

xij = 1 j ∈ J (10.9)

xij ≤ yi i ∈ I, j ∈ J (10.10)
θ ≥ Q(yk, xk)+ 〈∇Q(yk, xk), (y − yk, x− xk)〉 k ∈ K (10.11)
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xij ∈ {0, 1} i ∈ I, j ∈ J (10.12)
yi ∈ {0, 1} i ∈ I, (10.13)

donde 〈·, ·〉 denota el producto escalar y ∇Q(yk, xk) es un subgradiente de la
función de recurso en el punto (yk, xk).

Hay que resaltar que dado el gran número de restricciones (10.11) es inviable
incorporarlas inicialmente a la formulación de (10.8). Por el contrario, los métodos
L-shaped son métodos iterativos en los que en cada iteración se identifica una
nueva solución a priori (yk, xk) ∈ F a partir de la cual se genera una nueva
desigualdad (10.11) que se incorpora a la formulación del problema. La eficiencia
de estos métodos depende de la capacidad que se tenga de generar desigualdades
(10.11) que acoten de manera eficaz el espacio de búsqueda. La expresión concreta
de tales desigualdades depende de la función de recurso que se haya definido. En
las próximas secciones veremos la expresión espećıfica para los problemas ELA y
ELR.

3 Función de recurso para Problemas Estocásti-
cos de localización-asignación (ELA)

Dada una solución a priori (y, x) ∈ F , la acción de recurso para un problema
ELA consiste en reasignar algunos clientes asignados a una planta violada a otra
planta abierta con capacidad disponible a un coste prefijado, rj , j ∈ J . Adicional-
mente, para una instancia dada puede ocurrir que la demanda agregada supere
la capacidad total de las plantas abiertas. En ese caso parte de los clientes se
perderán (no serán servidos) y se incurrirá en una penalización g por cada cliente
no atendido. Por tanto, en la función de recurso QLA(y, x) := ξ

[
vLA(y, x, ξ)

]
, el

valor de vLA(y, x, ξ) viene dado por:

vLA(y, x, ξ) = Min
∑
i∈I

∑
j∈J

cijwij +
∑
j∈J

rjzj (10.14)

wij + zj ≥ ξjxij i ∈ I, j ∈ J (10.15)∑
i∈I

wij ≥ ξj j ∈ J (10.16)∑
j∈J

wij ≤ biyi i ∈ I (10.17)

wij ∈ {0, 1} i ∈ I, j ∈ J (10.18)
zj ∈ {0, 1} j ∈ J (10.19)

El problema de la segunda etapa (10.14)-(10.19) establece la solución a poste-
riori una vez conocidas las demandas. Las variables binarias wij ((i, j) ∈ I × J)
determinan las asignaciones finales, es decir, wij = 1 si el cliente j se asigna a
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la planta i. Por otro lado, las variables zj (j ∈ J) indican aquellos clientes con
demanda no nula que se han reasignado. El primer grupo de restricciones (10.15)
fijan zj a 1 si el cliente j tiene demanda no nula y se reasigna a una planta diferente
de la que estaba asignado. Las restricciones (10.16) imponen que todos los clien-
tes con demanda no nula estén asignados a alguna planta abierta, mientras que
las restricciones (10.17) garantizan que no se violen las capacidades de las plantas.

Observaciones

• En general, para el programa (PDE1) de un problema ELA no podrá garan-
tizarse recurso relativamente completo, puesto que puede haber soluciones
a priori (y, x) ∈ F tales que

n >
∑

i∈I
biyi. (10.20)

Sin embargo, es posible obtener recurso relativamente completo, incluyendo
una planta ficticia 0 ∈ I con suficiente capacidad como para absorber cual-
quier exceso de demanda con un coste fijo de apertura f0 = 0 y con un
coste unitario de asignación que refleje la penalización por cliente no aten-
dido g. Es decir, dado que cualquier asignación a posteriori a esta planta
también producirá el correspondiente coste de reasignación rj , los costes de
asignación de la planta ficticia serán c0j = g − rj , j ∈ J , para no pagar
ambas penalizaciones simultáneamente.

• Para una solución a priori (y, x) la evaluación de la función de recurso
requiere la resolución de muchos problemas de segunda etapa, que en este
caso son problemas con variables binarias. Por tanto, desde el punto de
vista computacional la evaluación de la función de recurso es costosa, puesto
que estos problemas no son sencillos de resolver. En este contexto resulta
especialmente importante estudiar propiedades de vLA(y, x, ξ) que permitan
su evaluación de forma más eficiente.

En este punto debemos notar que la función de recurso aqúı definida para
un problema ELA es similar a la función de recurso tratada en [3] para un
problema estocástico de asignación generalizada (PEAG) en el que, como
en el problema ELA que ahora estudiamos, las demandas de los clientes
son variables aleatorias de Bernouilli, con un parámetro común p. Teniendo
en cuenta que una vez que se selecciona un conjunto de plantas a abrir
en un problema ELA, el subproblema de asignación correspondiente es un
PEAG, podemos observar que la función de recurso QLA(y, x) coincide con
la estudiada en [3] puesto que la estructura del problema de segunda etapa
vLA(y, x, ξ) es la misma en ambos casos. Por tanto, podemos aplicar los
resultados de [3] y sustituir (10.14)-(10.19) por su relajación lineal, puesto
que para todos los vectores de términos independientes correspondientes a
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soluciones factibles de la primera etapa, ambos problemas tienen la misma
solución.

Por tanto, para una solución a priori (y, x) el valor de QLA(y, x) puede
obtenerse mediante la resolución de una serie de problemas continuos de
segunda etapa de la forma

vLA(y, x, ξ) = Min
∑
i∈I

∑
j∈J

cijwij +
∑
j∈J

rjzj (10.21)

wij + zj ≥ ξjxij i ∈ I, j ∈ J (10.22)∑
i∈I

wij ≥ ξj j ∈ J (10.23)∑
j∈J

wij ≤ biyi i ∈ I (10.24)

0 ≤ wij ≤ 1 i ∈ I, j ∈ J (10.25)
zj ≥ 0 j ∈ J (10.26)

Proposición 4 Sea S el conjunto de ı́ndices de realizaciones para la demanda.
Para s ∈ S, sean ξs el correspondiente vector de demandas y ps la probabilidad
de tal realización de forma que

QLA(y, x) =
∑
s∈S

psvLA(y, x, ξs), (y, x) ∈ Rm × Rm·n. (10.27)

Sea λ(y, x, ξs) un vector de variables duales asociadas a las restricciones (10.24)
y a las restricciones (10.22)para el vector (y, x, ξs). Entonces u(y, x),

u(y, x) =
∑
s∈S

psλ(y, x, ξs)diag(b, ξ̄s1, . . . , ξ̄
s
n), (10.28)

es un subgradiente de Q en (y, x). Aqúı, ξ̄sj es un vector de m componentes,
todas iguales a la demanda del cliente j en el la realización s y b es el vector de
capacidades.

4 Función de recurso para Problemas Estocásticos
de localización-rutas (ELR)

Para los problemas ELR una solución a priori (y, x) ∈ F define no sólo un
conjunto de plantas a abrir y una asignación de clientes a plantas abiertas, sino
también un conjunto de rutas desde las plantas abiertas que visitan cada cliente
exactamente una vez. Estas rutas están bien definidas puesto que son las rutas de
coste esperado mı́nimo que visitan todos los clientes asignados a una determinada
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planta y pueden identificarse resolviendo para cada una de las plantas abiertas un
Problema Probabilista del Viajante de Comercio (PPVC) (ver, p.ej. [11]) sobre
el conjunto de nodos V i = {i} ∪ J(i). Por tanto, para cada planta abierta en la
solución a priori, su ruta a priori es la solución del correspondiente PPVC. Sea
zi el vector de incidencias de la ruta a priori para una planta i.

En la acción de recurso que consideramos para los problemas ELR la asig-
nación de los clientes no cambia aunque la capacidad de alguna planta esté violada
por la solución a priori (haya más clientes con demanda asignados a una determi-
nada planta que su capacidad). Para definir la acción de recurso, suponemos que
cuando el número de clientes asignados a una planta que solicitan servicio supera
su capacidad, alguno de ellos se perderá (no será servido) generándose un coste
adicional g por cliente no atendido. Los clientes no servidos se eligen aleatoria-
mente para no priorizar aquellos clientes con una posición privilegiada en la ruta
a priori. Una vez establecido el conjunto de clientes que recibirán servicio, éstos
son visitados en el orden definido por las rutas a a priori zi, como se muestra en
la Figura 1(b).

Para una solución a priori (y, x) ∈ F , y una realización del vector de demandas
ξ, sea J ′(i) ⊆ J(i) el conjunto de clientes atendidos en la ruta a posteriori de la
planta i. Podemos distinguir dos casos: si ηi ≤ bi, entonces J ′(i) = {j ∈ J(i) :
ξj = 1}; en otro caso, si ηi > bi, entonces J ′(i) es un subconjunto aleatorio de
{j ∈ J(i) : ξj = 1}, de cardinalidad bi. Sea ẑi, el vector de incidencias de los
arcos de la ruta obtenida a partir de zi pero que sólo visita los clientes que están
en J ′(i). Utilizando la notación anterior, la función de recurso QLR(y, x) para un
problema ELR puede expresarse como:

QLR(y, x) = Eξ

 ∑
i |yi=1

g · (ηi − bi)+ + EJ′(i)[
∑

i |yi=1

cẑi]

 , (10.29)

con (·)+ = máx{·, 0}. Puesto que la función esperanza es lineal, (10.29) puede
expresarse como

QLR(y, x) = S(y, x) +
∑

i |yi=1

Ti(y, x), (10.30)

donde S(y, x) = Eξ[
∑

i |yi=1

g · (ηi − bi)+ ] es la penalización esperada y Ti(y, x) =

Eξ

[
EJ′(i)[cẑi]

]
es el coste esperado de la ruta asociada a la planta i ∈ I.

Hay que notar que S(y, x) tiene la estructura de una función de recurso aso-
ciada a un problema estocástico con recurso simple, que ha sido ampliamente
tratada en la literatura (ver p.ej. [6]). Por el contrario, las funciones Ti(y, x)
no tienen una estructura sencilla. En [2] se obtiene la siguiente expresión exacta
para Ti(y, x):
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Ti(y, x) =
di∑
h=1

Rh−1cijh +
di−1∑
h=1

di∑
t=h+1

Pt−h−1cjhjt +
di∑
h=1

Rdi−hcjhi. (10.31)

donde

PB = p2

[
k1∑
k=2

(
di−B−2
k−2

)
pk−2qdi−k+

di∑
k=bi+1

pk−2qdi−k
t1∑

t=t0

(
B
t

)(
di−B−2
k−t−2

)(
k−t−2
bi−2

)/(
k
bi

)]
,

(10.32)

y

RB = p

[
k1∑
k=1

(
di−B−1
k−1

)
pk−1qdi−k+

di∑
k=bi+1

pk−1qdi−k
t1∑

t=t0

(
B
t

)(
di−B−1
k−t−1

)(
k−t−1
bi−1

)/(
k
bi

)]
.

(10.33)

Tanto en (10.32) como en (10.33), k1 = mı́n{bi, di − O}, t0 = máx{k − di + O, 0},
y t1 = mı́n{k − bi, O}.

5 Algoritmos para ELA

En esta sección presentamos dos algoritmos para resolver problemas ELA. El
primero de ellos es una heuŕıstica, mientras que el segundo es un método exacto.

5.1 Heuŕıstica para ELA

La heuŕıstica que presentamos a continuación está basada en una de las
heuŕısticas propuestas en [1] para PEAG. Resolveremos dos problemas auxiliares
deterministas cuya solución nos proporcione una aproximación de (PDE1). Ini-
cialmente, para elegir un conjunto adecuado de plantas para abrir resolvemos el
siguiente problema de la mochila:

(PM) Min
∑
i∈I

fiyi (10.34)∑
i∈I

biyi ≥ (1 + α)pn (10.35)

yi ∈ {0, 1} i ∈ I (10.36)

En las restricciones (10.35), α ∈ [0, qp ] es un parámetro prefijado. Por tanto,
las restricciones (10.35) garantizan que el conjunto de plantas seleccionado tiene
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una capacidad total mayor que un valor que oscila entre la demanda esperada
(α = 0) y la demanda conjunta de todos los clientes (α = q

p ).
Sea I∗ = {i ∈ I : yi = 1 en la solución óptima de (10.34) − (10.36)} el con-

junto de plantas a abrir. Ahora obtenemos una asignación a priori resolviendo el
siguiente problema de transporte restringido al conjunto de plantas I∗:

(PT ) Min
∑
i∈I∗

∑
j∈J

cijxij (10.37)∑
i∈I∗

xix ≥ 1 j ∈ J (10.38)∑
j∈J

xix ≤ b̃i i ∈ I∗ (10.39)

xij ∈ {0, 1} i ∈ I∗, j ∈ J (10.40)

donde b̃i =
⌈
bi n

(∑
i∈I bi

)−1
⌉
. Es decir, escalamos las capacidades de las plantas

abiertas de forma que en el problema auxiliar pueda satisfacerse la demanda de
todos los clientes.

Cabe resaltar que dada la estructura de (PT), éste puede resolverse de forma
óptima como un problema continuo, eliminando las condiciones de integridad
sobre las variables.

5.2 Algoritmo exacto para ELA

El algoritmo que describimos a continuación es del tipo branch-and-cut. Uti-
liza dos tipos de planos secantes que son cortes de optimalidad y que se basan,
respectivamente, en la convexidad de la función de recurso QLA y en el hecho que
las variables son binarias.

Cortes de optimalidad

La primera familia de cortes que utilizamos son los cortes de optimalidad
(10.11) definidos en la Sección 2, que se utilizan en los algoritmos del tipo
L-shaped [26] para problemas continuos con recurso en dos etapas. En nues-
tro caso, podemos utilizarlos considerando la aproximación convexa de la función
de recurso estudiada en la Sección 3. Para obtenerlos basta con aplicar la Propo-
sición 4. Nos referiremos a estos cortes como de ∂-optimalidad para distinguirlos
de los de L-L-optimalidad que describimos a continuación.

Los cortes de L-L-optimalidad fueron introducidos por Laporte and Louveaux
[17] y son válidos para todas las soluciones binarias de primera etapa, para varia-
bles de segunda etapa generales. Dado un vector binario (ȳ, x̄), la estructura de
estos cortes en nuestro caso es
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θ ≥ (QLA((ȳ, x̄))− L)

( ∑
ȳi=1

yi +
∑

x̄ij=1
xij −

∑
ȳi=0

yi −
∑

x̄ij=0
xij

)
−

(QLA(ȳ, x̄)− L)(
∑
i

ȳi +
∑
i,j

x̄ij − 1) + L,
(10.41)

donde L es una cota inferior del valor de QLA. Este corte se cumple como igualdad
en (ȳ, x̄), mientras que está dominado por QLA(y, x) ≥ L para otras soluciones
binarias.

Algoritmo de branch-and-cut (BC)

El algoritmo trata la integridad de las variables de la primera etapa mediante
el esquema enumerativo y aproxima la función de recurso incorporando cortes
de optimalidad de forma sucesiva. Por tanto, dado un problema actual definido
por una serie de cortes de optimalidad y un subconjunto de variables de decisión
fijadas a 0 ó a 1, el algoritmo BC procede i) resolviendo la relajación lineal del
problema actual, ii) añadiendo cuando los haya cortes de optimalidad violados,
y iii) ramificando cuando la solución actual sea no entera.

Dada una colección de cortes de optimalidad k = 1, . . . ,K, y dos pares de
subconjuntos disjuntos de I × I e I × J , respectivamente, Y = (Y 0, Y 1), y X =
(X0, X1) definimos el problema PK,Y,X como:

(PK,Y,X)Min θ (10.42)∑
i∈I

xij = 1 i ∈ I (10.43)

αk + βk · x ≤ θ k = 1, . . . ,K (10.44)
yi = 0 i ∈ Y 0, (10.45)
yi = 1 i ∈ Y 1, (10.46)
xij = 0 (i, j) ∈ X0, (10.47)
xij = 1 (i, j) ∈ X1, (10.48)

yi ∈ [0, 1], xij ∈ [0, 1] enotrocaso. (10.49)

El algoritmo BC es esencialmente una combinación de técnicas estándar de
branch-and-bound y planos secantes. Sin embargo aprovecha la propiedades es-
pećıficas de ELA ya que utiliza la aproximación convexa de la función de recurso
QLA de la Sección 3 que permite tratar ELA como un problema binario con
función objetivo convexa. Esto permite generar cortes de ∂-optimalidad en las
soluciones fraccionales de cada problema actual, que pueden utilizarse en un al-
goritmo estándar de branch-and-bound. Hay que resaltar que tales cortes son

Rect@ Monográfico 2 (2004)



252 Algunos problemas estocásticos de localización discreta

en general muy eficientes para obtener una mejor aproximación de QLA en un
entorno de la solución óptima fraccional del problema relajado, pero que esto
no suele ser cierto para la solución óptima binaria del problema actual. Para

Fig 2: Algoritmo BC.

reducir este inconveniente, cuando la solución del problema actual sea binaria
nuestro algoritmo BC utiliza la interpretación alternativa de ELA como un pro-
blema con recurso en dos etapas con variables binarias en la primera etapa y
siguiendo el algoritmo entero L-shaped de [17] diseñado para esta clase de pro-
blemas, generamos un corte de L-L-optimalidad (en vez de generar un corte de
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∂-optimalidad). En definitiva, el algoritmo BC puede verse como una variante del
algoritmo entero L-shaped, del que también se utilizan las reglas de ramificación
y eliminación, combinado con una cota inferior y cortes de ∂-optimalidad que
se generan en soluciones fraccionales de los problemas actuales. Los detalles del
algoritmo se presentan en la Figura 2. El algoritmo selecciona el problema actual
de la lista de subproblemas pendientes de evaluación (que se denota L), con una
poĺıtica last-in-first-out. Puesto que los cortes de optimalidad k = 1, . . . ,K son
válidos para todos los subproblemas, basta con indicar los conjuntos de ı́ndices
S = (Y,X), con Y = (Y 0, Y 1) y X = (X0, X1) para identificar los subproblemas
de la lista PK,S .

El algoritmo BC converge puesto que se trata de una modificación del algo-
ritmo entero L-shaped [17], que encuentra una solución óptima en un número
finito de iteraciones, en la que se añaden cortes violados de ∂-optimalidad en la
soluciones fracionales de los problemas actuales, de los que hay un número finito.

6 Algoritmos para ELR

En esta sección describimos una heuŕıstica para obtener soluciones posibles
para ELR aśı como una cota inferior válida, que permite contrastar la calidad
de las soluciones obtenidas con la heuŕıstica, que han sido propuestas en [2]. La
heuŕıstica utiliza una aproximación de la función de recurso QLR definida en la
Sección 4. Esto se debe a que la evaluación de la función de recurso QLR cuya
expresión anaĺıtica viene dada por (10.30) es muy costosa puesto que requiere la
evaluación de la expresión (10.31) para conocer el valor de la función Ti lo cual, a
su vez, requiere el cálculo de las probabilidades (10.32) y (10.33), que implican el
cálculo de números combinatorios. Por tanto, utilizaremos una aproximación de
la función Ti que puede evaluarse de forma mucho más rápida. Existen algunos
algoritmos para problemas estocásticos que han utilizado de forma satisfactoria
aproximaciones de la función objetivo, cuando su evaluación requiere un esfuerzo
de cálculo importante (ver p.ej. [9]). En nuestro caso, la dificultad de la evaluación
del coste de la función de recurso se debe en gran medida al hecho de que las visitas
a distintos clientes en la misma ruta a priori no son independientes debido a la
restricción de capacidad de la planta. Para superar esta dificultad construimos
una aproximación T̃i en la que las probabilidades (10.31) y (10.33) se sustituyen
por las que resultaŕıan si los servicios a los clientes fuesen independientes. De
hecho este es el caso cuando di ≤ bi. Sea p̄ la probabilidad de visitar un cliente
dado, calculada como p veces la probabilidad condicional de visitar el cliente dado
que tiene demanda. Si en la solución a priori el cliente está asignado a planta i,
esta probabilidad condicional puede expresarse como (ver [2]):
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p̄ = p

(
bi∑
k=1

(
n− 1
k − 1

)
pk−1(1− p)n−k +

di∑
k=bi+1

(
n− 1
k − 1

)
pk−1(1− p)n−kbi/k

)
.

Sustituyendo en (10.31) las probabilidades PB y RB por

P̃B = p̄2(1− p̄)B and R̃B = p̄(1− p̄)B

obtenemos la siguiente aproximación de Ti:

T̃i(y, x) =
di∑
k=1

p̄(1− p̄)k−1cijk +
di−1∑
k=1

di∑
t=k+1

p̄2(1− p̄)t−k−1cjkjt

+
di∑
k=1

p̄(1− p̄)di−kcjki.

Esta expresión coincide con la función objetivo propuesta en [12] para el PPVC
en el caso particular en que la probabilidad de presencia de todos los clientes sea
la misma. En adelante nos referimos a esta aproximación de la función de recurso
como Q̃LR(y, x).

6.1 Heuŕıstica para ELR

En [2] se propone una heuŕıstica en dos fases para ELR. En la fase constructiva
se obtiene una solución inicial que se mejora de forma iterativa en la fase de
búsqueda local.

Fase constructiva

Para obtener la solución inicial, se descompone el problema ELR en una se-
cuencia de tres subproblemas: 1) selección del conjunto de plantas a abrir, 2)
asignación de clientes a plantas abiertas, y 3) diseño de una ruta para cada planta
abierta.

Selección del conjunto de plantas abiertas.
El conjunto de plantas abiertas O se elige de forma que la capacidad total sea

suficiente como para atender todas las solicitudes de demanda con una determi-
nada probabilidad α, es decir:

P

∑
j∈J

ξj ≤
∑
i∈O

bi

 ≥ α. (10.50)
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La menor capacidad conjunta bα que satisface (10.50) puede obtenerse fácilmente
de la distribución de probabilidad binomial del número total de solicitudes de ser-
vicio. Una vez calculado bα, el conjunto O se determina resolviendo el siguiente
Problema de la Mochila:

(PMα) mı́n
∑
i∈I

fiyi (10.51)∑
i∈I

biyi ≥ bα (10.52)

yi ∈ {0, 1} ∀i ∈ I. (10.53)

Cabe observar que, por construcción de bα, las restricciones (10.50) y (10.52) son
equivalentes. Por tanto, el conjunto O = {i ∈ I : yi = 1 en la solución de PMα}
tiene coste mı́nimo entre los que satisfacen (10.50).

Asignación de clientes a plantas abiertas
Una vez que el conjunto de plantas abiertas está fijo, se identifica una asig-

nación de clientes a las plantas abiertas. Para ello, resolvemos un PEAG en el
que la función de coste viene dada por las distancias entre las plantas y los clien-
tes. Como en el caso de la heuŕıstica para ELA, en esta fase podemos utilizar
una de las heuŕısticas de [1] y resolvemos un problema de transporte similar a
(10.37)-(10.40). Ahora, debemos tener en cuenta que la función que deseamos
optimizar es el valor de la función de recurso QLR(y, x) (10.30) y que en ELR
no permitimos reasignaciones de clientes. Por tanto, en la función objtivo del
problema de transporte, establecemos todos los costes de reasignación a un valor
superior al de la penalización por no atenderlos cuando tienen demanda.
Construcción del conjunto de rutas a priori

Comenzando con las rutas vaćıas, los clientes se insertan sucesivamente en la
ruta de la planta a la que ha sido asignado, utilizando el criterio de inserción del
más próximo respecto a la función objetivo del problema determinista. Una vez
que cada cliente se ha insertado en su correspondiente ruta, se realizan intercam-
bios sucesivos de dos arcos en la misma ruta, hasta que todas las rutas sean 2-opt
respecto a la función objetivo T̃i.

Fase de mejora

Una vez obtenida una solución inicial, ésta se mejora utilizando búsqueda
local. Todos los movimientos se realizan utilizando el criterio de inserción del
más próximo respecto a T̃. Se exploran cuatro entornos:

• N1(x): Reasignación de un cliente. N1(x) contiene todas las soluciones que
pueden obtenerse a partir de x quitando un cliente de su ruta e insertándolo
en otra diferente.
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256 Algunos problemas estocásticos de localización discreta

• N2(x): Intercambio de dos clientes. N2(x) contiene todas las soluciones
que pueden obtenerse a partir de x seleccionando un par de clientes j1 y j2
que estén en rutas diferentes i1 e i2, respectivamente, eliminándolos de sus
correspondientes rutas, e insertando j1 en la ruta de la planta i2 y j2 en la
ruta de la planta i1.

• N3(x): Intercambio de plantas. Las soluciones de N3(x) son las que pueden
obtenerse a partir de x cerrando una planta abierta i1, abriendo una planta
cerrada i2, y asignando la ruta de i1 a i2.

• N2-opt(x): Intercambio de arcos. Las soluciones de N2-opt(x) se obtienen
a partir de x intercambiando pares de arcos en la misma ruta.

La Figura 3 muestra un esquema de la heuŕıstica, en el que se indica el orden
de exploración de los distintos entornos.

Heuŕıstica para ELR

Fase constructiva
Seleccionar α, determinar bα y resolver (KPα) −→ O.
Asignar clientes a O utilizando heuŕıstica −→ {J(i) : i ∈ O}.
Para (i ∈ O) hacer

Para (j ∈ J(i)) Insertar j en la ruta de la planta i.

Explorar N2-opt(x).

FinPara
Fase de mejora
CriterioTerminación ← falso.
Mientras(CriterioTerminación falso) hacer

Repetir

Explorar N2(x) y actualizar x.
Explorar N1(x) y actualizar x.

Hasta que (no se encuentren movimientos de mejora)

Repetir

Explorar N2-opt(x) y actualizar x.

Hasta que (no se encuentren movimientos de mejora)

Explorar N3(x) y actualizar x.

Actualizar CriterioTerminación.

FinMientras
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Fig. 3. Esquema de la heuŕıstica para ELR

6.2 Cota inferior para ELR

Para obtener cotas inferiores válidas para ELR podemos descomponer la
función objetivo en dos partes y obtener una cota separada para cada una de
ellas. Estas dos partes son 1) los costes asociados con las plantas (costes fijos de
apertura más penalizaciones), y 2) los costes de las propias rutas.

Costes fijos de apertura de las plantas más penalizaciones esperadas
por clientes no servidos: zSKP

Es importante acotar conjuntamente la penalización esperada más los costes
fijos de apertura puesto que estos dos términos son contradictorios entre ellos.
Abrir una planta aumenta los costes fijos pero disminuye las penalizaciones. La
penalización esperada asociada a una solución con un conjunto de plantas abiertas
O, no será menor que

Eξ

g · (∑
j∈J

ξj −
∑
i∈O

bi)+

 ,

independientemente de la asignación de los clientes a las plantas. Por tanto, una
cota inferior de la suma de los costes fijos más las penalizaciones esperadas viene
dada por la solución del siguiente Problema Estocástico de la Mochila.

Este problema es un problema en dos etapas con recurso simple. Puede verse
que un modelo determinista equivalente para este problema es

mı́ni
∑
i∈I

fi yi +
∑n+1

s=0 δs us∑
i∈I bi yi −

∑n+1
s=0 us = np

u0 ≤ 1− np
0 ≤ ul+1 ≤ 1 l = 0, . . . , n
yi ∈ {0, 1} i ∈ I,

(OJO) donde δ0 = −g, y δl+1 = g ·
(
−1 + P

[ ∑
j∈J

ξj ≤ l

])
, l = 0, . . . , n.

Se trata de un problema de programación entera mixta que puede resolverse
de forma eficiente utilizando cualquier software de propósito general.
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Coste esperado de las rutas a posteriori

Para calcular una cota inferior del coste de las rutas a posteriori utilizamos
un procedimiento similar al propuesto en [16] para el PPVC. Es decir, calculamos
una cota inferior del coste z̄RS de las rutas a priori y restamos una cota superior
de los ahorros esperados por saltarse los clientes.

Cota inferior zPV C , del coste de una ruta a priori

Para acotar el coste de una ruta a priori utilizamos la solución de un PVC
definido como sigue. Consideramos un grafo dirigido completo con conjunto de
vértices V = I ∪I ′∪J , donde I ′ es una copia del conjunto de plantas. El vértice i
representa la planta como punto inicial de la ruta, e i′ representa la misma planta,
como punto final de la ruta. Definimos los siguientes costes para los arcos:

c̃e =


ce si e ∈ J × J, e ∈ I × J o e ∈ J × I ′

0 si e ∈ I ′ × I o e = (i, i′), i ∈ I
∞ en otro caso.

Con estos costes, en la solución óptima de PVC los vértices que representan
las plantas estarán conectados solamente en dos casos: 1) un arco de un planta-
terminal a un nodo planta-inicial, que se corresponde con una ruta que termina
en una planta seguida de otra ruta que comienza en la otra planta, y 2) un arco de
un nodo planta-inicial a su correspondiente nodo planta-terminal, que representa
una ruta vaćıa. La Figura ?? ilustra cómo puede obtenerse una solución factible
para este PVC a partir de cualquier conjunto de rutas a priori para ELR.

b

Cliente

Planta abierta

Planta cerrada Coste 0

Coste original

(a) Solución a priori (b) Solución para PVC

Fig 4: Cota del coste de la ruta a priori, zPV C

Para resolver este PVC puede utilizarse el modelo propuesto en [20] y reforzado
posteriormente en [8]:

zPV C = Min
∑
e∈A

cexe (10.54)
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∑
e∈δ−(j)

xe = 1 i ∈ V (10.55)∑
e∈δ+(j)

xe = 1 i ∈ V (10.56)

ui − uj + (n̄− 1)xij + (n̄− 3)xji ≤ n̄− 2
i, j > 1,
i �= j

(10.57)

xe ∈ {0, 1} e ∈ A (10.58)
1 ≤ ui ≤ n̄− 1 i > 1, (10.59)

donde n̄ = |V | = 2m+n, A es el conjunto de arcos del grafo y, dado un vértice j,
δ−(j) (resp. δ+(j)) es el conjunto de arcos que entran en (resp. salen de) j. Las
variables xe indican si el arco e se utiliza en la solución, y cada variable ui da la
posición del vértice i en el circuito. En [2] se mejora el valor de la cota inferior
zPCV , reforzando el modelo anterior (10.54)-(10.59) mediante la incorporación de
algunas restricciones adicionales.

Cota superior z̄RS , de los ahorros esperados por “saltar” clientes
Para acotar los costes esperados de las rutas a posteriori en [2] se utiliza una

extensión del modelo propuesto en [16] para el PTSP. La idea del modelo es
encontrar una familia adecuada de atajos con un valor total máximo. Un atajo
representa la sustitución de un camino (i, k, j) en la solución a priori por el arco
(i, j) (ver Figura 1(b). En nuestro caso, para cada cliente k se definen conjuntos
de tripletas para todos los posibles atajos como sigue:

1) A(k) = {(i, k, i) : i ∈ I};

2) B(k) = {(i, k, j) : i ∈ I, j ∈ J, j �= k};

3) C(k) = {(j1, k, j2) : j1, j2 ∈ J, j1, j2 �= k, j1 �= j2}, y

4) D(k) = A(k) ∪B(k) ∪ C(k).

Para cada tripleta (i, k, j) se define una variable yikj . Adicionalmente se incluyen
variables binarias wi, i ∈ I, que indican si la planta i está o no abierta. Los
coeficientes de la función objetivo se corresponden con los valores de los atajos.
Dada una tripleta (i, k, j), el correspondiente coeficiente viene dado por dikj =
q(cik + ckj − cij), donde loa ı́ndices i, j, se refieren a clientes o plantas. Nótese
que si i = j ∈ I (variable de tipo A), entonces el último término cij es cero. Con
esta notación el modelo resultante es:

máx
∑
k∈J

∑
(i,k,j)∈D(k)

dikj yikj (10.60)
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s. a
∑

(i,k,j)∈D(k)

yikj = 1, k ∈ J (10.61)

∑
k∈J

yiki ≤ 1, i ∈ I (10.62)

∑
k∈J\{j}

yikj ≤ 2i ∈ I, j ∈ J (10.63)

∑
k∈J\{j1,j2}

yj1kj2 ≤ 1 j1 �= j2 ∈ J (10.64)

∑
k∈J\{j}

∑
i∈I

yikj +
∑

k,j2∈J\{j}
k �=j2

yjkj2 ≤ 2 j ∈ J (10.65)

2
∑
k∈J

yiki +
∑
k,j∈J

yikj ≤ 2wi i ∈ I (10.66)

∑
i∈I

fiwi ≤ n p g (10.67)

2
∑
i∈I

yiji +
∑
i∈I

∑
k∈J
k �=j

yikj +
∑

k,j2∈J
j �=k �=j2 �=j

yjkj2 ≤ 2 j ∈ J (10.68)

yikj , wi ∈ {0, 1}, k ∈ J, (i, k, j) ∈ D(k), i ∈ I. (10.69)

Las restricciones (10.61) garantizan que para cada cliente se elige exactamente
un atajo y las restricciones (10.62)-(10.65) sirven para controlar la utilización de
cualquier vértice como nodo terminal de un atajo. En general, cualquier vértice
puede ser nodo terminal de dos atajos diferentes, excepto las plantas con atajos
de tipo A, que pueden serlo de un único atajo. Las restricciones (10.66) impiden
realizar atajos en plantas que no estén abiertas. La restricción (10.67) establece
una cota superior pata los costes fijos totales de las plantas abiertas. Dado que el
término independiente npg es el coste de una solución que no abre ninguna planta
y esa decisión se corresponde con una solución posible para ELR, se trata de una
cota superior del coste de cualquier solución óptima y, en particular, de los costes
fijos de apertura asociados con ella. Finalmente, las restricciones (10.68) evitan
que clientes asociados con un atajo de tipo A sean nodos terminales de cualquier
otro atajo. La solución óptima de este modelo proporciona una cota superior z̄RS
de los ahorros esperados por “saltarse” clientes en cualquier conjunto factible de
rutas.

7 Conclusiones

En este caṕıtulo hemos estudiado algunos problemas estocásticos de locali-
zación discreta. En concreto, hemos considerado problemas con un factor aleato-
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rio determinado por el hecho de que la demanda de los clientes no es conocida a
priori. Sin embargo, hemos asumido que conocemos la probabilidad con la que
cada cliente tiene demanda, que es la misma para todos los clientes. En este
contexto hemos planteado dos problemas discretos que difieren entre ellos en la
forma en la que se proporciona el servicio a los clientes. En el primer caso, hemos
supuesto que los clientes se desplazan hasta la planta para recibir servicio, dando
lugar a problemas estocásticos de localización-asignación (ELA). En el segundo
caso hemos supuesto que el servicio a los clientes se realiza donde se sitúan los
clientes y que la naturaleza de los servicios permite que se realice una secuencia
de ellos sin volver a la planta, dando lugar a problemas estocásticos de loca-
lización-rutas (ELR). Hemos abordado ambos problemas desde una perspectiva
unificadora de programación con recurso. En cada caso hemos definido la solución
a priori y la función de recurso para obtener la solución a posteriori que resulta
al adaptar la solución a priori a cada posible escenario. Para el caso de los pro-
blemas ELA hemos presentado una heuŕıstica para obtener soluciones posibles,
aśı como un algoritmo exacto de tipo L-shaped que aprovecha las propiedades de
la función de recurso. Para los problemas de localización-rutas hemos obtenido
la expresión anaĺıtica de la función de recurso, pero hemos sugerido una aproxi-
mación de la misma, dado que computacionalmente la evaluación de esta función
resulta costosa. También hemos presentado una cota superior obtenida mediante
una heuŕıstica y una cota inferior que consta de dos términos, uno asociado a las
plantas abiertas y otro a las propias rutas. El estudio realizado permite concluir
que las técnicas utilizadas son adecuadas para el tratamiento de estos problemas.
Sin embargo, cabe resaltar que dada la complejidad de los problemas estudiados,
desde el punto de vista computacional es necesario realizar un esfuerzo adicio-
nal que permita abordar problemas de mayores dimensiones. Desde el punto de
vista teórico, pueden plantearse diversas extensiones del problema, entre las que
cabe resaltar el estudio de otro tipo de distribuciones de probabilidad para las
demandas de los clientes.
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1 Introducción

Una decisión importante que hay que tomar al establecer un nuevo centro de
servicio o actividad económica, tanto en el sector público como en el privado ,
es dónde localizarlo. Esto sucede por ejemplo con un hospital, un colegio, un
restaurante, un almacén para servir a consumidores o detallistas, una máquina
en una planta de producción, o un punto de venta de una franquicia. Una buena
localización está ligada, entre otros factores, con una mayor eficacia, una mayor
utilización y una disminución en los costes operativos del centro correspondiente.
Existen una gran cantidad de modelos matemáticos que permiten estudiar los
aspectos cuantitativos de estos problemas, conocidos con el nombre de Modelos
de Localización. En situación de monopolio, el objetivo más frecuente es optimizar
alguna función de los costes de instalación y de transporte, mientras que en un
oligopolio el objetivo suele ser maximizar el beneficio del centro, o bien su cuota de
mercado. Excelentes estudios y revisiones sobre estos modelos pueden consultarse
en [3, 4, 5, 7, 45, 1, 8, 2].

En monopolio, cada modelo se suele formular como un problema de optimi-
zación, donde la función objetivo depende de la distancia entre los puntos de
demanda y los centros que los sirven. Ejemplos de tales funciones son el coste
total de transporte, la distancia máxima entre puntos de demanda y centros, y
la distancia mı́nima entre dichos puntos. En particular, hablaremos de Modelos
de Localización Mı́nimaxsi el problema consiste en minimizar el máximo de una
serie de funciones, cada una de las cuales es a su vez una función de la distancia
entre un punto de demanda y un centro. Los modelos difieren unos de otros de-
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pendiendo del espacio de localización , de las funciones que se utilicen para medir
la distancia, y de la función objetivo. Si el espacio es el Plano, cada centro y cada
punto de demanda vienen representados por dos componentes (sus coordenadas
geográficas) y la distancia entre dos puntos se mide mediante alguna función de
sus coordenadas, normalmente usando una norma Op, 1 < p < ∞,o O2b, b > 0
[34, 42]). Si el espacio es una Red de Transporte, los puntos de demanda suelen
estar en los nodos. Los centros están en los nodos, o en los tramos, midiéndose
la distancia entre pares de puntos por la longitud del camino más corto que los
une [11].

Cuando las funciones de la distancia son lineales, este tipo de problema se co-
noce con el nombre de Problema del p-centro, donde p hace referencia al número
de centros a localizar, que ha sido ampliamente estudiado en ambiente de certi-
dumbre. En el plano, para p = 1, tiene su origen en Silvester [19], quién en 1987
planteó el problema de encontrar el ćırculo de menor radio que contuviera a un
conjunto de puntos dado (lo que equivale a encontrar un punto que minimice su
distancia máxima a tales puntos). Sin embargo, este problema no se resolvió de
forma eficiente hasta 1972, fecha que se publicó el algoritmo de Elzinga y Hearn
[27], que más tarde fue generalizado al caso de funciones lineales de la distan-
cia [31, 32]. En una red lo encontramos en 1964 con Hakimi [43], quién planteó
y resolvió el problema cuando el candidato es cualquier punto. En ambos es-
pacios, plano y red, el problema fue estudiado más adelante para funciones no
lineales de la distancia [44, 38]. Para p > 1 ha sido extensamente estudiado,
utilizándose distintas medidas de la distancia en el caso del plano. Debido a que
es un problema NP-duro, sólo se han utilizado algoritmos de tipo heuŕıstico para
encontrar soluciones a problemas con un elevado número de puntos de demanda
[30, 20, 41, 39]. No obstante, existen algoritmos exactos que permiten resolver
problemas con hasta una o dos centenas de puntos [29, 33, 20, 18, 25, 24, 14, 23].
Su extensión al espacio eucĺıdeo de dimensión n > 2 puede verse en

Los modelos minimax han sido aplicados a problemas de localización de servi-
cios de emergencia, como bomberos y ambulancias; de centros multimedia, como
emisoras y antenas de telefońıa; y de servicios de mensajeŕıa urgente [46, 35]. Su
estudio en el espacio eucĺıdeo con dimensión n > 2 es de interés en Clasificación y
Análisis de Datos [9, 13], donde se utilizan para la determinación de representantes
de grupos. Como cabe esperar, en numerosas situaciones se presenta incertidum-
bre. Esto sucede en particular en la localización de servicios de emergencia, donde
se deberá atender cualquier incidente en una determinada región, o en conjunto
de puntos de riesgo. Si el criterio de decisión es minimizar el tiempo máximo de
desplazamiento desde el centro a los puntos de demanda, el tiempo de viaje se
puede considerar como una variable aleatoria. Ello conduce a considerar que el
factor que pondera la distancia es una variable aleatoria. En esta dirección,los
primeros estudios en una red fueron realizados por Frank [49, 50], y en el plano
(con los puntos de demanda alineados) por Wesolowsky [48], ambos considerando
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una distribución de probabilidad Normal para las variables aleatorias. Este tipo
de incertidumbre ha sido extendido a otros modelos de localización [16, 51, 47, 17],
pero sólo muy recientemente ha sido estudiado para el problema del 1-centro con
otras distribuciones de probabilidad, como la distribución de Bernouilli ([52] y
la Uniforme ([53, 54], y ha sido reconsiderado en una red usando la distribución
Normal en [55].

En este trabajo presentamos un modelo general en el plano, donde la distancia
viene medida por cualquier norma y se presenta incertidumbre en los coeficientes
de la distancia, que vienen dados por variables aleatorias con distribuciones de
probabilidad arbitrarias. Se consideran tres criterios de decisión, se analizan las
propiedades básicas de los correspondientes modelos de optimización y se plantean
procedimientos para su resolución.

