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Presentacion

En la primavera de 2002, ASEPUMA edité su primer volumen monografico
sobre programacién con objetivo miltiples que fue coordinado por los profeso-
res Rafael Caballero y Gabriela Fernandez. Con él se iniciaba una nueva etapa
dentro del programa de publicaciones de la Asociacién Espanola de Profesores
Universitarios de Matemdtica Aplicada a la Economia y la Empresa.

El éxito de esta publicacién animé a la Junta Directiva a proponer la edicién de
un segundo volumen. En la reunién de la Junta Directiva de ASEPUMA celebrada
el 7 se acordd encargar la coordinacién de este volumen sobre Optimizacién en
Incertidumbre a las profesores Emilio Cerdd, Laureano Escudero y Ramén Sala.

En la primera toma de contacto para disenar el contenido de este nitmero
se consideré conveniente la incorporacién de Antonio Alonso-Ayuso, y asi quedé
constituido el grupo responsable de llevar a cabo esta edicion.

Los coordinadores de este monografico contactaron con diversos profesores
especialistas en este campo y aceptaron realizar un trabajo para este numero,
cada uno desde una vision particular.

El libro se estructura en dos partes: una parte metodoldgica y otra de aplica-
ctones, formando un total de 17 capitulos de contenido y orientacién diferentes,
pero a la vez complementarios.

La primera parte contiene seis trabajos, mientras que son nueve las aplicacio-
nes que se comentan.

El primer Capitulo elaborado por Emilio Cerda y Julio Moreno, presenta
una Introduccién a la Programacion Estocastica. Se hace un recorrido por sus
métodos fundamentales, haciendo especial énfasis en los problemas de recursos,
restricciénes probabilisticas y modos de transformar un objetivo estocastico en
su equivalente determinista.

Se trata, en definitiva, de presentar una panordmica general de la progra-
macién estocastica, que proporcione una buena introduccién a los recién llega-
dos a este campo de la metodologia fundamental.

El profesor Jaime Gil-Aluja de la Universitat de Barcelona, plantea un Capitulo
sobre la visién fuzzy de la matemaética de la incertidumbre. Esta introduccion,
junto con las referencias bibliograficas aportadas suponen un punto de partida
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adecuado a la iniciacién a las técnicas de la teoria de los subconjunto difusos o
borrosos.

Como extensién del primer Capitulo, Caballero, Cerdd, Munoz y Rey, presen-
tan la Programacién estocastica multiobjetivo. Este trabajo se centra en el
estudio de problemas de decisién en los que el nimero de objetivos es multiple y
algunos o todos los pardmetros del problema son variables aleatorias con distri-
bucién conocida. De esta forma, se relaja la hipotesis frecuente cuando se plantea
un modelo de optimizacion referente a que el objetivo del proceso de decisién
puede representarse a través de una unica funcién a optimizar. Se acompanan de
una exposicién amplia de los diferentes procedimientos para resolver este tipo de
problemas cuando aparecen diferentes objetivos a coordinar.

Jose Miguel Cadenas y Jose Luis Verdegay, complementan el Capitulo del
profesor Gil-Aluja con la descripcién de la metodologia de la programacion lineal
fuzzy, con el trabajo titulado: Métodos y modelos de programacion lineal
borrosa.

En el trabajo de Alonso-Ayuso, Clement, Escudero, Gil y Ortuno, escriben
el trabajo Branch and fixcoordinado, un esquema de resolucién de pro-
blemas estocasticos multietapicos 0-1 mixtos.En muchos problemas de op-
timizacién, en especial en aquellos que evolucionan en el tiempo a lo largo de un
horizonte de planificacién dado, es habitual que algunos de los coeficientes de la
funcién objetivo y del vector del término independiente e, incluso, de la matriz
de restricciones, no se conozcan con exactitud en el momento de tomar las de-
cisiones correspondientes, aunque se disponga de alguna informacion sobre ellos.
En este capitulo se estudia la utilizacion del procedimiento llamado Branch-and-
Fiz Coordinado (BFC) para obtener la solucién éptima 0-1 mixta del problema
estocdstico original. Se puede utilizar tanto la descomposicién Lagrangiana como
la descomposicién de Benders, entre otras metodologias, para aprovechar la es-
tructura del DEM. Estos tipos de descomposiciones permiten obtener soluciones
factibles continuas una vez obtenidas soluciones factibles 0—1, de forma que todas
ellas satisfagan las llamadas condiciones de no anticipacion en la solucién éptima.