2 El modelo

Sean pi = (pi1, pi2), i = 1, . . . , n, un conjunto de puntos del plano cuyas
coordenadas son conocidas. Cada punto pi tiene asociada una cantidad wi ≥ 0 y
va a ser servido desde un punto x = (x1, x2), cuyas coordenadas se desconocen.
El objetivo es encontrar las coordenadas del punto x, con objeto de minimizar
la distancia máxima de dicho punto a los n puntos dados, ponderada por las
cantidades indicadas. Es decir, se pretende resolver el siguiente problema:

(P ) mı́n
x∈R2

F (x) = máx
1≤i≤n

{widi(x)}. (11.1)

Dependiendo de la situación que se estudie, los puntos pi representan lugares
donde tiene que llegar un determinado servicio, como una señal de TV, telefońıa
móvil,etc.; pueden ser puntos de riesgo de un determinado incidente, como un
incendio, una explosión, una colisión de veh́ıculos,etc.; puntos de venta a los
que hay que entregar un producto perecedero , etc. La cantidad wi asociada
a cada punto mide su importancia en relación a los demás puntos, debido al
tamaño de la población existente, grado de riesgo del posible incidente, cantidad
de demanda,etc.; o bien representa el inverso de la velocidad media en desplazarse
desde x al punto pi, si se trata de un servicio de emergencia. La distancia di(x) se
suele medir con la norma eucĺıdea, o con la norma rectangular, según se consideren
grandes zonas geográficas , o zonas urbanas. Como ya se ha indicado en la sección
1, existen otras normas que proporcionan una mejor estimación de la distancia
recorrida en los desplazamientos, por lo que vamos a considerar di(x) = ‖x− pi‖,
donde ‖ · ‖ es una norma arbitraria, que especificaremos cuando sea necesario.

Si no se presenta incertidumbre, es bien conocido que el problema (P ) tiene
siempre solución óptima y al menos existe una solución óptima en la envolvente
convexa de los puntos pi. Su resolución pude hacerse por diferentes procedimien-
tos, que dependen principalmente de la norma elegida y de si las ponderaciones
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son iguales o distintas. Denotaremos por f∗ al valor óptimo y por x∗ a una so-
lución óptima. A continuación vamos a describir los algoritmos de resolución que
se utilizan con mayor frecuencia.

2.1 Puntos colineales

Si los puntos pi están alineados, podemos representarlos de la forma pi =
p0 + λiv, donde p0 es un punto de la ĺınea elegido de forma arbitraria y v es la
dirección de alineación. Cualquiera que sea la norma, una solución óptima del
problema viene determinada por el algoritmo siguiente.

Algoritmo 1

1. Calcular la cantidad:

Fλ = máx
i �=j
{wiwj |λi − λj |

wi + wj
}

2. Determinar dos ı́ndices t y s para los cuales se alcanza el valor máximo
anterior.

3. Calcular el siguiente valor:

λ∗ =
wtλt + wsλs
wt + ws

4. La solución óptima y el valor óptimo son:

x∗ = p0 + λ∗v

,
f∗ = Fλ

2.2 Puntos no colineales y norma �1

Si los puntos se encuentran en una zona urbana y los desplazamientos se
realizan a través de sus calles, puede resultar apropiado estimar la distancia por
la norma O1, conocida también por norma rectangular o métrica de Manhatan.
En este caso tenemos que :

di(x) = |x1 − pi1|+ |x2 − pi2|

Para resolver el problema con esta métrica se usa la transformación u1 =
x1 + x2, u2 = x1 − x2. Los puntos pi = (pi1, pi2) se transforman en los puntos
ui = (ui1, ui2) y la distancia viene dada por:

di(x) = máx{|u1 − ui1|, |u2 − ui2|}
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Reemplazando la expresión anterior en la función objetivo se obtiene que el
problema es separable en las nuevas variables. Cada uno de los dos subproble-
mas resultantes es del tipo visto para puntos colineales. Entonces se obtiene el
siguiente procedimiento de resolución [7].

Algoritmo 2

1. Calcular las cantidades:

Fu1 = máx
i �=j
{wiwj |ui1 − uj1|

wi + wj
}

Fu2 = máx
i �=j
{wiwj |ui2 − uj2|

wi + wj
}

Fu = máx{Fu1, Fu2}

2. Determinar dos ı́ndices t y s para los cuales se alcanza el valor máximo Fu1.

Determinar dos ı́ndices h y k para los cuales se alcanza el valor máximo
Fu2. Calcular los siguientes valores:

u∗1 =
wtut1 + wsus1

wt + ws

u∗2 =
whuh2 + wkuk2

wh + wk

3. i) Si Fu1 = Fu2 sólo hay una solución óptima x∗ cuyas coordenadas son:

x∗1 =
u∗1 + u∗2

2

x∗2 =
u∗1 − u∗2

2
ii) Si Fu1 < Fu2 las soluciones óptimas son los puntos x = (x1, x2) del
segmento:

1
2
(u∗2 + max1≤i≤n{ui1 −

Fu
wi
}) ≤ x1 ≤

1
2
(u∗2 + min1≤i≤n{ui1 +

Fu
wi
})

x1 − x2 = u∗2

iii) Si Fu1 > Fu2 las soluciones óptimas son los puntos x = (x1, x2)del
segmento:

1
2
(u∗1 + max1≤i≤n{ui2 −

Fu
wi
}) ≤ x1 ≤

1
2
(u∗1 + min1≤i≤n{ui2 +

Fu
wi
})

x1 + x2 = u∗1

4. El valor óptimo es: f∗ = Fu
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2.3 Puntos no colineales y norma �2

En ocasiones los puntos de demanda están dispersos en grandes áreas y resulta
más conveniente usar la norma eucĺıdea. Entonces se tiene:

di(x) =
√

(x1 − pi1)2 + (x2 − pi2)2

Como esta métrica es una S-norma, el problema (P ) tiene solución única y
viene dada por la solución óptima de un problema similar con sólo dos o tres
puntos de demanda [38]. Si tenemos en cuenta que dos puntos pi, pj , con wi �=
wj , determinan una circunferencia formada por todos los puntos que cumplen
widi(x) = wjdj(x), vamos a ver como se obtendŕıa la solución óptima.

Para n = 2 la solución es el punto x∗ = w1p1+w2p2
w1+w2

.
Para n = 3 la solución está determinada por dos de los tres puntos, o por los

tres. En el primer caso, hay que obtener las soluciones óptimas para los tres pares
de puntos, según acabamos de indicar. En el segundo caso, la solución óptima
se encuentra de la siguiente forma: Si w1 = w2 = w3 es la intersección de las
mediatrices del triángulo determinado por los tres puntos. Si w1 = w2 �= w3

es la intersección de la mediatriz del segmento [p1, p2] con las circunferencias
determinadas por los pares de puntos p1, p3 y p2, p3. Los casos w1 = w3 �= w2

y w2 = w3 �= w1 son similares al anterior. Si w1 �= w2 �= w3 es la intersección
de las tres circunferencias determinadas por los pares p1, p2, p1, p3 y p2, p3. Un
algoritmo muy eficiente para resolver el problema es el siguiente [31].

Algoritmo 3

1 Elegir dos puntos cualesquiera, que notamos por p1 y p2. Obtener la solución
óptima x∗ para estos dos puntos. Hacer N = 2 e ir al paso 2.

2 Si w1d1(x∗) = F (x∗) , PARAR. De lo contrario ir al paso 3 si N = 2 y al
paso 4 si N = 3.

3 Denotemos por p3 a un punto tal que w3d3(x∗) = F (x∗). Encontrar la
solución x∗ para p1 , p2 y p3. Tomar N igual al número de puntos que
determinan x∗. Si N = 2 denominar a los puntos correspondientes por p1

y p2. Ir al paso 2.

4 Denotemos por p4 a un punto tal que w4d4(x∗) = F (x∗).Encontrar la so-
lución x∗ para estos cuatro puntos explorando los pares p1, p4 ; p2, p4 ; p3, p4

y los tŕıos p1, p2, p4 ; p1, p3, p4 ; p2, p3, p4.Tomar N igual al número de pun-
tos que determinan x∗. Si N = 2 denominar a los puntos correspondientes
por p1 y p2. Si N = 3 denominarlos por p1 , p2 y p3. Ir al paso 2.

En las secciones siguientes vamos a analizar este modelo cuando se presenta
incertidumbre en los coeficientes de la distancia. Esto suele pasar cuando el pro-
ducto widi(x) representa el tiempo de viaje entre los puntos pi y x. En este caso
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wi es el inverso de la velocidad media y puede considerarse una variable aleato-
ria, ya que la velocidad media es mayor o menor, dependiendo de la circulación
existente. También puede haber incertidumbre si el riesgo de incidente en cada
punto no es fijo, sino que vaŕıa dependiendo de las condiciones atmosféricas, del
tráfico , o cualquier otro factor, según el problema objeto de estudio. Vamos a
suponer entonces que los coeficientes de la distancia en el modelo son variables
aleatorias independientes con distribuciones de probabilidad arbitrarias. Al vector
n-dimensional aleatorio determinado por estas variables lo denotaremos por w,
de manera que w = (w1, w2, ..., wn) representará un posible valor de w. A la
función objetivo la denotaremos por F (x,w), que es una variable aleatoria que
tomará el valor máx1≤i≤n{widi(x)} si w = w. Supondremos que la distribución
de probabilidad de w es discreta, o absolutamente continua, y que cada una de las
variables aleatorias wi toma valores dentro de un intervalo [ai, bi], donde ai ≥ 0.

3 El criterio del valor esperado

Si aplicamos el criterio del valor esperado en el modelo anterior, tendremos
que resolver el problema:

(E) mı́n
x∈R2

E(x) = Ew[F (x,w)] (11.2)

donde Ew denota el valor esperado utilizando la correspondiente distribución
de probabilidad del vector aleatorio w . Vamos a ver que (E) es un problema
de Programación Convexa con algunas caracteŕısticas particulares. Sea H la
envolvente convexa de los puntos pi.

Teorema 2 La función E(x) es convexa en R2 y siempre se puede encontrar una
solución óptima en H.

Demostración: Para cada valor de la variable w, la función F(x,w) es convexa en
la variable x, ya que está definida como el máximo de n funciones convexas (la
distancia viene dada por una norma y puede comprobarse fácilmente que es una
función convexa). Por consiguiente,si x = λy + (1− λ)z, 0 ≤ λ ≤ 1, resulta que:

E(x) = Ew[F (x,w)] ≤ Ew[λF (y,w) + (1− λ)F (z,w)]
= λEw[F (y,w)] + (1− λ)Ew[F (z,w)] = λE(y) + (1− λ)E(z).

Como E(x) es convexa en R2, tiene que ser continua. Si x′ �∈ H, cualquiera
que sea la norma que se utilice debe existir un punto x ∈ H tal que di(x) ≤ di(x′)
(véase [56]). Por lo tanto:

E(x) = Ew[F (x,w)] ≤ Ew[F (x′,w)] = E(x′)
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Por ser E(x) continua y la envolvente convexa un conjunto compacto, de la desi-
gualdad anterior se desprende que su valor mı́nimo se alcanza en algún punto de
H.

A los valores de toma la variable F (x,w) los denotaremos por la letra f y a
su función de distribución de probabilidad por Gx(f). Esta función viene dada
por:

Gx(f) = Pr[F (x,w) ≤ f ] =
n∏
i=1

Pr[wi ≤
f

di(x)
] =

n∏
i=1

Gi(
f

di(x)
)

donde Gi es la función de distribución de probabilidad de la variable wi. Una vez
determinada Gx(f) se obtendrá su valor esperado E(x).

Del teorema anterior se desprende que cualquier mı́nimo local de la función
E(x) es un mı́nimo global, por lo que se pueden utilizar los algoritmos usuales
de descenso de la Programación no Lineal para encontrar una solución óptima
del problema (E). Como punto inicial para comenzar las iteraciones puede to-
marse x0 = 1

n

∑
1≤i≤n pi, que pertenece a H. Una gran dificultad en el uso de

estos algoritmos reside en la evaluación de la función E(xk) en cada una de las
iteraciones , ya que la función de distribución de F (x,w), aunque conocida, es en
general complicada. El uso eficiente de un algoritmo determinado va a depender
de cada situación, es decir de cuales sean las funciones Gi . El caso más sencillo
es cuando las variables wi son binarias y ha sido recientemente estudiado en [52].
Dada la gran dificultad computacional para resolver este problema , se describen
a continuación algunas alternativas para obtener una localización adecuada del
centro en la situación de incertidumbre que estamos considerando.

Si los valores de cada variable wi están muy agrupados entorno a su valor
esperado, que denotaremos por µi, una buena localización seŕıa la solución óptima
del problema (P), tomando el valor µi como coeficiente de di(x) . Si el problema
es localizar un servicio de emergencia, ello supondŕıa minimizar el máximo de
las tiempos de viaje esperados, en lugar del valor esperado del tiempo máximo de
viaje . Con este criterio alternativo habŕıa entonces que resolver el problema:

(Pµ) mı́n
x∈R2

Fµ(x) = máx
1≤i≤n

{µidi(x)} (11.3)

Su solución óptima la denotaremos por x∗µ y su valor óptimo por f∗µ, los
cuales pueden obtenerse según se ha indicado en la sección 2. La bondad de esta
propuesta se debe a que la solución óptima de (Pµ) está determinada por a lo
sumo tres de los puntos de demanda, los cuales están a una distancia (ponderada)
del punto x∗µ igual a f∗µ (véase [38]). Para los otros puntos pi, lo más normal es
que µidi(x∗µ) sea bastante menor que f∗µ. Por lo que para esos puntos widi(x)
no va a superar nunca f∗µ, cualquiera que sea el valor que tome la variable wi ,
siempre que haya suficiente concentración entorno a su media.

Otra alternativa consiste en elegir como localización del centro una solución
del problema (P) tomando el valor bi como coeficiente de di(x) . Con este criterio
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habŕıa que resolver el problema:

(Pb) mı́n
x∈R2

Fb(x) = máx
1≤i≤n

{bidi(x)} (11.4)

Su solución óptima la denotaremos por x∗b y su valor óptimo por f∗b . Con esta
localización se garantiza que para cualquier realización de las variables aleatorias
la función objetivo no sobrepase el valor f∗b , ya que cada variable wi está acotada
superiormente por bi.

Sea v(E) el valor óptimo del problema (E). Con las dos alternativas anteriores
se obtienen cotas para este valor, según se indica a continuación.

Teorema 3 Se verifica que:

f∗µ ≤ v(E) ≤ f∗b

Demostración: Como widi(x) ≤ F (x,w), resulta que µidi(x) ≤ Ew[F (x,w)].
Por lo tanto Fµ(x) ≤ E(x), de donde se desprende que F ∗µ ≤ E(x) ,∀x. Por otra
parte F (x,w) ≤ máx1≤i≤n{bidi(x)}, ∀x, de donde resulta que

Ew[F (x,w)] ≤ máx
1≤i≤n

{bidi(x)},∀x.

Al minimizar en las expresiones anteriores se obtienen las desigualdades propues-
tas.

4 El criterio de máximo cubrimiento en probabi-
lidad

En ocasiones, fijar un valor f y localizar el centro en un punto con probabilidad
máxima de que la variable F (x,w) no sobrepase dicho valor sea , puede resultar
más interesante que usar el criterio del valor esperado. Para encontrar ese punto
habŕıa que resolver el problema:

(Cf ) máx
x∈R2

P (x) = Pr[F (x,w) ≤ f ] (11.5)

La función objetivo de este problema se puede evaluar muy fácilmente, al contrario
de lo que suced́ıa con la del problema (E), ya que viene dada por:

P (x) = Gx(f) =
n∏
i=1

Gi(
f

di(x)
)

Como ya se ha indicado, Gi es la función de distribución de la variable wi,
que suponemos conocida. Sin embargo, está función no es cóncava (los máximos
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locales no son globales), por lo que para resolver el problema (Cf ) no se puede
usar el mismo tipo de algoritmos que para el problema (E). Denotemos por v(Cf )
y X(Cf ) respectivamente al valor óptimo y al conjunto de soluciones óptimas del
problema (Cf ). Vamos a ver en primer lugar sus propiedades más notables.

Teorema 4 Para cualquier valor f > 0, el problema (Cf )tiene solución y siempre
se puede encontrar una solución óptima en H.

Demostración: Según se ha visto en el teorema 2,si x′ �∈ H, entonces existe un
punto x ∈ H tal que di(x) ≤ di(x′). Por lo tanto:

P (x) =
n∏
i=1

Gi(
f

di(x)
) ≥

n∏
i=1

Gi(
f

di(x′)
) = P (x′)

Entonces al menos una solución óptima se encuentra en H , si existe alguna.
Veamos que el valor óptimo se alcanza y por consiguiente el problema tiene so-
lución. Si w es de tipo discreto, es evidente que la función objetivo P (x) toma
un número finito de valores y en consecuencia se alcanza un valor máximo. Si w
fuese absolutamente continua, las funciones Gi seŕıan continuas y por lo tanto se
alcanzaŕıa un valor máximo en H, que es un conjunto compacto.

Sea Ω el espacio muestral de la variable aleatoria w. Por A denotaremos un
suceso en dicho espacio. A cada punto x ∈ R2 le asociaremos el suceso A(x, f) =
{w = (w1, w2, . . . , wn) ∈ Ω : widi(x) ≤ f, i = 1, 2, ..., n} (ver figura ??). Si
definimos la familia de sucesos Ωf = {A(x, f) : x ∈ R2}, el problema (Cf ) equivale
a encontrar un suceso en dicha familia que tenga probabilidad máxima. Para
buscar tal suceso, podemos descartar aquellos que no sean maximales respecto de
la relación de inclusión.

Sea A ∈ Ωf , definimos los valores wi(A) = sup{wi : w = (w1, .., wi, .., wn) ∈
A}, i = 1, 2, . . . , n, y el conjunto X(A, f) = {x ∈ R2 : A(x, f) = A}. Denotemos
por B(pi, r) la bola de centro pi y radio r, es decir B(pi, r) = {y ∈ R2 : di(y) ≤ r}.
Entonces, tenemos la siguiente caracterización de suceso maximal.

Fig 1: Sucesos A(x, f) en Ω

Rect@ Monográfico 2 (2004)



B. Pelegŕın 273

Teorema 5 Sea A ∈ Ωf , entonces:
i) X(A, f) ⊂

⋂
i=1,nB(pi, f

wi(A) )

ii) A es maximal si y sólo si X(A, f) =
⋂
i=1,nB(pi, f

wi(A) )

Demostración:
i)Si x ∈ X(A, f), entonces widi(x) ≤ f, i = 1, 2, ..., n,∀w ∈ A, por lo tanto

wi(A)di(x) ≤ f, i = 1, . . . , n, lo que implica que x ∈
⋂
i=1,nB(pi, f

wi(A) ). Por

consiguiente : X(A, f) ⊂
⋂
i=1,nB(pi, f

wi(A) ).

ii)Sea A maximal. Si x ∈
⋂
i=1,nB(pi, f

wi(A) ), entonces wi(A)di(x) ≤ f, i =
1, 2, ..., n, de donde se deduce que widi(x) ≤ f, i = 1, 2, ..., n,∀w ∈ A y por
consiguiente A ⊂ A(x, f). Como A es maximal, resulta que A = A(x, f) , por lo
tanto x ∈ X(A, f). En consecuencia,

⋂
i=1,nB(pi, f

wi(A) ) ⊂ X(A, f). Si tenemos
en cuenta i) , resulta que la inclusión anterior es una igualdad . Rećıprocamente,
supongamos que se da la igualdad. Si A ⊂ A′ ∈ Ωf , tomemos un punto x tal que
A(x, f) = A′ , entonces tiene que cumplirse que widi(x) ≤ f, i = 1, 2, ..., n,∀w ∈
A′, y en particular ∀w ∈ A. Por lo tanto x ∈

⋂
i=1,...,nB(pi, f

wi(A) ) = X(A, f), lo
que significa que A(x, f) = A. Por consiguiente A = A′, es decir A es maximal.

Teorema 6 Si la variable aleatoria w es discreta, X(Cf ) es la unión de un
número finito de conjuntos que son intersecciones de bolas centradas en los puntos
de demanda.

Demostración:
Si w es discreta, habrá un número finito de sucesos maximales con probabili-

dad máxima. Las localizaciones correspondientes a dichos sucesos son las óptimas.
Por el teorema anterior, dichas localizaciones son los puntos intersección de bolas
centradas en los puntos de demanda.

Como vemos, los conjuntos de soluciones óptimas del problema (Cf ) son de
la forma X(A, f) =

⋂
i=1,nB(pi, f

wi(A) ) , donde A es algún suceso maximal. Los
sucesos maximales en Ωf vienen determinados por puntos de Ω que son maximales
en el orden natural de Rn (los puntos w(A) = (w1(A), ..., wn(A))). El elemento
maximal correspondiente al suceso Ω es w(Ω) = b = (b1, b2, ..., bn. Resolviendo
el problema(Pb) de la sección 3, se obtiene que si f∗b ≤ f entonces v(Cf ) = 1 y
X(Cf ) =

⋂
i=1,nB(pi, fbi ). Para valores de f menores que f∗b , el valor óptimo

de (Cf ) es menor que la unidad, siempre que la variable w tenga probabilidad
positiva en un entorno del punto b. Por otro lado, si tomamos el elemento minimal
del espacio muestral a = (a1, a2, ..., an, podemos resolver el siguiente problema:

(Pa) mı́n
x∈R2

Fa(x) = máx
1≤i≤n

{aidi(x)} (11.6)

Su solución óptima la denotaremos por x∗a y su valor óptimo por f∗a . El valor
óptimo de (Cf ) es positivo si f∗a ≤ f , mientras que v(Cf ) = 0 si f < f∗a , en cuyo
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caso todos los puntos del plano son soluciones óptimas. Aśı pues, si descartamos
los dos casos anteriores, queda por resolver (Cf ) para f∗a ≤ f < f∗b .

Si la variable w es discreta, para resolverlo se puede realizar un proceso de
exploración de sucesos maximales según se indica a continuación. Para valores de
f próximos a f∗b , los sucesos maximales de Ωf corresponden a los elementos de
Ω que preceden en el orden natural de Rn al punto b . Estos elementos son los
puntos pb(i) = (b1, .., pbi, .., bn), i = 1, ..., n, donde pbi es el valor inmediatamente
anterior a bi que toma la variable wi . Para cada uno de ellos se resuelve el
problema (P) tomando w = pbi. Sea f∗pbi su valor óptimo. Si f∗pbi ≤ f , entonces
el suceso Ai = {w ∈ Ω : w ≤ pbiinΩf} y es maximal. Entre los sucesos maximales
de Ωf seleccionaremos los de probabilidad máxima, a los que nos referiremos por
Ak. Entonces el conjunto de soluciones óptimas de (Cf ) vendrá dado por la unión
de los conjuntos X(Ak, f). Si f < f∗pbi , habrá que seguir el proceso de búsqueda
con los siguientes elementos de Ω que preceden a pbi. . Mediante este proceso de
inspección, podemos encontrar todas las soluciones óptimas, como se ilustra con
el siguiente ejemplo.

Ejemplo 1: Sean p1 = (2, 1), p2 = (3 − 1√
2
, 3 + 3√

2
) y p3 = (5, 2). Supon-

gamos que las variables aleatorias w1,w2 y w3 tienen una distribución de pro-
babilidad de Bernouilli, con parámetros 1

2 , 35 y 2
5 respectivamente. La distancia

viene medida por la norma ell2. El espacio muestral es Ω = {w1 = (0, 0, 0), w2 =
(1, 0, 0), w3 = (0, 1, 0), w4 = (0, 0, 1), w5 = (1, 1, 0), w6 = (1, 0, 1), w7 = (0, 1, 1), w8 =
(1, 1, 1)}.

Comenzamos resolviendo el problema (Pb), donde ahora b es w8. La solución
se obtiene mediante el Algoritmo 3 y viene dada por x∗w8 = (3, 3), que corresponde
al circuncentro del triángulo que determinan los puntos pi. El valor óptimo es
f∗w8 = 2, 2361. Por consiguiente, para f ≥ 2, 2361, el conjunto de soluciones
óptimas es X(Cf ) =

⋂
i=1,2,3 B(pi, f) y v(Cf ) = 1.

Para f < f∗w8 , los sucesos maximales de Ωf corresponden a los puntos : pb1 =
w7, pb2 = w6 y pb3 = w5. Las soluciones óptimas de los problemas (Ppbi),
i = 1, 2, 3, son respectivamente:

x∗w7 = (4− 1
2
√

2
,
5
2

+
3

2
√

2
), x∗w6 = (

7
2
,
3
2
), x∗w5 = (

5
2
− 1

2
√

2
, 2 +

3
2
√

2
)

y sus valores óptimos son:

f∗w7 = 2, 0659, f∗w6 = 1.5811, f∗w5 = 2, 0659

Las probabilidades de los correspondientes sucesos maximales son:

Pr(A1) = Pr(w1 = 0) = 0, 5, Pr(A2) = Pr(w2 = 0) = 0, 4, Pr(A3) = Pr(w3 = 0) = 0, 6

. Si f∗w5 ≤ f < f∗w8 , el suceso de máxima probabilidad es A3, por lo tanto el
conjunto de soluciones óptimas es X(Cf ) =

⋂
i=1,2 B(pi, f) y v(Cf ) = 0, 6.
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Para f < f∗w5 , los sucesos maximales de Ωf corresponden a los puntos w6 y w3,
que son los que dominan a los otros predecesores de w5 y w7 en el orden natural
de R3 . El suceso que corresponde a w6 es A2 , que ya ha sido considerado. El que
corresponde a w3 lo denotamos por A4 y su probabilidad es Pr(A4) = Pr(w1 =
0,w2 = 0) = 0, 3. La solución óptima de (Pw3) es x∗w3 = p2 y su valor óptimo es
f∗w3 = 0. Si f∗w6 ≤ f < f∗w5 , el suceso de máxima probabilidad es A2 , por lo que
el conjunto de soluciones óptimas es X(Cf ) =

⋂
i=1,3 B(pi, f) y v(Cf ) = 0, 4.

Para f < f∗w6 los sucesos maximales de Ωf corresponden a los puntos w4, w3

y w2. La solución óptima de (Pw4) es x∗w4 = p3 y su valor óptimo es f∗w4 = 0. El
correspondiente suceso maximal es A5 y su probabilidad es Pr(A5) = Pr(w1 =
0,w2 = 0) = 0, 2. Para w2 se obtiene x∗w2 = p1 y f∗w2 = 0. El correspondiente
suceso maximal es A6 y su probabilidad es Pr(A6) = Pr(w2 = 0,w3 = 0) = 0, 24.
Como vemos el suceso de máxima probabilidad es A4 , por lo tanto si 0 ≤ f < f∗w6

entonces X(Cf ) = B(p2, f) y v(Cf ) = 0, 3.
Si la variable w es absolutamente continua, no se puede aplicar el proceso

de enumeración antes descrito. La función objetivo P (x) es continua, pero no
es cóncava (ni convexa) , por lo que en este caso habrá que utilizar éTécnicas
de Optimización Global para resolver (Cf ). Algunos algoritmos basados en estas
técnicas que pueden usarse para su resolución pueden verse en [21, 22, 6, 10,
12].Ilustraremos este caso con un ejemplo sencillo.

Ejemplo 2 : Sean p1 = (0, 0), p2 = (7, 0). Supongamos que las variables
aleatorias w1 y w2 toman valores en el intervalo (0, 1) con las funciones de dis-
tribución : G1(w1) = w2

1 y G2(w2) = w2. Por el teorema 4, una solución óptima
se encuentra en H = [p1, p2]. Los puntos de este segmento son de la forma
x = (a, 0), 0 ≤ a ≤ 7, por lo que la función objetivo de (Cf ) en tales puntos
podemos expresarla tomando a como argumento . Dicha función es:

P (a) =


(f/a)2(f/(7− a)) si f < a < 7− f
(f/a)2 si f < a, 7− f ≤ a
(f/(7− a)) si a ≤ f, a < 7− f
1 si 7− f ≤ a ≤ f

Está claro que P (a) puede tomar el valor 1 si 7 − f ≤ f . Esto sucede si
7
2 ≤ f , en cuyo caso el subintervalo de [p1, p2] correspondiente a los valores de a
en [7 − f, f ] es un conjunto de localizaciones óptimas. Si f < 7

2 , resulta sencillo
comprobar que el valor máximo de P (a) es f

7−f y se alcanza para a = f .

5 El criterio de la restricción de incertidumbre

Cuando se trata de servicios de emergencia, es importante que el valor f , que
se fija para usar el criterio de la sección anterior, sea lo más pequeño posible.
En tal caso, como la probabilidad máxima de cubrimiento es no decreciente con
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f , podŕıa ocurrir que dicha probabilidad fuese muy pequeña. Ello nos lleva a
fijar una probabilidad mı́nima α para cubrimiento y buscar una localización que
minimice el valor f condicionado a la misma. Es decir, habŕıa que resolver el
siguiente problema:

(Rα) mı́n{f : Pr[F (x,w) ≤ f ] ≥ α, x ∈ R2, f ≥ 0} (11.7)

Denotemos por v(Rα) y X(Rα) respectivamente al valor óptimo y al conjunto
de localizaciones óptimas del problema (Rα)

Teorema 7 v(Rα) = fα
∗ si y sólo si v(Cf ) < α,∀f < fα

∗ y v(Cf ) ≥ α,∀f >
fα
∗.
Demostración:
Sea v(Rα) = fα

∗. Si f < fα
∗, entonces Pr[F (x,w) ≤ f ] < α,∀x ∈ R2.

Como el valor máximo del problema (Cf ) se alcanza , resulta que v(Cf ) < α . Si
f > fα

∗, debe haber algún punto x̂ tal que Pr[F (x̂,w) ≤ f ] ≥ α, por consiguiente
v(Cf ) ≥ α.

Rećıprocamente, supongamos que para un valor fα
∗ se verifican las desigual-

dades. Entonces no existe ningún x ∈ R2 tal que Pr[F (x,w) ≤ f ] ≥ α si f < fα
∗,

mientras que ocurre lo contrario si f > fα
∗. por lo tanto v(Eα) = fα

∗.

Si definamos la función ϕ(f) = v(Cf ), del teorema anterior resulta que el
problema (Rα) lo podemos expresar de la siguiente forma:

(Rα) mı́n{f : ϕ(f) ≥ α, f ≥ 0} (11.8)

Este es un problema de optimización unidimensional sencillo de resolver si se
conociese la función ϕ(f). En efecto, el valor óptimo f∗α es el menor valor de
f para el que ϕ(f) ≥ α y el conjunto de localizaciones óptimas viene dado por
X(Rα) = x ∈ R2 : Pr[A(x, f∗α)] ≥ α. Vamos a ver que propiedades tiene la función
ϕ(f) y la relación entre las soluciones óptimas de (Rα) y (Cf ).

Teorema 8 Si w es discreta, entonces:
i) Existe un número finito de valores f0 = 0 < f1 < f2 < ... < fk tales que:

ϕ(f) = ϕ(fh), si fh ≤ f < fh+1

donde ϕ(fk) = 1 y fk+1 =∞.
ii) X(Rα) ⊃ X(Cfh) si ϕ(fh−1) < α ≤ ϕ(fh) y X(Rα) = X(Cfh) si y estos

conjuntos son iguales si α = ϕ(fh).

Demostración:
i)Para cada valor f , denotemos por Ωf

∗ a la familia formada por los sucesos de
Ωf que tienen probabilidad máxima. Si A ∈ Ωf

∗, entonces X(A, f) es un conjunto
de soluciones óptimas del problema (Cf ). Sea Ω∗ = {A : A ∈ Ωf

∗, f ≥ 0}, este
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conjunto está formado por un número finito de sucesos. Sean α0 < α1 < α2 <
... < αk las diferentes probabilidades de realización de tales sucesos. Si A ∈ Ω∗,
el conjunto X(A, f) es no vaćıo si f ≥ fA, donde por simplicidad denotamos por
fA al valor óptimo del problema (P ) tomando como coeficientes de las distancias
los valores wi(A), i = 1, ..., n. Sea fh = mı́n{fA : A ∈ Ω∗, Pr(A) = αh},h =
0, 1, 2, ..., k , donde Pr(A) es la probabilidad del suceso A. Como la probabilidad es
no decreciente con f se verifica que f0 = 0 < f1 < f2 < ... < fk. Si fh ≤ f < fh+1

, tendremos que X(A, f) es no vaćıo para algún suceso A tal que Pr(A) = αh
y X(A, f) es vaćıo para cualquier suceso con probabilidad mayor, por lo que
ϕ(f) = αh. Como Ω es maximal para valores de f suficientemente grandes resulta
que ϕ(f) = 1 si f ≥ fk.

ii)Si x ∈ X(Cfh) entonces Pr[F (x,w) ≤ fh] = ϕ(fh) ≥ α, por lo tanto
x ∈ X(Rα). Si α = ϕ(fh) , resulta que x ∈ X(Rα) si Pr[F (x,w) ≤ fh] ≥ ϕ(fh) .
Como está desigualdad no puede ser estricta, el suceso A(x, fh) tiene probabilidad
máxima y x ∈ X(Cfh).

Un procedimiento de resolver Rα, cualquiera que sea el valor de α , consiste
en resolver previamente los problemas (Cf ), con objeto de determinar la función
ϕ(f) = v(Cf ). Una vez obtenida esta función, podemos encontrar el valor óptimo
f∗α según se ha indicado. Las localizaciones óptimas las encontraremos a partir
de los sucesos A(x, f∗α) con probabilidad mayor o igual que α. Vamos a resolver
Rα para el ejemplo 1 .

Según se vio en la sección 3, la función ϕ(f) viene dada por la siguiente
expresión:

ϕ(f) =


0, 3 si 0 ≤ f < 1.5811
0, 4 si 1.5811 ≤ f < 2, 0659
0, 6 si 2, 0659 ≤ f < 2, 2361
1 si 2, 2361 ≤ f

Los valores óptimos de los problemas (Rα) vienen reflejados en la Tabla 11.1.
Las localizaciones óptimas para los diferentes valores de α, las obtendremos si-
guiendo un orden de probabilidad descendente . Para 0, 6 < α ≤ 1, únicamente el
suceso A = Ω tiene una probabilidad superior a igual a α, por lo que la solución
es el punto x∗w8 . Para 0, 5 < α ≤ 0, 6, sólo el suceso A tal que w(A) = w5

tiene probabilidad superior, o igual, a igual a α, por lo que la solución es x∗w5 .
Para 0.4 < α ≤ 0, 5, los sucesos correspondientes a w(A) = w5 y w(A) = w7 son
los únicos con probabilidad superior o igual a α, por lo que hay dos soluciones
óptimas x∗w5 y x∗w7 . Siguiendo este proceso se obtiene la Tabla 11.2 que muestra
los resultados para todos los valores de α. Obsérvese que para resolver (Rα)no
es necesario resolver (Cf ) para todos los valores de f , sino sólo para aquellos que
verifican ϕ(f) ≥ α.

Teorema 9 Si w es absolutamente continua, entonces:

Rect@ Monográfico 2 (2004)



278 Localización Minimax con Incertidumbre

Tabla 11.1: Valores óptimos para (Rα) en el ejemplo 1

α v(Rα)

0, 6 < α ≤ 1 2, 2361
0, 4 < α ≤ 0, 6 2, 0659
0, 3 < α ≤ 0, 4 1.5811
0 < α ≤ 0, 3 0

Tabla 11.2: Localizaciones óptimas para (Rα) en el ejemplo 1

α X(Rα)

0, 6 < α ≤ 1 x∗w8

0, 5 < α ≤ 0, 6 x∗w5

0, 4 < α ≤ 0, 5 x∗w5 , x∗w7

0, 3 < α ≤ 0, 4 x∗w6

0, 24 < α ≤ 0, 3 p2

0, 2 < α ≤ 0, 24 p1, p2

0, 12 < α ≤ 0, 2 p1, p2, p3

0 < α ≤ 0, 12 R
2

i) ϕ(f) es continua.
ii) X(Rα) = X(Cf∗α).

Demostración:
i) Sea fh → f . Por el teorema 4, para cada fh existirá un punto xh en H que

es solución óptima de Cfh . Como H es compacto, la sucesión xh contendrá una
subsucesión xk convergente a un punto x ∈ H. Entonces:

limfk→fϕ(fk) = limfk→fGxk(fk) = Gx(f) ≤ ϕ(f)

Por otra parte, si x∗ es una solución óptima de Cf se verifica que Gx∗(fk) ≤ ϕ(fk),
por lo que:

limfk→fϕ(fk) ≥ limfk→fGx∗(fk) = Gx∗(f) = ϕ(f)

Por consiguiente limfk→fϕ(fk) = ϕ(f) , y como la función ϕ es monótona también
se verifica que limfh→fϕ(fh) = ϕ(f).

ii) Como ϕ(f) es continua se verifica que ϕ(f∗α) = α. Entonces x ∈ X(C∗fα)
equivale a que Pr[F (x,w) ≤ fα

∗] ≥ α y esto a su vez equivale a que x ∈ X(Rα).
Para el ejemplo 2 la función ϕ(f) viene dada por:

ϕ(f) =
{ f

7−f si 0 ≤ f < 3, 5
1 si 3, 5 ≤ f
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Es fácil comprobar que v(Rα) = 7α
1+α y que este valor se alcanza en x∗ = ( 7α

1+α , 0).

6 Conclusiones y ĺıneas futuras de investigación

Se ha presentado y analizado un modelo general para la localización de un
centro con criterio minimax cuando se presenta incertidumbre en los coeficientes
de las distancias. En lugar de tratar algún caso concreto, como en la mayoŕıa de las
referencias citadas, se han considerado variables aleatorias con distribuciones de
probabilidad arbitrarias, lo que permite abordar un gran número de situaciones.

El modelo se ha analizado para tres criterios de decisión en situación de in-
certidumbre. Para cada uno de ellos se han obtenido propiedades fundamentales,
en base a las cuales es posible desarrollar distintos procedimientos de resolución.
Para el criterio del valor esperado, su resolución es posible mediante técnicas de
Programación Convexa , si bien el cálculo de la función objetivo requiere una gran
cantidad de recursos computacionales. Para el criterio del máximo cubrimiento
en probabilidad, en general es necesario usar técnicas de Optimización Global,
pero también se pueden desarrollar procedimientos de enumeración si las varia-
bles aleatorias son discretas. El criterio de la restricción de incertidumbre se basa
en el anterior y precisa por tanto de los mismos procedimientos. El desarrollo de
algoritmos eficientes que permitan resolver problemas de tamaño real constituye
la principal ĺınea de investigación en el estudio de cada uno de los problemas
que se han presentado. Esto conduce a tener que especificar las distribuciones de
probabilidad de las mencionadas variables, de manera que tales algoritmos habrá
que diseñarlos de forma adecuada para cada caso concreto.
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(ed)Lecturas en Teoŕıa de Localización 149-166.Publicaciones de la Univer-
sidad de Sevilla.

[16] Berman O and Krass D (2002), Facility location problems with stochastic
demands and congestion. In: Drezner Z and Hamacher H (eds) Facility
Location: Applications and Theory 329-371. Springer Verlag.

[17] Marianov V and ReVelle C (1995) Siting emergency services. In : Drezner
Z (ed) Facility Location: A Survey of Applications and Methods. Springer
Verlag.

[18] Drezner Z (1987)On the rectangular p-center problem. Naval Research Lo-
gistics 34:229-234.

[19] Sylvester JJ (1857)A question in geometry of siyuation Quart. J. Pure Ap-
plied Math 1:79.

[20] Drezner Z (1984)The p-center problem:Heuristics and optimal algorithms.
Journal of the Operational Research Society 35741-748.

Rect@ Monográfico 2 (2004)
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1 Introducción

Uno de los problemas a los que se enfrentan las empresas es decidir donde ubi-
car sus instalaciones de modo que sus costes de aprovisionamiento y distribución
sean mı́nimos. Existen numerosos modelos que tratan de resolver estos proble-
mas de localización. Los más básicos sólo necesitan la demanda y una función de
distancia que permita determinar el coste de satisfacer dicha demanda.

El problema de la p-mediana es un modelo básico de localización cuando la
estructura topológica subyacente del problema es una red en la que las longitudes
de las aristas (distancias) y los pesos de los vértices (demandas) son conocidos.
Consiste en encontrar p puntos de la red de modo que se minimice la distancia
total (o media) ponderada entre estos puntos y los vértices. Fue introducido
por Hakimi [9, 10] quien demostró la propiedad de optimalidad en los vértices,
a saber, que siempre existe una p-mediana en los vértices de la red. Suponer
que los datos son deterministas y estáticos, sin embargo, es poco realista, pues la
mayoŕıa proviene de estimaciones sobre hechos que todav́ıa no se han producido
y de los cuales, en muchos casos, no hay información histórica. Además, estas

1Este trabajo ha sido parcialmente subvencionado por por TIC 2002-04242-C03
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aproximaciones inexactas deben proyectarse hacia el futuro para un largo periodo
de tiempo en el cual los cambios en el entorno son muy dif́ıciles, sino imposibles,
de predecir. Aśı, surgen de forma natural los modelos y métodos que aceptan
incertidumbre en los datos, como el análisis de sensibilidad, análisis paramétrico,
modelos dinámicos y modelos estocásticos. Un resumen de ellos aparece en el
art́ıculo de Owen y Daskin [14]. Más recientemente se han aplicado también
técnicas borrosas [3, 4, 5] y técnicas de optimización robusta [12, 6, 15, 2, 1].

Las técnicas de optimización robusta, al contrario que el análisis de sensibi-
lidad o el análisis paramétrico, consideran que la incertidumbre es una carac-
teŕıstica inherente al sistema y que, en lugar de eliminarla, es mucho más prove-
choso hacer un esfuerzo para estructurarla hasta donde sea posible, entenderla y
manejarla. La optimización robusta no necesita que la incertidumbre esté pro-
vocada por un solo parámetro (el tiempo), como la optimización dinámica, ni
tampoco que exista una distribución de probabilidad asociada, como la optimi-
zación estocástica, requisito no trivial en problemas que, como los de localización,
estudian fenómenos únicos con poca o ninguna información histórica. Cualquier
técnica robusta ha de seguir tres pasos [12]:

1. Planificación de los escenarios. Un escenario es una realización potencial
de los datos inciertos del problema. La filosof́ıa de la optimización robusta
es la de estar preparados para enfrentarse a (casi) cualquier suceso futuro.
Por tanto, del buen diseño de los escenarios depende el éxito o el fracaso de
todo el proceso posterior.

2. Elección de un criterio de robustez. Puesto que es imposible que sepamos
que va a ocurrir en el futuro, el criterio de robustez debe llevarnos a una
solución del problema que se porte bien bajo cualquier escenario.

3. Planteamiento de un modelo coordinado. El modelo coordinado recoge el
criterio de robustez, la información proporcionada por todos los escenarios
y, una vez planteado, puede resolverse por técnicas conocidas.

Cuando el decisor obtiene una solución para el modelo coordinado desea que esté
lo más cerca posible de la factibilidad y de la optimalidad para todos y cada uno
de los escenarios. Para ello, se admiten desviaciones respecto de la factibilidad
y la optimalidad y se intenta minimizar ambas [13]; o bien se supone que los
escenarios tienen soluciones factibles en común y sólo se permiten desviaciones
respecto a la optimalidad [12].

Todos los trabajos que aplican técnicas robustas al problema de la p-mediana,
excepto el de Canós y Mochoĺı [2], trabajan bajo la última hipótesis; es decir,
suponen que todas las restricciones de todos los escenarios deben cumplirse. En
particular, suponen que toda la demanda debe ser atendida. Sin embargo, en al-
gunos casos podŕıa interesar dejar una pequeña parte de la demanda insatisfecha
a cambio de otras compensaciones. Este último caso es el que planteamos. En
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este trabajo consideramos el problema de la mediana sobre un árbol en el que la
incertidumbre viene reflejada por el hecho de que cada demanda puede variar en
un rango de valores. El cálculo de estos intervalos puede realizarse por el método
propuesto por Canós y Mochoĺı [2]. Nuestro objetivo es conseguir una solución
que, cuando los datos tomen algún valor en el futuro, minimice la demanda insa-
tisfecha y cuyo coste no esté muy lejos del mı́nimo coste que hubiésemos obtenido
de haber conocido con antelación dicho valor. Puesto que la forma de plantear
matemáticamente este objetivo no es única, presentamos y comparamos varias
opciones entre las que puede elegir el decisor.

2 Cálculo de los escenarios

Consideremos un árbol T = (V,E), donde V = {v1, . . . , vn} es el conjunto
de vértices y E el de aristas. Cada arista tiene asociada una longitud positiva
conocida. Supongamos que cada vértice tiene una demanda incierta asociada
representada por un intervalo. Aśı, wj = [ωj , ωj ] es la demanda del vértice vj ,
para j = 1, . . . , n. Es evidente que tenemos infinitos escenarios. Al conjunto de
todos los escenarios lo llamaremos S. Dado un escenario s ∈ S, denotamos por
ωsj el valor de la demanda de vj en dicho escenario. Obviamente, se cumplirá que
ωj ≤ ωsj ≤ ωj . Para todo par de puntos x e y de T , d(x, y) es la distancia entre
x e y, calculada como la longitud del único camino entre x e y.

Definición 10 Diremos que un punto ms es una mediana de T bajo el escenario
s si para todo x de T se cumple que

n∑
j=1

ωsjd(m
s, vj) ≤

n∑
j=1

ωsjd(x, vj)

Definición 11 Diremos que un punto x de T es una mediana de escenario si
existe algún s de S tal que x es una mediana de T bajo el escenario s.

Puesto que en cada uno de los escenarios tenemos un problema con datos cono-
cidos y constantes, se puede aplicar la propiedad de optimalidad en los vértices.
Por tanto, podemos suponer que las medianas de escenario son vértices de T .
Además, una mediana de escenario cumplirá cualquier propiedad conocida para
las medianas. En particular cumplirá la propiedad de la semisuma.

Teorema 10 (Propiedad de la semisuma. Kariv y Hakimi [11]) Un vértice
vj es una mediana de un árbol si, y sólo si, cada subárbol con ráız en vj tiene
un peso total (excluyendo vj) menor o igual que la mitad de la suma de todos los
pesos del árbol.
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Como consecuencia, los siguientes teoremas, cuya demostración se basa en la
anterior propiedad y cuya redacción hemos modificado ligeramente para adaptar-
los a nuestro problema particular, son ciertos independientemente del criterio de
robustez elegido.

Teorema 11 (Chen y Lin [6]) Sean vi, vj y vk tres vértices de T tales que
vk está en el único camino que une vi con vj. Si vi y vj son dos medianas de
escenario entonces vk también es una mediana de escenario.

Como corolario, todas las medianas de escenario están conectadas y podemos
hablar del camino de las medianas, cuyos vértices serán medianas bajo algún
escenario.

Definición 12 Consideremos vj ∈ V . Sean T1, T2, . . . , Tk los k subárboles cuya
ráız es vj. El árbol resultante de convertir cada uno de estos subárboles en un
vértice cuya peso es la suma, con la aritmética habitual de intervalos, de los pesos
de todos los vértices del subárbol se denomina árbol agregado de T con ráız en vj
.

Es evidente, por la propiedad de la semisuma, que vj es una mediana de T si, y
sólo si, es una mediana del árbol agregado de T con ráız en vj .

Teorema 12 (Chen y Lin [6]) Consideremos el árbol agregado con ráız en vj.
Entonces vj es una mediana de escenario si, y sólo si, es una mediana del esce-
nario agregado cj , cuyos pesos vienen dados por:

ωcjj = ωj , ωcji = mı́n {ωk, ωi} ∀ i �= j

siendo
ωk = máx

i �=j
ωi

Con el teorema anterior podemos calcular si un vértice determinado es o no una
mediana de escenario. Si lo es, conocemos un escenario agregado asociado. Para
calcular un escenario de S, basta asignar a cada vértice de T un valor factible
y que cumpla la propiedad de que al sumar los pesos de los vértices de cada
subárbol el resultado sea el peso correspondiente del escenario agregado. A cada
escenario que cumpla esta propiedad lo llamaremos desagregado.

Algoritmo ESCEGEN.

INPUT. Introducir como datos el árbol T y las demandas wj , j = 1, . . . , n.

INICIALIZACIÓN. Hacer i = 1.

PASO 1. Tomar el vértice vi y crear el árbol agregado de T con ráiz en vi.
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PASO 2. Comprobar si vi es una mediana del árbol agregado bajo el escenario
ci . En caso afirmativo, es una mediana de escenario en T . Calcular un
escenario desagregado dci. En caso negativo, no existe ningún escenario en
T para el que vi sea óptimo.

PASO 3. Comprobar si i = n. En caso afirmativo, parar. En caso negativo,
hacer i = i + 1 e ir al paso 1.

OUTPUT. Obtener como resultado M = {v(i) : (i) = 1, . . . , k} el conjunto de
las medianas de escenario, y SD = {dc(i) : (i) = 1, . . . , k}, el conjunto de
los escenarios desagregados calculados.

Este algoritmo permite calcular todas las medianas del problema y un escenario,
al menos, para cada una de ellas.

Ejemplo 2.1. Consideremos el siguiente árbol T con 12 vértices.

1

4

4

4

4

4
5 5

5
5

6

6

6

7

8

9

2

3
3

8 10

11

12

Figura 12.1: Árbol T

Las demandas de cada vértice son

ω1 = [0, 9] ω2 = [15, 18] ω3 = [16, 30] ω4 = [5, 20]
ω5 = [225, 250] ω6 = [50, 85] ω7 = [65, 90] ω8 = [150, 350]
ω9 = [45, 70] ω10 = [15, 20] ω11 = [31, 40] ω12 = [23, 26]

Vamos a ilustrar los pasos del algoritmo tomando como vi el vértice 2.
El árbol agregado para el vértice 2 es

cuyas demandas serán:

ω1a = [0, 9] ω2 = [15, 18] ω3a = [16, 30] ω4a = [315, 615] ω5a = [294, 336]

El escenario c2 tiene los pesos

(ωc21a, ωc22 , ωc23a, ωc24a, ωc25a) = (9, 18, 30, 315, 315)
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Figura 12.2: Árbol agregado

Puesto que se cumple que cada uno de ellos es menor que la semisuma total, de-
ducimos que el vértice 2 es una mediana bajo el escenario c2 en el árbol agregado.
Por tanto, el vértice 2 es una mediana de escenario para el árbol T .

Ahora debemos calcular un escenario desagregado al que llamaremos dc2.
Nuestro procedimiento ha sido el siguiente:

1. Si el vértice agregado coincide con un único vértice del árbol T , a dicho
vértice le asignamos el peso que le corresponde en el árbol agregado. Aśı,
puesto que el vértice 1a coincide con el vértice 1, habrá un escenario dc2 en
T de forma que el vértice 2 será una mediana bajo dc2 y ωdc21 = ωc21a = 9.
En el caso particular del vértice que hemos tomado como ráız, vértice 2 en
nuestro ejemplo, esto siempre será cierto.

2. Si el vértice agregado ha sido creado a partir de un subárbol de T con más
de un vértice, hemos asignado a cada uno de ellos su cota inferior. Si la
suma coincide con el peso del vértice agregado bajo el escenario agregado,
estos valores son los pesos del escenario desagregado asociado. Aśı ocurre
con el vértice 4a. En caso contrario, empezamos añadiendo la diferencia al
vértice del subárbol con intervalo de mayor longitud, hasta su cota superior;
continuamos por el de mayor longitud de los restantes, y aśı sucesivamente
hasta que la suma coincida con el peso del escenario agregado. Esto ocurre
en el vértice 5a donde hemos necesitado aumentar la cota inferior del vértice
5 en 21 unidades.

Aplicando este procedimiento al vértice 2 obtenemos un escenario desagregado
donde los pesos de los vértices son

(9, 18, 30, 5, 246, 50, 65, 150, 45, 15, 31, 23).
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Al ejecutar el algoritmo ESCEGEN para el árbol T , obtenemos el conjunto

M = {2, 4, 7}

y el conjunto SD compuesto por los escenarios dados por los siguientes pesos:

ωs1 ωs2 ωs3 ωs4 ωs5 ωs6 ωs7 ωs8 ωs9 ωs10 ωs11 ωs12
s = dc2 9 18 30 5 246 50 65 150 45 15 31 23
s = dc4 0 15 16 20 225 85 65 215 45 15 31 23
s = dc7 0 15 16 5 225 50 90 350 70 15 31 23

y su correspondiente demanda total atendida y coste total

demanda total atendida coste total
s = dc2 687 7294
s = dc4 755 7884
s = dc7 890 8794

El algoritmo ESCEGEN nos da una caracterización de los óptimos bajo cualquier
escenario, pero no de todos los escenarios asociados a cada óptimo. Veremos en la
sección 4 que, en el caso particular en que todas las demandas recorran su intervalo
dependiendo de un único parámetro (por ejemplo, si suponemos que la fuente de
la incertidumbre es el tiempo), podemos refinar el algoritmo obteneniendo una
caracterización de todos los escenarios.

3 Planteamiento del modelo coordinado

Nuestro criterio de robustez está perfectamente definido. Es un criterio en
esencia biobjetivo puesto que trata de minimizar la demanda no atendida por la
solución robusta al mismo tiempo que obtiene un coste cercano al coste mı́nimo
que se hubiera obtenido de saber con antelación que escenario se iba a realizar.
La forma de plantear matemáticamente este criterio en un modelo coordinado no
es única.

Bajo la hipótesis de que las distancias son conocidas, planteamos tres modelos
coordinados:

Modelo 1: su objetivo consiste en la minimización de las desviaciones res-
pecto de la demanda no atendida en cada uno de los escenarios desagregados
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calculados y el coste asociado a la solución robusta.

Min C

k∑
(i)=1

DD2
(i) +

n∑
i,j=1

dijxij

s.a.

n∑
i=1

yi = 1 (1.1)

ωjyi ≤ xij ≤ ωjyi i, j = 1, . . . , n (1.2)
n∑
j=1

ω
dc(i)
j + DD(i) =

n∑
i,j=1

xij (i) = 1, . . . , k (1.3)

yi ∈ {0, 1}

En este modelo, además de los parámetros definidos anteriormente, aparecen
dij = d(vi, vj) y C que es una constante de escala. Puesto que las desviaciones
vienen expresadas en unidades de producto y el coste en unidades monetarias se
hace necesario utilizar un coeficiente de ponderación. En el ejemplo 3.1 hemos
utilizado

C =

n∑
i,j=1

dij

n2

Las variables de localización yi son variables binarias que valen 1 si localizamos un
centro de servicio en el vértice i y 0 en caso contrario.Las variables de asignación
xij representan la demanda del vértice j atendida desde el vértice i. Las varia-
bles DD(i) son las desviaciones respecto de la demanda atendida en el escenario
desagregado para los que el óptimo es el vértice (i).

Por último, la ecuación (1.1) indica el número de centros de servicio que hay
que localizar, las ecuaciones (1.2) indican que la demanda total del vértice j que
puede ser atendida desde el centro de servicio debe estar comprendida entre el
valor de su demanda mı́nima y máxima. Además, aseguran que el vértice i no
atenderá demanda si no hay ningún centro de servicio ubicado en él aśı como la
no negatividad de las variables de asignación. Por último, la ecuación (1.3) recoge
la desviación DD(i) de la demanda total atendida por el modelo coordinado con
respecto a cada escenario desagregado calculado en el que el óptimo es el vértice
(i).

Modelo 2: su objetivo es la minimización de las desviaciones del coste de
la solución robusta respecto de los costes de cada escenario.
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Min

k∑
(i)=1

DC2
(i)

s.a.

n∑
i=1

yi = 1 (2.1)

ωjyi ≤ xij ≤ ωjyi i, j = 1, . . . , n (2.2)
n∑
j=1

ω
dc(i)
j d(i)j + DC(i) =

n∑
i,j=1

dijxij (i) = 1, . . . , k (2.3)

yi ∈ {0, 1}

En este modelo, las variables DC(i) representan la desviación del coste total del
modelo coordinado respecto del coste del escenario desagregado cuyo óptimo es
el vértice (i) y las ecuaciones (2.3)recogen las desviaciones respecto del coste.
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Modelo 3: su objetivo es una combinación de los objetivos de los dos mo-
delos anteriores.

Min C

k∑
(i)=1

DD2
i +

k∑
(i)=1

DC2
(i)

s.a.

n∑
i=1

yi = 1 (3.1)

ωjyi ≤ xij ≤ ωjyi i, j = 1, . . . , n (3.2)
n∑
j=1

ω
dc(i)
j + DD(i) =

n∑
i,j=1

xij (i) = 1, . . . , k (3.3)

n∑
j=1

ω
dc(i)
j d(i)j + DC(i) =

n∑
i,j=1

dijxij (i) = 1, . . . , k (3.4)

yi ∈ {0, 1}

Ejemplo 3.1. Consideremos el árbol T del ejemplo 2.1 cuya matriz de dis-
tancias es la siguiente:

D =



0 4 8 10 12 14 15 20 19 18 15 17
4 0 4 6 8 10 11 16 15 14 11 13
8 4 0 10 12 14 15 20 19 18 15 17
10 6 10 0 14 4 5 10 9 20 17 19
12 8 12 14 0 18 19 24 23 6 3 5
14 10 14 4 18 0 9 14 13 24 21 23
15 11 15 5 19 9 0 5 4 25 22 24
20 16 20 10 24 14 5 0 9 30 27 29
19 15 19 9 23 13 4 9 0 29 26 28
18 14 18 20 6 24 25 30 29 0 9 11
15 11 15 17 3 21 22 27 26 9 0 8
17 13 17 19 5 23 24 29 28 11 8 0


Con esta tabla de distancias, las soluciones obtenidas para cada uno de los

modelos anteriores están recogidas en las tablas 12.1, 12.2 y 12.3, las cuales de-
muestran que cada uno de los modelos corresponde a una actitud diferente del
decisor. El modelo 1 trata de ajustar la demanda atendida respecto de cualquier
realización futura obteniendo como resultado la menor desviación posible respecto
de cada uno de los escenarios, teniendo en cuenta además el coste para que éste
no sea excesivo, aunque las desviaciones en coste respecto a realizaciones futuras
puede llegar a ser grande.

El modelo 2 es conservador respecto al coste, minimizando las desviaciones
respecto de cualquier realización futura pero a costa de dejar mucha demanda
sin atender, en las desviaciones de la tabla 12.3 se aprecia que no llega a cubrir
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Demanda Demanda Demanda Demanda Demanda
Mı́nima atendida atendida atendida Máxima

Modelo 1 Modelo 2 Modelo 3
Vértice 1 0 9 9 0 9
Vértice 2 15 18 15 18 18
Vértice 3 16 30 16 16 30
Vértice 4 5 20 5 20 20
Vértice 5 225 225 225 230,083 250
Vértice 6 50 85 50 85 85
Vértice 7 65 90 65 90 90
Vértice 8 150 161,212 168,028 204,25 350
Vértice 9 45 70 45 45 70
Vértice 10 15 15 15 15 20
Vértice 11 31 31 31 31 40
Vértice 12 23 23 23 23 26

Tabla 12.1: Tabla de demanda atendida

Modelo 1 Modelo 2 Modelo 3
Localización óptima 4 5 4

Coste óptimo 7944,116 7990,667 7990,667
Demanda total atendida 777,212 667,028 777,333

Tabla 12.2: Tabla de soluciones

Modelo 1 Modelo 2 Modelo 3
DD(2) 90,212 -19,972 90,233
DD(4) 22,212 -879,72 22,333
DD(7) -112,788 -222,972 -112,667
DC(2) 700,116 696,667 696,667
DC(4) 110,116 106,667 106,667
DC(7) -799,884 -803,333 -803,333

Tabla 12.3: Tabla de desviaciones
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la demanda de ninguno de los escenarios. En este sentido, podemos afirmar que
el modelo 1 resultará más adecuado para la localización de centros de servicio
públicos, mientras que el modelo 2 lo será para centros de servicio privados.

Por último, el modelo 3 intenta cubrir ambas posibilidades simultáneamente.
Desde este punto de vista, es el mejor de los modelos. Sin embargo, el esfuerzo
computacional que requiere es mucho mayor que el de los modelos 1 y 2. Por ello,
en cada caso en concreto, el decisor deberá valorar el binomio eficiencia-coste
computacional, eligiendo el modelo más adecuado para su problema real.

Puesto que la función de demanda total y la función de coste son crecientes en
la demanda, es lógico que cada uno de los modelos intente ajustar las desviaciones
a la desviación “central” correspondiente al vértice central del camino de las
medianas óptimas, en este caso, el vértice 4. Ello no implica, como se demuestra
en el modelo 2, que dicho vértice central sea siempre la ubicación óptima para el
modelo coordinado.

4 Cuando la demanda depende de un único pa-
rámetro

Supongamos ahora que todos los pesos pueden ser escritos como una función
lineal de un único parámetro t ∈ [L,U ] y denotemos por mt0 a la mediana co-
rrespondiente al escenario obtenido para el valor t0. Vamos a ver que, en este
caso, podemos obtener una caracterización completa de los infinitos escenarios
asociados con cada mediana de escenario.

Teorema 13 (Erkut y Tansel [7]) . Para todo t ∈ [L,U ] existe una mediana
mt en el camino que une mL y mU .

Además, Erkut y Tansel (1992) demostraron que se pod́ıan calcular los subinter-
valos de [L,U ] para los que era óptima cada una de las medianas de escenario.
Aplicando su método a nuestro problema, obtenemos el siguiente algoritmo:

Algoritmo ESCEPAR

INPUT. Introducir como datos el árbol T y las demandas ωj , j = 1, . . . , n.

INICIALIZACIÓN. Parametrizar las demandas, haciendo

ωj(t) = aj + bjt, con t ∈ [0, 1], aj = ωj y bj = ωj − ωj .

PASO 1. Calcular el vértice inicial del camino de las medianas óptimas, m0,
correspondiente al escenario con pesos ωj(0) para j = 1, . . . , n, y el vértice
final, m1 correspondiente al escenario con pesos ωj(1) para j = 1, . . . , n,
mediante algún algoritmo conocido.
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PASO 2. Calcular el camino desde m0 hasta m1 , renumerar los vértices del
camino como {m0 = v(1), v(2), . . . ,m1 = v(k) } y asignar a cada vértice del
camino el peso del subárbol del cual es ráız wc(i)(t) = ac(i) + bc(i)t, para (i)
= 1, . . . , k.

PASO 3. Calcular los puntos de ruptura del parámetro mediante la siguiente
expresión:

t(i)(i+1) =
−(ac(1) + · · ·+ ac(i)) + (ac(i+1) + · · ·+ ac(k))
(bc(1) + · · ·+ bc(i))− (bc(i+1) + · · ·+ bc(k))

,

para (i) = 1, . . . , k − 1, donde t(i)(i+1) representa el valor de t para el cual
toda la arista (v(i),v(i+1)) son medianas.

OUTPUT. Obtener como resultado M , el conjunto de las medianas de escena-
rio; ST , el conjunto de los subintervalos del parámetro t y SP , el conjunto
de los escenarios definidos por subintervalos de las demandas.

Ejemplo 4.1. Consideremos el árbol T del ejemplo 2.1.
Para calcular los vértices inicial (vértice 2) y final (vértice 7) del camino de

las medianas hemos utilizado el algoritmo de Goldman (1971) cuya complejidad
algoŕıtmica es O(n). El camino de las medianas es M = {(1),(2),(3)} = {2,4,7}
con pesos

ωc2(t) = 325 + 68t, ωc4(t) = 55 + 50t, ωc7(t) = 260 + 250t

y el conjunto ST viene dado por:

Mediana Valores de t
Vértice 2 [0, 5/116[

Arista (2, 4) 5/116
Vértice 4 ]5/116, 10/11[

Arista (4, 7) 10/11
Vértice 7 ]10/11, 1]

A partir de ST, el cálculo de SP es inmediato.
En este caso, los modelos coordinados pueden afinar más la solución que en los

ejemplos anteriores puesto que no conocemos sólo un escenario para cada óptimo,
sino el conjunto de los infinitos asociados a cada mediana. Con esto, y con los
mismos objetivos que en la sección 3, proponemos:

Modelo 4: su objetivo consiste en la minimización de las desviaciones res-
pecto de la demanda no atendida en cada uno de los escenarios y el coste asociado

Rect@ Monográfico 2 (2004)



298 Medianas robustas con incertidumbre en las demandas

a la solución robusta.

Min C

k∑
(i)=1

(t(i)(i+1) − t(i−1)(i))DD2
(i) +

n∑
i,j=1

dijxij

s.a.

n∑
i=1

yi = 1 (4.1)

xij ≤ ωjyi i, j = 1, . . . , n (4.2)
n∑
i=1

xij = ωj + (ωj − ωj)t j = 1, . . . , n (4.3)

0 ≤ t ≤ 1 (4.4)
n∑
j=1

[ωj + (ωj − ωj)t(i)] + DD(i) =
n∑

i,j=1

xij (i) = 1, . . . , k (4.5)

t(i−1)(i) ≤ t(i) ≤ t(i)(i+1) i = 1, . . . , k (4.6)
xij ≥ 0, yi ∈ {0, 1}

Con la misma notación que en los modelos de la sección 3, la ecuación (4.1)
indica el número de centros de servicio que hay que localizar, las ecuaciones (4.2)
representan que el vértice i no atenderá demanda si no hay ningún centro de
servicio ubicado en él, la ecuación (4.3) indica que la demanda total del vértice j
que puede ser atendida desde todos los centros de servicio debe estar comprendida
entre el valor de su demanda mı́nima y máxima y la ecuación (4.5) recoge la
desviación DD(i) de la demanda total atendida por el modelo coordinado con
respecto a cada escenario particular en el que el óptimo es el vértice (i).

Modelo 5: su objetivo es la minimización de las desviaciones del coste de la
solución robusta respecto de los costes de cada escenario.

Min

k∑
(i)=1

(t(i)(i+1) − t(i−1)(i))DC2
(i)

s.a.

n∑
i=1

yi = 1 (5.1)

xij ≤ ωjyi i, j = 1, . . . , n (5.2)
n∑
i=1

xij = ωj + (ωj − ωj)t j = 1, . . . , n (5.3)

0 ≤ t ≤ 1 (5.4)
n∑
j=1

[d(i)j(ωj + (ωj − ωj)t(i))] + DC(i) =
n∑

i,j=1

dijxij (i) = 1, . . . , k (5.5)

t(i−1)(i) ≤ t(i) ≤ t(i)(i+1) i = 1, . . . , k (5.6)
xij ≥ 0, yi ∈ {0, 1}
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En este modelo, las variables DC(i) representan la desviación del coste total del
modelo coordinado respecto del coste de los escenarios cuyo óptimo es el vértice
(i) y la ecuación (5.5) recoge las desviaciones respecto del coste.

Modelo 6: su objetivo es una combinación de los objetivos de los dos modelos
anteriores.

Min C

k∑
(i)=1

(t(i)(i+1) − t(i−1)(i))DD2
(i)+

k∑
(i)=1

(t(i)(i+1) − t(i−1)(i))DC2
(i)

s.a.

n∑
i=1

yi = 1 (6.1)

xij ≤ ωjyi i, j = 1, ..., n (6.2)
n∑
i=1

xij = ωj + (ωj − ωj)t j = 1, ..., n (6.3)

0 ≤ t ≤ 1 (6.4)
n∑
j=1

[d(i)j(ωj + (ωj − ωj)t(i))] + DC(i) =
n∑

i,j=1

dijxij (i) = 1, ..., k (6.5)

n∑
j=1

[ωj + (ωj − ωj)t(i)] + DD(i) =
n∑

i,j=1

xij (i) = 1, . . . , k (6.6)

t(i−1)(i) ≤ t(i) ≤ t(i)(i+1) i = 1, . . . , k (6.7)
xij ≥ 0, yi ∈ {0, 1}

Ejemplo 4.2.
Consideremos el árbol T del ejemplo 2.1 cuya matriz de distancias viene dada

en el ejemplo 3.1, y las soluciones obtenidas están consignadas en las tablas 12.4,
12.5 y 12.6. Vemos que el comportamiento de los modelos 4, 5 y 6 responde a la
misma actitud del decisor que los modelos 1, 2 y 3 respectivamente. No obstante,
la información que el decisor tiene en este caso es mucho mayor que en el caso
anterior y puede utilizarse para elegir adecuadamente uno de los modelos.

Modelo 4 Modelo 5 Modelo 6
Localización óptima Vértice 4 Vértice 7 Vértice 4

Coste óptimo 9213,403 9236,632 9236,632
Demanda total atendida 869,529 847,337 872,045

Tabla 12.4: Tabla de demanda atendida
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Demanda Demanda Demanda Demanda Demanda
Mı́nima atendida atendida atendida Máxima

Modelo 4 Modelo 5 Modelo 6
Vértice 1 0 5,613 5,071 5,675 9
Vértice 2 15 16,871 16,690 16,892 18
Vértice 3 16 24,732 23,888 24,828 30
Vértice 4 5 14,356 13,451 14,458 20
Vértice 5 225 240,593 239,085 240,764 250
Vértice 6 50 71,830 69,720 72,069 85
Vértice 7 65 80,593 79,085 80,764 90
Vértice 8 150 274,744 262,683 276,111 350
Vértice 9 45 60,593 59,085 60,764 70
Vértice 10 15 18,119 17,817 18,153 20
Vértice 11 31 36,613 36,071 36,675 40
Vértice 12 23 24,871 24,690 24,892 26

Tabla 12.5: Tabla soluciones

Modelo 4 Modelo 5 Modelo 6
DD(2) 213,667 - 216,183
DD(4) 0 - 0
DD(7) -105,016 - -102,501
DC(2) - 1996,167 1996,167
DC(4) - 0 0
DC(7) - -946,458 -946,458

Tabla 12.6: Tabla de desviaciones
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5 Conclusiones

En este trabajo hemos presentado el problema de la mediana sobre un árbol
con incertidumbre en las demandas resuelto mediante técnicas de optimización
robusta. Esta incertidumbre viene dada por intervalos, esto es, hemos establecido
la hipótesis de que la demanda de cada vértice vaŕıa en un rango conocido de
valores. Presentamos dos procedimientos para manejar los infinitos escenarios
que aparecen. Cuando no conocemos cual es el comportamiento de cada demanda
dentro de su rango posible de valores, el algoritmo ESCEGEN nos permite calcular
todos los óptimos posibles y al menos un escenario asociado a cada uno. Si
sabemos que el comportamiento de todas las demandas viene determinado por
un único parámetro, podemos utilizar el algoritmo ESCEPAR para calcular todas
las medianas y todos los escenarios asociados a cada una de ellas. En ambos casos
los cálculos no dependen de las distancias.

Con estos datos hemos planteado tres modelos coordinados para cada caso.
Nuestro criterio de robustez está perfectamente definido. Es un criterio en esencia
biobjetivo puesto que trata de minimizar la demanda no atendida por la solución
robusta al mismo tiempo que obtiene un coste cercano al coste mı́nimo que se
hubiera obtenido de saber con antelación que escenario se iba a realizar. La forma
de plantear matemáticamente este criterio en un modelo coordinado no es única.
Los objetivos de cada modelo son, respectivamente, cubrirse respecto a todas las
posibles demandas futuras, cubrirse respecto a todos los posibles costes futuros
o cubrirse respecto a ambas situaciones. Por supuesto, el esfuerzo computacional
asociado a cada uno de los modelos no es el mismo. Por ello, el decisor debe
valorar su objetivo preferente frente al coste computacional para elegir el mejor
modelo en cada caso concreto.

6 Bibliograf́ıa

[1] Averbakh, I. y Berman, O. Minmax Regret Median Location on a Network
under Uncertainty. INFORMS Journal on Computing.Vol. n 12, pp. 104-
110, 2000.
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1 Introducción

En los últimos años se ha venido adoptando como norma la especificación de
modelos económicos en los que los distintos agentes económicos derivan sus reglas
de comportamiento como solución a la optimización de una determinada función
objetivo sujeta a unas restricciones. Tanto las funciones objetivo como el conjunto
de restricciones son espećıficas de cada uno de los distintos agentes. Esta corriente
trata de aportar mayor rigor formal a un concepto que siempre ha estado presente
en la especificación de modelos de economı́as agregadas. Las distintas ecuaciones
que integran estos modelos, denominadas función de consumo, inversión, etc,
determinan los niveles de dichas variables como función de los valores numéricos
de sus determinantes, que pueden ser variables como los precios, tipos de interés,
etc.. Supuestamente, esto era consecuencia de un comportamiento optimizador
por parte de los agentes económicos, aunque dicho comportamiento no se haćıa
expĺıcito en el modelo. En el lenguaje de la teoŕıa de optimización, los modelos

1Los autores agradecen la financiación recibida del Ministerio de Ciencia y Tecnoloǵıa a
través del proyecto BEC2003-03965.
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económicos constaban de ecuaciones que no eran sino el resultado de agregar las
reglas de decisión de agentes análogos, como consumidores, empresas, etc., pero
dejando impĺıcita la especificación de sus funciones objetivo o de las restricciones
a que estos agentes se enfrentan.

Cuando, por el contrario, se hace expĺıcito el problema de optimización que
resuelve cada unidad de decisión que constituye una economı́a, se distingue entre
distintos tipos de agentes: consumidores/trabajadores, empresas y gobierno, cada
uno de ellos con una función objetivo diferente, y sujeto a distintas restricciones.
Cada agente decide los valores numéricos de sus variables de control, tomando sus
variables de estado como dadas. Las variables de estado de un agente son variables
que toma como dadas cuando toma sus decisiones. Las variables de decisión o
de control de un agente pueden ser variables de estado para otro agente distinto:
el gobierno puede decidir sobre la tasa de crecimiento de la oferta monetaria de
manera que minimice una función objetivo que penaliza un nivel elevado de la
tasa de inflación. Ese crecimiento monetario será una variable de estado para un
consumidor o una empresa en la misma economı́a. Aśı, las variables de estado
de un agente pueden ser variables exógenas para toda la economı́a, como seŕıa
en el caso español el nivel de los tipos de interés fijado por la Reserva Federal de
EEUU. Pueden ser también variables de decisión de otros agentes de la misma
economı́a, como ocurriŕıa con la producción de un determinado bien, cuya cuant́ıa
es decidida por la empresa productora, y los consumidores toman como dada,
siendo, por tanto, una variable de estado para ellos. Finalmente, las variables de
estado pueden ser también sus propias decisiones pasadas.

A lo largo de este art́ıculo, y exclusivamente por razones de simplicidad, vamos
a centrarnos en una economı́a sencilla, en la que ignoraremos el efecto que sobre
la economı́a puede tener la actividad del gobierno, a través de su poĺıtica fiscal:
tipos impositivos, emisión de deuda, etc., su poĺıtica monetaria: tipos de interés,
crecimiento de la cantidad de dinero en circulación, etc., y a través de su actividad
como agente económico: gasto público, inversión pública, etc.. Además, supone-
mos, como es habitual, que los consumidores son propietarios de las empresas, de
modo que las decisiones de consumo y las decisiones de inversión y producción
se toman simultáneamente por parte del mismo agente. Todos los consumidores
son idénticos, por lo que nos basta con considerar las decisiones que toma un
consumidor representativo.

Dicho consumidor tratará de maximizar su nivel de utilidad agregada en el
tiempo, que deriva del consumo de los distintos bienes, asi como del nivel de ocio
de que disfruta en cada peŕıodo. Las restricciones a que se enfrenta este decisor,
una para cada instante de tiempo, especificarán que la cantidad que paga por
los bienes que consume no puede exceder de la renta de que dispone. En un
contexto más amplio, los mercados de capitales existen para que el consumidor
pueda reservar parte de su renta cada peŕıodo en la forma de ahorro. De ese
modo, un peŕıodo puede decidir llevar a cabo un consumo cuyo valor de mercado
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es inferior a la renta del peŕıodo, ahorrando la renta no gastada. En otro peŕıodo,
podŕıa suceder lo contrario, utilizando la renta de dicho instante, junto con parte
del ahorro que arrastra de peŕıodos anteriores, para financiar su nivel de consumo.

Problemas como los descritos tienen una estructura que no es lineal-cuadrática.
Si lo fuese, la aplicación del principio de equivalencia cierta, que permite separar
el problema de estimación del problema de control, facilitaŕıa el cálculo de la
solución de dicho problema, en sus versiones estocásticas. Al ser su estructura
más compleja,2 el problema carece de solución anaĺıtica incluso en su versión de-
terminista. Es decir, es imposible encontrar reglas de decisión que resuelvan el
problema, especificando el valor óptimo en cada peŕıodo de cada una de las varia-
bles de decisión, en función de los valores que en dicho periodo toman las variables
de estado (variables exógenas, y variables de control de peŕıodos anteriores).

Al no existir solución anaĺıtica, en los ultimos años se ha propuesto una varie-
dad de procedimientos alternativos para obtener soluciones numéricas a este tipo
de problemas de control. En este trabajo revisamos, a modo de introducción, las
principales caracteŕısticas de uno de dichos métodos,3 que se basa en la caracte-
rización de las condiciones de estabilidad del sistema, es decir, de las ecuaciones
que definen el subespacio de convergencia a un equilibrio estacionario o punto de
reposo del mismo. El método, introducido por Sims (2001) basándose en trabajo
previo de Blanchard y Kahn (1980) y extendido al caso no lineal cuadrático por
Novales et al. (1999), caracteriza las condiciones de estabilidad de la aproximación
lineal del modelo, puesto que se carece de procedimientos generales para carac-
terizar dichas condiciones en modelos no lineales. Posteriormente, la solución al
modelo, en la forma de una serie temporal para cada una de las variables del
mismo, se obtiene combinando las condiciones de estabilidad estimadas con la
estructura anaĺıtica no lineal del modelo original. La imposición de condiciones
de estabilidad para obtener soluciones numéricas no explosivas es precisa incluso
en problemas deterministas. En problemas estocásticos es aún más necesaria,
para garantizar que las perturbaciones estocásticas que afectan cada peŕıodo al
sistema no lo sitúen en una trayectoria divergente.

Por último, hay que recordar que un modelo de control estocástico no está
completamente definido hasta que se establece un supuesto acerca del mecanismo
de formación de expectativas utilizado por los agentes. Distintos supuestos acerca
de estos mecanismos conducen a problemas de control diferentes, con soluciones
que pueden tener caracteŕısticas muy distintas. Aunque la tradición acerca de la

2Generalmente las funciones objetivo son más complejas que una función cuadrática. Sin em-
bargo, el problema más importante es que, en los problemas más intreresantes, en los que tanto el
comportamiento de las variables cantidad como de los precios es determinado simultáneamente,
las restricciones del problema no son lineales.

3El lector interesado puede consultar el volumen 8 de la revista Journal of Business and
Economic Statistics (1990) dedicado especialmente a la descripción de estos métodos, o el libro
Computational Methods for the Study of Dynamic Economies, de Oxford University Press,
editado por A. Marimón y A. Scott.
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manera en que los agentes económicos procesan la información disponible para
formar sus expectativas es muy extensa, consideramos aqúı unicamente el su-
puesto de racionalidad de expectativas, en el sentido de que los agentes utilizan
eficientemente en todo momento la información de que disponen al formar sus ex-
pectativas. Ante la ambigüedad que implica suponer lo contrario, el supuesto de
racionalidad de expectativas se ha convertido asimismo en el estándar a utilizar en
el análisis de modelos económicos en los que se hace expĺıcito el comportamiento
optimizador de agentes que se enfrentan a situaciones de incertidumbre.

En la sección 2 describimos con todo detalle el modelo de crecimiento neoclá-
sico más simple. En la sección 3 detallamos la caracterización de las condiciones
de estabilidad en un contexto determinista, dejando para la sección 4 la carac-
terización de las condiciones de estabilidad en un contexto estocástico y bajo el
supuesto de formación de expectativas racional. El procedimiento de solución es
ilustrado en la sección 5 utilizando el modelo de crecimiento estocástico básico.
Por último, el trabajo se cierra con un resumen.

2 Un modelo de crecimiento sencillo

Consideremos un consumidor en una economı́a simple, con un único bien. Las
unidades de dicho bien disponibles en cada instante pueden consumirse o pueden
ahorrarse. Las unidades que se ahorren contribuyen a incrementar el stock de
capital de cada peŕıodo. Éste experimenta una depreciación a una tasa igual a
δ por lo que, incluso si el ahorro de cada peŕıodo es positivo, el stock de capital
puede disminuir si el nivel de ahorro no es suficientemente elevado como para
compensar la pérdida por depreciación. El consumidor resuelve el problema de
maximización de su utilidad agregada a través del tiempo,

máx
ct,st

∞∑
t=1

βtU(ct) (13.1)

sujeto a la sucesión de restricciones,

ct + st = yt, t = 1, 2, ...
yt = f (kt−1) , t = 1, 2, ...
kt = (1− δ) kt−1 + st, t = 1, 2, ...

ct, st ≥ 0, t = 1, 2, ...
y dado k0

siendo ct, st los niveles de consumo y ahorro de cada instante, y f(.) la función de
producción que representa la tecnoloǵıa disponible en cada instante, que genera en
el peŕıodo t unidades del bien de consumo a partir del stock de capital disponible
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al inicio de dicho peŕıodo, kt−1. Aunque la decisión sobre el valor numérico de
kt−1 se toma en el peŕıodo t−1, a través de la decisión de ahorro de dicho peŕıodo,
st−1, el stock de capital kt−1 no es productivo hasta el peŕıodo siguiente, t. Este
supuesto es crucial, pues genera toda la dinámica del modelo. Este modelo, es
conocido como el modelo de Cass-Koopmans, y en su versión estocástica, como
modelo de Brock-Mirman.

Suponemos que la función de utilidad es monótona creciente y cóncava, con:
U ′ > 0, U ′′ < 0, U ′(0) =∞, ĺım

c→∞
U ′(c) = 0. En cuanto a la función de producción,

suponemos asimismo monotońıa y concavidad, con f ′ > 0, f ′′ < 0, ĺım
k→0

f́(k) =∞
y ĺım
k→∞

f́(k) = 0. Un supuesto habitual sobre la forma funcional, que adoptamos

en lo sucesivo es, f(kt) = Akαt , 0 < α < 1, que satisface las condiciones descri-
tas, donde A es un parámetro que representa el nivel de la tecnoloǵıa y α es la
elasticidad de la producción respecto del stock de capital . Puesto que α < 1,
un incremento en kt en un factor µ genera un incremento en la producción en un
factor inferior a µ, por lo que se dice que este tipo de funciones de producción
presenta rendimientos decrecientes.

Sustituyendo la segunda restricción en la primera, tenemos, el Lagrangiano

L =
∞∑
t=1

βtU(ct) + λt [f (kt−1)− ct − kt + (1− δ) kt−1] ,

cuyas condiciones de optimalidad son,

βtÚ(ct) = λt, t = 1, 2, ...,
λt+1f

′(kt) = λt − (1− δ)λt+1, t = 1, 2, ...,

de las que, eliminado el multiplicador de Lagrange, tenemos la conocida regla
de Keynes-Ramsey,

Ú(ct)
βÚ(ct+1)

= f ′(kt) + (1− δ) , t = 1, 2, ...,

que, junto con la secuencia de restricciones presupuestarias,

f (kt−1)− ct − kt + (1− δ) kt−1 , t = 1, 2, ...

debe darnos las sucesiones {ct, st}∞t=1 que resuelven el problema de maximi-
zación de utilidad a lo largo del tiempo, a partir del stock de capital inicial, k0.

Una condición adicional es la llamada condición de transversalidad, que en
este problema adopta la forma,

ĺım
τ→∞

βt+τ Ú(ct+τ )kt+τ = 0. (13.2)
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Esta condición se obtiene considerando la versión en tiempo finito (T peŕıo-
dos) del problema de optimización (13.1) y maximizando con respecto al último
valor observado de la variable de estado, kT . Al ser una condición del tipo Kuhn-
Tucker, especifica que el producto del valor la variable de estado en dicho instante
terminal, multiplicado por el valor de la derivada parcial correspondiente del
Lagrangiano en dicho instante debe ser igual a cero,

∂LT
∂kT

kT = 0,

donde LT denota el Lagrangiano de dicho problema en horizonite finito, T.
Puesto que ∂LT

∂kT
= λT , utilizando la primera condición de optimalidad y pasando

al ĺımite, se obtiene (13.2) . En un problema más general, habŕıa tantas condicio-
nes de transversalidad como variables de estado.

2.1 Estado estacionario y estabilidad

La solución al problema anterior consiste en un conjunto de trayectorias tem-
porales que se reflejaŕıan en un conjunto de series temporales, una para cada
variable relevante del modelo, que evolucionan a partir de unas condiciones ini-
ciales. En realidad, existe una condición inicial para cada variable de estado,
que en el problema anterior es únicamente el stock de capital. Como tendremos
ocasión de discutir posteriormente, lo que resulta verdaderamente importante es
determinar los valores óptimos iniciales de las variables de control.

Dichas trayectorias temporales pueden converger a un punto estable, diverger
hacia infinito, con signo positivo o negativo, o bien oscilar alrededor de un punto
que nunca se alcanza. Para caracterizar las propiedades de estabilidad de un sis-
tema, es conveniente introducir antes la noción de estado estacionario. Definimos
estado estacionario como un conjunto de valores numéricos para las tasas de creci-
miento de las variables del modelo en términos per capita tales que, si alguna vez
se alcanzase, entonces el sistema ya nunca lo abandonaŕıa. Puede probarse que,
bajo el supuesto de rendimientos decrecientes en cada input de la función de pro-
ducción, las únicas tasas de crecimeinto que pueden mantenerse indefinidamente
en una economı́a como la descrita son iguales a cero. En este caso particular, el
estado estacionario se convierte en unos niveles para las variables per cápita del
modelo tales que, una vez alcanzados, ya nunca se abandonaŕıan.

Las cuestiones relevantes se refieren entonces al número de estados estaciona-
rios posibles, y a sus caracteŕısticas de estabilidad. De acuerdo con la definición,
los estados estacionarios del modelo anterior se caracterizaŕıan re-escribiendo el
modelo sin sub́ındices temporales, es decir, ct = ct−1 = c∗ y kt = kt−1 = k∗,

1
β

= f ′(k∗) + (1− δ) , (13.3)
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f (k∗)− c∗ − k∗ + (1− δ) k∗.

La primera ecuación, que proviene de la igualdad entre la relación marginal
de sustitución y la productividad marginal del capital, nos proporciona el nivel
de estado estacionario del stock de capital y, una vez conocido éste, la segunda
ecuación, que proviene de la restricción de recursos, nos proporciona el nivel
de estado estacionario del consumo. Pueden existir múltiples estados estaciona-
rios (indeterminación global del equilibrio), dependiendo de las propiedades de la
función de producción. Sin embargo, es fácil ver que las condiciones antes des-
critas acerca de la función f garantizan que la solución a (13.3) existe siempre
y es única. Por tanto, bajo tales supuestos existe un único estado estacionario.
Pero, por supuesto, podŕıa darse el caso de que existe un estado estacionario
y sin embargo, la economı́a evoluciona en el tiempo sin dirigirse hacia él o que
exista un estado estacionario y que se converja hacia él a través de infinitas sendas
de equilibrio (indeterminación local del equilibrio). Que ocurra alguna de estas
circunstancias o no dependerá de las condiciones de estabilidad.

En problemas localmente estables, las condiciones de transversalidad ayudan
a seleccionar, de entre todas las trayectorias temporales que satisfacen las condi-
ciones de optimalidad, aquella que constituye el punto de silla. La medida en que
las condiciones de trasnversalidad son restrictivas determina las caracteŕısticas
de estabilidad del problema. En problemas localmente estables, las condiciones
de transversalidad no eliminan trayectorias, por lo que existen múltiples, quizá
infinitas, trayectorias, que satisfacen las condiciones de optimalidad. En proble-
mas localmente inestables, las condiciones de transversalidad eliminan todas las
trayectorias que satisfacen las condiciones de optimalidad, por lo que no existe
ninguna trayectoria óptima; en particular, no se produce la convergencia a ningún
estado estacionario.

3 Condiciones de estabilidad: caso determinista

Contrariamente a lo que suele pensarse frecuentemente, incluso en modelos
deterministas es preciso imponer condiciones de estabilidad adecuadas para ga-
rantizar que las condiciones de transversalidad se cumplan, como ilustramos en
esta sección. Al igual que ocurre en los problemas de control estocástico, dichas
condiciones están determinadas por los autovectores por la izquierda asociados
a autovalores inestables de la matriz de transición en la aproximación lineal del
modelo.

El problema de crecimiento económico de Brock-Mirman antes descrito tiene
estructura de punto de silla. Como ya hemos visto, presenta un único estado
estacionario (c∗, k∗), y hay un subespacio bien determinado en el plano (ct, kt)
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desde el que la ecomı́a converge a (c∗, k∗) , divergiendo hacia valores negativos
(no admisibles) de alguno de los inputs en caso contrario.4 Ello significa que,
dado k0, una elección inicial de c0 distinta de la que corresponde a k0 sobre el
subespacio estable, hará que la economı́a se aleje del estado estacionario. Pero,
además, como muestra la condición de estabilidad, la optimalidad de la trayectoria
requiere que la economı́a converja a su estado estacionario, por lo que estabilidad
y optimalidad son dos caras de la misma moneda en este tipo de problemas.

En el caso del modelo más sencillo, sin considerar el ocio como un argu-
mento en la función de utilidad, supongamos que ésta adopta la forma,5 U(ct) =
c1−σt −1

1−σ , σ > 0, por lo que las condiciones de optimalidad son:

cσt
cσt+1

= β [f ′(kt) + (1− δ)] , (13.4)

kt = (1− δ)kt−1 + f(kt−1)− ct, (13.5)
ĺım
τ→∞

βt+τ c−σt+τkt+τ = 0.

Las dos primeras ecuaciones pueden aproximarse linealmente alrededor de los
valores de estado estacionario del consumo y el stock de capital, c∗, k∗, obteniendo
el siguiente sistema de ecuaciones en diferencias lineal:

(
kt − k∗

ct − c∗

)
=

( 1
β −1
− 1
βM 1 + M

) (
kt−1 − k∗

ct−1 − c∗

)
= A

(
kt−1 − k∗

ct−1 − c∗

)
,

(13.6)
donde

M = − 1
σ
βAα (α− 1) c∗k∗α−2 > 0,

A =
(

a11 a12

a21 a22

)
=

( 1
β −1
− 1
βM 1 + M

)
.

Utilizando la descomposición espectral de la matriz A, A = ΓΛΓ−1, donde
Γ−1 tiene por filas los autovectores por la izquierda de A,6 podemos representar

4La discusión de este punto, que queda lejos del ámbito de este art́ıculo puede verse en
cualquier libro de crecimiento, como Novales y Sebastián (1999).

5Esta es la función de utilidad de elasticidad de sustitución intertemporal del consumo cons-
tante (1/σ).

6Los autovectores por la derecha son: (x1, x2) =
(
1, λ1−a11

a12

)
y (y1, y2) =

(
1, λ2−a11

a12

)
, y

la matriz inversa:(
u1 v1
u2 v2

)
=

(
x1 y1
x2 y2

)−1

=
1

x1y2 − xsy1

(
y2 −y1
−x2 x1

)
.
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la dinámica de la solución al problema de control a partir de valores iniciales
c0, k0:

(
kt − k∗

ct − c∗

)
=

(
x1 y1

x2 y2

) (
λ1 0
0 λ2

) (
u1 v1

u2 v2

) (
kt−1 − k∗

ct−1 − c∗

)
=

(
x1 y1

x2 y2

) (
λt1 0
0 λt2

) (
u1 v1

u2 v2

) (
k0 − k∗

c0 − c∗

)
.(13.7)

Que este modelo tiene estructura de punto de silla es consecuencia de que una
de las ráıces de la ecuación, digamos que λ1, es mayor que 1 en valor absoluto,
mientras que la otra ráız,λ2, es inferior7 a 18.

La matriz producto en la expresión anterior es:

(
kt − k∗

ct − c∗

)
=

=
(

x1λ
t
1 [u1(k0 − k∗) + v1(c0 − c∗)] + y1λ

t
2 [u2(k0 − k∗) + v2(c0 − c∗)]

x2λ
t
1 [u1(k0 − k∗) + v1(c0 − c∗)] + y2λ

t
2 [u2(k0 − k∗) + v2(c0 − c∗)]

)
,

por lo que la condición de transversalidad en el stock de capital se cumplirá sólo
si el coeficiente asociado a λ1 es igual a cero. Pero x1 depende de los valores de los
parámetros estructurales, de modo que es el término en paréntesis que acompaña
a λt1 quien ha de ser igual a cero. Dicha condición es la misma para la ecuación del
stock de capital que para la ecuación del consumo: u1(k0− k∗) + v1(c0− c∗) = 0,
de modo que estabilidad requiere que el consumo inicial se escoja de modo que:

7Un sistema 2× 2 con ecuación caracteŕıstica,

λ2 −
(

1 +
1

β
+M

)
λ+

1

β
= 0

tiene estructura de punto de silla puesto que esta ecuación tiene un valor propio mayor que
1/β, y otro menor que 1. Dichas ráıces han de satisfacer,

λ1 + λ2 = 1 +
1

β
+M, λ1λ2 =

1

β

de modo que,

λ1 +
1

βλ1
= 1 +

1

β
+M

La función f (λ1) = λ1 + 1
βλ1

tiene un mı́nimo en λ1 =
√

1/β, y toma valor f (λ1) = 1 + 1
β

en λ1 = 1 y en λ1 = 1
β
. Como1 + 1

β
+ M > 1 + 1

β
, entonces los dos posibles valores para λ1

están no por debajo de 1, y el otro por encima de 1
β
.

8La tasa de crecimiento cŕıtica, por debajo de la cual la solución es estable, es espećıfica de
cada modelo. El requisito para la existencia de una solución bien definida es que la función
objetivo sea acotada, lo que requiere imponer cotas superiores sobre la velocidad de crecimiento
de sus argumentos. Dichas cotas dependerán de la forma funcional de la función objetivo.
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c0 − c∗ = −(k0 − k∗)
u1

v1
= (k0 − k∗)

y2

y1
= (k0 − k∗)

λ2 − a11

a12
,

lo que implica, a partir de dicho instante:

kt − k∗ = y1λ
t
2(u2(k0 − k∗) + v2(c0 − c∗)),

ct − c∗ = y2λ
t
2(u2(k0 − k∗) + v2(c0 − c∗)) =

y2

y1
(kt − k∗) =

λ2 − a11

a12
(kt − k∗),

de modo que en cada peŕıodo a partir de t = 0 se cumplirá la misma condición
entre las desviaciones respecto de los valores de estado estacionario del stock de
capital y el consumo. Esta es la representación lineal aproximada del subespacio
estable del problema propuesto. Es precisamente el hecho de que la condición de
estabilidad se cumplirá en cada peŕıodo t, lo que permite que el modelo pueda
resolverse utilizando dicha condición y una de las condiciones de primer orden del
problema de optimización (13.4), (13.5).

3.1 Elección inicial de variables de control

La condición de estabilidad anterior puede escribirse como el producto in-
terior: (y2,−y1) (k0 − k∗, c0 − c∗)′ = 0, donde (y2,−y1) es el autovector porla
izquierda asociado a la raiz inestable,λ1, de A. Por tanto, en modelos deter-
ministas, las condiciones de estabilidad seleccionan los valores iniciales de las
variables de decisión, dados los valores iniciales de las variables de estado. Un
número menor de condiciones de estabilidad que de variables de decisión9 llevará
a resolver numéricamente el modelo como función de un valor inicial arbitrario
de una o más variables de decisión, obteniendo aśı un continuo de trayectorias
todas convergiendo al estado estacionario, por lo que la solución es loacalmente
indeterminada, en el sentido de Benhabib y Perli (1994) y Xie (1994).

El sistema carece de solución cuando hay más condiciones de estabilidad in-
dependientes que variables de control. El subespacio estable se reduce entonces
al estado estacionario, por lo que la economı́a será globalmente inestable, in-
ciando trayectorias divergentes tan pronto como experimente cualquier mı́nima
desviación del estado estacionario. Finalmente, la solución será única cuando
el conjunto de condiciones de estabilidad pueda utilizarse para representar las
variables de control de forma única como función de las variables de estado.

El análisis de las condicioens de estabilidad en el caso estocástico es muy
similar, como vamos a ver en la sección siguiente.

9Después de utilizar las ecuaciones que contienen sólo variables de control contemporáneas
para eliminar algunas variables de control del problema.
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4 Condiciones de estabilidad: el caso estocástico

Sims (2001) generalizó el trabajo de Blanchard and Kahn (1980) en varias
direcciones, proponiendo una discusión general acerca del cálculo de la solución a
un modelo lineal, estocástico bajo expectativas racionales. Dicho modelo puede
expresarse:

Γ0yt = Γ1yt−1 + C + Ψzt + Πηt, (13.8)

donde C es un vector de constantes. yt es un vector que incluye:

• las variables determinadas por el modelo, denominadas variables endógenas,
como el consumo, la producción, el stock de capital, etc.; incluye las espe-
ranzas condicionales que aparecen en el modelo, redefinidas como nuevas
variables, pero no los errores de expectativas asociados. Se incluyen en yt
las variables con sub́ındice más adelantado, mientras que las que tengan
sub́ındices anteriores se incluirán en yt−1,

• las variables que son exógenas a los agentes pero siguen leyes de movimiento
conocidas; ejemplos de este último tipo seŕıan algunas variables de poĺıtica,
como el crecimiento monetario o los tipos impositivos, o también algunas
perturbaciones exógenas, como la perturbación que introduciremos en la
sección siguiente en la productividad de los factores.10

El vector zt contiene las innovaciones que aparecen en las leyes de evolución
temporal de las variables exógenas. Por ejemplo, el supuesto habitual acerca de
la ley de movimiento de una posible perturbación en productividad: log(θt) =
ρ log(θt−1) + εt, conducirá a que un componente de yt sea log(θt), mientras que
εt sea un componente de zt. Finalmente, el vector ηt contiene los errores de
expectativas racionales, que satisfacen Et(ηt+1) = 0, y cuyo valor numérico se
obtendrá, junto con el de las demás variables, como parte de la solución del
modelo.

Modelos que incluyen más de un retardo temporal pueden incluirse en la for-
mulación anterior añadiendo como nuevas variables dentro del vector y algunos
retardos de variables ya incluidas en el modelo. También pueden incorporarse
variables de expectativas adicionales de modo que todos los errores de expec-
tativas que resulten correspondan a previsiones un peŕıodo hacia el futuro. Lo
mismo puede hacerse si el modelo incluye expectativas a horizontes superiores a
un peŕıodo.

Tomando condiciones iniciales arbitrarias y0 y realizaciones muestrales para
las variables zt en (13.8), es inmediato obtener trayectorias para yt. Sin embargo,

10Las variables en zt son independientes: si dos perturbaciones exógenas están correlaciona-
das, la aproximación lineal a su relación ha de añadirse al sistema. Una de las variables formaŕıa
parte del vector zt , mientras que la otra entraŕıa a formar parte del vector yt.
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tales trayectorias incumplirán las condiciones de transversalidad, a menos de que
se incorporen al sistema las condiciones de estabilidad apropiadas, que están de-
finidas mediante los autovectores asociados a los autovalores inestables de las
matrices en la representación (13.8). Cuando Γ0 es invertible, son los autovalores
inestables de la matriz Γ−1

0 Γ1 quienes caracterizan las condiciones de estabili-
dad, mientras que cuando Γ0 es singular, hemos de caracterizar los autovalores
generalizados inestables del par (Γ0,Γ1).

Novales et al. (1999) extienden el procedimiento anterior a la solución de
problemas de control no lineales. Para ello, proponen calcular la aproximación
lineal alrededor del estado estacionario del conjunto de ecuaciones no lineales que
componen el modelo. Como consecuencia, el vector de constantes C resulta ser
cero. Después de redefinir variables de modo adecuado, las matrices Γ0 y Γ1 que
aparecen en la aproximación lineal al modelo original, contienen: i) las derivadas
parciales de cada ecuación del sistema con respecto a cada una de las variables en
yt, evaluadas en estado estacionario, y ii) filas de unos y ceros, correspondiendo
a variables intermedias que se han añadido al sistema para dotarle de una estruc-
tura autorregresiva de primer orden en presencia de retardos de orden superior
o expectativas a más de un peŕıodo hacia el futuro, o expectativas formadas en
peŕıodos distintos de t. En definitiva, (13.8) es la aproximación lineal al sistema
formado por las condiciones de optimalidad del problema de control, las restriccio-
nes del mismo, las reglas de poĺıtica económica exógenas al modelo, aśı como las
leyes de movimiento de las perturbaciones también exógenas al modelo, estando
todas las variables en desviaciones respecto de sus valores de estado estacionario.

Las condiciones de estabilidad se obtienen a partir de esta aproximación lineal,
pero es la estructura original, no lineal del modelo la que es finalmente utilizada
en el cálculo de la solución numérica. Con ello, se obtiene una realización de serie
temporal para cada una de las variables del modelo, incluidas cada una de las
expectativas condicionales que en él aparecen, y cada uno de los errores de expec-
tativas asociados, por lo que es posible estimar cualquier propiedad estad́ıstica de
este amplio vector de variables.

Conviene puntualizar que aunque estamos describiendo el procedimiento de
solución dentro del marco de un modelo económico en que los agentes resuelven
problemas de control expĺıcitos, conviene poner énfasis en que el mismo procedi-
miento puede utilizarse para obtener soluciones aproximadas a cualquier conjunto
de ecuaciones en diferencia estocásticas no lineales.

5 Solución del modelo de crecimiento estocástico
básico

Ilustramos en esta sección el procedimiento general descrito en la sección pre-
via mediante una aplicación al modelo estocástico más básico de crecimiento,
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propuesto por Brock y Mirman (1972). La matriz Γ0 que aparece en la apro-
ximación lineal a este modelo resulta ser invertible, por lo que el cálculo de la
solución numérica es bastante sencilla. El modelo supone que el consumidor de-
riva utilidad únicamente del nivel de consumo que realiza. Incorpora asimismo
una perturbación aleatoria en la función de producción,

yt = f(θt, kt−1) = θtAk
α
t−1, 0 < α < 1,

donde la perturbación aleatoria θt toma valores de acuerdo con una distri-
bución de probabilidad centrada alrededor de 1. Valores por encima de dicha
referencia hacen que la cantidad de producto exceda de lo que cabŕıa esperar, en
ausencia de incertidumbre, de las cantidades utilizadas de los inputs, mientras
que valores de θt por debajo de 1 hacen que la cantidad de producto sea inferior a
lo esperado. Se dice que θt afecta a la productividad de los factores productivos.
De hecho, la productividad es la contribución al nivel de producto de una unidad
adicional del input, kt, por lo que se mide por la derivada parcial de la función f
en la que θt aparece como una factor de escala. Nótese que, si bien kt es conocido
en t, f (kt) = θt+1k

α
t no se conoce hasta el peŕıodo t + 1.

Dado k0, el consumidor representativo escoge sucesiones {kt, ct}∞t=1 que re-
suelvan el problema,

máx
{kt,ct}∞t=1

E0

∞∑
t=1

βt−1 c
1−σ
t − 1
1− σ

, σ > 0 (13.9)

sujeto a las restricciones

−ct − kt + (1− δ)kt−1 + θtk
α
t−1 = 0, (13.10)

− log(θt) + ρ log(θt−1) + εt = 0, εt i.i.d.∼ N(0, σε), |ρ| < 1,(13.11)

y dadas las condiciones iniciales, k0, θ0. La primera es la restricción global
de recursos en la economı́a, que estipula que la suma del consumo y la inversión
bruta es igual a los recursos disponibles mediante la actividad de producción del
peŕıodo. La segunda especifica una evolución temporal para la perturbación en
la función habitualmente aceptada, y es que la perturbación de productividad
evoluciona suavemente, es decir, con alta autocorrelación positiva, a lo largo del
tiempo.

Después de formar el Lagrangiano, tomar derivadas parciales respecto a las va-
riables de decisión y los multiplicadores, y eliminar estos últimos, las condiciones
de optimalidad resultan,

ct = θtk
α
t−1 − kt + (1− δ)kt−1, (13.12)

c−σt = βEt

[
c−σt+1

(
(1− δ) + αθt+1k

α−1
t

)]
, (13.13)

Rect@ Monográfico 2 (2004)
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junto con la ley de movimiento de la perturbación estocástica del modelo log(θt) =
ρ log(θt−1) + εt, εt i.i.d.∼N(0, σ2

ε ), la condición de transversalidad

ĺım
τ→∞

Et

[
c−σt+τkt+τβ

τ
]

= 0,

y las condiciones iniciales k0, θ0.
En este punto es donde se hace preciso incorporar al modelo algún supuesto

espećıfico acerca del modo en que los agentes forman sus expectativas. Vamos a
considerar en lo sucesivo que dichas expectativas son racionales, lo que equivale
a afirmar que, al formar expectativas, los agentes hacen uso eficiente de la infor-
macion de que disponen. Ello significa que los errores de expectativas no tienen
nada en común con información que era disponible en el momento de construir la
expectativa, lo que en términos estad́ısticos, se traduce en ausencia de correlación
entre el error de expectativas y cualquier variable conocida al formar la expec-
tativa. Si denotamos por Wt la esperanza condicional que aparece en (13.13),
Wt = Et

[
c−σt+1(1− δ) + αθt+1k

α−1
t

]
, e introducimos el correspondiente error de

expectativas, ηt, ηt = c−σt
[
(1− δ) + αθtk

α−1
t−1

]
−Wt−1, deberemos tener, una vez

resuelto numéricamente el modelo, E (ηtXt) = 0, siendo Xt cualquier variable
medible respecto al sigma-álgebra sobre el cual se define el operador esperanza
condicional Et.

11

Con esta notación podemos escribir el sistema anterior como:

0 = −Wt + Et

[
c−σt+1(1− δ) + αθt+1k

α−1
t

]
, (13.14)

0 = −c−σt + βWt, (13.15)
0 = −Wt−1 + c−σt

[
(1− δ) + αθtk

α−1
t−1

]
− ηt, (13.16)

donde Et[ηt+1] = 0, junto con (13.12).
Las condiciones que caracterizan el estado estacionario son:

c∗ = θ∗k∗α − k∗ + (1− δ)k∗,W ∗ = c∗−σ
[
(1− δ) + αθ∗ (k∗)α−1

]
,

0 = −c∗−σ + βW ∗.

donde θ∗ = 1, lo que conduce a, k∗ =
(

αβ
1−(1−δ)β

) 1
1−α

, c∗ = k∗α−δk∗, W ∗ =
1
β (c∗)−σ , y∗ = k∗α.

El sistema que hemos de aproximar linealmente consiste en las ecuaciones
(13.11) , (13.15), (13.12) y (13.16). Las variables de estado son: kt−1 y log(θt),
mientras que las variables de decisión son: ct y kt. Para linealizar, consideramos

11Nótese que nuestra notación Et (zt+1) es equivalente a E (zt+1/Ωt) siendo Ωt, t = 1, 2, ...
una sucesión de sigma-álgebras con Ωt ⊆ Ωt+1 ∀t. Puede interpretarse que cada sigma-álgebra
Ωt es la generada por el espacio de sucesos observables hasta el instante t.
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cada ecuación como una función: f (ct, kt,Wt, log(θt), ηt, εt) = 0 y, en ĺınea con
la notación de la sección anterior, definimos los vectores yt = (ct − c∗, kt − k∗,
Wt −W ∗, log(θt))′, ηt = (ηt), zt = (εt), siendo estos dos últimos de dimensión
1× 1. La aproximación de primer orden alrededor del estado estacionario es:

∂f

∂yt
|ss yt +

∂f

∂yt−1
|ssyt−1 +

∂f

∂ηt
|ss ηt +

∂f

∂εt
|ss εt = 0,

donde los valores de estado estacionario de ηt y εt son cero. Alineando verti-
calmente estas aproximaciones, podemos escribir el sistema linearizado como:

Γ0yt = Γ1yt−1 + Ψzt + Πηt, (13.17)

donde:

Γ0 =


−σ (c∗)−σ−1 0 −β 0

σ (c∗)−σ−1
(
α (k∗)α−1 + 1− δ

)
0 0 −αc∗−σ (k∗)α−1

1 1 0 −k∗α
0 0 0 1

 ,

Γ1 =


0 0 0 0
0 α(α− 1)c∗−σ (k∗)α−2 −1 0
0 α (k∗)α−1 + 1− δ 0 0
0 0 0 ρ

 ,Ψ =


0
0
0
1

 ,Π =


0
−1
0
0

 .

5.1 Caracterización de las condiciones de estabilidad

El término constante en (13.17) es cero, puesto que las variables recogidas
en yt están expresadas en desviaciones respecto de sus valores de estado estacio-
nario. Además, para valores paramétricos razonables, Γ0 resulta ser invertible.
Multiplicando por la izquierda por la inversa de Γ0, obtenemos un sistema trans-
formado en el que la matriz de coeficientes yt es la identidad y, después de redefinir
adecuadamente las matrices (Γ̃1 = Γ−1

0 Γ1; Ψ̃ = Γ−1
0 Ψ; Π̃ = Γ−1

0 Π), tenemos:

yt = Γ−1
0 Γ1yt−1 + Γ−1

0 Ψzt + Γ−1
0 Πηt = Γ̃1yt−1 + Ψ̃zt + Π̃ηt. (13.18)

La matriz Γ̃1 admite una descomposición de Jordan12: Γ̃1 = PΛP−1, donde
P es la matriz que tiene por columnas los autovectores por la derecha de Γ̃1, y
Λ tiene los valores propios de Γ̃1 en su diagonal principal, y ceros en el resto de
coordenadas13. La matriz inversa de P, P−1, tiene por filas los vectores propios

12Para cuyo cálculo existe una función o rutina en casi todo programa de cálculo numérico.
13Consideramos únicamente el caso en que todos los valores propios son distintos entre śı.

Sims (2001) discute la extensión al caso de autovalores múltiples, en modelos lineales.
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por la izquierda de Γ̃1. Multiplicando este sistema por P−1 y definiendo wt =
P−1yt, tenemos:

wt = Λwt−1 + P−1
(
Ψ̃zt + Π̃ηt

)
, (13.19)

que es un sistema en combinaciones lineales de las variables que componen el
vector original yt. Tendremos una ecuación correspondiendo a cada valor propio
λj de Γ̃1:

wjt = λjjwj,t−1 + P j•
(
Ψ̃zt + Π̃ηt

)
, (13.20)

donde P j• denota la fila j–ésima de P−1.
Es fácil ver que autovalores λjj mayores que uno en valor absoluto generarán

un comportamiento explosivo en la variable wjt excepto si:

wjt = P j•yt = 0, ∀t, (13.21)

lo que genera una condición de estabilidad en la forma de una condición de
ortogonalidad entre el autovalor por la izquierda asociado a un autovalor inestable
de la matriz Γ̃1 = Γ−1

0 Γ1 y el vector de variables yt, en desviaciones respecto de
los valores de estado estacionario.

5.2 Cálculo de la solución numérica

Para valores paramétricos como los habitualmente utilizados en modelos económicos,
σ = 1.5, δ = 0.025, α = 0.36, β = 0.99, ρ = 0.95, tenemos el estado estacionario:

y∗ = 3.7041; c∗ = 2.7543; k∗ = 37.9893

y las matrices:

Γ0 =


−0.1191 0 −0.99 0
0.1203 0 0 −0.0077

1 1 0 −3.7041
0 0 0 1

 ,Γ1 =


0 0 0 0
0 −0.0001 −1 0
0 1.0101 0 0
0 0 0 0.95

 .

La matriz Γ̃1 = Γ−1
0 Γ1 admite una descomposición Γ̃1 = PΛP−1, con matrices

P,Λ, P−1:

P =


1 −0.0277 −0.0388 −0.0318
0 0.9996 −0.9992 −0.9995
0 0.0033 0.0047 0.0038
0 0 0 0.0085

 ,Λ =


0 0 0 0
0 1.0388 0 0
0 0 0.9723 0
0 0 0 0.95

 ,
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P−1 =


1 0 8.3097 0
0 0.5842 124.9696 12.4795
0 −0.4163 125.0167 −105.3230
0 0 0 117.7817

 .

La condición de estabilidad viene dada por la fila de la matriz P−1, asociada al
único autovalor mayor que 1:

w2t = P 2•yt = 0 ∀t ⇒Wt−W ∗+0.00467(kt−k∗)+0.09986 log(θt) = 0. (13.22)

Una única condición de estabilidad es, de hecho, lo que cab́ıa esperar de la
discusión teórica que llevamos a cabo en la sección 3 al haber una única variable
de control en el modelo. Además, hay una única esperanza condicional en el
modelo, por lo que una condición de estabilidad es suficiente para identificarla.

La diferencia con el caso determinista es que la condición de estabilidad no
garantiza que la condición estocástica de optimalidad en la que aparece dicha
expectativa, (13.13) se satisfaga en todos los peŕıodos, debido a la existencia del
error de expectativas. El papel de esta ecuación, una vez que la escribimos en
la forma (13.15-13.16), es precisamente proporcionar la realización del error de
expectativas14. La condición de estabilidad impone una relación exacta entre el
error de expectativas racionales ηt y la innovación en la perturbación de producti-
vidad, εt. La única razón por la que los agentes cometen errores de predicción es
porque el sistema está sujeto a dichas perturbaciones, y la relación entre ambos
tipos de variables es una caracteŕıstica importante del modelo que no se obtiene
con otros procedimientos de solución numérica.

Para calcular soluciones estables, se añade la condición de estabilidad estimada
(13.22) al modelo no lineal original, lo que permite resolver valores numéricos para
las variables endógenas, aśı como para los errores de expectativas. El procedi-
miento de solución comienza utilizando la ley de movimiento de la perturbación
en productividad (13.11) para generar una serie temporal para dicha variable θt,
de la longitud muestral deseada, a partir de realizaciones independientes de la
innovación εt y de un valor inicial θ0. Este puede tomarse igual a su esperanza
matemática, cero, o puede escogerse arbitrariamente. Al ser esta variable exógena
respecto a todas las demás variables del modelo, puede simularse su realización
temporal sin necesidad de conocer la evolución temporal de ninguna otra variable.
A partir de la condición inicial sobre k0, utilizamos la restricción presupuestaria
para expresar k1 como función de c1. Llevando esta función a la condición de
estabilidad, junto con (13.15) y el valor numérico obtenido previamente para θ1,
tenemos una única ecuación no lineal en c1. Una vez calculado c1, invertimos
la función anterior para obtener k1. Se repite el mismo proceso en cada peŕıodo,

14Cuyo valor numérico no será sino una aproximación al verdadero error de expectativas,
puesto que incorporará el error numérico derivado de haber estimado el subespacio estable en
la aproximación lineal del modelo.
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hasta cubrir la longitud muestral deseada. Una vez que tengamos series tempo-
rales para el consumo y el stock de capital, podemos generar la serie temporal de
Wt de (13.15), y la correspondiente al error de expectativas ηt, a partir de (13.16).

A partir de (13.20), es claro que imponer la condición de estabilidad: wjt = 0
∀t es equivalente a:

P j•
(
Ψ̃zt + Π̃ηt

)
= 0 ∀t, (13.23)

que ilustra cómo la estabilidad de la solución requiere que los errores de expecta-
tivas fluctúen en respuesta a los valores observados de la perturbación estructural
en productividad. Con la parametrización descrita, se tiene:

P 2•
(
Ψ̃zt + Π̃ηt

)
= 0 ∀t ⇒ 0.1051εt + ηt = 0 ∀t, (13.24)

que es una relación exacta entre el error de expectativas del modelo y la innovación
en la perturbación de productividad. El error de expectativas que calculemos a
partir de (13.16) depende de modo no lineal de las variables de decisión y de
estado y, por tanto, de las perturbaciones exógenas del modelo. En consecuencia,
no satisfará la relación (13.24) exactamente, que es una aproximación lineal a la
verdadera relación no lineal que existe entre estas variables.

Una vez generada una realización de la solución numérica, en la forma de una
serie temporal para cada una de las variables del modelo, volvemos a generar por
simulación una serie temporal diferente para la perturbación de productividad θt
y, a partir de ella, obtendremos otra realización de series temporales para todas
las variables del modelo. De este modo, obtenemos un conjunto numeroso de
realizaciones para cada variable, que nos permitirá calcular asimismo una amplio
número de realizaciones de cualquier estad́ıstico: volatilidad de la producción yt,
coeficiente de correlación entre ésta y el consumo ct, funciones de autocorrelación
simple y parcial de la productividad f ′(kt−1), etc.. Las estimaciones de las ma-
trices P, Λ, aśı como la condición de estabilidad (13.21) o la relación (13.24) son
comunes a todas las simulaciones, al ser función únicamente de los parámetros
del modelo, pero no de los valores numéricos de las perturbaciones θt.

5.3 Existencia de solución

Por supuesto que nada garantiza que un problema de control estocástico tenga
solución. Siguiendo la metodoloǵıa de solución numérica que hemos descrito, la
existencia de un número mayor de condiciones de estabilidad que de expectati-
vas condicionales que aparecen en el modelo, haŕıa imposible que el vector de
esperanzas condicionales pudiera ajustarse en cada peŕıodo de manera que com-
pensara los valores tomados por las perturbaciones exógenas del modelo, que en
nuestro caso es la perturbación de productividad. En consecuencia, no existiŕıa
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una relación bien definida entre los errores de expectativas y las innovaciones
estructurales, no existiendo una solución al modelo.15

Un número de condiciones de estabilidad igual al de expectativas condiciona-
les del modelo, sin ser ninguna de ellas redundante hará, generalmente, que el
modelo tenga una solución única que puede obtenerse combinando condiciones
de estabilidad con las ecuaciones no lineales del modelo, obteniendo un conjunto
de series temporales, una para cada una de las variables del modelo, más las va-
riables que hemos definido como expectativas condicionales, más los errores de
expectativas.

Un número de condiciones de estabilidad inferior al de expectativas condi-
cionales del modelo generará lo que conocemos habtitualmente como equilibrios
sunspot, en los que podemos fijar arbitrariamente los valores numéricos de alguna
de las expectativas y resolver el sistema de modo que se cumplan todas las ecua-
ciones del modelo. Por tanto, tenemos en general todo un continuo de soluciones
(indeterminación local estocástica).

Otro sentido importante en que debe valorarse la existencia de soluciones es
desde el punto de vista de la racionalidad de expectativas. Como hemos explicado
anteriormente, el método propuesto incorpora el supuesto de racionalidad, lo que
hace que los errores de expectativas tengan determinadas propiedades: media
cero, ausencia de correlación serial, y correlación nula con las variables que eran
conocidas en el momento de formar las expectativas. Todas estas caracteŕısticas
son contrastables estad́ısticamente16 y es, de hecho, una importante laguna en la
investigación actual en este campo, el que habitualmente no se contrasten una vez
generada la solución numérica. El incumplimiento de las propiedades estad́ısticas
citadas implicaŕıa rechazar el supuesto de racionalidad de expectativas que su-
puestamente se ha utilizado en la generación de la solucion numérica. Ello podŕıa
deberse a los errores numéricos generados por utilizar una aproximación lineal al
modelo para generar las condiciones de estabilidad, parte integral en la solución
del mismo. Dichos errores numéricos se acumulan a los errores de expectativas,
por lo que estos pudieran incumplir las propiedades mencionadas, invalidando la
solución obtenida.

6 Resumen

Hemos descrito un método para la solución de problemas de control estocástico
como los habitualmente propuestos en economı́a. El procedimiento incorpora y
utiliza en su diseño el supuesto de racionalidad de expectativas, consistente en

15Salvo en el caso, muy infrecuente en aplicaciones de interés, en que alguna condición de
estabilidad fuese redundante con el resto del sistema de tal modo que (13.23) pudiera cumplirse
incluso si el número de filas en P j• excede de la dimensión del vector ηt.

16Véase Den Haan y Marcet (1994) para un contraste acerca de la incorrelación entre errores
de expectativas y el conjunto de información utilizado en la formación de las mismas.
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cada agente decisor utiliza eficientemente toda la información de que dispone
cuando toma sus decisiones. Las condicioens de estabilidad del sistema de ecua-
ciones de primer orden del problema de optimización juega un papel fundamental
en el método de solución, informando acerca de la posible multiplicidad de solu-
ciones, aśı como de la posible inexistencia de las mismas. La solución numérica
toma la forma de una serie temporal, de la longitud deseada, para cada una de
las variables del modelo. Mediante un experimento Monte Carlo, puede obtenerse
un alto número de tales soluciones y caracterizar la densidad emṕırica de frecuen-
cias de cualquier estad́ıstico, a la luz de la cual puede evaluarse la verosimilitud
del estad́ıstico análogo calculado a partir de datos de economı́as reales. De este
modo, el modelo económico puede entenderse como una función que convierte la
distribución de probabilidad de las innovaciones estocásticas del modelo, en una
distribución de probabilidad para cada uno de los estad́ısticos de interés relativo a
una o varias variables del modelo: varianzas, coeficientes de correlación, etc.. La
solución numérica precisa de una determinada parametrización del modelo, por
lo que puede diseñarse un procedimiento de estimación consistente en hallar los
valores de los parámetros que minimizan el valor numérico de una determinada
función distancia entre los valores numéricos obtenidos por simulación para un
determinado vector de estad́ısticos, y sus valores numéricos en una economı́a real.
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1 Introducción

En un trabajo pionero, Wright (1936) encontró evidencia emṕırica de que el
tiempo requerido para construir un avión decrećıa a medida que aumentaba el
número de aviones que ya se hab́ıan fabricado. Este fenómeno, que ha recibido el
nombre de learning by doing, ha sido -a partir del trabajo de Wright- encontrado
en diferentes industrias y en diferentes peŕıodos de tiempo.

La literatura que analiza las implicaciones de dicho efecto en un marco téorico
comenzó algunos años mas tarde, con el trabajo de Arrow (1962). Al igual que
ocurrió con su vertiente emṕırica, el trabajo de Arrow ha dado paso a una enorme
cantidad de trabajos teóricos posteriores.

El learning by doing es un fenómeno naturalmente dinámico: las decisión de
hoy de la empresa (¿cuántos aviones producir hoy?) afecta a sus posibilidades
de mañana (horas de trabajo que serán necesarias mañana para producir un
avión). Ello da lugar a modelizar el problema de decisión de la empresa desde un
punto de vista teórico como un problema de optimización dinámica. Si además

1Agradezco los comentarios de E. Cerdá. Cualquier error es responsbilidad mı́a.
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suponemos, como parece natural, que en el momento de decidir hoy, la empresa
no conoce con exactitud los efectos que sus decisiones presentes tendrán sobre
sus posibilidades futuras, el problema anterior es esencialmente un problema de
programación estocástica. En dicho problema, la incertidumbre aparece recogida
por la presencia de shocks aleatorios.

En este trabajo se aborda el problema teórico de una empresa que tiene lear-
ning by doing e incertidumbre sobre como sus decisiones presentes afectan a sus
posibilidades futuras. El principal resultado es la obtención análitica de la so-
lución de dicho problema, para una modelización espećıfica, mediante técnicas
de programación dinámica. Esta obtención anaĺıtica de la solución permite es-
tudiar propiedades de la misma que de otra forma involucran un análisis mucho
mas complejo. Como ejemplo de propiedad a estudiar a partir de la solución
anaĺıtica, en este trabajo comparamos la solución del problema abordado con la
de el problema análogo determińıstico.

La estructura general del trabajo es la siguiente. Tras esta sección introduc-
toria, la seccion 2 contiene una breve revisión de la literatura. La sección 3 sitúa
el problema abordado en el marco de la literatura previa. Las tres siguientes sec-
ciones contienen, respectivamente, la presentación formal del modelo (sección 4),
la solución (sección 5) y algunas implicaciones económicas (sección 6). La sección
7 presenta algunas ideas para futuras investigaciones.

2 Revisión de la literatura

Hay una enorme literatura dentro de teória económica y la literatura de in-
vestigación operativa posterior a los trabajos de Wright y Arrow. Esta revisión
no pretende -ni mucho menos- ser exhaustiva, si no solamente destacar algunos
trabajos que ha su vez han generado una literatura posterior que se basa en ellos.
Dividimos los trabajos en emṕıricos y teóricos.

2.1 Evidencia emṕırica

Como hemos indicado, Wright (1936) comprobo emṕıricamente que el tiempo
requerido para la construcción de un avión decrećıa a medida que aumentaba
el número de aviones fabricados. A partir de este trabajo los estudios se han
extendido a diferentes sectores industriales, peŕıodos de tiempo y formas de mo-
delización.

De manera general, los trabajos emṕıricos usan datos de una industria o del
sector industrial en su conjunto para ajustar lo que se conoce como curva de
aprendizaje. Una curva de aprendizaje es una representación gráfica que relaciona
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la cantidad producida acumulada, variable independiente, con alguna medida
de la productividad (por ejemplo horas-trabajador necesarias para construir un
avión), que es la variable independiente. La forma funcional más utilizada es la
función de potencia:

z = aQ−b

donde z mide las horas-trabajo de la última unidad producida, Q es la producción
acumulada (a lo largo del tiempo) y a y b son los parámetros que se estiman a
partir de los datos. Es importante notar que hemos definido learning by doing
como una reducción de costes, que no tiene por que ser equivalente a un aumento
de productividad, si bien todos los trabajos emṕıricos toman ambos conceptos
como equivalentes.

Los trabajos emṕıricos extienden el esquema anterior en alguna de las si-
guientes ĺıneas: (a) estiman la curva de aprendizaje para diferentes industrias,
(b) estudian posibles factores adicionales para explicar la mejora de productivi-
dad; (c) sugieren formas funcionales alternativas. Comentamos brevemente cada
una de estas extensiones.

Se ha encontrado evidencia emṕırica de existencia de una curva de aprendizaje
en la producción de enerǵıa eléctrica en centrales nucleares de EE.UU. (Joskov et
al. (1979)) y de Francia (Lester et al. (1993)), en la producción de microconduc-
tores en Japón (Dick (1991)), en las industrias qúımicas de EE.UU. (Lieberman
(1984)), en la producción de rayón2 en EE.UU. (Jarmin (1994)), en la industria
farmaceútica (Lieberman (1987)) y construcción de barcos (Argote et al. (1990)).

A un nivel de agregación del sector industrial mayor que el anterior, Jefferson
(1988) encuentra evidencia de curvas aprendizaje en el sector manufacturero de
EE.UU, y Backus et al. (1992) extienden posteriormente este estudio a mas
de sesenta páıses. Mitra (1992) encuentra también evidencia de una curva de
aprendizaje en el sector manufacturero de la India. Webb et al. (1993) señalan que
las exportaciones de determinados sectores dentro de las manufacturas de Costa
Rica (maquinaria y manufacturas intermedias) generan mejoras de productividad
en los mismos sectores de otros páıses que participan en el mercado comun de
América Central.

Pueden existir diversos factores que explican las mejoras de productividad,
además de la producción acumulada. En este sentido, Fellner (1969) propone
la inclusión del tiempo como variable relevante en un modelo en el que estudia
la mejora en el rendimineto de los atletas. Moreh (1985) señala como variable

2Fibra sintética compuesta fundamentalmente por celulosa.
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relevante el esfuerzo invertido en formación dentro de la empresa. Resultados
similares aparecen en Shaw (1989). En el trabajo antes citado de Lieberman
(1984) se señala la influencia de los gastos en I+D. El tamaño de la empresa
y el reparto de mercado (cuántas empresas y que poder de mercado tiene cada
una) es señalado también en Lieberman (1987). Argote et al. (1990) señalan un
conjunto de factores que pueden dar lugar a que el aprendizaje se deprecie, por
lo que debeŕıan entrar en la curva de aprendizaje afectando negativamente a la
productividad. Estos factores son, por ejemplo: diferentes turnos de empleados
o interrupciones de la producción debidas a huelgas,...

Básicamente, se han propuesto tres alternativas a la forma más habitual de
curva de aprendizaje, indicada anteriormente, y que como puede verse es lineal
en logartimos.

Conway et al. (1959) sugieren que, en una escala logaritmica, la relación
debe ser una linea recta con pendiente decreciente para valores iniciales de la
producción acumulada y una recta horizontal (por tanto, sin mejoras adicionales
de productividad) a partir de cierto valor cŕıtico de ésta. Este modelo se conoce
como el modelo plateau. Bahk et al. (1993) señalan tambien la importancia de
permitir que el aprendizaje tenga una duración finita en el tiempo.

Como segunda alternativa está el modelo S, introducido por Cochran (1960),
que es una versión suavizada del anterior: la curva de aprendizaje no llega a ser
absolutamente horizontal, aunque si disminuye el valor absoluto de su pendiente
con el paso del tiempo.

Finalmente el modelo Standford B, introducido por Garg et al. (1961), pro-
pone exactamente lo contrario: a partir de una etapa de aprendizaje relativamente
lento, este se acelera. Este último modelo parece representar adecuadamente la
evolución de la productividad en sectores con mucho cambio técnico en peŕıodos
muestrales relativamente cortos.

2.2 Estudios teóricos

En este apartado se presentan, casi a modo de enumeración, diferentes ĺıneas
de investigación teóricas que se han seguido a partir del trabajo pionero de Arrow
(1962).

Una de las cuestiones que más atención ha recibido en la literatura teórica de
learning by doing es la que relaciona dicho fenómeno con el crecimiento económico.
Esencialmente, se ha introducido este efecto en las funciones de producción de
modelos de crecimiento neoclásico para probar como el learning by doing puede
generar crecimiento endógeno, o como puede explicar diferencias persistentes entre
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las tasas de crecimiento de diferentes páıses. Además, un conjunto de trabajos
estudia cuestiones relativas a ineficiencias dinámicas en la solución de mercado
cuando existe learning by doing. Sin entrar en los aspectos concretos que aborda
cada trabajo, en esta ĺınea tenemos: Cigno (1984), Chamley (1993), d’Autume et
al. (1993), Ishikawa (1992), King et al. (1993), Lucas (1988) y (1993), Matsuyama
(1992), Parente (1994), Simon et al. (1984), Torvik (1993) y Young (1991).

Otro conjunto de trabajos analiza el fenómeno a un nivel industrial. Por
ejemplo, ¿debe protegerse a una industria que actualmente es ineficiente pero que
tiene potencial para mejorar su eficiencia porque se espera que tenga un efecto
learning by doing? De forma algo sorprendente, el interés por esta cuestión ha
descencido en los últimos años (al menos lo han hecho el número de publicaciones)
a pesar de que la literatura disponible está lejos de agotar la cuestión. Art́ıculos
clásicos dentro de esta ĺınea son: Clemhout et al. (1970), Chen et al. (1994),
Feder et al. (1976), Kohn et al. (1992) y Succar (1987).

Otro tipo de trabajos dentro de economı́a industrial son aquellos que relacio-
nan learning by doing y temas clásicos dentro de esta literatura. Ejemplo de ello
es learning by doing en un modelo de diferenciación vertical de producto (Goe-
ring (1993), Grubber (1992) y Stokey (1986)), learning by doing en un modelo de
bienes duraderos (Olsen (1992)) o como el learning by doing puede determinar la
propia estructura industrial (Agliardi (1990), Jovanovic et al. (1989), Mookherjee
et al. (1991) y Spence (1981)).

3 Discusión sobre el problema abordado

La pregunta que abordamos en este trabajo es teórica. Desde un punto de vista
matemático, la decisión de cuanto debe producir una empresa que en su estructura
productiva tiene learning by doing puede representarse mediante un problema
de optimización dinámica, lo que puede a su vez verse como un problema de
programación matemática. Por otra parte, parece natural pensar que la empresa
no tiene capacidad para predecir sin error alguno la evolución que va a tener en el
futuro su estructura de costes, lo que añadido a lo anterior da lugar a un problema
de programación (dinámica) estocástica.

La aportación fundamental de este trabajo es encontrar de manera anaĺıtica
la poĺıtica óptima de producción de una empresa que en su estructura produc-
tiva tiene learning by doing y dentro del cual existen elementos aleatorios que
le impiden a la empresa predecir sin error su estructura de costes futura. La
obtención de dicha solución análitica permite obtener propiedades de la misma
que de otra manera son dif́ıciles de conocer. Como ilustración de este punto,
en este trabajo presentamos una comparación de la solución obtenida con la del
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problema análogo determińıstico, de modo que podemos medir cuál es el impacto
de introducir incertidumbre en el proceso de aprendizaje.

Hemos elegido un modelo con una estructura industrial sencilla: un monopolio
sin amenazas de entrada. Por otra parte, el modelo recoge la idea de que el learing
by doing tiene una duración esencialmente finita en el tiempo. Concretamente,
utilizamos una extensión natural al caso estocástico del modelo determińıstico
que se presenta en Dasgupta et al. (1988). Es un modelo formulado en tiempo
discreto, con un horizonte temporal de dos peŕıodos. El coste en el segundo
periódo es una función de la producción del primer peŕıodo. Dicha función es lineal
definida en dos tramos: el primer tramo es decreciente y el segundo es horizontal
(recogiendo la idea esencial del modelo de plateau, comentado anteriormente).

Cosiderar un modelo de dos peŕıodos implica concentrar la fase de aprendizaje
(de learning by doing) en un solo peŕıodo y la fase de madurez de la industria (en
la que ya no hay learning by doing) en otro. En una generalización a un modelo
de T peŕıodos la fase de aprendizaje dura varios peŕıodos, por lo que la poĺıtica
óptima de la empresa indicaŕıa como se reparte la producción a dentro de los
peŕıodos de aprendizaje.

Una cuestión de interés es cómo introducir incertidumbre en un modelo deter-
mińıstico. En particular, en un modelo de learning by doing puede haber varias
fuentes de incertidumbre.

Una primera distinción clara es si hay incertidumbre que disminuye en el
tiempo o no. Por ejemplo, si la incertidumbre radica en que algunos parámetros
del proceso de aprendizaje son desconocidos, cabe esperar que la empresa mejore
las estimaciones de dichos parámetros -y por tanto la incertidumbre disminuya- a
medida que pase el tiempo y haya datos disponibles. Como caso contrario, si hay
una perturbación aleatoria de varianza estable en el tiempo, dicha incertidumbre
no va disminuir: la empresa tendrá la misma capacidad predictiva al prinicipio
que la final de su vida activa. En este art́ıculo nos centramos en este segundo
tipo de incertidumbre. El primero ha sido estudiado en Alvarez et al. (1999a).

Aún dentro de la incertidumbre que no disminuye en el tiempo, podemos
considerar dos tipos, que, usando una notación propia del control óptimo, deno-
minaremos incertidumbre multiplicativa y aditiva, respectivamente. Imaginemos
que la perturbación aleatoria entra en la curva de aprendizaje multiplicada por la
producción presente (caso multiplicativo). Ello quiere decir que si la producción
presente es cero no hay incertidumbre alguna. Un efecto diferente se tiene si la
perturbación aparece sumada a la producción presente (caso aditivo). A un nivel
más intuititivo, el grado de incertidumbre sobre los costes futuros puede depender
o no de la producción presente (multiplicativo y aditivo, respectivamente). Como
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su t́ıtulo indica, en este trabajo nos centramos en el caso aditivo. El multiplicativo
ha sido estudiado en Alvarez et al. (1999b).

4 Modelo

Consideramos un monopolio neutral ante el riesgo sin amenazas de entrada y
que tiene efecto de learning by doing en su estructura productiva. El horizonte
temporal es dos peŕıodos, 0 y 1, genéricamente denotados por t. El monopolista
elige las cantidades (no negativas) a producir en cada peŕıodo, siendo q (t) la
cantidad elegida en el peŕıodo t. La función inversa de demanda es estacionaria
en el tiempo, en el peŕıodo t su inversa es:

p (t) = a− bq (t) (14.1)

donde a y b son parámetros estrictamente positivos. En el peŕıodo t, la función
de costes es lineal, siendo c (t) el coste unitario en dicho peŕıodo, de modo que el
coste total de producir q (t) es c (t) q (t). El efecto de learning by doing está en
que el coste unitario cambia en el tiempo. En concreto, suponemos que:

c (1) = máx {τ, c (0)− βq (0) + ε (0)} (14.2)

en donde τ y β son parámetros estrictamente positivos y ε (0) es una variable alea-
toria cuya distribución de probabilidad es Pr (ε (0) = −θ) = Pr (ε (0) = θ) = 1/2,
con θ ≥ 0. Todos los parámetros son conocidos y c (0) está dado. Interpretamos
τ como el menor coste unitario posible y β como el efecto que la producción pre-
sente tiene sobre coste unitario futuro. En nuestro modelo, el monopolista conoce
ambas magnitudes, pero ello -junto con su decisión de producción presente- no le
permite conocer con exactitud el coste futuro, eventualmente ni siquiera estará
seguro de que vaya a haber reducción de coste unitario.

El objetivo del monopolista es maximizar el flujo esperado y descontado de
beneficios, siendo λ ∈ (0, 1) su factor de descuento3. A partir de (14.1) y de la
expresión para los costes totales, es sencillo ver que los beneficios del monopolista
en el peŕıdo t son (a− bq (t)− c (t)) q (t), por lo que su objetivo es:

máx
q(0),q(1)

E

{
1∑

t=0

λt (a− bq (t)− c (t)) q (t)

}
(14.3)

donde la esperanza es condicional en c (0) y además c (1) viene dado por (14.2).
Otros supuestos adicionales del modelo son:

3El supuesto de que el factor de descuento está en (0, 1) es habitual en la literatura económica
y juega un papel esencial en problemas de optimización dinámica de horizonte temporal infinito
(Kamien et al. (1991)). En nuestro modelo mantenemos dicho supuesto por analoǵıa con la
literatura.
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c (0) > τ a > c (0) + θ (14.4)

La primera de las desigualdades en (14.4) indica que en nuestro modelo puede
haber reducción de costes. La segunda desigualdad asegura que la producción
óptima es estrictamente positiva en cada peŕıodo.

Cuatro comentarios finales sobre el modelo pueden ser de interés. En primer
lugar, este modelo es una generalización a un caso de incertidumbre del propuesto
por Dasgupta et al. (1988), que es determińıstico (θ = 0). En segundo lugar,
es sencillo generalizar el método de solución que presentaremos posteriomente
al caso en que ε (0) tiene un soporte discreto y finito arbitrario, sin que dicha
generalización modifique las principales implicaciones ecónomicas de introducir
incertidumbre. En tercer lugar, hemos de recordar que en nuestra modelización,
el coste unitario puede aumentar de un peŕıodo a otro. En cuarto lugar, debemos
indicar que la generalización a un caso de T peŕıodos es mas compleja.

5 Solución

El problema planteado es de optimización dinámica estocástica con obser-
vación completa, tiene un horizonte temporal finito y está formulado en tiempo
discreto. La variable de estado es el coste unitario y la variable de control es
la cantidad producida. Lo resolveremos usando la metodoloǵıa de programación
dinámica propuesta por Bellman. La dificultad en resolver de modo anaĺıtico
la ecuación funcional de Bellman asocida al problema planteado es identificar la
probabilidad con que se alcanza τ en el peŕıodo 1.

Para la presentación formal del método de solución introducimos la siguiente
notación. Sea π = {q (0) , q (1)} en donde q (t) ≥ 0 para t ∈ {1, 2}, decimos que
π es una poĺıtica factible. El conjunto de las poĺıticas factibles lo denotamos por
S. Dado π ∈ S y c (0), el flujo esperado y descontado de beneficios asociados
lo denotamos por V (π, c (0)). Decimos que π∗ = {q∗ (0) , q∗ (1)} ∈ S soluciona
el problema planteado si V (π∗, c (0)) ≥ V (π, c (0)) para todo π ∈ S. Además
definimos V ∗ (c (0)) = V (π∗, c (0)) y lo denominamos función valor.

Hemos de notar que la segunda desigualdad en (14.4) garantiza que a > c (1),
a partir de lo cual es sencillo ver que q∗ (1) = (2b)−1 (a− c (1)), de modo que
en lo sucesivo nos centramos en la obtención de q∗ (0) y V ∗ (c (0)). A lo largo
de los resultados que siguen definimos un conjunto de valores umbrales, sea
{R1, R2, R3, R4}, que define una partición en subintervalos del intervalo de po-
sibles valores de c (0), a partir de (14.4) es sencillo ver que dicho intervalo es
(τ, a− θ) y los umbrales satisfacen a−θ > R1 > R2 > R3 > R4 > τ , de modo que
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q∗ (0) y V ∗ (c (0)) son funciones de c (0) definidas por tramos, correspondiendo los
tramos con los subintervalos de dicha partición. Además, los diferentes resultados
muestran que, como es natural, la probabilidad de alcanzar τ bajo π∗ disminuye
con c (0). Las demostraciones están en el apéndice. Previamente a cada resultado
se define la notación nueva utilizada en el mismo.

Notación para el teorema 1. Sean: K = (4b)−1, φ = 2K, φ1 = (1 + 2λβK)
(
2b− 2λβ2K

)−1,
K1,2 = λK + 1

2 (1 + 2λβK)φ1, K1,0 = λθ2K, R1 = (τ + θ + βφ1a) (1 + βφ1)
−1.

Teorema 1. Si se verifica: (a) c (0) > R1, (b) b > λβ2K, entonces: (i)
q∗ (0) = φ1 (a− c (0)) y V ∗ (c (0)) = K1,0 + K1,2 (a− c (0))2, (ii) bajo π∗ es
Pr (c (1) > τ) = 1.

Notación para el teorema 2. Sean: φ2 = (1 + λβK)
(
2b− λβ2K

)−1, α2 =
λβθK

(
2b− λβ2K

)−1, K2,2 = λK+ 1
2 (1 + 2λβK)φ2, K2,1 = −2aK2,2+λθ (1 + βφ2)K,

K2,0 = 1
2λK

(
(a− τ)2 + (a− θ)2

)
+ 1

2 ((1 + λβK) a− λβθK) (φ2a− α2), R2 =

(τ + θ + β (φ2a− α2)) (1 + βφ2)
−1, R3 = (τ − θ + β (φ2a− α2)) (1 + βφ2)

−1.

Teorema 2. Si se verifica: (a) R2 ≥ c (0) > R3, (b) 2b > λβ2K, entonces: (i)
q∗ (0) = φ2 (a− c (0)) − α2 y V ∗ (c (0)) = K2,0 + K2,1c (0) + K2,2c (0)2, (ii) bajo
π∗ es Pr (c (1) = τ) = 1/2.

Notación para el teorema 3. Sean: K3,0 = λK (a− τ)2, R4 = (τ − θ + βφa) (1 + βφ)−1.

Teorema 3. Si se verifica: (a) R4 ≥ c (0), entonces: (i) q∗ (0) = φ (a− c (0))
y V ∗ (c (0)) = K3,0 + K (a− c (0))2, (ii) bajo π∗ es Pr (c (1) = τ) = 1.

Proposición 1. Se verifica: a− θ > R1 > R2 > R3 > R4 > τ .

La prueba de todos los teoremas se basa en definir un problema que bajo
las hipótesis (y sólo bajo éstas) es equivalente al original. Las hipótesis (b) de
los teoremas 1 y 2 son requerimientos de concavidad de la función objetivo de
cada problema equivalente. Es sencillo ver que la condición del teorema 1 es mas
restrictiva que la del teorema 2. Por otra parte, en virtud de la proposición 1,
hay dos subintervalos de posibles valores de c (0), (R2, R1) y (R4, R3), para los
que los teoremas anteriores no dan la solución. Dicha solución se presenta en
los dos próximos teoremas. La diferencia entre los teoremas anteriores y los dos
siguientes es que en los primeros el problema equivalente tiene solución anterior,
mientras que en los últimos la solución es de esquina.
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Notación para el teorema 4. Sean: K4,0 = −β−1
(
a + bβ−1 (τ + θ)

)
(τ + θ) +

1
2Kλ

(
(a− τ)2 + (a− τ − 2θ)2

)
, K4,1 = β−1

(
a + bβ−1 (τ + θ)

)
+β−1

(
1 + bβ−1

)
(τ + θ),

K4,2 = −β−1
(
1 + bβ−1

)
.

Teorema 4. Si se verifica: (a) R1 ≥ c (0) > R2, (b) 2b > λβ2K, entonces: (i)
q∗ (0) = β−1 (c (0)− τ − θ) y V ∗ (c (0)) = K4,0 + K4,1c (0) + K4,2c (0)2, (ii) bajo
π∗ es Pr (c (1) = τ) = 1/2.

Notación para el teorema 5. Sean: K5,0 = λK (a− τ)2−β−1
(
a + bβ−1 (τ − θ)

)
(τ − θ),

K5,1 = β−1
(
a + bβ−1 (τ − θ)

)
+ β−1

(
1 + bβ−1

)
(τ − θ), K5,2 = K4,2.

Teorema 5. Si se verifica: (a) R3 ≥ c (0) > R4, (b) 2b > λβ2K, entonces: (i)
q∗ (0) = β−1 (c (0)− τ + θ) y V ∗ (c (0)) = K5,0 + K5,1c (0) + K5,2c (0)2, (ii) bajo
π∗ es Pr (c (1) = τ) = 1.

Esto conluye la presentación de la solución del problema planteado. Como caso
particular, los resultados anteriores presentan también la solución del problema
determińıstico (θ = 0).

6 Implicaciones Económicas

En esta sección analizamos las implicaciones sobre la poĺıtica óptima del
peŕıodo 0, q∗ (0), de introducir incertidumbre en el proceso de reducción de cos-
tes. Hay dos formas de hacer este análisis. La primera, que llamaremos impacto
marginal, es considerar pequeñas variaciones en la incertidumbre una vez que
ésta existe, lo que en nuestro modelo puede hacerse estudiando cómo vaŕıa la
solución ante pequeñas variaciones del parámetro θ. La segunda, que llamaremos
impacto general, es estudiar la diferencia entre que haya o no incertidumbre, lo
que en nuestro modelo equivale a estudiar la diferencia entre la poĺıtica óptima
del peŕıodo 0 para el caso determińıstico (θ = 0) y estocástico (θ > 0).

El análisis del impacto marginal es directo a partir de la solución presentada en
la sección anterior, por lo que omitimos aqúı una presentación rigurosa del mismo.
Basicamente, ante pequeños aumentos de θ, si q∗ (0) vaŕıa, lo hace de manera
cont́ınua, aumentando o disminuyendo dependiendo del valor de c (0). Hemos de
notar que aumentar θ implica hacer mean-preserving spread de la distribución de
ε (0), es decir, aumentar la varianza sin alterar la media. En un contexto como
el considerado aqúı, en el que el tomador de decisiones (monopolista), es neutral
ante el riesgo, es de esperar que, tal como indicamos, el efecto que dicha variación
sea ambigüo.

Rect@ Monográfico 2 (2004)



Francisco Alvarez 335

El análisis del impacto general está en ĺınea con el marginal, que acabamos de
comentar. Queda recogido en la siguiente proposición.

Proposición 1. Sea q∗d (0) la poĺıtica óptima en el peŕıodo 0 del problema
determińıstico. Entonces: (i) si c (0) > R1 o bien c (0) < R4, q∗d (0) = q∗ (0);
(ii) existen valores ca y cb satisfaciendo R1 > cb > ca > R4 tales que c (0) = ca
implica que q∗d (0) < q∗ (0) y c (0) = cb implica que q∗d (0) > q∗ (0).

7 Futuras investigaciones

En este trabajo hemos obtenido, usando programación dinámica, la solución
para un modelo de learning by doing en el que hay incertidumbre aditiva. A pesar
de la simplicidad del modelo elegido, su solución anaĺıtica pone de manifiesto que
algunas de las propiedades de la poĺıtica óptima de la empresa bajo learning by
doing en el caso determińıstico no se mantienen al introducir shocks aleatorios.
Profundizar en el estudio del efecto de estos shocks es, a nuestro juicio, el campo
de trabajo más prometedor.

A modo puramente de ejemplo, en trabajos previos de la literatura se ha estu-
diado en un contexto determińıstico como el learning by doing puede determinar
la estructura de la industria. La intuición subyacente es sencilla: empresas con
una ventaja relativa inicial (digamos en términos de poder de mercado) agrandan
esa ventaja a lo largo del tiempo debido a que ellas aprenden a reducir costes mas
rápido que sus rivales (dado que producen más). Ello implica que la existencia
de learning by doing puede inducir a la disminución del número de empresas a
lo largo del tiempo, lo que tiene conocidos efectos sobre la eficiencia social de la
asignación de mercado. Ahora bien, el razonamiento anterior podŕıa ser comple-
tamente distinto si las empresas con una ventaja inicial tienen que enfrentarse
antes que las demás (y quizás por hacerlo antes lo hagan en mayor medida) a la
incertidumbre inherente a sus procesos de aprendizaje.

Apendice: demostraciones.

Demostración del Teorema 1. Sea el problema auxiliar siguiente: la
función objetivo es la dada por (14.3) s.a.: c (1) = c (0) + βq (0) + ε (0) con
c (0) dado. Si la poĺıtica óptima del problema auxiliar, sea π∗a = {q∗a (0) , q∗a (1)},
satisface la restricción adicional siguiente c (1) ≥ τ , entonces es también la poĺıtica
óptima del problema original. La demostración del teorema se hace en dos pasos.
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en el primer paso se demuestra que π∗a es la que aparece en el enunciado del teo-
rema. En el segundo paso se muestra que bajo π∗a se verifica Pr (c (1) > τ) = 1.
Primer paso. Para t = 0, 1, denotamos por V ∗a (c (t) , t) la función valor del pro-
blema auxiliar en el peŕıodo t, donde t ∈ {0, 1, 2}. La ecuación funcional de
Bellman asociada al problema auxiliar es:

V ∗a (c (t) , t) = máxq(t)≥0 {(a− bq (t)− c (t)) q (t) + λE {V ∗a (c (t + 1) , t + 1)}}
para t = 0, 1

con V ∗a (c (2) , 2) = 0 dado. Resolvemos recursivamente la anterior ecuación,
primero para t = 1 y después para t = 0. Para t = 1 se obtiene V ∗a (c (1) , 1) =
K (a− c (1))2, mientras que para t = 0, bajo (b), se obtiene q∗a (0) = q∗ (0) y
V ∗a (c (0)) = V ∗ (c (0)) donde q∗ (0) y V ∗ (c (0)) están dados en el enunciado del
teorema. Segundo paso. Bajo π∗a, se tiene que c (1) > τ c.p.1. ⇔ c (0)−βq∗a (0)−
θ > τ ⇔ c (0) > R1. Q.E.D.

A partir de la demostración anterior, el siguiente Corolario, que será utilizado
posteriormente, es trivial.

Corolario 1. Si se verifica: (a) c (0) ≤ R1, (b) 2b > λβ2K, entonces: bajo
π∗ es Pr (c (1) = τ) > 0.

La demostración del Teorema 2 es totalmente análoga a la del Teorema 1 uti-
lizando el siguiente problema auxiliar: la función objetivo es la dada por (14.3)
s.a.: c (1) condicionado a c (0) y q (0) tiene la siguiente distribución de probabili-
dad: Pr (c (1) = τ) = Pr (c (1) = c (0)− βq (0) + θ) = 1

2 , con c (0) dado, y donde
la poĺıtica óptima del problema adicional debe satisfacer la restricción adicional
siguiente: c (0)− βq (0)− θ ≤ τ < c (0)− βq (0) + θ. A partir de éste análisis, se
obtiene además el siguiente Corolario, que será utilizado posteriormente.

Corolario 2. Si bajo π∗ es Pr (c (1) = τ) > 0 y además (a) c (0) ≤ R3 y (b)
2b > λβ2K, entonces bajo π∗ es Pr (c (1) = τ) > 1/2.

La demostración del Teorema 3 es totalmente análoga a la del Teorema 1
utilizando el siguiente problema auxiliar: la función objetivo es la dada por (14.3)
s.a.: c (1) = τ , y donde la poĺıtica óptima del problema adicional debe satisfacer
la restricción adicional siguiente: c (0)− βq (0) + θ ≤ τ .

La demostración de la proposición 1 es sencilla mediante álgebra.

Demostración del teorema 4. Teniendo en cuenta el Corolario 1, R1 ≥ c (0)
y (b), ha de ser Pr (c (1) = τ) > 0 bajo π∗. Pero Pr (c (1) = τ) > 0 ⇔ q (0) ≥
β−1 (c (0)− τ − θ), por tanto en cualquier problema cuya solución sea la óptima
del problema inicial está debe satisfacer la restricción anterior. En el problema
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auxiliar de la demostración del Teorema 2 se toma el problema inicial considerando
la menor de las probabilidades posibles de que c (1) = τ sin imponer la restricción
anterior, y se obtiene que bajo la poĺıtica óptima de dicho problema auxiliar
restricción se satisface si y solo si c (0) ≤ R2, lo cual no sucede bajo las hipótesis de
este teorema. Además, por verificarse (b), la función objetivo del citado problema
auxiliar es globalmente cóncava, por lo que el mejor q (0) es el que satisface
exactamente la restricción, es decir, q∗ (0) = β−1 (c (0)− τ − θ). De sustituir en
dicha función objetivo este valor de q (0) se obtiene V ∗ (c (0)). Q.E.D.

Demostración del teorema 5. Teniendo en cuenta el Corolario 2, c (0) ≤
R3 y (b), ha de ser Pr (c (1) = τ) > 1/2 bajo π∗, y la siguiente probabilidad
posible mayor a 1/2 es 1, verificandose además Pr (c (1) = τ) = 1 ⇔ q (0) ≥
β−1 (c (0)− τ + θ), por tanto en cualquier problema cuya solución sea la óptima
del problema inicial está debe satisfacer la restricción anterior. En el problema
auxiliar de la demostración del Teorema 3 se toma el problema inicial considerando
c (1) = τ sin imponer la restricción anterior, y se obtiene que bajo la poĺıtica
óptima de dicho problema auxiliar restricción se satisface si y solo si c (0) ≤ R4, lo
cual no sucede bajo las hipótesis de este teorema. Dado que la función objetivo del
citado problema auxiliar es globalmente cóncava, el mejor q (0) es el que satisface
exactamente la restricción, es decir, q∗ (0) = β−1 (c (0)− τ + θ). De sustituir en
dicha función objetivo este valor de q (0) se obtiene V ∗ (c (0)). Q.E.D.

Demostración de la proposicion 1. La poĺıtica óptima del problema de-
termińıstico se obtiene al particularizar los resultados de la sección 3 para el
caso θ = 0. A partir de ah́ı, la prueba de (i) es trivial. Veamos (ii). Sea
la función auxiliar g (x, y, z) = (τ + x + β (ya− z)) (1 + βy)−1. O bien ocu-
rre (a) g (−θ, φ2, α2) < g (0, φ, 0) o bien ocurre (b) g (−θ, φ2, α2) ≥ g (0, φ, 0).
Si ocurre (a), existe ca ∈ (g (−θ, φ2, α2) , g (0, φ, 0)) tal que si c (0) = ca es
q∗d (0) = φ (a− ca) y q∗ (0) = φ2 (a− ca) − α2, por lo que q∗d (0) < q∗ (0) ⇔
a > 2bθ (2b + β)−1, y la última desigualdad se verifica bajo (14.4). Si ocurre (b),
existe ca ∈ [g (0, φ, 0) , g (−θ, φ2, α2)] tal que si c (0) = ca es q∗d (0) = β−1 (ca − τ)
y q∗ (0) = β−1 (ca − τ + θ), por lo que q∗d (0) < q∗ (0) se verifica. Además,
o bien ocurre (c) g (θ, φ2, α2) < g (0, φ1, 0) o bien ocurre (d) g (θ, φ2, α2) ≥
g (0, φ1, 0). Si ocurre (c), existe cb ∈ (g (θ, φ2, α2) , g (0, φ1, 0)) tal que cb es ma-
yor que cualquiera de los ca seleccionados anteriormente y además si c (0) = cb
es q∗d (0) = β−1 (cb − τ) y q∗ (0) = β−1 (cb − τ − θ) por lo que q∗d (0) > q∗ (0)
se verifica. Si ocurre (d), existe cb ∈ [g (0, φ1, 0) , g (θ, φ2, α2)] tal que cb es ma-
yor que cualquiera de los ca seleccionados anteriormente y además si c (0) = cb
es q∗d (0) = φ1 (a− cb) y q∗ (0) = φ2 (a− cb) − α2, por lo que q∗d (0) > q∗ (0)
se verifica. Para ver que cualesquiera de los ca y cb seleccionados pertenecen a
(R4, R1) basta notar que: ca ≥ mı́n {g (−θ, φ2, α2) , g (0, φ, 0)} > g (−θ, φ, 0) y
cb ≤ mı́n {g (0, φ1, 0) , g (θ, φ2, α2)}. Q.E.D.
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1 Introducción

Como es bien conocido, los problemas de decisión en ambiente de certeza a me-
nudo se convierten en problemas de optimización matemática. La Programación
Multiobjetivo se ocupa de resolver algunos de dichos problemas, a saber, aquellos
en los cuales se trata de optimizar a la vez varias funciones objetivo. Dentro
de los métodos de resolución de problemas multiobjetivo, la denominada Progra-
mación por Metas ocupa un lugar destacado. Posiblemente se deba, al menos en
parte, a que los decisores, en palabras de Herbert Simon (1957), frecuentemente
no actúan conforme a un paradigma ”optimizador” sino que lo hacen de acuerdo
con un paradigma ”satisfaciente”. En efecto, en los problemas multiobjetivo rea-
les es muy común que los decisores no aspiren a la optimización (en el sentido
paretiano) de todas las funciones objetivo involucradas, sino que se conformen
con la consecución de un conjunto de objetivos o metas definidas previamente y
que se conocen como niveles de aspiración. Cuando los costes de no consecución
de los niveles de aspiración (bien por defecto o por exceso) se pueden agregar, por
ejemplo, cuando tales costes se pueden agregar monetariamente, las técnicas de
Programación por Metas son de gran utilidad en los procesos de ayuda a la toma
de decisiones (véanse, por ejemplo, Romero (1991, 1993 y 2002)).

Rect@ Monográfico 2 (2004)



344 Programación estocástica por metas

Por otra parte, a menudo algunas de las variables que intervienen en los pro-
blemas reales no toman valores de forma determinista sino que tienen naturaleza
estocástica. Esto ha motivado el desarrollo de una rama de la Programación
Matemática, conocida como Programación Estocástica, que se ocupa de la reso-
lución de programas matemáticos en los cuales algunos parámetros se modelizan
matemáticamente como variables aleatorias (véanse, por ejemplo, Kall y Wallace
(1994), Kibzun y Kan (1996), Birge y Louveaux (1997); para el caso multiob-
jetivo, véase Stancu-Minasian (1984)). Un caso especialmente interesante de la
Programación Estocástica Multiobjetivo es el de la Programación por Metas Es-
tocástica (Heras y G. Aguado (1998 y 1999)), que estudia aquellos problemas de
Programación por Metas en los que los niveles de aspiración no son conocidos de
antemano con certidumbre, aunque se pueden asignar probabilidades a sus dis-
tintos valores (en otras palabras, los niveles de aspiración constituyen variables
aleatorias). Numerosos problemas de la vida real se pueden en principio modelizar
matemáticamente mediante programas en los que se trata de encontrar los valo-
res de las variables de decisión que hacen que ciertas funciones objetivo tomen
valores cercanos a unas metas que no son conocidas con precisión. Pensemos,
por ejemplo, en una empresa cuyo objetivo fundamental consiste en satisfacer
la demanda futura de los bienes que produce, demanda cuyo valor exacto evi-
dentemente desconoce. Muchos problemas de la Matemática Actuarial podŕıan,
asimismo, encuadrarse dentro de esta categoŕıa. Aśı, por ejemplo, en un pro-
blema de tarificación se pretende calcular, a partir de las caracteŕısticas de cada
asegurado, una prima que sea lo más cercana posible al verdadero valor de su
siniestralidad, el cual es evidentemente desconocido de antemano. En el presente
art́ıculo expondremos algunos resultados importantes sobre la Programación por
Metas Estocástica. En el apartado segundo recordaremos los conceptos más im-
portantes referentes a la Programación por Metas determinista. En el apartado
tercero expondremos la formulación y algunas propiedades importantes de los
programas estocásticos por metas. En los apartados siguientes estudiaremos con
cierto detalle una aplicación de lo anterior al diseño de Sistemas de Tarificación
Bonus-Malus, un problema clásico de tarificación en el seguro del automóvil.
Veremos que la aplicación de técnicas de Programación por Metas Estocástica
permite obtener algunas caracteŕısticas deseables de las soluciones que no eran
tenidas en cuenta por los métodos clásicos de resolución de tales problemas

2 Programación por metas determinista

El propósito del decisor en un problema de Programación por Metas es hallar
una solución factible lo más cercana posible a una meta dada que, habitualmente,
es inalcanzable. Los problemas de Programación por Metas se pueden resolver por
varios métodos, entre los que destacan los métodos gráfico, secuencial, multifase
y de Arthur y Ravindran para la resolución de programas lexicog ráficos, y el

Rect@ Monográfico 2 (2004)
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método de programación por metas ponderadas. Este último es probablemente
el más utilizado en la literatura del tema, y se formula mediante el siguiente
programa:

mı́n
p∑
i=1

(w+
i y

+
i + w−i y

−
i )

s.a. f(X) + y+ − y− = m
y+, y− ≥ 0
x ∈ X

w+
i , w

−
i ≥ 0

(1)

donde f la función objetivo, es decir f(x) = (f1(x), . . . , fp(x)),m = (m1, . . . ,mp)
el vector de los “niveles de aspiración”, x = (x1, . . . , xn) es el vector de varia-
bles de decisión, X ⊂ �n el conjunto factible y los pesos w+

i , w
−
i representan

las tasas de intercambio (trade-offs) o coeficientes que se asocian a las variables
de desviación, y+

i , y
−
i , por exceso y por defecto, respectivamente. Cuando estas

ponderaciones representan los costes monetarios de sobrepasar y de no alcanzar
las metas, la solución óptima del programa (1) minimiza el coste global de todas
las desviaciones. El programa (1) es un programa lineal siempre que las funciones
objetivo sean lineales, ( f(x) = Ax donde A es una matriz de orden p × n), y
el conjunto factible, X, esté definido mediante restricciones lineales. Otra formu-
lación equivalente, aunque menos utilizada, de este problema es la siguiente: Para
cada x ∈ X definimos

Q(x) = mı́n
y+,y−

∑p
i=1(w

+
i y

+
i + w−i y

−
i )

s. a.
Ax + y+ − y− = m, y+, y− ≥ 0

(2)

Los valores óptimos de las variables y+
i , y

−
i verifican que y+

i .y
−
i = 0 para todo i y

representan el exceso y el defecto del i -ésimo objetivo, respectivamente, asociado
con la solución factible x.

La solución óptima del problema de Programación por Metas es la solución
factible que minimiza la desviación global de los p objetivos, es decir, la solución
del programa

mı́n Q(x)
s.a. x ∈ X

(3)

Esta no es la formulación usual para la Programación por Metas porque, en
lugar del programa lineal (1), se tienen dos programas, el (2), que también es un
programa lineal, y el (3), que es un programa convexo. Pero incluimos aqúı esta
formulación alternativa porque es similar a la solución que propondremos, en el
apartado siguiente, para resolver el problema de Programación Estocástica por
Metas.
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El origen de la metodoloǵıa de la Programación por Metas se debe a Charnes,
Cooper y Ferguson (1955). A partir de entonces son numerośısimos los trabajos
publicados desarrollando aspectos teóricos, aplicaciones prácticas y posibles ex-
tensiones de la Programación por Metas. Como ya hemos comentado en la Intro-
ducción, debido a que los problemas de decisión reales frecuentemente dependen
de parámetros desconocidos de naturaleza estocástica, una de las extensiones na-
turales de la Programación por Metas es la denominada Programación Estocástica
por Metas. En la sección siguiente estudiamos este problema cuando la aleatorie-
dad está únicamente en los ”niveles de aspiración”, es decir, cuando el vector de
metas, m , es un vector aleatorio que representaremos por ξ = (ξ1, ..., ξp).

3 Programación por metas estocástica

Por analoǵıa con la Programación por Metas Determinista, los problemas de
Programación Estocástica por Metas se pueden representar aśı:

mı́n
∑p

i=1(w
+
i y

+
i + w−i y

−
i )

s.a. f(X) + y+ − y− = ξ
y+, y− ≥ 0
x ∈ X

w+
i , w

−
i ≥ 0

(4)

cuyos términos tienen la misma interpretación que en el problema (1).
Supongamos que el programa (4) es un programa lineal , es decir, que las

funciones objetivo son lineales, (f(x) = Ax donde A es una matriz de orden p× n)
y el conjunto factible, X , está definido mediante restricciones lineales. Bajo estas
condiciones, (4) es la expresión matemática de un problema de Programación
Lineal Estocástica, ya que se trata de un programa lineal que contiene algunos
parámetros que son variables aleatorias. Por lo tanto, se podŕıa intentar resolver
mediante alguno de los procedimientos utilizados en la resolución de este tipo de
problemas. Por otro lado, el problema también se puede considerar como un caso
de decisión en ambiente de riesgo, por lo que para su resolución también se podŕıa
recurrir a técnicas de la Teoŕıa Bayesiana de la Decisión.

Comencemos por esta última. Como es bien sabido, si las preferencias del
decisor sobre las posibles consecuencias de sus decisiones son consistentes con
ciertos axiomas de comportamiento racional (véase, por ejemplo, DeGroot (1970),
caṕıtulo 7), entonces es posible definir una función sobre dichas consecuencias
(la función de utilidad) que representa numéricamente dichas preferencias, en el
sentido de que una decisión es preferida a otra si, y solamente si, la utilidad
esperada de las consecuencias es mayor para la primera decisión que para la
segunda. En muchos problemas de decisión es habitual considerar la función
opuesta de la utilidad, denominada función de desutilidad o de pérdida. En tales
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casos, el decisor escoge como decisión óptima aquella que minimiza la pérdida
esperada de sus consecuencias. Más detalladamente, el decisor debe proceder de
la siguiente manera: en primer lugar, debe definir una consecuencia para cada
decisión factible y cada posible realización del parámetro aleatorio; en segundo
lugar, debe especificar la función de pérdida utilizada; finalmente, debe calcular la
pérdida esperada de cada decisión factible, y elegir como óptima aquella decisión
que tenga asociada una pérdida esperada mı́nima.

Si aplicamos este procedimiento a nuestro problema, debeŕıamos comenzar
preguntándonos por la apropiada definición de las consecuencias de la elección
de una decisión factible x y una realización del vector aleatorio ξ. Es evidente
que la Programación por Metas estocástica debe ser una generalización de la de-
terminista, y que para cada realización del vector aleatorio tenemos un problema
determinista. Por tanto, puede parecer razonable definir la consecuencia asociada
con x y ξ como el resultado óptimo del programa (2) cuando m = ξ, al que de-
notaremos como Q(x, ξ). La solución del programa (4) que buscamos consiste, de
acuerdo con la metodoloǵıa bayesiana, en minimizar la pérdida esperada de las
consecuencias Q(x, ξ). Debemos, pues, definir una función de pérdida. Si el rango
de variación de la expresión anterior no es demasiado grande, o si la decisión debe
repetirse un gran número de veces, parece razonable asumir la indiferencia ante
el riesgo del decisor y por tanto elegir una función de pérdida lineal. La solución
del problema (4) que proponemos en estas condiciones es, pues, el resultado de
resolver el programa

mı́n Eξ[Q(x, ξ)]
s. a. x ∈ X

(5)

donde

Q(x, ξ) = mı́n
y+,y−

{
p∑
i=1

(w+
i y

+
i + w−i y

−
i ), | f(x) + y+ − y− = ξ, y+, y− ≥ 0

}
(6)

Por otro lado, los expertos en Programación Lineal Estocástica no tendrán
dificultad en reconocer a los programas (5) y (6) como los resultantes de la apli-
cación de la metodoloǵıa de la Programación Estocástica con Recursos al pro-
grama (4). De hecho, se trata del caso particular de la Programación Estocástica
con Recursos Simples (véanse Kall y Wallace (1994), Birge y Louveaux (1997)).

A continuación estudiaremos algunas propiedades de interés de los programas
(5) y (6).

3. 1. El programa (6)

Q(x, ξ) = mı́n
y+,y−

{
(w+

i )′y+
i + (w−i )′y−i | y+ − y− = ξ − f(x), y+ ≥ 0, y− ≥ 0

}
al que, por analoǵıa con el Problema de Recursos Simples, podemos denominar
Programa de Segunda Fase, es evidentemente factible ∀x ∈ X y ∀ξ ∈ Ξ fijos.
Además es acotado inferiormente, por lo tanto siempre tiene solución.

Rect@ Monográfico 2 (2004)



348 Programación estocástica por metas

Además la solución óptima verifica que y+
i · y−i = 0, i = 1, . . . , p, por lo que

al menos uno de estos dos términos y+
i , y

−
i = 0, es cero i = 1, . . . , p . En efecto:

x∗, y+∗, y−∗ sean los vectores óptimos del programa (6). Supongamos que ∃j ∈
{1, 2, . . . , p}/y+∗

j > 0, y−∗j > 0. Definamos ỹ∗j = y+∗
j − δ > 0 , ỹ−∗j = y∗j − δ > 0 ,

para un δ suficientemente pequeño.
Sean

ŷ+
i =

{
y+∗
i ∀i �= j
ỹ+
j para i = j

ŷ−i =
{

y−∗i ∀i �= j
ỹ−j para i = j

entonces, puesto que w > 0 , es decir, w+
i , w

−
i > 0 , ∀i = 1, . . . , p , siendo al

menos una de las desigualdades estricta, se verifica que

w′(ŷ
+

+ ŷ
−

) < w′(y+∗ + y−∗) y f(x∗)− (ŷ
+

+ ŷ
−

) = ξ

en contradicción con que y+∗, y−∗ son óptimos.

3.2. Si X es un conjunto convexo, para cada ξ ∈ Ξ fijo, la función Q(◦, ξ) es
convexa. En efecto: sean x1, x2 ∈ X , x3 = λx1 + (1− λ)x2 con λ ∈ [0.1]. Si las
soluciones del problema de segunda fase son (y1+, y1−) para x = x1 y (y2+, y2−)
para x = x2 , tenemos que:

Q(x1, ξ) = (w+)′y1+ + (w−)′y1−

Q(x2, ξ) = (w+)′y2+ + (w−)′y2−

Entonces
(λy1+ + (1− λ)y2+, λy1− + (1− λ)y2−)

es factible para x = x3 . En efecto, es obvio que

λy1+ + (1− λ)y2+ ≥ 0

λy1− + (1− λ)y2− ≥ 0.

Además

f(x3) + λy1− + (1− λ)y2− − λy1+ + (1− λ)y2+

= f(λx1 + (1− λ)x2) + λy1− + (1− λ)y2− − λy1+ + (1− λ)y2+

= λ[f(x1 + y1− − y1+] + (1− λ)[f(x2 + y2− − y2+]
= λξ + (1− λ)ξ = ξ

Por otro lado

Q(x3, ξ) = Q(λx1 + (1− λ)x2, ξ) ≤
≤ (w+)

′
[λy1+ + (1− λ)y2+] + (w+)

′
[λy1− + (1− λ)y2−] =

= λ[(w+)′y1+ + (w−)
′
y1−] + (1− λ)[(w+)′y2+ + (w−)′y2−] =

= λQ(x1, ξ) + (1− λ)Q(x2, ξ)
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3.3. Si el dominio Ξ de ξ es un conjunto convexo, entonces para cada x ∈ X fijo,
la función Q(x, ◦), es convexa.

En efecto, sean ξ
1
, ξ

2 ∈ Ξ , con ξ
3

= λξ
1

+ (1 − λ)ξ
2

con λ ∈ [0, 1]. Si las
soluciones del problema de segunda fase son (y1+, y1−) para ξ = ξ

1
y (y2+, y2−)

para ξ = ξ
2

, se debe verificar:

Q(x, ξ
1
) = (w+)

′
y1+ + (w−)

′
y1−, y1− − y1+ = ξ

1 − f(x)

Q(x, ξ
2
) = (w+)

′
y2+ + (w−)

′
y2−, y2− − y2+ = ξ

2 − f(x)

Entonces (λy1+ + (1 − λ)y2+, λy1− + (1 − λ)y2−) ,es factible para ξ = ξ
3
. En

efecto, es evidente queλy1+ + (1− λ)y2+ ≥ 0 y λy1− + (1− λ)y2− ≥ 0. Además

λ y1− + (1− λ)y2− − λ y1+ − (1− λ)y2+ =
λ(y1− − y1+) + (1− λ)(y2− − y2+) =
λ(ξ

1 − f(x)) + (1− λ)(ξ
2 − f(x)) =

λξ
1

+ (1− λ)ξ
2 − f(λx + (1− λ)x) =

ξ
3 − f(x)

Finalmente,

Q(x, ξ
3
) = Q(x, λξ

1
+ (1− λ)ξ

2
)) ≤

≤ (w+)
′
(λy1+ + (1− λ)y2+) + (w+)

′
(λy1− + (1− λ)y2−) =

= λ[(w+′)y1+ + (w−
′
)y1−] + (1− λ)[(w+′)y2+ + (w−

′
)y2−] =

= λQ(x, ξ
1
) + (1− λ)Q(x, ξ

2
)

3.4. Si X es un conjunto convexo, el programa (5):

mı́n Eξ[Q(x, ξ)]
s.a. x ∈ X

también es convexo.
En efecto, X es un conjunto convexo por hipótesis. Además para cada ξ ∈ Ξ,

ξ fijo, se verifica que Q(λx1 + (1− λ)x2, ξ) = λQ(x1, ξ) + (1− λ)Q(x2, ξ). Luego

E[Q(λx1 + (1− λ)x2), ξ] ≤
≤ E[λQ(x1, ξ) + (1− λ)Q(x2, ξ) =
= λE[Q(x1, ξ)] + (1− λ)E[Q(x2, ξ)]

Como consecuencia, un modo de resolver el problema (5) es utilizar los algoritmos
de programación convexa.
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3.5. Es evidente que la función

Q(x, ξ) = mı́n
y+,y−

{
w+′y+ + w−′y−/ y− − y+ = ξ − f(x), y+ ≥ 0, y− ≥ 0

}
=

mı́n
y+,y−

p∑
i=1

(w+′y+ + w−′y−)/ y− − y+ = ξi − fi(x), y+ ≥ 0, y− ≥ 0, i = 1, . . . , p

se puede obtener a partir de las soluciones de los p programas asociados en los
que solamente se considera un objetivo en cada programa

mı́n w+′y+ + w−′y−

s. a. y− − y+ = ξi − fi(x), i = 1, . . . , p
y+ ≥ 0, y− ≥ 0

(7)

Veamos qué forma tiene dicha solución. Por la teoŕıa de la dualidad de la
programación lineal (véase Balbás y Gil (1990)), sabemos que, dado un programa
en la forma estándar

mı́n c′x
s. a. Ax = b

x ≥ 0

su dual es
máx λ

′
b

s. a. λ
′
A ≤ c

Nuestro programa es

mı́n
y+,y−

w+
1 y

+
1 + w−1 y

−
1 + . . . + w+

p y
+
p + w−p y

−
p

s. a. y−1 − y+
1 = ξ1 − f1(x)

. . . . . . . . .
y−1 − y+

1 = ξp − fp(x)
y+, y−, x ≥ 0

Por lo tanto su dual es

max λ1(ξ1 − f1(x)) + . . . + λp(ξp − fp(x))
s.a.

(λ1, . . . , λp)

 1 −1 0 . . . 0 0
. . .

0 0 0 . . . 1 −1

 ≤


w+
1

w−1
...
w+
p

w−p


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siendo las restricciones equivalentes a
w−1 ≤ λ1 ≤ w+

1
...

w−p ≤ λp ≤ w+
p

Sea

Qi(fi(x), ξi) = máx
{
λi(ξi − fi(x) /w−i ≤ λi ≤ w+

i

}
, i = 1, 2, . . . , p (8)

La solución λ∗i , i = 1, 2, . . . , p, de estos p programas (8) es, obviamente

• (ξi − fi(x) < 0, λ∗i (ξi, fi(x) = −w−i
• (ξi − fi(x) > 0, λ∗i (ξi, fi(x) = w+

i

• (ξi − fi(x) = 0, λ∗i (ξi, fi(x)

toma cualquier valor en el intervalo [−w−i ,−w+
i ].

Por lo tanto las soluciones de (8) son para i = 1, 2, . . . , p

λ∗i =
{

w+
i si ξi − fi(x) ≥ 0
−w−i si ξi − fi(x) ≤ 0

Es decir, para i = 1, 2, . . . , p,

Qi(fi(x), ξi) =
{

w+
i (ξi − fi(x)) si ξi ≥ fi(x)
−w−i (ξi − fi(x)) si ξi ≤ fi(x)

Finalmente, como consecuencia de las propiedades de la dualidad, podemos
concluir que la solución buscada es

Q(x, ξ) =
p∑
i=1

Qi(fi(x), ξi)

Como hab́ıamos observado anteriormente, la función Q(x, ξ) resulta ser la
suma de las soluciones de los p programas asociados (8) en los que únicamente se
considera un objetivo cada vez. Aśı, si denominamos

Q(f(x), ξ) =
p∑
i=1

Qi(fi(x), ξi), Q(x) = Eξ[Q(x, ξ)],

Q(f(x)) = Eξ[Q(f(x), ξ)],

podemos escribir que

Eξ[Q(x, ξ)] = Q(x) = Q(f(x)) = Eξ[Q(f(x), ξ)]
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Consecuentemente la función objetivo del problema (5)

mı́n Eξ[Q(x, ξ)]
s. a. x ∈ X

se puede escribir con cualquiera de las expresiones de la última igualdad. (Ob-
servación: no se deben confundir Q(x) y Q(f(x)) ya que sus dominios son Rn y
R
p respectivamente).

Hemos demostrado anteriormente que la función objetivo del problema (5)
es convexa. A continuación vamos a comprobar que, cuando la distribución de
probabilidad de la variable aleatoria ξ es discreta, el problema (5) es equivalente
a un problema de programación lineal. Lo haremos en la siguiente propiedad.

3.6. Si la distribución de probabilidad conjunta de la variable aleatoria
ξ es una distribución discreta finita, es decir, ξ toma los valores ξ1, . . . , ξp,
con probabilidades p1, . . . , pp, entonces el problema (5)

mı́n Eξ[Q(x, ξ)]
s.a. x ∈ X

donde

Q(x, ξ) = mı́n
y+,y−

{
p∑
i=1

(w+
i y

+
i + w−i y

−
i ), s. a.f(x) + y− − y+ = ξ, y+ ≥ 0, y− ≥ 0

}

tiene la forma:

mı́n Eξ[Q(x, ξ)] = p1Q(x, ξ1) + . . . + ppQ(x, ξp)
s. a. x ∈ X

donde, para i = 1, . . . , p,

Q(x, ξ1) = mı́n
yi

+,yi
−

{
(w+

i y
+
i + w−i y

−
i )/f(x) + y−i − y+

i = ξi, y+, y− ≥ 0
}
.

Problema que denotaremos como (9).
Este problema es equivalente al programa lineal

mı́n
x,yi

+,yi
−

∑p
i=1 pi(w

+
i y

+
i + w−i y

−
i )

s. a. f(x) + y−i − y+
i = ξi

y+, y− ≥ 0
x ∈ X

(9)

Demostración
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a) Toda solución de (10) lo es de (9). En efecto, supongamos que pi > 0,∀i =
1, . . . , p. Sean x̃i, ỹ

+

i , ỹ
−
i ,∀i = 1, . . . , p soluciones de (10). Entonces,∀i = 1, . . . , pQ(xi, ξi) =

w+ỹ
+

i + w−ỹ
−
i , es decir, no existen ˜̃y+

j ,
˜̃y−j ≥ 0 para algún tales que

f(x1) + ˜̃y−j − ˜̃y+

j = ξi

w+˜̃y+

j + w−˜̃yj < w+ỹ
+

j + w−+ỹ
−
j

porque si para algún j existieran tales y+
j ,

˜̃y−j , entonces la solución de (10) no
seŕıa

x1, ỹ
+

1 , . . . , ỹ
+

p , ỹ
−
1 , . . . , ỹ

−
p

sino

x1, ỹ
+

1 , . . . , ỹ
+

j−1,
˜̃y+

j , ỹ
+

j+1, . . . , ỹ
+

p , ỹ
−
1 , . . . , ỹ

−
j−1,

˜̃y−j , ỹ−j+1, . . . , ỹ
−
p ,

Luego si , x1, ỹ
+

1 , , ỹ
−
1 , i = 1, . . . , p es la solución de (10), entonces

p∑
i=1

pi(w+ỹ
+

i + w−ỹ
−
i ) =

p∑
i=1

piQ(x1, ξi)

y x1 resulta ser solución de (9), ya que si existe x0 ∈ X , tal que

p1Q(x0, ξi) + . . . + p9Q(x0, ξp) <

p1Q(x1, ξi) + . . . + p9Q(x1, ξp)

entonces, existirán ŷ
+

i , ŷ
−
i ≥ 0, i = 1, . . . , p, tales que

f(x0) + ŷ
−
i − ŷ

+

i = ξi, i = 1, . . . , p

p∑
i=1

pi(w+ŷ
+

i + w−ŷ
−
i ) ≤

p∑
i=1

pi(w+ỹ+
i + w−ỹ−i )

y por lo tanto x1, ŷ
+

i , ŷi, i = 1, . . . , p , no seŕıa solución de (10).

b) Toda solución de (9)lo es de (10). En efecto, sea x0 solución de (9) y sea

Q(x0, ξi) = w+ŷ
+

i + w−ŷ
−
i ).

Entonces,
p∑
i=1

piQ(x0, ξi) ≤
p∑
i=1

piQ(x, ξi), ∀x ∈ X,
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lo que significa que se verifica que

p∑
i=1

pi(w+ŷ
+

i + w−ŷ
−
i ) ≤

p∑
i=1

pi(w+y+
i + w−y−i ), ∀x ∈ X,

siendo y+
i , y

−
i ≥ 0 tales que f(x0) + ŷ

−
i − ŷ

+

i = ξi, ∀i = 1, . . . , p. Pero esto es
equivalente a decir que x0, ŷ

+

i , ŷ
+

i ,∀i = 1, . . . , p, es la solución de (10).

4 Una aplicación al diseño de sistemas Bonus-
Malus

En este apartado aplicaremos los resultados anteriores a la resolución de un
problema de tarificación en el marco de la Matemática Actuarial, el problema del
diseño de Sistemas Bonus-Malus óptimos. Como es bien sabido, las compañ́ıas
de seguros a menudo incorporan en sus sistemas de tarificación algunas reglas
que modifican las primas de acuerdo con la experiencia de siniestros de los ase-
gurados, de forma que los asegurados que tienen un mayor número de siniestros
paguen asimismo una prima mayor. Una forma muy habitual de llevar a cabo
estas penalizaciones consiste en establecer un número finito de posibles tipos o
clases de asegurados asociados con diferentes tarifas, de forma que los asegura-
dos con más siniestros tiendan a permanecer en las clases con mayores primas, y
viceversa. En tal caso, se dice que la compañ́ıa ha establecido un Sistema de ta-
rificación Bonus-Malus. Evidentemente, los asegurados pueden cambiar de clase
de acuerdo con ciertas reglas de transición. El diseño de un Sistema Bonus-Malus
requiere establecer el número de clases, las reglas de transición entre ellas, la
clase inicial y la escala de primas. En este art́ıculo solamente nos referiremos
a la elección de una escala de primas que sea óptima respecto de algún criterio.
Este problema ha recibido mucha atención en la literatura, siendo Norberg (1976)
quien estableció el método más importante para el cálculo de una escala de primas
óptima, la denominada escala de Bayes. La importancia de la escala de Bayes
se basa fundamentalmente en que garantiza que el sistema Bonus-Malus tenga la
importante propiedad de equilibrio financiero, es decir, garantiza que la cuant́ıa
total de los ingresos por primas de la compañ́ıa sea suficiente para hacer frente a
los siniestros, en términos de esperanza matemática, lo cual resulta esencial para
la supervivencia de la empresa en el largo plazo. Se trata, sin duda, de una pro-
piedad important́ısima. Sin embargo, en la práctica pueden resultar interesantes
otras propiedades adicionales que ya no están garantizadas en la escala de Bayes.
Por ejemplo, la compañ́ıa de seguros puede desear suavizar el sistema de penaliza-
ciones, en el caso de que el sistema original resulte excesivamente duro y muchos
asegurados prefieran cambiar de compañ́ıa. En los siguientes apartados veremos
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que la metodoloǵıa de Programación Estocástica por Metas permite diseñar esca-
las de primas óptimas que pueden tener en cuenta propiedades interesantes como
la que acabamos de comentar, siempre que se representen matemáticamente me-
diante restricciones lineales. Por supuesto, si el decisor impone un gran número
de tales propiedades, el programa matemático resultante puede ser infactible, por
lo cual el decisor deberá eliminar algunas de ellas o al menos suavizarlas. El
proceso de diseño de un Sistema Bonus-Malus se convierte aśı en un proceso inte-
ractivo, con el objetivo de alcanzar un grado razonable de compromiso entre un
gran número de propiedades que probablemente sean incompatibles entre śı.

5 Definición de un sistema Bonus-Malus

Consideremos una cartera de pólizas en la que existe heterogeneidad debido a
ciertas caracteŕısticas inobservables de las pólizas. Como es usual en la literatura
actuarial, supondremos que las caracteŕısticas respecto al riesgo de cada póliza
están resumidas en el valor de cierto parámetro , que habitualmente se identifica
con la frecuencia media de siniestros. Supondremos asimismo que este número
medio de siniestros se mantiene constante a lo largo del tiempo, y que es inde-
pendiente de la cuant́ıa de los mismos. Si tomamos como unidad monetaria la
cuant́ıa media de un siniestro, nuestro objetivo consistirá en diseñar un sistema
para calcular una prima (pura) para cada asegurado lo más cercana posible al
verdadero valor de su parámetro (que es evidentemente desconocido). Intenta-
remos conseguir este objetivo mediante el diseño de un Sistema de Tarificación
Bonus-Malus (en adelante, SBM). Tales sistemas son habitualmente utilizados
por las compañ́ıas para la tarificación en el seguro del automóvil, dependiendo en
la gran mayoŕıa de los casos del número de siniestros de cada asegurado y no de su
cuant́ıa ( Lemaire (1985 y 1995)). Supondremos, finalmente, que el parámetro de
riesgo Λ es una variable aleatoria cuya función de distribución U(λ) (denominada
función de estructura) es conocida.

Siguiendo a Lemaire (1995, p. 6), diremos que una compañ́ıa de seguros utiliza
un SBM cuando se verifican las siguientes condiciones:

• Existe un número finito de clases {C1, ..., Cn} tales que cada póliza perma-
nece en una clase durante todo el periodo asegurado (usualmente un año).

• La prima calculada para cada póliza depende únicamente de la clase en la
que permanece.

• La clase para cada periodo está determinada por la clase en el periodo
anterior y el número de siniestros durante dicho periodo.

Cada SBM está definido por tres elementos:

• La clase inicial, donde son asignadas las nuevas pólizas.
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• La escala de primas (P1, ..., Pn), donde Pi es la prima asignada a las pólizas
de la clase Ci.

• Las reglas de transición, es decir, las reglas que establecen las condiciones
bajo las cuales las pólizas de la clase Ci se transfieren a la clase Cj durante
el siguiente periodo.

Las reglas de transición se definen habitualmente mediante transformaciones Tk
tales que Tk(i) = j cuando las pólizas de la clase Ci que declaran k siniestros son
transferidas a la clase Cj durante el siguiente periodo. Las transformaciones Tk
se definen mediante matrices,

Tk = (tkij)

tales que
tkij = 1 si Tk(i) = j

tkij = 0 si Tk(i) �= j

La probabilidad condicional de transición de la clase Ci a la Cj en un periodo,
supuesto que Λ = λ, se calcula como

pij(λ) =
∞∑
k=0

pk(λ)tkij

donde pk(λ) es la probabilidad de declarar k siniestros en un periodo, condi-
cionada a que Λ = λ. Es decir,

pk(λ) = Pr[N = k/Λ = λ]

La matriz de probabilidades condicionadas, supuesto que, se define como

P (λ) = (pij(λ))

Estas definiciones permiten considerar al SBM como una cadena de Markov.
La cadena será homogénea, ya que hemos supuesto que cada frecuencia media λ
es estacionaria respecto al tiempo. La matriz de transición P (λ) que acabamos
de definir, será la matriz de transición de la correspondiente cadena de Markov.

Si suponemos además que la cadena es regular, entonces es posible asegurar
(véase, por ejemplo, Kemeny y Snell (1976)) que existe una distribución estacio-
naria de probabilidades condicionales ( π1(λ), . . . , πn(λ)), donde πi(λ) se define
como el valor ĺımite (cuando el número de periodos tiende a infinito) de la pro-
babilidad de que una póliza pertenezca a la clase , condicionada a que . Se puede
demostrar que la distribución estacionaria de probabilidad coincide con el auto-
vector por la izquierda asociado con el autovalor 1 de la correspondiente matriz
de transición, cuyas componentes suman la unidad.
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Se puede definir también la distribución estacionaria de probabilidades (no
condicionadas) (π1, ..., πn) para una póliza arbitraria, como el valor medio de las
correspondientes distribuciones estacionarias condicionadas (π1(λ), ..., πn(λ)). Es
decir,

π1 =
∫
πi(λ)dU(λ)

Evidentemente, pi1 y pi1(λ) pueden interpretarse como las probabilidades de que
una póliza arbitraria y una póliza condicionada a que Λ = λ, respectivamente,
pertenezcan a la clase Ci cuando se alcanza la estacionariedad. El conocimiento
de estas distribuciones estacionarias resulta muy útil a la hora de diseñar un
SBM, ya que nos informa del comportamiento a largo plazo de las pólizas. De
esta forma, añadiremos a nuestras hipótesis anteriores el supuesto de que el SBM
ha alcanzado, o al menos se ha aproximado, a su estado estacionario.

5.1 Cálculo de la escala de primas mediante criterios asin-
tóticos

El método estándar para calcular la escala de primas de un SBM, para un
número de clases y reglas de transición dadas, es conocido como la escala de Bayes
(Norberg (1976)). Dicha escala surge como solución de un problema de decisión
bayesiano, en el que las decisiones factibles coinciden con las posibles escalas de
primas (P1, ..., Pn), los parámetros aleatorios son el verdadero valor del parámetro
Λ y la clase Ci a la que pertenece la póliza al alcanzar el estado estacionario, y la
función de pérdida es una función cuadrática del error de tarificación, de la forma
(Pi − λ)2. La escala óptima o escala de Bayes minimiza entonces el llamado error
cuadrático de tarificación esperado,∫ ∞

0

n∑
i=1

(Pi − λ)2)πi(λ)dU(λ)

siendo la solución de la forma

Pi =
1
πi

∫ ∞
0

λπi(λ)dU(λ)

Como hemos comentado anteriormente, la escala de Bayes constituye el método
básico para la construcción de un SBM óptimo: se trata de una escala de primas
fundamentada teóricamente, fácilmente calculable y con la importante propiedad
de equilibrio financiero. Sin embargo, puede dar lugar a sorpresas desagradables:
por ejemplo, a veces las primas resultantes no forman una secuencia monótona,
lo que impide totalmente su implementación práctica; o, aún siendo monótonas,
las bonificaciones o penalizaciones entre clases consecutivas pueden variar brus-
camente o tomar valores excesivamente grandes o pequeños, lo que dificulta asi-
mismo su uso en un problema real. Por supuesto, todas estas propiedades in-
teresantes (y otras que no mencionamos aqúı: véase Heras, Vilar y Gil (2002))
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podŕıan incluirse como restricciones adicionales del problema de minimización
que da lugar a la escala de Bayes, pero esto exigiŕıa la resolución de un programa
cuadrático con un gran número de restricciones. Y, lo que es más importante, la
introducción de nuevas restricciones impedirá en general que el SBM resultante
esté financieramente equilibrado, lo que elimina la principal razón esgrimida en
la literatura en defensa de la escala de Bayes.

Como exponen Heras, Vilar y Gil (2002), la mayor parte de las propieda-
des razonables que debeŕıa cumplir la escala de primas de un SBM (incluida la
propiedad de equilibrio financiero) se pueden representar matemáticamente por
medio de restricciones lineales. Seŕıa interesante, por tanto, que el programa
matemático que origina la escala de primas fuese asimismo un programa lineal.
Como veremos a continuación, esto se puede conseguir mediante las técnicas de
Programación Estocástica por Metas expuestas en los apartados anteriores.

En efecto, en última instancia el problema de tarificación que estamos estu-
diando consiste en definir un conjunto de primas para las clases del SBM que estén
lo más cerca posible del verdadero valor del parámetro Λ de cada asegurado, lo
cual no tendŕıa ninguna dificultad si conociéramos exactamente el valor de di-
cho parámetro. El problema radica, obviamente, en que no conocemos su valor,
debiendo contentarnos con una distribución de probabilidad. En otras palabras,
debemos elegir el valor de ciertas variables de decisión (las primas) de forma que
nos acerquemos lo más posible al valor de un objetivo que vaŕıa aleatoriamente
(el parámetro). Esto es, evidentemente, un problema que puede modelizarse me-
diante Programación Estocástica por Metas, siendo los valores de las variables
de decisión x iguales a las posibles escalas de primas P = (P1, ..., Pn), y siendo
asimismo los valores aleatorios de los objetivos ξ iguales a los posibles valores del
parámetro Λ. La escala óptima debeŕıa, según lo que hemos visto en apartados
anteriores, minimizar la función (11)

mı́nP {Eλ(Q(P , λ)}

siendo la función Q(P , λ) el resultado de resolver el programa de segunda fase
(12):

Q(P , λ) = mı́n
y+
i
,y−
i
≥0

∑n
i=1(y

+
i + y−i )πi(λ)

sujeto a :
P1 + y+

1 − y−1 = λ
. . .

Pn + y+
n − y−n = λ

No es dif́ıcil darse cuenta que los programas (11) y (12) también podŕıan
haberse obtenido como solución de un programa bayesiano de decisión totalmente
análogo al que da lugar a la escala de Bayes, con la única diferencia de que la
función de pérdida no estaŕıa definida como el cuadrado del error de tarificación,
sino como su valor absoluto |Pi − λ|. La escala de primas que es solución óptima
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de (11) y (12) minimiza, pues, el error absoluto de tarificación esperado, definido
como ∫ ∞

0

n∑
i=1

|Pi − λ|πi(λ)

Como sabemos, la resolución de los programas (11) y (12) puede ser un pro-
ceso complicado. Ahora bien, en la literatura actuarial es habitual trabajar con
aproximaciones discretas de la función de estructura U(λ) . En tal caso, sabe-
mos por la propiedad 3.9 que los programas (11) y (12) son equivalentes a un
programa lineal. En efecto, si el parámetro Λ puede tomar únicamente los va-
lores (λ1, , λm) con probabilidades (q1, , qm), entonces los programas (11) y (12)
equivalen al programa lineal (13):

mı́n
m∑
j=1

n∑
i=1

(y+
ij + y−ij)πi(λ)qj

sujeto a :

P1 + y−11 + y+
11) = λ1

. . .
P1 + y−1m + y+

1m) = λm
. . .

Pn + y−n1 + y+
n1) = λ1

. . .
cPn + y−nm + y+

nm) = λm
Pi, y

+
ij , y

−
ij ≥ 0

La resolución del programa (13) se puede llevar a cabo fácilmente en un or-
denador personal, añadiendo todas las restricciones (lineales) que el decisor con-
sidere conveniente.

Veamos un ejemplo sencillo. Supongamos que el parámetro Λ puede tomar
únicamente tres valores, λ1 = 0.5, λ2 = 1, λ3 = 1.5, todos ellos con probabilidad
1/3, y que solamente existen tres clases de bonus-malus.

Supongamos asimismo que las reglas de transición implican las siguientes dis-
tribuciones condicionales estacionarias:

π1(λ1) = 3
5 ; π2(λ1) = 1

5 ; π3(λ1) = 1
5

π1(λ2) = 1
3 ; π2(λ2) = 1

2 ; π3(λ2) = 1
6

π1(λ3) = 1
4 ; π2(λ3) = 1

4 ; π3(λ3) = 1
2

La distribución estacionaria incondicional será:

π1 = ( 3
5 + 1

3 + 1
4 ) 1

3 = 71
60

1
3

π2 = ( 1
5 + 1

2 + 1
4 ) 1

3 = 19
20

1
3

π3 = ( 1
5 + 1

6 + 1
2 ) 1

3 = 13
15

1
3
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Supongamos que, por razones comerciales, deseamos obtener una escala de primas
que penalice a los malos conductores con una prima cuya cuant́ıa sea el doble que
la de los buenos. Es decir, tal que P3 = 2P2. En tal caso debeŕıamos resolver el
programa lineal (13), añadiendo la restricción anterior y, por supuesto, la referente
al equilibrio financiero:

P1π1 + P2π2 + P3π3 = E(Λ) = 1

La escala de primas óptima, obtenida de la resolución del programa estocástico
por metas (13) junto con las dos nuevas restricciones adicionales, resulta ser

P1 = 0.7031
P2 = 1.0
P3 = 1.4062

La metodoloǵıa expuesta permitiŕıa la introducción de todas las restricciones
lineales adicionales que sean necesarias, con la única limitación de que el programa
lineal resultante siga siendo factible.
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[6] Heras, A. & Garćıa Aguado, A. (1998). “Stochastic Goal Programming
with Recourse”, Revista de la Real Academia de CC. F́ısicas, Exactas y
Naturales 92 (4), 409-414.
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[8] Heras, A., Vilar, J. L. & Gil, J. A. (2002). “Asymptotic Fairness of Bonus-
Malus Systems and Optimal Scales of Premiums”, The Geneva Papers on
Risk and Insurance Theory 27, 61-82.

[9] Kall, P. (1976). “Stochastic Linear Programming”. Springer-Verlag, New
York. 10.

Kall, P. & Wallace, S. W. (1994). “Stochastic Programming”, John Wiley
& Sons, New York.

[10] Kemeny, J. G. & Snell, J. L. (1976). “Finite Markov Chains”, Springer-
Verlag, Berlin.

[11] Kibzun, A. & Kan, Y. S. (1996). “Stochastic Programming Problems”, John
Wiley and Sons, Chichester.

[12] Lemaire, J. (1985). “Automobile Insurance. Actuarial Models”, Kluwer-
Nijhoff Publishing, Dordrecht.

[13] Lemaire, J. (1995). “Bonus-Malus Systems in Automobile Insurance”, Klu-
wer Academic Publishers, Dordrecht.

[14] Norberg, R. (1976). “A Credibility Theory for Automobile Bonus Systems”,
Scandinavian Actuarial Journal, 92-107.

[15] Romero, C. (1991). “Handbook of Critical Issues in Goal Programming”,
Pergamon Press, Oxford.
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1 Introducción

Las listas de espera sanitarias representan un grave problema que ha sido
desde los años setenta objeto de debate entre los profesionales de la salud. La
existencia de listas de espera puso en duda la correcta gestión de la sanidad
española y movilizó a las Administraciones Sanitarias para solventar la situación
lo antes posible. En la actualidad, la situación es lo suficientemente grave como
para justificar la búsqueda conjunta de soluciones en todos los ámbitos: el poĺıtico,
el de los profesionales de la salud y el académico.

La existencia de listas de espera en la atención sanitaria es un problema que
afecta al derecho de los ciudadanos a la protección de la salud reflejando un
desajuste entre la demanda y la oferta de asistencia sanitaria, que implica una
necesidad sanitaria no cubierta en el momento en que se solicita. Esta situación
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supone un deterioro de la calidad asistencial que percibe el paciente que siente
angustia ante el desconocimiento del tiempo de espera en la lista; pudiendo llegar
a suponer, incluso, un detrimento de su salud.

Los factores que pueden influir en la generación y persistencia de las listas de
espera son diversos: los avances en medicina e investigación médica que generan
demanda de atención, el incremento en la esperanza de vida y la mayor disponibi-
lidad de información que tienen los pacientes que hace más dif́ıcil en la actualidad
que acepten demoras.

Los gobiernos de diferentes páıses han llevado a cabo actuaciones dirigidas
a paliar las implicaciones sanitarias y sociales que comportan las listas de es-
pera. Inicialmente los esfuerzos se centraron en reducir el volumen de las listas,
entendiendo por volumen el número de pacientes en espera; sin embargo, en la
actualidad la atención se centra en la disminución del tiempo de espera más que
en su volumen, que en śı mismo no posee significado alguno.

Aunque son diversas las ĺıneas de actuación propuestas para abordar el pro-
blema de la existencia de listas de espera, todas parten de la idea común de que
el problema es de asignación de recursos y de su correcta gestión. La literatura
en el ámbito de la sanidad, encaminada a la propuesta de soluciones, es escasa en
relación a la magnitud del problema planteado. No existen prácticamente traba-
jos que afronten el tema desde una perspectiva cuantitativa, por ello es necesario
disponer de instrumentos que permitan conocer, ordenar, gestionar, analizar, de-
cidir y evaluar con fiabilidad, en tiempo real y según los requerimientos de cada
momento, las formas de organización y funcionamiento de los hospitales públicos.

El problema de la reducción de las listas de espera no es estrictamente de
financiación económica, sino principalmente, como ya hemos señalado, de gestión
eficiente, lo entendemos como un problema de decisión con criterios múltiples. En
este trabajo exponemos un instrumento de gestión de listas de espera quirúrgicas
desarrollado con metodoloǵıa multicriterio difusa y con los datos de un hospital de
agudos del tipo II del INSALUD, extensible a cualquier otro hospital de similares
caracteŕısticas.

2 Metodoloǵıa

Es habitual que el ser humano deba tomar decisiones sobre problemas de cierta
complejidad que incluyen varios objetivos, que pueden ser total o parcialmente
conflictivos entre śı, de manera que la mejora en cualquiera de ellos puede empeo-
rar el valor de otros objetivos que son evaluados de acuerdo a múltiples criterios
y donde no es evidente la mejor u óptima alternativa.

Hoy en d́ıa, superando los procesos clásicos de análisis que atienden a un solo
criterio económico, se consideran múltiples criterios u objetivos en los procesos de
planificación de entidades o empresas de interés público. Este tipo de análisis se
recomienda, y a veces se impone por ley en algunos páıses, como obligatorio para
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analizar problemas de aprovechamiento de recursos naturales como el agua, las
minas o cualquier otro, respecto del que la población tenga expectativas expĺıcitas;
entre estos problemas está la provisión de los servicios sanitarios que constituye
el núcleo de este trabajo.

Son muchos los problemas de naturaleza económica que se caracterizan porque
en la elección de la mejor decisión se han de tener en cuenta varios criterios y,
por tanto, se desea alcanzar más de un objetivo. La Programación Multiobjetivo
y, en general, la teoŕıa de la decisión multicriterio, se encarga de la resolución
de problemas de este tipo y, por tanto, su aplicación a problemas económicos es
clara.

La formalización, que normalmente implica una simplificación de la realidad,
obliga al investigador a “elegir entre realizar desde el inicio una selección de
elementos a considerar, para poder operar después con un instrumental preciso, o
bien captar la realidad con toda su imprecisión y operar con estas informaciones
borrosas, aún sabiendo que los resultados vendrán dados de manera imprecisa”
(Kaufmann y Gil Aluja, (1986)). Al final la duda que como modelizadores se nos
plantea, es elegir, como señalan estos autores “entre un modelo preciso pero que
no refleja la realidad y un modelo vago pero más adecuado a la realidad”.

La Teoŕıa de los Subconjuntos Difusos, debida a por Lofti A. Zadeh (1965) y
la Teoŕıa de la Posibilidad asociada a ella, nacen como una solución matemática a
la multitud de problemas y situaciones de la vida real a los que las teoŕıas clásicas
-conjuntista o probabiĺıstica- no pod́ıan dar solución. Los subconjuntos difusos
tienen la capacidad de modelizar modos de razonamiento no preciso, que juegan
un papel esencial en la toma de decisiones racionales en entornos de incertidumbre
e imprecisión. La Teoŕıa de los Subconjuntos Difusos proporciona herramientas
adecuadas para representar un problema de Programación Multiobjetivo Lineal
con datos vagos/ imprecisos.

Hasta hace pocos años, se han utilizado herramientas de la Teoŕıa de la Pro-
babilidad para modelizar la incertidumbre que surge en los procesos de decisión.
Sin embargo, en muchas ocasiones el Decisor no puede comportarse de una forma
que pueda ser descrita mediante los axiomas de las probabilidades subjetivas. Es
necesario hacer una distinción entre la incertidumbre que corresponde a hechos
frecuencialmente estables, y que por tanto están sujetos a leyes del azar (con lo
que admiten un tratamiento probabiĺıstico) y la incertidumbre inherente a aque-
llos fenómenos a los que tienen que enfrentarse las ciencias sociales, en los que
además de los hechos inciertos de la naturaleza surgen los que introduce el ser
humano producto de su libertad y poder de imaginación. Aparece entonces la
necesidad de recurrir a nuevas herramientas para modelizar la imprecisión.

Mediante el presente trabajo proponemos un instrumento de gestión de listas
de espera quirúrgicas basándonos en los datos de un hospital público. El problema
de las listas de espera es como ya hemos dicho, un problema de toma de decisiones
racionales con presencia de criterios múltiples en un entorno de incertidumbre e
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imprecisión . Se trata por tanto de un problema de Programación Multiobjetivo
Lineal con datos vagos/imprecisos.

Para su resolución aplicaremos una metodoloǵıa basada en la Programación
Compromiso y en la Teoŕıa de los Subconjuntos Difusos, la Programación Compro-
miso Posibiĺıstica (Arenas et al. (2004)) que nos permitirá manejar la imprecisión
de los datos del modelo y obtener un compromiso entre los logros de eficiencia y
la equidad.

2.1 Programación Compromiso Posibiĺıstica

Sea el siguiente problema de Programación Multiobjetivo Lineal con paráme-
tros difusos:

mı́n z̃ = (z̃1, z̃2, · · · , z̃k) = (c̃1x, c̃2x, · · · , c̃kx)

s.a. x ∈ ξ(Ã, b̃) =
{

ãix ≤ b̃i, i = 1, · · · ,m
x ≥ 0

}
(FP-MOLP)

donde xt = (x1, x2, · · · , xk) es el vector de variables decisión (no difusas), c̃t =
(c̃1, c̃2, · · · , c̃k) son los parámetros difusos de los k objetivos considerados, Ã =
[ãij ]m×n es la matriz de coeficientes tecnológicos difusos y b̃t = (b̃1, b̃2, · · · , b̃m)
son los términos independientes de las restricciones, también parámetros difusos.

Supondremos que los parámetros anteriores están descritos por números difu-
sos representados por sus distribuciones de posibilidad, que el analista matemático
estima a partir de la información que le proporciona el Decisor (Tanaka, (1987)).

El desconocimiento o imprecisión de los parámetros de las restricciones del mo-
delo implican la necesidad de definir en este contexto el concepto de factibilidad de
un vector de decisión x. Esta cuestión conlleva la necesidad de comparar números
difusos. En este trabajo utilizaremos el método de ordenación de números difusos
desarrollado por Jiménez (1996) manipulando los números difusos a través de sus
intervalos y valores esperados, definidos por Heilpern (1992)1.

El intervalo esperado de un vector difuso ãi = (ãi1, ãi2, · · · , ãin) es un vector
cuyas componentes son los intervalos esperados de cada número difuso del vector
ãi, es decir: EI(ãi) = (EI(ãi1), EI(ãi2), · · · , EI(ãin)).

Definición 13 Dados dos números difusos ã y b̃, definimos la relación difusa de
preferencia µM (ã, b̃), ã es preferido a b̃ ( ã es menor que b̃) mediante la siguiente

1Dado un número difuso triangular ã = (aL, aC , aR), obtendremos su intervalo esperado
(EI(ã)) y su valor esperado (EV (ã)) de la manera siguiente:

EI(ã) = [Eã1 , E
ã
2 ] =

[
aL + aC

2
,
aC + aR

2

]
, EV (ã) =

Eã1 + Eã2
2

.
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función de pertenencia:

µM (ã, b̃) =


0 si Eã

1 > E b̃
2

Eb̃
2−Eã

1

Eã
2−Eã

1 +Eb̃
2−Eb̃

1

si ∈ [E b̃
1 − Eã

2 , E
b̃
2 − Eã

1 ]

1 si Eã
2 > E b̃

1

(16.1)

Si µM (ã, b̃) ≤ β, con β ∈ [0, 1] diremos que ã es preferido a b̃ al menos en un
grado igual a β denotándolo por ã ≤β b̃. Si β = 1

2 los valores esperados de ã y b̃

son iguales y por ello diremos que ã y b̃ son indiferentes. Teniendo en cuenta la
definición 1 tenemos que:

(1− β)Eã
1 + βEã

2 ≤ E b̃
1 + (1− β)E b̃

2 (16.2)

La consideración de la relación de preferencia difusa de Jiménez (1996) da
lugar a la siguiente definición:

Definición 14 Un vector de decisión x ∈ Rn, diremos que es β-factible para el
problema (FP-MOLP) si verifica las restricciones al menos en un grado β. Es
decir,

ãix ≤β b̃i, i = 1, . . . ,m. (16.3)

Las definiciones anteriores nos permiten plantear el siguiente problema β-
paramétrico mediante el que resolveremos el problema inicial FP-MOLP:

mı́n z̃ = (z̃1, z̃2, · · · , z̃k) = (c̃1x, c̃2x, · · · , c̃kx)

s.a. x ∈ χ(β) =
{

x ∈ Rn | ãix ≤β b̃i, i = 1, · · · ,m
x ≥ 0

}
(β-FP-MOLP)

Teniendo en cuenta la definición 1, este problema es equivalente a:

mı́n z̃ = (z̃1, z̃2, · · · , z̃k) = (c̃1x, c̃2x, · · · , c̃kx)

s.a. (1− β)Eãi
1 + βEãi

2 ≤ E b̃i
1 + (1− β)E b̃i

2 , i = 1, · · · ,m
x ≥ 0

}
= χ(β)

Para poder aplicar la Programación Compromiso a la resolución del problema,
necesitamos obtener en primer lugar la solución ideal difusa del problema β-FP-
MOLP. Nos basaremos para ello en el método de resolución de un problema
mono-objetivo lineal con parámetros difusos ( β-FLP), propuesto por Arenas et
al. (1998):

mı́n z̃ = c̃x

s.a. x ∈ χ(β) (β-FLP)
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Este método proporciona una solución difusa, en el espacio de objetivos defi-
nida por su distribución de posibilidad; está basado en el principio de extensión
(Zadeh, (1975)) y en la distribución de posibilidad conjunta de los parámetros
difusos del modelo y se basa en los α-cortes de la solución para la obtención de su
distribución de posibilidad (Arenas et al. (1998), (1999a), (1999b)). En el citado
trabajo se ha probado que la solución z̃∗(β) del problema ( β-FLP) es un número
difuso. Basándonos en estos resultados definimos a continuación el concepto de
solución -ideal difusa del problema FP-MOLP:

Definición 15 Una solución β-ideal difusa del problema FP-MOLP en el espacio
de objetivos, z̃∗(β) = (z̃∗1(β), z̃∗2(β), . . . , z̃∗k(β)) , es un vector cuyas componentes
son números difusos obtenidos resolviendo k β-FLP problemas.

Una vez obtenida la solución ideal difusa, trataremos de encontrar un vector
de decisión x, con un grado de factibilidad fijado por el Decisor, que determine
una solución difusa c̃rx lo más próxima posible a la solución ideal difusa z∗r (β).
El problema a resolver será por lo tanto el siguiente:

Hallar un x ∈ χ(β) tal que:

EI(c̃rx)−̃→EI(z∗r (β)), r = 1, . . . , k, (16.4)

siendo EI(c̃rx) = [E c̃rx
1 , E c̃rx

2 ] y EI(z∗r (β)) = [Ez∗r (β)
1 , E

z∗r (β)
2 ].

Definición 16 (Arenas et al. (2004)). Dados dos números difusos c̃rx y z̃∗r (β)
representados por sus intervalos esperados, llamaremos conjunto discrepancia en-
tre ambos y lo denotaremos por CDr(c̃rx, z̃∗r (β)), al siguiente conjunto de números
reales no negativos:

CDr(c̃rx, z̃∗r (β)) =
{∣∣∣E z̃∗r (β)

1 − E c̃rx
1

∣∣∣ , ∣∣∣E z̃∗r (β)
2 − E c̃rx

2

∣∣∣} , r = 1, . . . , k (16.5)

por tanto, los elementos del conjunto discrepancia son las diferencias en valor
absoluto entre los extremos correspondientes de los intervalos esperados.

Definición 17 (Arenas et al. (2004)). Llamaremos discrepancia entre los números
difusos c̃rx y z̃∗r (β) y lo denotaremos Dr, al elemento máximo del conjunto dis-
crepancia:

Dr = máx
{∣∣∣E z̃∗r (β)

1 − E c̃rx
1

∣∣∣ , ∣∣∣E z̃∗r (β)
2 − E c̃rx

2

∣∣∣} , r = 1, . . . , k. (16.6)

Consideraremos preferible la obtención de soluciones difusas menos imprecisas
(con menor amplitud) que sus correspondientes soluciones en el punto β-ideal
difuso:

E c̃rx
1 − E c̃rx

1 ≤ E
z̃∗r (β)
2 − E

z̃∗r (β)
1 (16.7)
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lo cual permite definir la discrepancia entre cada objetivo difuso y su correspon-
diente componente en la solución β-ideal difusa, z̃∗r (β), de la siguiente manera:

Dr = máx
{
E c̃rx

1 − E
z̃∗r (β)
1 , E

z̃∗r (β)
2 − E c̃rx

2

}
, r = 1, . . . , k. (16.8)

Con la definición de discrepancia y la condición de menor imprecisión, es
posible afirmar que:

EI(c̃rx)−̃→EI(z∗r (β)), r = 1, . . . , k, si y sólo si Dr −→ 0 (16.9)

Es decir, consideramos que si la discrepancia es nula, el intervalo esperado de
cada objetivo difuso y el intervalo esperado de la correspondiente componente de
la solución ideal difusa, son iguales. Por lo tanto, podemos concluir que alcanzar
la solución ideal difusa es equivalente a alcanzar discrepancia nula para todos los
objetivos:

(D1, D2, . . . , Dk) = (0, 0, . . . , 0) (16.10)

Abordaremos esta tarea mediante un problema de Programación Compromiso
no difusa, cuyo objetivo es minimizar la discrepancia entre la solución β-ideal
difusa y los objetivos difusos, siendo la solución ideal de este nuevo problema no
difuso el vector nulo y definiéndose las soluciones β-compromiso de la siguiente
manera:

Definición 6. Un vector de decisión x∗ es una solución β-compromiso del
problema FP-MOLP, si es solución compromiso del siguiente problema:

mı́n (D1, D2, . . . , Dk)
s. a : x ∈ χ(β) (16.11)

El problema (16.11) no es difuso y el enfoque de Programación Compromiso
que utilizaremos para resolverlo estará basado en la siguiente familia de problemas
basados en distancias Lp:

Problem LP :

mı́n Lp = mı́n

(
k∑

r=1

wp
rD

p
r

) 1
p

s. a : x ∈ χ(β)

(16.12)

donde wr ≥ 0 es un coeficiente normalizador y que pondera la importancia relativa
que tiene la discrepancia entre cada función objetivo difusa y su correspondiente
componente en la solución ideal difusa. Estos coeficiente son fijados por el Decisor
mediante un proceso interactivo con el analista matemático.

Si consideramos la métrica p = 1 la correspondiente solución compromiso se
obtiene resolviendo el siguiente problema de programación lineal:
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Problem L1 :

mı́n L1 = mı́n
k∑

r=1

wrDr

s. a : x ∈ χ(β)

(16.13)

La consideración de la métrica L∞, conlleva la minimización de la máxima dis-
crepancia de entre las discrepancias individuales. Consecuentemente, la solución
compromiso correspondiente a esta métrica se obtiene resolviendo el problema:

Problem L∞ :

mı́n L∞ = mı́n máx
r

wrDr

s. a : x ∈ χ(β)
(16.14)

Este problema es un problema MIN-MAX que puede reformularse de la si-
guiente manera:

mı́n DT
s. a : x ∈ χ(β)

DT ≥ wrDr, r = 1, . . . , k
(16.15)

siendo DT = máxwrDr, r = 1, . . . , n.
Las soluciones correspondientes a los problemas (16.13) y (16.14) son las so-

luciones compromiso que se obtienen con más frecuencia debido principalmente,
a que para métricas distintas a p = 1 y p = ∞ los problemas planteados no son
lineales y requieren para su resolución de algoritmos de resolución de programas
matemáticos no lineales. Además, Blasco et al. (1999) demuestran como bajo
ciertas condiciones, estas soluciones acotan el conjunto completo de soluciones
compromiso.

3 Presentación del problema.

Descripción del modelo: datos y variables.

Hemos trabajado, como ya hemos señalado, con seis servicios quirúrgicos per-
tenecientes a un hospital tipo II del INSALUD. Sin embargo en este trabajo pre-
sentaremos los resultados correspondientes a un solo servicio, Ciruǵıa General,
que consideramos suficientemente representativo del problema.

Denotaremos las variables del problema según los servicios a los que pertene-
cen los procesos y a aquellos por su inicial; en nuestro caso Ciruǵıa General que
será denotado mediante una C. Si el proceso se realiza en forma horaria normal,
la variable que define el servicio carecerá de prefijo; si se realiza en forma extraor-
dinaria, sea interna o externa, el prefijo será una X. Cada proceso vendrá definido
por dos sub́ındices. Un primer ı́ndice i, hará referencia al proceso y un segundo
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Modalidad Servicio Proceso Mes

--/X C i j

Lista Servicio Proceso Mes

L C i j

CÓDIGO Nombre Proceso Variable
241 Bocio Multinodular C01
278 Obesidad Mórbida C02

454 Varices C03
455 Hemorroides C04
550 Hernias Inguinales C05
553 Otras Hernias 

Abd i l
C06

565 Fisura/Fístula anal C07

574 Colelitiasis C08
685 Quiste Pilonidal C09
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ı́ndice j, nos informará del mes en que debe realizarse el proceso de referencia. Si
se trata de nombrar la lista de cualquiera de los procesos, se precederá la variable
representativa del servicio de la letra L.

Tabla 1. Formato de las variables de actividad o variables de decisión.

Tabla 2. Formato de las variables de lista de espera o variables de estado.

Consideraremos nueve procesos quirúrgicos que representan aproximadamente
un 45% de la actividad total del servicio considerado:

Tabla 3. Servicio: Ciruǵıa General.

Trabajaremos con un peŕıodo de planificación actualizado que comprende los
meses desde abril a diciembre de 1999.

Restricciones.

Las restricciones del modelo que nos ocupa serán de cuatro tipos:

• Ecuaciones de estado.

• Horas de quirófanos por servicio.

• Ĺımites superiores a la permanencia en lista de espera.

• Cotas superiores de actividad extraordinaria.
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a) Ecuaciones de estado, j = 4,...,12.

L̃Ci(j+1) = L̃Cij + ÃN ij −XCij − Cij (16.16)

donde L̃Cij refleja el estado de la lista de espera para el proceso i al principio
del mes j. ÃN ij = Ãij − S̃ij recoge el número de admisiones netas estimadas
(admisiones, Ãij , menos exclusiones, S̃ij , sin haber sido sometidos a intervención
quirúrgica) para el proceso i del servicio C por mes j. Estas ecuaciones definen
el estado de la lista de espera para cada proceso y en cada mes. Determinada la
actividad quirúrgica a llevar a cabo durante el peŕıodo de planificación, propor-
cionan información a cerca de la evolución mensual de las listas de espera de los
procesos considerados.

Los datos sobre admisiones (Ãij ) y exclusiones (S̃ij) para el año 1999 serán
tratados como números difusos triangulares dado su carácter incierto y tendrán
la siguiente estructura:

Admisiones Ãij = (MEA
ij , PR

A
ij , PE

A
ij)

Exclusiones S̃ij = (MES
ij , PR

S
ij , PE

S
ij)

donde PRA
ij y PRS

ij recogen los peores datos reales históricos para las admisiones
y exclusiones respectivamente; PEA

ij y PES
ij son las estimaciones pesimistas del

Decisor y MEA
ij y MES

ij son sus estimaciones optimistas.

Las tablas 4 y 5 recogen las estimaciones sobre admisiones y exclusiones que
se elaboran, considerando dichas admisiones y exclusiones como datos imprecisos
representados por números difusos triangulares.
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COD.

241 (7, 8 10) (5, 6 8) (4, 4 5) (5, 5 7) (5, 5 7) (14, 15 20) (7, 8 10) (5 5 7) (8, 9 12)

278 (3, 3 4) (4, 4 5) (2, 2 3) (1, 1 1) (2, 2 3) (5, 5 7) (4, 4 5) (2, 2 3) (5, 5 7)

454 (22, 24 31) (23, 25 33) (20, 22 29) (15, 17 22) (11, 12 16) (19, 21 27) (22, 24 31) (26, 29 38) (14, 15 20)

455 (15, 17 22) (14, 15 20) (10, 11 14) (11, 12 16) (7, 8 10) (7, 8 10) (12, 13 17) (16, 18 23) (13, 14 18)
550 (49, 54 70) (54, 60 78) (51, 57 74) (42, 47 61) (27, 30 39) (46, 51 66) (56, 62 81) (65, 72 94) (37, 41 53)

553 (23, 26 34) (19, 21 27) (23, 25 33) (23, 25 33) (14, 15 20) (26, 29 38) (31, 34 44) (32, 35 46) (18, 20 26)

565 (16, 18 23) (14, 15 20) (14, 16 21) (11, 12 16) (9, 10 13) (8, 9 12) (19, 21 27) (19, 21 27) (14, 16 21)

574 (21, 23 30) (27, 30 39) (22, 24 31) (15, 17 22) (13, 14 18) (19, 21 27) (23, 25 33) (21, 23 30) (18, 20 26)
685 (24, 27 35) (29, 32 42) (23, 25 33) (17, 19 25) (13, 14 18) (17, 19 25) (35, 39 51) (43, 48 62) (30, 33 43)

DicAgo Sep Oct NovAbr May Jun Jul

(0, 0 (0, 0 (1, 1 (0, 0 (0, 0 (0, 0 (0, 0 (0, 0 (0, 0
(1, 1 (0, 0 (0, 0 (0, 0 (0, 0 (0, 0 (0, 0 (0, 0 (0, 0
(2, 2 (0, 0 (0, 0 (0, 0 (0, 0 (1, 1 (1, 1 (0, 0 (0, 0
(0, 0 (1, 1 (0, 0 (0, 0 (0, 0 (1, 1 (0, 0 (2, 2 (1, 1
(4, 4 (1, 1 (0, 0 (1, 1 (0, 0 (5, 5 (4, 4 (5, 5 (0, 0
(1, 1 (0, 0 (1, 1 (0, 0 (2, 2 (5, 5 (3, 3 (1, 1 (1, 1
(0, 0 (1, 1 (0, 0 (0, 0 (0, 0 (0, 0 (0, 0 (0, 0 (1, 1
(1, 1 (0, 0 (5, 6 (1, 1 (0, 0 (4, 4 (2, 2 (2, 2 (0, 0
(5, 5 (1, 1 (1, 1 (0, 0 (1, 1 (2, 2 (2, 2 (2, 2 (1, 13) 1)

3) 0)
685 7) 1) 1) 0) 1) 3) 3)

0) 1)
574 1) 0) 8) 1) 0) 5) 3)

1) 1)
565 0) 1) 0) 0) 0) 0) 0)

7) 0)
553 1) 0) 1) 0) 3) 7) 4)

3) 1)
550 5) 1) 0) 1) 0) 7) 5)

0) 0)
455 0) 1) 0) 0) 0) 1) 0)

0) 0)
454 3) 0) 0) 0) 0) 1) 1)

0) 0)
278 1) 0) 0) 0) 0) 0) 0)

Nov Dic
241 0) 0) 1) 0) 0) 0) 0)

Jul Ago Sep OctCOD. Abr May Jun
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Tabla 4. Admisiones estimadas.

Tabla 5. Exclusiones estimadas.

b) Horas de quirófano por servicio y mes.

Estas restricciones sólo afectan a la planificación quirúrgica que se lleva a cabo
en horario ordinario:

9∑
i=1

t̃iCij ≤ CQj (16.17)

donde CQj indica en minutos el tiempo de quirófano del que dispone este ser-
vicio para el mes j y donde ti es la estimación hecha sobre la duración de cada
intervención quirúrgica.

Consideramos como dato difuso, la duración de cada intervención quirúrgica
que representaremos mediante el siguiente número difuso triangular:

t̃i = (MEt
i , DRt

i, PE
t
i ) (16.18)

donde DRt
i es el tiempo medio de duración de una intervención, que ha sido

determinado utilizando los datos procedentes de los partes de quirófano, más
veinte minutos, que es el tiempo requerido para preparar los quirófanos para la
siguiente intervención; MEt

i , y PEt
i son la mejor y peor estimación acerca de la

duración de cada intervención, proporcionadas por el Centro Decisor.
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ME DR PE

241 Bocio Multinodular C01 151 151 182

278 Obesidad Mórbida C02 155 155 186

454 Varices C03 135 135 162
455 Hemorroides C04 74 74 89

550 Hernias Inguinales C05 114 114 137

553 Otras Hernias Abdominales C06 134 134 161

565 Fisura/ Fístula Anal C07 62 62 75

574 Colelitiasis C08 135 135 162
685 Quiste Pilonidal C09 63 63 76

COD. Nombre Proceso Variable Estimación Tiempo
(minutos)

Abr May Jun Jul Ago Sep Oct Nov Dic

Minutos 3955 4704 4976 3316 2997 2997 5183 4815 4385

COD. 241 278 454 455 550 553 565 574 685

Lista 17 13 51 21 118 58 28 59 49

374 Planificación óptima de la actividad quirúrgica

Tabla 6. Estimación de la duración de las intervenciones quirúrgicas.

Los datos referentes a los tiempos de quirófano asignados, en este caso, al
servicio de Ciruǵıa General son los que se muestran en la tabla siguiente:

Tabla 7. Horas de quirófano asignadas al servicio de Ciruǵıa.

c) Ĺımites superiores a la permanencia en lista de espera: no más de
seis meses.

Con las siguientes ecuaciones reflejamos el hecho de que a lo largo del año
1999 el tiempo máximo que un paciente puede permanecer en lista de espera debe
ser de seis meses, para ello exigimos que la suma de las actividades ordinaria y
extraordinaria realizadas entre enero del año en curso y el mes k-ésimo, supere al
número de paciente que llevaŕıan seis o más meses en lista de espera para cada
proceso i en el momento k:

k∑
j=04

[Cij + XCij ] ≥ sik (16.19)

El cálculo de las cotas mı́nimas, que serán la parte derecha de las ecuaciones,
es sencillo, se realiza a partir del estado de la lista de espera al comienzo del
periodo de planificación y a partir de ah́ı se van acumulando estos valores mes a
mes. El estado de la lista de espera al comienzo del peŕıodo de planificación (1
de abril de 1999) es el siguiente:

Tabla 8. Estado inicial de las listas de espera.
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COD. Abr May Jun Jul Ago Sep Oct Nov Dic

241 5 8 11 21 23 28 32 40 40
278 2 3 6 7 9 19 22 26 28

454 13 13 16 27 39 67 91 102 139
455 9 10 10 11 19 31 46 52 67
550 21 39 48 62 103 166 199 258 346
553 15 25 29 46 64 85 125 143 183
565 5 8 9 11 19 37 53 69 93

574 4 13 26 42 57 85 95 123 141
685 13 14 16 16 27 65 90 102 122
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Los parámetros de los términos independientes, por proceso y mes, calculados
de la forma descrita y para las previsiones llevadas a cabo, se recogen en la
siguiente tabla:

Tabla 9. Parámetros sik correspondientes a Ciruǵıa General.

d) Cotas al número de procesos realizables fuera de horario normal

Estas restricciones consistirán en desigualdades del tipo:

XCij ≥ rij (16.20)

El significado de estas ecuaciones no es otro que el de acotar la actividad
global mı́nima que a priori se acuerda derivar en base a los datos históricos. Esta
actividad mı́nima ha de indicarse por proceso y mes. Reflejan información de tipo
cualitativo: el Decisor conoce de antemano que algunos procesos, imposibles de
asumir, serán derivados en al menos ciertas cantidades, que a lo largo del año se
irán concretando. Igualmente conoce que algunos otros procesos no se derivarán,
salvo graves problemas. Este es el caso de las intervenciones de Hernias Inguinales
que es el proceso quirúrgico que mayores listas de espera presenta en el servicio de
Ciruǵıa General; el Centro Hospitalario establece que para este proceso se derive
a otros centros al menos una intervención al mes:

XC5j ≥ 1, j = 4, . . . , 12. (16.21)

También existen procesos quirúrgicos que debido a su complejidad cĺınica el
Centro Hospitalario no desea derivar a otros centros. Este es el caso de tres
procesos: Bocio Multinodular, Obesidad Mórbida y Colelitiasis:

12∑
j=4

XC1j = 0;
12∑
j=4

XC2j = 0;
12∑
j=4

XC8j = 0. (16.22)

e) No impondremos que las variables de este problema sean enteras por dos
razones: Una de ellas es que los tiempos estimados por proceso son tiempos
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medios, lo que imposibilita la exactitud de resultados, y la otra deriva de la
complejidad computacional asociada a un problema entero con tan gran número
de variables.

Objetivos.

Este problema, como ya hemos dicho, pretende determinar la actividad quirúrgica
ordinaria y extraordinaria óptimas que es necesario planificar por parte de la ge-
rencia del Hospital para que, teniendo en cuenta el flujo de pacientes de las diver-
sas patoloǵıas que acuden al centro hospitalario, aquellos puedan ser atendidos
dentro del marco de excelencia que es exigible a un servicio público de este tipo.

La disponibilidad de tiempo de quirófano es la más fuerte de las restricciones a
la actividad de cada servicio dado que, hoy en d́ıa, como ya se ha señalado, muchos
procesos son susceptibles de ser realizados mediante Ciruǵıa Mayor Ambulatoria
y por ello el número de camas instaladas en el centro limita poco o nada la
actividad.

La determinación del número de procesos, por mes y servicio, que es necesario
realizar para mantener las listas de espera en los niveles deseados, nos lleva a
considerar dos objetivos.

El primero proporcionará la máxima capacidad operativa del centro en su
horario y configuración ordinarios y el segundo determinará la actividad mı́nima
indispensable que ha de realizarse de modo extraordinario, todo ello para verificar
el requisito marco de máxima permanencia en lista de espera. Estos objetivos se
expresan mediante las funciones objetivo que a continuación detallamos:

La primera de las funciones objetivo se formulará simplemente como la maxi-
mización del total de la actividad a realizar de manera ordinaria por mes, proceso
y servicio, a lo largo del año:

máx
9∑
i=1

12∑
j=04

[Cij ] (16.23)

La segunda función objetivo minimiza la suma de la actividad externa que
será necesario llevar a cabo:

mı́n
9∑
i=1

12∑
j=04

[XCij ] (16.24)

El Decisor hospitalario considera que los dos objetivos poseen la misma im-
portancia, por lo que fija los siguientes pesos W1 = W2 = 1.
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El problema que resolveremos será por tanto:

máx(F̃1,−F̃2) =

 9∑
i=1

12∑
j=4

t̃iCij ,

9∑
i=1

12∑
j=4

t̃iXCij


sujeto a:
L̃Ci(j+1) = L̃Cij + ÃN ij −XCij − Cij , i = 1, . . . , 9, j = 4, . . . , 12
9∑
i=1

t̃iCij ≤ CQj

9∑
i=1

k∑
j=4

[Cij + XCij ] ≥ sik (P)

XC5j ≥ 1, j = 4, . . . , 12
12∑
j=4

XC1j = 0;
12∑
j=4

XC2j = 0;
12∑
j=4

XC8j = 0

El problema (P) es un problema de Programación Multiobjetivo Lineal Posi-
biĺıstica.

Problemas resueltos

En ausencia de pesos subjetivos preferenciales asignaremos el mismo peso a
ambos objetivos (W1 = W2 = 1). El problema Multiobjetivo Lineal β-Paramétrico
mediante el que determinaremos las soluciones β-eficientes del problema (P) es el
siguiente:

máx(−̃F1, F̃2) =

− 9∑
i=1

12∑
j=4

t̃iCij ,

9∑
i=1

12∑
j=4

t̃iXCij


sujeto a:

LCi(j+1) = LCij + (1− β)EÃNij

2 + βE
ÃNij

1 −XCij − Cij
9∑
i=1

[̃(1− β)E t̃i
1 + βE t̃i

2 ]Cik ≤ CQk

9∑
i=1

k∑
j=4

Cij + XCij ≥ sik

XC5j ≥ 1, j = 4, . . . , 12
12∑
j=4

XC1j = 0;
12∑
j=4

XC2j = 0;
12∑
j=4

XC8j = 0

i = 1, . . . , 9, j = 4, . . . , 12



χ(β)

(16.25)
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Hemos resuelto el problema (16.25) de manera interactiva con el Decisor que
fija sucesivamente los distintos niveles de factibilidad que está dispuesto a asumir.
Fijado el nivel en que se han de satisfacer las restricciones, hemos obtenido la
solución β-ideal difusa mediante sus α-cortes. En la Tabla 10 se incluyen las
distribuciones de posibilidad del punto ideal (F̃1, F̃2) formado por los valores
óptimos de cada objetivo para cada nivel de factibilidad fijado por el Decisor.

Como se puede observar en la Tabla 10, la solución “empeora” a medida que el
Decisor establece factibilidades, β , mayores, es decir, a mayor nivel de factibilidad
menores niveles de actividad interna y mayores de actividad externa.

Tabla 10. Distribuciones de posibilidad de la solución β-ideal difusa.

β = 0.6
α F̃ ∗1 F̃ ∗2
0 [30854, 43544] [80325, 113380]

0, 2 [31930, 42148] [82895, 109478]
0, 4 [33001, 40631] [85828, 105792]
0, 6 [34131, 39160] [88572, 101899]
0, 8 [35160, 37657] [91601, 98198]
1 [36244, 36244] [94312, 94312]

β = 0.8
α F̃ ∗1 F̃ ∗2
0 [29838, 42107] [81341, 114816]

0, 2 [30877, 40737] [83945, 110901]
0, 4 [31897, 39288] [86932, 107135]
0, 6 [32960, 37845] [89732, 103211]
0, 8 [33982, 36403] [92780, 99452]
1 [35034, 35034] [95522, 95522]

β = 1
α F̃ ∗1 F̃ ∗2
0 [28775, 40617] [82403, 116316]

0, 2 [29781, 39330] [85041, 112294]
0, 4 [30776, 37901] [88053, 108532]
0, 6 [31817, 36535] [90874, 104521]
0, 8 [32785, 35109] [93978, 100746]
1 [33811, 33811] [96746, 96746]

La maximización de la actividad interna como único criterio, por ejemplo,
implicaŕıa niveles de actividad externa muy elevados para poder mantener las
listas de espera en los niveles deseados (Tabla 11), por ello no parece aconsejable
la aplicación de poĺıticas que tengan en cuenta un solo criterio de decisión.
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COD. Apr May Jun Jul Aug Sep Oct Nov Dic

241 0 0 0 0 0 0 0 0 0
278 0 0 0 0 0 0 0 0 0

454 74 26 23 3 0 0 0 0 0
455 39 15 12 1 0 0 0 0 0

550 338 1 1 1 1 1 1 1 1

553 183 0 0 0 0 0 0 0 0
565 93 0 0 0 0 0 0 0 0

574 0 0 0 0 0 0 0 0 0
685 122 0 0 0 0 0 0 0 0
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Tabla 11. Actividad externa correspondiente a la solución F̃ ∗1 con nivel de
posibilidad α = 1 y β = 0.8.

Una vez hallada la solución ideal, determinamos las soluciones β-compromiso
difusas, L1 y L∞. Utilizaremos para ello la siguiente notación:

Dr = máx
{
E c̃rx

1 − E
z̃∗r (β)
1 , E

z̃∗r (β)
2 − E c̃rx

2

}
, r = 1, 2, DT = máxDr

EI(c̃1x) = EI(F̃1) =
[
EF̃1

1 , EF̃1
2

]
=

[
E t̃i

1 , E
t̃i
2

] 9∑
i=1

12∑
j=4

Cij

EI(c̃2x) = EI(F̃2) =
[
EF̃2

1 , EF̃2
2

]
=

[
E t̃i

1 , E
t̃i
2

] 9∑
i=1

12∑
j=4

XCij

EI(z̃∗r ) = EI(F̃ ∗r ) =
[
E
F̃∗r
1 , E

F̃∗r
2

]
En la siguiente tabla aparecen recogidos los intervalos esperados de las solu-

ciones compromiso para los distintos niveles de factibilidad fijados por el Decisor.

Tabla 12. Soluciones compromiso β-difusas.

β = 0.6

F̃ ∗1 F̃ ∗2 EI(F̃ ∗1 ) EI(F̃ ∗1 )
L1 (30837, 36214, 43542) (80341, 94342, 113381) (33526, 39878) 87342, 103862)
L∞ (30840, 36230, 43540) (80339, 94326, 113384) (33535, 39885) 87333, 103855)

β = 0.8

L1 (29784, 34976, 42053) (81395, 95580, 114870) (32380, 38515) 88488, 105225)
L∞ (29820, 35018, 42107) (81358, 95539, 114816) (32419, 38563) 88449, 105178)

β = 1

L1 (28771, 33806, 40602) (82407, 96750, 116321) (31289, 37204) 89579, 106536)
L∞ (28775, 33810, 40604) (82403, 96746, 116319) (31293, 37207) 89575, 106533)

Rect@ Monográfico 2 (2004)



COD. Abr May Jun Jul Ago Sep Oct Nov Dic

241 5 3 13 0 7 0 12 0 0
278 2 1 5 0 11 0 6 1 2
454 0 0 0 0 0 0 0 0 3
455 0 0 0 0 0 0 0 0 0
550 0 0 0 0 0 0 0 0 0
553 0 0 0 0 0 0 0 0 0
565 8 0 3 0 0 0 18 22 16
574 16 28 13 23 0 17 8 22 18
685 0 0 0 0 0 13 0 0 0

COD. Abr May Jun Jul Ago Sep Oct Nov Dic

241 5 16 0 0 2 5 12 0 0
278 2 12 0 0 11 9 0 4 2
454 0 0 0 0 0 0 0 0 0
455 0 0 0 0 0 0 0 0 0
550 0 0 0 0 0 0 0 0 0
553 0 0 0 0 0 0 0 0 0
565 2 3 17 0 16 0 12 18 22
574 19 0 27 23 11 5 17 21 18
685 0 0 0 0 0 0 0 0 0

380 Planificación óptima de la actividad quirúrgica

El problema A1 (ver apéndice) proporciona una solución de máxima eficiencia
al minimizar la suma ponderada de las discrepancias, es decir, al maximizar el
nivel de logro agregado y ponderado de los objetivos. Esta solución, sin embargo,
puede presentar un sesgo hacia el nivel de logro de algún objetivo en particular.
Por el contrario, el problema A2 (ver apéndice) proporciona una solución de
máximo equilibrio entre los niveles de logro de los objetivos, al tener en cuenta
sólo la minimización de la mayor de las discrepancias individuales. Resulta, por lo
tanto, interesante presentar al Decisor ambas soluciones y ofrecerle la posibilidad
de elegir o bien una planificación quirúrgica que maximice la eficiencia o bien una
planificación quirúrgica que implique máximo equilibrio entre todos los criterios
considerados.

Si observamos las tablas 13, 14, 15 y 16 vemos como para ambas soluciones
compromiso la actividad interna total es prácticamente la misma debido a las
restricciones en la disponibilidad de quirófanos en el hospital; pese a ello, existen
diferencias en la distribución de dicha actividad entre los distintos procesos a lo
largo del peŕıodo de planificación.

Tabla 13. Solución compromiso L1: Actividad Interna. β = 0.8.

Tabla 14. Solución compromiso L∞: Actividad Interna. β = 0.8.
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COD. Abr May Jun Jul Ago Sep Oct Nov Dic

241 0 0 0 0 0 0 0 0 0
278 0 0 0 0 0 0 0 0 0
454 74 26 23 13 0 0 0 0 0
455 39 3 0 25 0 0 0 0 0
550 338 1 1 1 1 1 1 1 1
553 183 0 0 0 0 0 0 0 0
565 0 0 0 9 0 0 0 0 0
574 0 0 0 0 0 0 0 0 0
685 122 0 0 0 0 0 0 0 0

COD. Abr May Jun Jul Ago Sep Oct Nov Dic

241 0 0 0 0 0 0 0 0 0
278 0 0 0 0 0 0 0 0 0
454 74 26 0 39 0 0 0 0 0
455 39 15 12 1 0 0 0 0 0
550 338 1 1 1 1 1 1 1 1
553 183 0 0 0 0 0 0 0 0
565 3 0 0 0 0 0 0 0 0
574 0 0 0 0 0 0 0 0 0
685 122 0 0 0 0 0 0 0 0
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Tabla 15. Solución compromiso L1: Actividad Externa. β = 0.8.

Tabla 16. Solución compromiso L∞: Actividad Externa. β = 0.8.

Finalmente, podemos completar la información ofrecida al Decisor con la evo-
lución mensual esperada de las listas de espera quirúrgicas, determinada por la
planificación quirúrgica elegida. ( Figura 1 y Figura 2).

Figura 1. Evolución esperada de las listas de espera quirúrgicas. Solución
Compromiso L1 para β = 0.8.
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Figura 2. Evolución esperada de las listas de espera quirúrgicas. Solución
Compromiso L∞ para β = 0.8.

La información a cerca de la evolución esperada de las listas de espera puede
ser muy útil para el Decisor a la hora de determinar si es o no posible lograr los
objetivos relativos a la máxima permanencia en lista de espera establecidos por
el Ministerio de Sanidad al principio de cada año, por ello estos datos pueden ser
utilizados por el Decisor hospitalario a la hora de negociar con el Ministerio de
Sanidad las condiciones a firmar en los Contratos de Gestión.

4 Conclusiones

En este trabajo hemos presentado un modelo que permite planificar de manera
óptima la actividad quirúrgica de un hospital público, con el propósito de propor-
cionar al Decisor hospitalario datos cuantitativos que le sirvieran de soporte para
analizar la coherencia de los objetivos relativos a las listas de espera quirúrgicas,
planteados por las autoridades sanitarias.

El desconocimiento y/o imprecisión de algunos datos del problema implicó la
necesidad de considerarlos como números difusos. Las estimaciones sobre admi-
siones y exclusiones de pacientes, aśı como las estimaciones sobre la duración de
las intervenciones quirúrgicas han sido establecidas por el Decisor en términos de
la lógica difusa debido a la imposibilidad de obtener series temporales para esos
datos. Esta situación nos ha llevado a resolver el problema mediante un enfoque
de Programación Multiobjetivo Lineal Posibiĺıstica. La aplicación de la Progra-
mación Compromiso a la resolución del problema nos proporcionó un conjunto de
soluciones compromiso dependientes del nivel de cumplimiento de las restriccio-
nes establecido por el Decisor. De entre estas soluciones son de especial interés la
solución L1 y la solución L∞, que implican planificaciones quirúrgicas de máxima
eficiencia y máximo equilibrio entre los objetivos, respectivamente.

Rect@ Monográfico 2 (2004)



J. Antomil et al. 383

Creemos que el modelo propuesto es un instrumento útil para la toma de
decisiones en problemas de gestión de listas de espera en hospitales públicos,
debido a la presencia de múltiples criterios de decisión y a la imprecisión y/o
incertidumbre de los datos que se manejan en este tipo de problemas.
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Apéndice

Problema A1: determinación de la solución β-compromiso L1.

Min D1 + D2 + δ1 + δ2
sujeto a :
9∑
i=1

12∑
j=1

E t̃i
1 Cij − E

F̃∗1
1 −D1 ≤Mδ1

E
F̃∗1
1 −

9∑
i=1

12∑
j=1

E t̃i
1 Cij −D1 ≤M(1− δ1)

9∑
i=1

12∑
j=1

E t̃i
1 XCij − E

F̃∗2
1 −D2 ≤Mδ2

E
F̃∗2
1 −

9∑
i=1

12∑
j=1

E t̃i
1 XCij −D2 ≤M(1− δ2)

E
F̃∗1
1 −

9∑
i=1

12∑
j=1

E t̃i
2 XCij −D1 ≤Mδ1

9∑
i=1

12∑
j=1

E t̃i
2 Cij − E

F̃∗1
2 −D1 ≤M(1− δ1)

E
F̃∗2
2 −

9∑
i=1

12∑
j=1

E t̃i
2 XCij −D2 ≤Mδ2

9∑
i=1

12∑
j=1

E t̃i
2 Cij − E

F̃∗1
2 −D2 ≤M(1− δ1)

[
E t̃i

2 − E t̃i
1

] 9∑
i=1

12∑
j=1

Cij ≤
[
E
F̃∗1
2 − E

F̃∗2
1

]
+ Mδ1

[
E t̃i

2 − E t̃i
1

] 9∑
i=1

12∑
j=1

Cij + M(1− δ1) ≥
[
E
F̃∗1
2 − E

F̃∗2
1

]
[
E t̃i

2 − E t̃i
1

] 9∑
i=1

12∑
j=1

XCij ≤
[
E
F̃∗1
2 − E

F̃∗2
1

]
+ Mδ2

[
E t̃i

2 − E t̃i
1

] 9∑
i=1

12∑
j=1

XCij + M(1− δ2) ≥
[
E
F̃∗1
2 − E

F̃∗2
1

]
δp ∈ {0, 1}, p = 1, 2.
χ(β)
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Problema A1: determinación de la solución β-compromiso L∞.

Min DT + δ1 + δ2
sujeto a :
9∑
i=1

12∑
j=1

E t̃i
1 Cij − E

F̃∗1
1 −DT ≤Mδ1

E
F̃∗1
1 −

9∑
i=1

12∑
j=1

E t̃i
1 Cij −DT ≤M(1− δ1)

9∑
i=1

12∑
j=1

E t̃i
1 XCij − E

F̃∗2
1 −DT ≤Mδ2

E
F̃∗2
1 −

9∑
i=1

12∑
j=1

E t̃i
1 XCij −DT ≤M(1− δ2)

E
F̃∗1
1 −

9∑
i=1

12∑
j=1

E t̃i
2 XCij −DT ≤Mδ1

9∑
i=1

12∑
j=1

E t̃i
2 Cij − E

F̃∗1
2 −DT ≤M(1− δ1)

E
F̃∗2
2 −

9∑
i=1

12∑
j=1

E t̃i
2 XCij −DT ≤Mδ2

9∑
i=1

12∑
j=1

E t̃i
2 Cij − E

F̃∗1
2 −DT ≤M(1− δ1)

[
E t̃i

2 − E t̃i
1

] 9∑
i=1

12∑
j=1

Cij ≤
[
E
F̃∗1
2 − E

F̃∗2
1

]
+ Mδ1

[
E t̃i

2 − E t̃i
1

] 9∑
i=1

12∑
j=1

Cij + M(1− δ1) ≥
[
E
F̃∗1
2 − E

F̃∗2
1

]
[
E t̃i

2 − E t̃i
1

] 9∑
i=1

12∑
j=1

XCij ≤
[
E
F̃∗1
2 − E

F̃∗2
1

]
+ Mδ2

[
E t̃i

2 − E t̃i
1

] 9∑
i=1

12∑
j=1

XCij + M(1− δ2) ≥
[
E
F̃∗1
2 − E

F̃∗2
1

]
δp ∈ {0, 1}, p = 1, 2.
χ(β)
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José E. Boscáa, Vicente Liernb1, Aurelio Mart́ınezc,
Ramón Salab
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1 Introducción

El Análisis Envolvente de Datos, DEA2, es una metodoloǵıa que permite ana-
lizar las fronteras de producción y proporciona una medida de la eficiencia pro-
ductiva [11]. Aunque pueden encontrarse algunos antecedentes en la literatura
económica [28], sus oŕıgenes pueden establecerse en el trabajo de Charnes, Cooper
y Rhodes [8] y los de Banker, Charnes y Cooper [1] o Charnes et al. [9].

En esencia, los métodos DEA definen la frontera de producción a partir de
dos ideas básicas:

1Este trabajo ha sido parcialmente subvencionado por por TIC 2002-04242-C03
2Son las siglas de Data Envelopment Analysis.
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a) La noción de Pareto-Koopmans [12, 19] de eficiencia, dado que que una
unidad productiva, DMU3, es eficiente si y sólo si, ninguno de sus inputs
o outputs puede mejorarse sin empeorar alguno de los restantes inputs o
outputs.

b) El concepto de eficiencia relativa, puesto que una unidad se evalúa como
eficiente si, y sólo si, el comportamiento del resto de DMUs no muestra que
alguno de sus inputs o outputs puede ser mejorado sin empeorar alguno de
los restantes inputs o outputs.

Se trata por tanto de identificar las unidades productivas que se muestran mejores
y éstas son las que definen la frontera de posibilidades de producción. A conti-
nuación la eficiencia del resto de DMUs se mide evaluando su desviación respecto
de esta frontera. Precisamente esta medición relativa es la que marca la impor-
tancia de la homogeneidad y tecnoloǵıa común que debe exigirse a las diferentes
DMUs, puesto que de otro modo la comparación podŕıa carecer de sentido [19].

Los modelos DEA suponen una alternativa a los enfoques paramétricos clásicos
de análisis de fronteras de producción que precisan de una relación funcional
expĺıcita que relacione la variable dependiente con las variables independientes.
Además, en estos métodos suelen ser necesarias necesarias hipótesis relativas a la
distribución del término asociado con la ineficiencia y del término de error, por
ejemplo que sean una muestra aleatoria de una distribución normal.

Si bien es innegable que las técnicas DEA, se han convertido en algo más de
dos décadas en una herramienta imprescindible en muchos estudios de eficiencia,
lo cierto es que en los últimos años ha habido autores [2, 4, 16, 17] que han
advertido de las dificultades de utilizar directamente estas técnicas a problemas
reales. En estos modelos se asume que los inputs y los outputs utilizados son
datos precisos, sin embargo se sabe que a menudo los datos que se manejan están
afectados de incertidumbre. Por lo tanto, es necesario extender estas técnicas de
manera que pueda incorporarse la incertidumbre al propio modelo. En nuestro
trabajo mostraremos algunas de las formas de conseguir este objetivo utilizando
subconjuntos borrosos [33]. No obstante, no ha sido nuestra intención recoger de
forma exhaustiva todas las propuestas que existen en la literatura actual, sino
aquellas que, a nuestro juicio, teńıan una aplicación más directa al análisis de la
eficiencia en las ligas de fútbol profesional.

2 Análisis envolvente de datos clásico

El modelo matemático básico que formularon Charnes, Cooper y Rhodes
(CCR) [7, 8], para n DMUs con m inputs y s outputs, cada una, fue el siguiente
modelo de programación matemática fraccional:

3Las siglas corresponden a Decision Making Units.
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Max wo =

s∑
r=1

uroyro

m∑
i=1

vioxio

s.a

s∑
r=1

uroyrj

m∑
i=1

vioxij

≤ 1, 1 ≤ j ≤ n

uro ≥ 0, 1 ≤ r ≤ s
vio ≥ 0, 1 ≤ i ≤ m

(17.1)

donde el sub́ındice 0 representa la DMU que se va a evaluar, xij e yrj representan
las cantidades del input i y del output r de la DMU j-ésima, y uro y vio son las
ponderaciones asignadas al input i y al output r correspondientes a la DMU cuya
eficiencia se está evaluando.

Posteriormente, Charnes, Cooper y Rhodes [9] exigieron que las poderaciones
fuesen estrictamente positivas, es decir, sustituyeron las restricciones de no nega-
tividad por uro ≥ ε y vio ≥ ε con ε > 0. Por otro lado, como resolver el modelo
fraccional supone dificultades computacionales, los mismos autores propusieron
dos modelos lineales equivalentes conocidos como CCR lineal con orientación
input (si minimizamos el denominador manteniendo fijo el numerador) y CCR
lineal con orientación output (si maximizamos el numerador manteniendo fijo el
denominador). Estos modelos son:

Orientación output Orientación input

Max φo =

n∑
i=1

uroyro Min ϕo =

R∑
j=1

vjoxjo

sujeto a sujeto a
s∑
r=1

uroyrj −
m∑
i=1

vioxij ≤ 0, 1 ≤ j ≤ n
s∑
r=1

uroyrj −
m∑
i=1

vioxij ≤ 0, 1 ≤ j ≤ n
m∑
i=1

vioxij = 1

s∑
r=1

uroyrj = 1

uro ≥ ε, 1 ≤ r ≤ s uro ≥ ε, 1 ≤ r ≤ s
vio ≥ ε, 1 ≤ i ≤ m vio ≥ ε, 1 ≤ i ≤ m

En nuestra aplicación, como ocurre en la mayoŕıa de trabajos de análisis de
eficiencia se trabaja con los modelos duales de los anteriores, que son los siguientes:
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Orientación output Orientación input

Min θo − ε
(

m∑
i=1

s+i +

s∑
r=1

s−r

)
Max ηo + ε

(
m∑
i=1

s+i +

s∑
r=1

s−r

)
sujeto a sujeto a

n∑
j=1

λjxij + s+i = θ0xio, 1 ≤ i ≤ m
n∑
j=1

λjxij + s+i = xio, 1 ≤ i ≤ m

n∑
j=1

λjyrj − s−r = yro, 1 ≤ r ≤ s
n∑
j=1

λjyrj − s−r = η0yro, 1 ≤ r ≤ s

λj ≥ 0, 1 ≤ j ≤ n λj ≥ 0, 1 ≤ j ≤ n
s+i ≥ 0 s+i ≥ 0
s−r ≥ 0 s−r ≥ 0

donde la variable θo (ó ηo) representa el ratio de eficiencia de la DMU que se está
analizando, las variables λj son los parámetros con los que se obtiene el grupo de
referencia de la DMU objeto de estudio y las variables s+i y s−r son variables de
holgura.

Suele preferirse el el enfoque dual, en lugar del primal, porque el dual tiene
m+ s restricciones mientras que el primal n+ 1. Cooper et al. [10] establecieron
que para que el análisis tenga sentido debeŕıa verificarse n + 1 > m + s. En este
sentido, resulta más eficiente resolver el dual, y determinar de forma más directa
los pesos asociados a cada uno de los inputs y outputs.

3 Análisis envolvente de datos con incertidumbre
o datos imprecisos

En los procesos de toma de decisiones, cuando se utiliza un modelo matemático
éste puede verse afectado por los valores numéricos que han sido introducidos.
Conviene ser conscientes de que la validez de los resultados puede depender de la
asignación numérica a parámetros desconocidos, para los que sólo podemos tener
en cuenta estimaciones o conjeturas. En ocasiones no hay realmente ninguna base
fundada para suponer que el parámetro en cuestión va a seguir una distribución
de probabilidad concreta. Por tanto, no se trata de una incertidumbre estocástica,
donde es posible un tratamiento probabiĺıstico, sino de otro tipo de incertidumbre
para la que resulta muy útil el uso de la teoŕıa de conjuntos borrosos.

La teoŕıa de conjuntos borrosos, concebida por Zadeh en la década de los se-
senta [33], incluye la incertidumbre en el propio formalismo. En esencia, consiste
en sustituir los conjuntos tradicionales, a los cuales un elemento dado puede per-
tenecer o no, por las funciones de pertenencia, que son aplicaciones de un conjunto
referencial dado X en el intervalo [0, 1]. Es decir, un conjunto (o subconjunto)
borroso Ã de X es

Ã = { (x, µÃ(x)), x ∈ X }
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donde µÃ(x) es una función que indica el grado de pertenencia a Ã de los ele-
mentos de X llamada función de pertenencia .

Por ejemplo, un conjunto borroso 5̃ podŕıa representarse gráficamente de la
forma siguiente:

0 5
Sα(A)

α
µ (x)
A

Fig 1: Función de pertenencia para el número borroso 5̃.

Un grado de pertenencia nulo se interpreta como no pertenencia, el 1 como
pertenencia en el sentido booleano y los números intermedios reflejan una perte-
nencia incierta, que será interpretada de diversos modos según cada aplicación.
La potencia de esta teoŕıa se debe a que a través de la pertenencia a un conjunto
se puede modelizar cualquier situación.

A continuación recordamos algunas definiciones básicas que permiten formular
esta teoŕıa:

a) Un conjunto borroso Ã es normalizado si, y sólo si, supx∈X µÃ(x) = 1

b) Un α-corte de un conjunto Ã (ver Fig. 1) es el conjunto

Sα(Ã) = {x ∈ X : µÃ(x) ≥ α }.

c) Un conjunto borroso es convexo si cada α-corte es convexo.

d) Un número borroso es un conjunto borroso normal y convexo con función
de pertenencia una función real continua a trozos.

Entre todas las posibilidades de números borrosos, los más utilizados son los
que se conocen como números LR-borrosos:

Definición 18 Un número borroso M̃ se dice que es un número LR-borroso,

M̃ = (mL,mR, αL, αR)L,R,
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si su función de pertenencia tiene la forma siguiente:

µM̃ (r) =


L

(
mL−r
αL

)
r ≤ mL

1 mL ≤ r ≤ mR

R
(
r−mR

αR

)
r ≥ mR

donde L y R son funciones referencia, es decir, L,R: [0,+∞[→ [0, 1] son estric-
tamente decrecientes en supp(M̃) = {r : µM̃ (r) > 0} y semicontinuas superior-
mente de modo que

L(0) = R(0) = 1.

Cuando el soporte de µM̃ está acotado, las funciones L y R se definen en [0, 1]
y se verifica L(1) = R(1) = 0. Gráficamente, seŕıa lo siguiente:

RL

M
µ

1

mL mR + αmR R- αmL L

Fig 2: Función de pertenencia para el número LR-borroso.

Cuando las funciones L y R son lineales, es decir

L(z) = R(z) = máx{0, 1− z},

el número borroso se denomina trapezoidal y si además mL = mR entonces se
tiene número borroso triangular

Aunque hay diversas formas de evaluar una combinación lineal de números
borrosos, nosotros emplearemos una de las más utilizadas en programación lineal
borrosa: la T -norma mı́nimo que, para números LR-borrosos consiste en lo si-
guiente: Dados n números LR-borrosos ãj = (aLj , a

R
j , α

L
j , α

R
j )L,R, j = 1, . . . , n y

n escalares xj > 0, j = 1, . . . , n, tenemos

n∑
j=1

ãjxj =

 n∑
j=1

aLj xj ,

n∑
j=1

aRj xj ,

n∑
j=1

αLj xj ,

n∑
j=1

αRj xj


L,R

, (17.2)

donde L y R son las funciones de referencia comunes a todos ellos.
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Ordenación de números borrosos

La ordenación de números borrosos ha sido, y es, un tema que ha ocupado
a muchos investigadores, puesto que en la práctica puede depender mucho de la
situación modelizada y del entorno al que se aplica. En muchas ocasiones, una
forma práctica de resolverlo ha sido comparar los números mediante la compa-
ración de sus α-cortes. Aunque con este método no se maneja toda la información
que recogen los números borrosos, lo cierto es que ha sido uno de los métodos
más utilizados en programación matemática borrosa.

Para precisar las ordenaciones a la que nos estamos refiriendo, conviene pre-
cisar el concepto de máximo de dos números borrosos:

Definición 19 Dados M̃ y Ñ dos números borrosos, M̃∨Ñ representa el número
borroso cuya función de pertenencia viene dada por

µM̃∨Ñ (r) = sup
r=s∨t

{µM̃ (s) ∧ µÑ (t)}. (17.3)

Dubois and Prade propusieron ordenar dos números borrosos M̃ y Ñ de la
forma siguiente [31]:

M̃ ∼> Ñ ⇐⇒ M̃ ∨ Ñ = M̃, (17.4)

Posteriormente, Ramı́k y Ř́ımánek [31] establecieron una caracterización más
operativa de este orden en términos de α-cortes:

Proposición 5 Dados dos números borrosos M̃ y Ñ , entonces

M̃ ∼> Ñ ↔


ı́nf{s : µM̃ (s) ≥ h} ≥ ı́nf{t : µÑ (t) ≥ h}
y ∀h ∈ [0, 1]
sup{s : µM̃ (s) ≥ h} ≥ sup{t : µÑ (t) ≥ h}

(17.5)

En particular, para números borrosos trapezoidales M̃ = (mL,mR, αL, αR) y
Ñ = (nL, nR, βL, βR), la expresión (17.5) es equivalente a

M̃ ∼> Ñ ↔
{

mL ≥ nL, mL − αL ≥ nL − βL

mR ≥ nR, mR + αR ≥ nR + βR
(17.6)

A pesar de que esta ordenación es muy clara desde el punto de vista teórico,
lo cierto es que en la práctica suele conducir a situaciones de indecisión. Para
evitar este inconveniente, Tanaka, Ichihasi y Asai propusieron una noción menos
restrictiva de orden [31]:

Definición 20 Sean M̃ y Ñ dos números borrosos y un número real h ∈ [0, 1].
Entonces,

M̃ ∼>
hÑ ↔


ı́nf{s : µM̃ (s) ≥ k} ≥ ı́nf{t : µÑ (t) ≥ k}
y ∀k ∈ [h, 1]
sup{s : µM̃ (s) ≥ k} ≥ sup{t : µÑ (t) ≥ k}

(17.7)
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Si los números que se comparan son LR-borrosos con soporte acotado, para
un h dado, este método de ordenación resulta

M̃ ∼>
hÑ ↔

{
mL − L∗(h)αL ≥ nL − L∗(h)βL,

mR + R∗(h)αR ≥ nR + R∗(h)βR,
(17.8)

donde L∗(k) = sup {z : L(z) ≥ k} , R∗(k) = sup {z : R(z) ≥ k} .
Este orden, al ser menos restrictivo que (17.6) permite abordar para cada

nivel h, muchas situaciones que en global no estaban representadas por números
borrosos ordenados, es decir de las que no se pod́ıa asegurar ni M̃ ∼> Ñ ni Ñ ∼> M̃ .

4 Modelos de eficiencia con incertidumbre

En los últimos años han aparecido muchos modelos que permiten calcular la
eficiencia teniendo en cuenta la incertidumbre. Estos modelos no sólo difieren
desde el punto de vista técnico, sino que abordan la eficiencia desde enfoques
diferentes. En este trabajo presentamos ejemplos de dos enfoques que agrupan a
gran número de ellos:

a) Dado un conjunto {DMUi}ni=1 de n DMUs, podemos definir el conjunto
borroso

Ẽf =
{ (

DMUi, µẼf (DMUi)
)
, i = 1, . . . , n

}
,

de manera que será más eficiente aquella DMU que tenga un grado de
pertenencia mayor a Ẽf .

b) Para cada DMU se obtiene la eficiencia como un conjunto borroso. Por
lo tanto, disponemos de n conjuntos borrosos {Ẽi}ni=1. En este contexto,
analizar la eficiencia consiste en ordenar los números borrosos Ẽi.

Para mostrar algunos modelos de estos enfoques partimos de que la incerti-
dumbre en los inputs y los outputs está expresada mediante números borrosos
trapezoidales4, es decir

x̃ij = (xLij , x
R
ij , α

L
ij , α

R
ij), i = 1, ...,m, j = 1, ..., n,

ỹrj = (yLrj , y
R
rj , β

L
rj , β

R
rj), r = 1, ..., s, j = 1, ..., n.

Por tanto, sus α-cortes se puede escribir como

xij = [xLij + αLij(α− 1), xRij − αRij(α− 1)], α ∈ [0, 1]

4En realidad los métodos que aqúı se presentan son válidos para números LR-borrosos.
Sin embargo no creemos conveniente complicar la notación y los cálculos puesto que en las
aplicaciones que presentamos (y en la gran mayoŕıa de las que aparecen en la literatura) suelen
usarse números trapezoidales o triangulares.
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yrj = [yLrj + βLrj(α− 1), yRrj − βRrj(α− 1)], α ∈ [0, 1]

4.1 Cálculo de eficiencia con datos inciertos

Para ilustrar este método seguiremos la propuesta de León et al [17]. Partimos
del modelo

mı́n θ0

s.a. : n∑
j=1

λj x̃ij ∼< θ0x̃i0 i = 1, ...,m

n∑
j=1

λj ỹrj ∼> ỹr0 r = 1, ..., s

λj ≥ 0 j = 1, ..., n

(17.9)

Como los inputs y los outputs son números LR-borrosos, las restricciones
pueden verse como desigualdades entre números LR. Si en particular ∼< se
interpreta como hemos dicho en (17.5) y las combinaciones lineales como (17.2),
el problema puede escribirse como

(Ph) mı́n θ0

sujeto a :
n∑
j=1

λjx
L
ij ≤ θ0x

L
i0 i = 1, ...,m

n∑
j=1

λjx
R
ij ≤ θ0x

R
i0 i = 1, ...,m

n∑
j=1

λjx
L
ij − (1− h)

n∑
j=1

λjα
L
ij ≤ θ0x

L
i0 − (1− h) θ0α

L
i0 i = 1, ...,m

n∑
j=1

λjx
R
ij + (1− h)

n∑
j=1

λjα
R
ij ≤ θ0x

R
i0 + (1− h) θ0α

R
i0 i = 1, ...,m

n∑
j=1

λjy
L
rj ≥ yLr0 r = 1, ..., s

n∑
j=1

λjy
R
rj ≥ yRr0 r = 1, ..., s

n∑
j=1

λjy
L
rj − (1− h)

n∑
j=1

λjβ
L
rj ≥ yLr0 − (1− h)βLr0 r = 1, ..., s

n∑
j=1

λjy
R
rj + (1− h)

n∑
j=1

λjβ
R
rj ≥ yRr0 + (1− h)βRr0 r = 1, ..., s

λj ≥ 0 j = 1, ..., n

(17.10)
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En este caso, para el conjunto {DMUj}nj=1 de las n DMUs, podemos definir
un conjunto borroso de eficiencia como

Ẽf =
{ (

DMUj , µẼf (DMUj)
)
, j = 1, . . . , n

}
.

donde la función de pertenencia está dada por

µ
Ẽf

(DMUj) =
{

0 si θ∗j (h) �= 1 ∀h ∈ [0, 1],
sup{h : θ∗j (h) = 1} si θ∗j (h) = 1 para algún h ∈ [0, 1].

Y entonces, el grado de pertenencia µ
Ẽf

(DMUj) proporciona una medida de
la eficiencia de la j-ésima DMU.

4.2 Ordenación de DMUs por eficiencias

Para este método seguiremos el enfoque de Kao y Liu [16]. El objetivo es or-
denar las DMUs por eficiencias suponiendo que tanto los inputs como los outputs
son números LR-borrosos. Para calcular la eficiencia de cada DMU y calculan la
eficiencia de cada DMU de la

a) Calcula la eficiencia de la j-ésima DMU en el caso más desfavorable, es decir
se suponen los mayores inputs para ella y los menores para el resto, mientras
que se suponen los menores outpus para la unidad analizada y los mayores
para las restantes. El cálculo se realiza a través de α-cortes, es decir, para
cada α ∈ [0, 1] se calcula el valor (Ej)Lα a partir del modelo siguiente:

(Ej)Lα = máx
s∑

r=1

ur(yLrj + βLrj(α− 1))/vi(xRij − αRij(α− 1))

s.a
t∑

k=1

uk(yLrj + βLrj(α− 1))/vj(xRij − αRij(α− 1)) ≤ 1

t∑
k=1

uk(yRrj − βRrj(α− 1))/vj(xLij + αLij(α− 1)) ≤ 1, 1 ≤ i ≤ n

uk, vj ≥ ε > 0,

b) Calcula la eficiencia de la j-ésima DMU en el caso más favorable, es decir
se suponen los menores inputs para ella y los mayores para el resto y por el
contrario se suponen los mayores outpus para la DMU que se está analizando
y los menores para las restantes. Como en el caso anterior, para cada
α ∈ [0, 1] el valor (Ej)Rα se obtiene como
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(Ej)Rα = máx
s∑

r=1

ur(yRrj + βRrj(α− 1))/vi(xLij − αLij(α− 1))

s.a
t∑

k=1

uk(yRrj + βRrj(α− 1))/vj(xLij − αLij(α− 1)) ≤ 1

t∑
k=1

uk(yLrj − βLrj(α− 1))/vj(xRij + αRij(α− 1)) ≤ 1, 1 ≤ i ≤ n

uk, vj ≥ ε > 0,

Podemos considerar (Ej)Lα y (Ej)Uα como funciones de α ∈ [0, 1], aśı si ambas
son invertibles tenemos

L(z) := [(Ej)Lα]−1, R(z) := [(Ej)Uα ]−1

Es decir, que para la j-ésima DMU tenemos un número LR-borroso Ẽj . Si re-
petimos esto con cada DMU tenemos n números borrosos {Ẽr}nj=1 que, una vez
ordenados, nos proporcionan una ordenación por eficiencias.

4.3 DEA con tolerancias

Con los métodos anteriores, puede ocurrir que al tratar con problemas reales
de grandes dimensiones, para cada α la eficiencia de cada DMU es un inter-
valo excesivamente grande, y con ello el análisis de eficiencia o la ordenación por
eficiciencias de las DMUs puede resultar complicado. Por otro lado, la propia
modelización o el cálculo de la función de pertenencia para la eficiencia puede re-
sultar complejo e incluso tener que recurrir a métodos heuŕısticos. A continuación
presentamos un modelo que intenta paliar estas dos dificultades.

Suponemos que los inputs y los outputs vienen dados con tolerancias. Es
decir, hay valores xij , yrj que podemos considerar que son los que tienen mayores
posibilidades de ser ciertos, pero sobre los que tenemos alguna incertidumbre que
viene expresada por los intervalos siguientes5:

[xij − αLij , xij + αRij ], i = 1, ...,m, j = 1, ..., n, (17.11)

[yrj − βLrj , yrj + βRrj ], r = 1, ..., s, j = 1, ..., n. (17.12)

Nota: A los valores αLij , α
R
ij , β

L
rj , β

R
rj les llamaremos tolerancias cuando no sea

necesario hacer distinciones espećıficas.

Nuestra propuesta, que recoge en parte el esquema de las dos que hemos
presentado anteriormente, parte de un modelo de DEA clásico y consta de los
tres pasos siguientes:

5Nótese que no es más que un caso particular de los inputs y outputs dados como números
LR-borrosos. Estos intervalos corresponden al α-corte de números triangulares con α = 0.
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a) Calculamos la eficiencia de cada DMU con los datos xij , yrj , a la que deno-
minaremos eficiencia original, y la denotaremos {Eo

j }nj=1. Para ello, utiliza-
mos, por ejemplo, el modelo siguiente:

(Eo
j ) mı́n θ0

sujeto a :
n∑
j=1

λjxij+ ≤ θ0xi0 i = 1, ...,m

n∑
j=1

λjyrj ≥ yr0 r = 1, ..., s

λj ≥ 0 j = 1, ..., n

(17.13)

b) Calculamos la eficiencia de la j-ésima DMU de forma desfavorable. Supo-
nemos los mayores inputs para ella, xij + αRij , y el resto se suponen ciertos,
xik, k �= j, mientras que se suponen los menores outpus para la unidad
analizada, yrj − βLrj , y los de las restantes se suponen ciertos yrk, k �= j.
Si ahora sustituimos estos valores de inputs y outputs en el modelo DEA
elegido, obtenemos las “eficiencias peores” de las n DMUs, {EP

j }nj=1:

(EP
j ) mı́n θ0

sujeto a :
n∑
j=1

λjxij + λjα
R
i0 ≤ θ0(xi0 + αRi0) i = 1, ...,m

n∑
j=1

λjyrj − λjβ
L
r0 ≥ yr0 − βLr0 r = 1, ..., s

λj ≥ 0 j = 1, ..., n

(17.14)

c) Calculamos la eficiencia de la j-ésima DMU de forma favorable. Suponemos
los mmenores inputs para ella, xRij − αLij , y el resto se suponen ciertos,
xik, k �= j, mientras que se suponen los mmayores outpus para la unidad
analizada, yrj + βRrj , y los de las restantes se suponen ciertos yrk, k �= j.
Al sustituir en el modelo DEA obtenemos las “eficiencias mejores” de las n
DMUs, {EM

j }nj=1:

(EM
j ) mı́n θ0

sujeto a :
n∑
j=1

λjxij − λjα
L
i0 ≤ θ0(xi0 − αLi0) i = 1, ...,m

n∑
j=1

λjyrj + λjβ
R
r0 ≥ yr0 + βRr0 r = 1, ..., s

λj ≥ 0 j = 1, ..., n

(17.15)
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Como veremos en la aplicación a las ligas de fútbol profesional, el resultado
será que la eficiencia de DMU viene expresada por un intervalo

[EP
j , E

M
j ], 1 ≤ j ≤ n,

que, nos permite analizar las posibilidades de variabilidad en la eficiencia de cada
DMU. Además, por propia construcción, se verifica

Eo
j ∈ [EP

j , E
M
j ], 1 ≤ j ≤ n.

5 Aplicación a las ligas de fútbol profesionales

Las caracteŕısticas básicas de la competición futboĺıstica hacen que ésta pueda
ser analizada como como cualquier actividad productiva. S. Rottenberg utilizó
por primera vez el concepto de “función de producción deportiva” en 1956 para
el béisbol [22], aunque la primera aportación emṕırica, en 1974, se debe a G. W.
Scully [25]. A estos trabajos pioneros les sucedieron varios art́ıculos centrándose
en diferentes deportes: el baloncesto [34, 24], el cricket [23], el fútbol [29, 30], o
bien centrándose en la función de producción y el estudio de la eficiencia: en el
rugby [5] o en la liga de futbol inglesa [6, 13].

Formalmente, el proceso productivo del fútbol puede describirse mediante una
función de producción

Y :Rk =⇒ R
n,

cuyas funciones coordenadas Yi(Xj), 1 ≤ i ≤ n, 1 ≤ j ≤ k representan la
medida del output del fútbol para el equipo i-ésimo (normalmente el porcentaje
de puntos o victorias sobre el total, o el ratio o la diferencia entre goles marcados
y encajados) y Xj es un vector de inputs.

La práctica habitual es aproximar los inputs que entran en la función de
produción con variables que miden las habilidades técnicas de los jugadores. De
esta forma, en la literatura se han utilizado diferentes métodos de estimación:
tomar como unidad cada partido de fútbol de una liga [5], o el agregado a lo
largo de una o varias ligas [13], que tienen en común el tratar de cuantificar la
importancia relativa de cada uno de los inputs en la obtención de los outputs y
la intención de explicar la razón por la que difiere la productividad aparente de
cada uno de los equipos.

Para abordar este tipo de cuestiones suele analizarse si algunas de estas em-
presas tienen acceso a tecnoloǵıas más avanzadas, y en este caso las estimaciones
de funciones de producción suele realizarse a través de técnicas paramétricas que
permiten recuperar elasticidades output homogéneas para todas las empresas y
controlar las diferencias por las diferencias de nivelk entre las distintas funcio-
nes de producción individuales, que s einterpretan como indicadores del nivel de
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desarrollo tecnológico de cada empresa. Sin embargo, cuando el acceso a la tec-
noloǵıas es similar para todas las empresas, las diferencias en la productividad
vienen determinadas por la gestión de los recursos o la eciciencia con la que estos
son organizados. Esta posibilidad, conocida como niveles de eficiencia X, será el
que más interese en el caso del fútbol, puesto que podemos suponer que todos los
equipos de las ligas profesionales tienen acceso a una tecnoloǵıa común [14]. Por
esta razón se utilizará el análisis envolvente de datos para analizar la eficiencia
de los equipos.

El análisis de la eficiencia que vamos a realizar tiene en cuenta expĺıcitamente
algunas caracteŕısticas importantes del proceso productivo del fútbol. Uno de los
problemas más relevantes en la interpretación de los resultados que se derivan de
las estimaciones paramétricas de las funciones de producción es que las medidas
del output utilizadas combinan la productividad ofensiva (producir goles) con
la eficiencia defensiva (evitar recibirlos). Como consecuencia de ello los inputs
utilizados en las estimaciones son una combinación de indicadores de capacidad
ofensiva y defensiva de los equipos, por lo que los signos esperados son para algu-
nos inputs positivos, para otros negativos y para otros indeterminados. En una
estimación de funciones de producción estándar para empresas los inputs siempre
deben presentar un signo positivo, ya que o añaden output a las empresas, con lo
que su correlación con éste debe de ser positiva, o las empresas no los utilizaŕıan.
Con los modelos DEA, donde puede haber varios outputs, este problema queda
resuelto y, de hecho, en el análisis de eficiencia se ha separado siempre la eficiencia
ofensiva de la defensiva.

Como en cualquier problema económico en el que se analizan funciones o fron-
teras de producción, lo deseable es contar con indicadores lo más fiables posibles
del flujo de servicios que proporcionan los distintos factores productivos. En el
caso del fútbol el único factor productivo son los propios jugadores, que orga-
nizados por un entrenador disputan los partidos. En consecuencia, lo deseable
seŕıa contar con indicadores precisos que midieran las habilidades concretas de los
distintos jugadores que forman las plantillas o, lo que es lo mismo con indicadores
del capital humano espećıfico para jugar al fútbol de cada jugador. Aunque en
algunos trabajos se ha utilizado información referida al coste económico de los
jugadores para aproximar sus habilidades, ésta información es dif́ıcil de conseguir,
además de presentar serias dudas en su interpretación.

En este trabajo hemos optado por incluir como inputs, indicadores técnicos
del fútbol que entendemos ofrecen una buena aproximación a la calidad de las
plantillas, a la estructura del equipo o al sistema de juego empleado. Dado que
ambos niveles (ofensivo/defensivo, casa/fuera) son relevantes se ha procedido a
seleccionar, dentro de la base de datos, aquellos inputs que estuvieran disponibles
para las dos competiciones ligueras y en todas las combinaciones de análisis de la
eficiencia que pretendemos abordar: defensiva general (casa y fuera), defensiva en
casa, defensiva fuera, ofensiva general (casa y fuera), ofensiva en casa y ofensiva
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fuera. Los datos utilizados han sido facilitados de forma desinteresada por la em-
presa GECA Sport, que posee una de las bases de datos más extensas disponibles
referidas al fútbol español e italiano. Aunque en esta base de datos se recoge
una gran variedad de aspectos del juego, con amplia información desglosada en
muy diferentes categoŕıas, nosotros sólo hemos utilizado una parte pequeña que,
a nuestro juicio, permite analizar la eficiencia técnica de los clubes.

De esta forma se han seleccionado cuatro inputs ofensivos y cuatro defensivos
elegidos que presentan correlaciones positivas con los distintos outpus, si bien
en algún caso concreto podŕıa ser nula6. En cuanto a los outputs ofensivos y
defensivos, hemos seleccionado dos: los puntos y el número de goles. De esta forma
estamos recogiendo el hecho de que a los equipos se les exige ganar (maximizar
los puntos conseguidos), pero valorando que se consigan muchos goles7.

En la tabla siguiente detallamos los inputs y outputs que emplearemos en
nuestro estudio:

Tabla 1: Inputs y outputs seleccionados.

Ofensivos Defensivos

Inputs Remates realizados Remates recibidos
Jugadas de ataque Jugadas del contrario en área propia
Centros al área realizados Centros al área recibidos
Minutos de posesión Minutos de posesión

Outputs Puntos No puntos∗

Goles marcados Goles encajados

∗ El número de no puntos se ha calculado como:

No puntos = 3 × núm. partidos - puntos

6 Resultados computacionales

A pesar de que, hemos analizado las eficiencias defensivas (general, en casa
y fuera) y ofensivas (general, en casa y fuera) de las ligas 2000/2001, 2001/2002
y 2002/2003 para la ligas profesionales española e italiana, pensamos que, para

6Téngase en cuenta, por ejemplo, que aunque la correlación entre los minutos de posesión
de balón del adversario y los puntos dejados de obtener es claramente positiva en el total de la
liga, la misma correlación no es distinta de cero en casa, aunque śı que es claramente positiva
fuera de casa.

7Aunque en el mundo del fútbol lo más importante es ganar, los aficionados prefieren hacerlo
por la máxima diferencia de goles posible por al menos dos razones. La primera es que un partido
con muchos goles a favor es un espectáculo mejor valorado. La segunda es que en caso de empate
a puntos en la clasificación entre dos equipos en ligas como la española queda por delante aquel
que tiene la mayor diferencia de goles a favor.
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evitar un exceso de resultados computacionales, en esta sección sólo presentaremos
los datos ofensivos y defensivos de la liga 2002/2003.

Para utilizar la metodoloǵıa propuesta en la sección 4.3, hemos dividido ambas
ligas en tres grupos formados por los 5 equipos que encabezan la clasificación
(Grupo1), los del centro de la tabla (Grupo 2), 10 equipos en España y 8 en
Italia, y los 5 equipos del final de la tabla (Grupo 3). Analizando las variaciones
conjuntas de las dos ligas durante tres temporadas, hemos asignado las siguientes
tolerancias a los diferentes grupos:

Tabla 2: Tolerancias para los inputs y outputs.

Casa Fuera General
Inputs Outputs Inputs Outputs Inputs Outputs

Grupo 1 3 1.5 5 2.5 4 2
Grupo 2 5 2.5 7 3.5 6 3
Grupo 3 7 3.5 9 4.5 8 4

Nota: Los datos de la tablan expresan porcentajes.

Esto significa que si, por ejemplo, estamos analizando la eficiencia en casa,
todos los equipos que pertenecen al Grupo 1, verifican

αLij = αRij = 0.03xij , βLrj = βRrj = 0.015yrj

siendo αij y βrj los expresados en (17.11) y (17.12) respectivamente. Entonces,
según se propone en el modelo de la sección 4.3, para calcular las eficiencias mejor
y peor de la k-ésima DMU (que pertenece al Grupo 1) utilizamos las tolerancias
siguientes:

αLij = αRij =
{

0.03xij si j = k
0 si j �= k

βLrj = βRrj =
{

0.015xij si j = k
0 si j �= k

donde i ∈ {1, . . . ,m} y r ∈ {1, . . . , s}.
En las tablas 3 y 4 mostramos los resultados para los diferentes escenarios del

análisis de la eficiencia ofensiva y en las tablas 5 y 6 los de la eficiencia defensiva.
El orden en el que aparecen los equipos aparece
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EQUIPO Peor Original Mejor Peor Original Mejor Peor Original Mejor
GENERAL CASA FUERA

Juventus FC       1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9407 1,0000 1,0000
Inter                  1,0000 1,0000 1,0000 0,9528 0,9964 1,0000 1,0000 1,0000 1,0000

Milan AC           0,8214 0,8721 0,9249 0,9356 0,9790 1,0000 0,7601 0,8183 0,8830
SS Lazio             0,8805 0,9356 0,9931 0,8825 0,9225 0,9637 1,0000 1,0000 1,0000

AC Parma          0,9376 0,9961 1,0000 0,9271 0,9687 1,0000 0,8086 0,8724 0,9395
Udinese              0,9092 0,9970 1,0000 0,9357 1,0000 1,0000 0,7099 0,7920 0,8801

Chievo               0,9484 1,0000 1,0000 1,0000 1,0000 1,0000 0,7150 0,7957 0,8822
AC Roma           0,7987 0,8752 0,9563 0,8804 0,9499 1,0000 0,6339 0,7065 0,7844

Brescia               0,6519 0,7139 0,7797 0,6269 0,6750 0,7283 0,6162 0,6857 0,7603

Perugia              0,6772 0,7416 0,8100 0,8050 0,8670 0,9352 0,6185 0,6902 0,7660
Bologna              0,6624 0,7265 0,7946 0,7709 0,8317 0,8957 0,5435 0,6058 0,6727

Modena              0,6330 0,6940 0,7587 0,6444 0,6953 0,7487 0,5354 0,5936 0,6601
Empoli               0,6802 0,7457 0,8152 0,5903 0,6352 0,6857 0,7327 0,8169 0,9072

Atalanta             0,5759 0,6503 0,7308 0,5547 0,6171 0,6840 0,6644 0,7603 0,8706
Reggina              0,6069 0,6853 0,7702 0,6863 0,7631 0,8456 0,3993 0,4593 0,5250

Piacenza             0,6957 0,7861 0,8841 0,7758 0,8624 0,9553 0,5082 0,5815 0,6658
Como                 0,5110 0,5773 0,6490 0,6258 0,6964 0,7722 0,3520 0,4036 0,4602

Torino                0,4544 0,5126 0,5757 0,4289 0,4767 0,5281 0,5685 0,6544 0,7484

EQUIPO Peor Original Mejor Peor Original Mejor Peor Original Mejor
GENERAL CASA FUERA

Real Madrid       1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000
Real Sociedad     1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9600 1,0000 1,0000

Dep. A Coruña   0,9149 0,9721 1,0000 0,9429 0,9876 1,0000 0,9428 1,0000 1,0000
R. C. Celta Vigo 0,8686 0,9229 0,9794 0,8132 0,8514 0,8908 0,9345 1,0000 1,0000

Valencia C.F.      0,7589 0,8063 0,8557 0,7094 0,7425 0,7767 0,7773 0,8371 0,9030
F.C. Barcelona    0,7659 0,7985 0,8726 0,8435 0,9109 0,9821 0,5975 0,6659 0,7394

Ath. Bilbao         0,8102 0,8447 0,9231 0,8109 0,8749 0,9422 0,9884 1,0000 1,0000
Real Betis           0,7334 0,7646 0,8356 0,7798 0,8399 0,9058 0,7340 0,8155 0,9059

R.C.D. Mallorca  0,7128 0,7431 0,8120 0,6061 0,6526 0,7039 0,8164 0,9080 1,0000

Sevilla F.C.         0,7289 0,7600 0,8305 0,7883 0,8491 0,9159 0,6209 0,6898 0,7637
Osasuna             0,6256 0,6522 0,7127 0,5601 0,6032 0,6507 0,6369 0,7089 0,7861

Atl. de Madrid    0,5990 0,6245 0,6824 0,6127 0,6600 0,7117 0,6199 0,6898 0,7649
Málaga C.F.       0,6822 0,7112 0,7772 0,7665 0,8256 0,8904 0,5087 0,5642 0,6275

Real Valladolid   0,6932 0,7227 0,7898 0,7406 0,7977 0,8603 0,5420 0,6017 0,6692
Villarreal            0,5908 0,6160 0,6731 0,6311 0,6797 0,7332 0,6227 0,6930 0,7684

RacingSantander 0,6843 0,7587 0,8536 0,7545 0,8387 0,9290 0,7428 0,8509 0,9731
Espanyol            0,6590 0,7306 0,8219 0,7909 0,8803 0,9762 0,5742 0,6589 0,7515

Recreat. Huelva 0,5054 0,5603 0,6303 0,5412 0,6021 0,6674 0,4281 0,4929 0,5637
Dep. Alavés        0,5225 0,5953 0,6517 0,4822 0,5364 0,5945 0,6447 0,7404 0,8451

Rayo Vallecano   0,4585 0,5083 0,5719 0,4545 0,5057 0,5607 0,4772 0,5497 0,6290
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Tabla 3: Cálculo de eficiencia ofensiva en la liga italiana 2002-2003.

Tabla 4: Cálculo de eficiencia ofensiva en la liga española 2002-2003.
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EQUIPO Peor Original Mejor Peor Original Mejor Peor Original Mejor
GENERAL CASA FUERA

Juventus FC       1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000
Inter                  0,7059 0,7194 0,7347 0,7372 0,7480 0,7597 0,8012 0,8202 0,8423

Milan AC           1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9992 1,0000 1,0000
SS Lazio             0,7898 0,8049 0,8218 0,6268 0,6360 0,6462 0,8060 0,8251 0,8474

AC Parma          0,7378 0,7519 0,7679 0,6498 0,6593 0,6696 0,8464 0,8471 0,8700
Udinese              0,7589 0,7803 0,8059 0,8334 0,8532 0,8762 0,6128 0,6327 0,6574

Chievo               0,6575 0,6760 0,6982 0,6647 0,6805 0,6989 0,7011 0,7239 0,7521
AC Roma           0,6716 0,6905 0,7132 0,5395 0,5523 0,5672 0,5773 0,5961 0,6194

Brescia               0,6634 0,6821 0,7045 0,6356 0,6507 0,6683 0,6737 0,6956 0,7227

Perugia              0,5332 0,5483 0,5663 0,7772 0,7957 0,8172 0,4393 0,4536 0,4713
Bologna              0,5170 0,5316 0,5490 0,4960 0,5078 0,5215 0,4662 0,4814 0,5002

Modena              0,5115 0,5259 0,5432 0,5187 0,5310 0,5453 0,4336 0,4477 0,4652
Empoli               0,5039 0,5181 0,5351 0,4416 0,4521 0,4643 0,4715 0,4868 0,5058

Atalanta             0,4946 0,5128 0,5359 0,4253 0,4392 0,4563 0,4646 0,4836 0,5085
Reggina              0,4931 0,5113 0,5343 0,4839 0,4997 0,5192 0,3871 0,4029 0,4237

Piacenza             0,3873 0,4016 0,4197 0,3185 0,3289 0,3417 0,3778 0,3933 0,4136
Como                 0,4274 0,4432 0,4631 0,3708 0,3829 0,3978 0,3969 0,4132 0,4345

Torino                0,4100 0,4251 0,4443 0,3622 0,3740 0,3885 0,3860 0,4018 0,4225

EQUIPO Peor Original Mejor Peor Original Mejor Peor Original Mejor
GENERAL CASA FUERA

Real Madrid       1,0000 1,0000 1,0000 0,9031 0,9162 0,9306 1,0000 1,0000 1,0000
Real Sociedad     1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000

Dep. A Coruña   0,8992 0,9165 0,9359 0,9187 0,9321 0,9467 0,9332 0,9554 0,9812
R. C. Celta Vigo 0,9697 0,9883 1,0000 0,9992 1,0000 1,0000 0,8871 0,9082 0,9326

Valencia C.F.      1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000
F.C. Barcelona    0,8035 0,8261 0,8533 0,7042 0,7209 0,7403 0,8620 0,8901 0,9247

Ath. Bilbao         0,6550 0,6735 0,6957 0,8282 0,8478 0,8706 0,6036 0,6233 0,6475
Real Betis           0,7423 0,7632 0,7883 0,9117 0,9333 0,9584 0,7295 0,7533 0,7826

R.C.D. Mallorca  0,6334 0,6514 0,6728 0,4858 0,4973 0,5107 0,7911 0,8169 0,8487

Sevilla F.C.         0,9058 0,9313 0,9619 0,7516 0,7694 0,7901 1,0000 1,0000 1,0000
Osasuna             0,8748 0,8995 0,9291 0,6881 0,7044 0,7234 0,8803 0,9090 0,9443

Atl. de Madrid    0,6951 0,7147 0,7382 0,6474 0,6628 0,6806 0,6715 0,6934 0,7203
Málaga C.F.       0,7399 0,7607 0,7857 0,7382 0,7557 0,7760 0,6939 0,7165 0,7444

Real Valladolid   0,8715 0,8960 0,9255 0,8661 0,8866 0,9104 0,8173 0,8440 0,8769
Villarreal            0,6982 0,7180 0,7415 0,7816 0,8002 0,8218 0,6062 0,6259 0,6502

RacingSantander 0,6073 0,6296 0,6580 0,7766 0,8019 0,8331 0,6050 0,6298 0,6623
Espanyol            0,6454 0,6691 0,6993 0,6560 0,6774 0,7038 0,5920 0,6163 0,6481

Recreat. Huelva 0,5643 0,5851 0,6114 0,6129 0,6329 0,6575 0,5170 0,5382 0,5660
Dep. Alavés        0,5424 0,5623 0,5877 0,7371 0,7611 0,7907 0,5659 0,5891 0,6195

Rayo Vallecano   0,5807 0,6020 0,6292 0,6577 0,6791 0,7055 0,5200 0,5413 0,5693
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Tabla 5: Cálculo de eficiencia defensiva en la liga italiana 2002-2003.

Tabla 6: Cálculo de eficiencia defensiva en la liga española 2002-2003.
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Nota: Las columnas Peor, Original y Mejor representan, respectivamente, los
modelos EP

j , Eo
j y EM

j descritos en la sección 4.3.

Además de conocer los scores de eficiencia de cada DMU, los intervalos ex-
presados en las tablas anteriores informan a los directivos de los equipos acerca
de la estabilidad del análisis de eficiencia. Piénsese que, en un análisis de eficien-
cia clásico, hay ocasiones en las que una DMU considerada eficiente dejaŕıa de
serlo con ligeŕısimas modificaciones en algún input u output [17], y en este caso
las conclusiones que podŕıan extraerse en las ligas de fútbol podŕıa estar muy
distorsionada.

Por otro lado, el análisis de eficiencia por intervalos permite conocer si los equi-
pos han aprovechado de forma adecuada sus posibilidades. Analicemos, por ejem-
plo, el gráfico de los intervalos de eficiencia ofensiva general en la liga española.

La posición del score original en el intervalo nos informa de si la utilización de
los recursos ha sido adecuada. En concreto, cuanto más próximo esté del extremo
superior del intervalo, podemos interpretar que más la utilización de recursos ha
sido más adecuada.
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Fig. 1 Intervalos de eficiencia ofensiva general en la liga española 2002/2003.

7 Conclusiones

El uso de modelos DEA en los que se puedan utilizar datos inciertos permite
ampliar el espectro de aplicación del análisis envolvente de datos tradicional.
En nuestro caso, hemos utilizado como DMUs los equipos de las ligas de fútbol
profesional española e italiana. En la práctica, estos modelos presentan dos tipos
de ventajas frente a los tradicionales: ofrecen mayor información de los resultados
(desde el punto de vista interno y externo) y tienen en cuenta la estabilidad de
los mismos.

Desde el punto de vista interno, el cálculo de eficiencias por intervalos permite
conocer el campo de variación de su score de eficiencia frente a la mejora (em-
poramiento) de cada uno de los inputs y/o outputs. Este análisis, denominado
“análisis de incidencia” [3], permite conocer el efecto que provocan las variaciones
de cada uno de los diferentes elementos sobre el resultados final.

Este análisis de incidencia puede servir de gúıa u orientación para el director
deportivo y/o entrenador del equipo para conocer qué acciones deben mejorar
(aumentar o reducir) para conseguir un aumento en los outputs (goles y puntos).

En cuanto a la información externa, este análisis puede servir para estudiar
el efeco de otros factores que afectan a los resultados del equipo. Ahora bien, en
este caso necesitamos contar con un referente externo para los outputs (o inputs,
en su caso).
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Una de las aplicaciones en este sentido es analizar la influencia que las ac-
tuaciones arbitrales han podido tener sobre los resultados de los partidos, y por
tanto en el total de la liga.

En una publicación periódica, con soporte electrónico, ha dedicado una sección:
http://www.as.com/lectorarbitra/ incluye la posibilidad de decantarse y votar
por el resulatdo de una determinada acción que puede suscitar diferentes inter-
pretaciones. Con estos resultados, que carecen de base cient́ıfica para considerarse
objetivos, puede reconstruirse la serie de outputs de los diferentes equipos. Con
esta serie ”externa” se calcula el score de eficiencia (ofensiva, por ejemplo) So con
los inputs originales y se compara con el intervalo de eficiencia:

a) Si el score está inclúıdo en el intervalo, i. e. So ∈ [EP , EM ], entendemos
que el equipo no ha sido inflido por factores externos, y su eficiencia es
aceptable.

b) Si el score es mayor que la cota superior del intervalo, es decir So > EM ,
interpretamos que ha obtenido mejores resultados que los realmente conse-
guidos, por tanto, se trataŕıa de un equipo que ha sido “beneficiado” por
decisiones externas.

c) Si el score es menor que la cota inferior del intervalo, es decir So < EP ,
interpretamos que el equipo ha sido “perjudicado” por decisiones externas.

Sin embargo, no hemos hecho referencia a los resultados computacionales en este
sentido porque, a nuestro juicio, esto no contribuiŕıa más que a suscitar polémicas
innecesarias.

Por último, en cuanto a la estabilidad de los resultados de los modelos DEA, el
uso de datos inciertos, que sustituyen un score único por un intervalo, nos informa
acerca de la y seguridad a los resultados obtendios, ya que un pequeño cambio en
los datos puede afectar de forma importante al resultado global.
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