No podia acabar esta primera parte con una referencia a los procedimien-
tos informéticos de resolucion de los problemas estocdsticos. Santiago Cerisola,
Andrés Ramos y Alvaro Baillo, han escrito el trabajo Modelado de algoritmos
de descomposiciéon con GAMS describen los métodos fundamentales de re-
solucion de problemas estocasticos, la descomposicién de Benders y la relajacion
Lagrangiana que han sido citado en los capitulos anteriores. Ademads aportan la
estructura del c6digo de resolucién en lenguaje GAMS de estos dos procedimien-
tos, asi como su aplicabilidad a la resolucién de unos ejemplos sencillos pero muy
ilustrativos.

La segunda parte esta dedicada a presentar algunas aplicaciones en las que
se emplean los métodos de resolucion de la optimizacién estocéstica, borrosa,
robusta, etc. La secuencia de los capitulos va desde las aplicaciones .
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Con el Capitulo 7 escrito por Francisco Javier Quintana con el titulo Optimi-
zacién estocdstica aplicada al diseno de procesos, se inicia la parte de aplicaciones.
En este capitulo se describe la optimizacién estocéstica aplicada al diseno de pro-
cesos, entre los que encontramos las plantas petroquimicas y de produccién de
energia. Exponemos algunas caracteristicas y ventajas de este sistema con ejem-
plos que pueden aclarar ideas.

Los dos capitulos siguientes presentan aplicaciones de la optimizacién es-
tocastica al sector eléctrico. El primero de ellos de Narcis Nabona y Adela Pagés
presenta el trabajo: Long-term electric power planning in liberalized mar-
kets using the Bloom and Gallant formulation, que como el titulo indica
esta redactado en inglés. El Capitulo plantea la planificacién a largo plazo es
el elemento clave para la generaciéon de energia por parte de las empresas pro-
ductoras, pero esta planificacién tiene su concrecién a en la planificacion de las
decisiones a corto plazo.

En el Capitulo de Santiago Cerisola, Andrés Ramos y Alvaro Baillo, sobre
Aplicaciones en sistemas de energia eléctrica en él se presentan varios ejem-
plos caracteristicos de planificacién y operacién de sistemas de energia eléctrica
para cuya resolucién se utilizan frecuentemente técnicas de descomposicion.

El Capitulo siguiente escrito por Maria Albareda-Sambola y Elena Fernandez
con titulo: Algunos problemas estocasticos de localizacién discreta: un
enfoque unificador, analiza los problemas discretos de localizacién tratan de
seleccionar las ubicaciones 6ptimas para un conjunto de centros de servicios (plan-
tas) entre un conjunto de ubicaciones potenciales que es conocido a priori. Al-
gunos de los elementos del problema son datos aleatorios, y con ello obliga a
introducir la metodologia de la programacion estocdstica como método de reso-
lucién de este tipo de problemas.

Los capitulos 11 y 12, también presentan dos aplicaciones a los problemas de
localizacion, aunque difieren en el procedimiento de solucién, ya que mientras
que el primero utiliza la metodologia de la programacién estocéstica, el segundo
utiliza la optimizacién robusta como enfoque para la resolucion.

El Capitulo 11, escrito por Blas Pelegrin lleva por titulo: Localizacién Mi-
nimax con Incertidumbre.El trabajo presenta un modelo general en el plano,
donde la distancia viene medida por cualquier norma y se presenta incertidum-
bre en los coeficientes de la distancia, que vienen dados por variables aleatorias
con distribuciones de probabilidad arbitrarias. Se consideran tres criterios de
decisién, se analizan las propiedades basicas de los correspondientes modelos de
optimizacién y se plantean procedimientos para su resolucion.

En Capitulo siguiente Calculo de medianas robustas con incertidum-
bre en las demandas, escrito por Maria José Canods, Marisa Martinez y Manuel
Mocholi, describe uno de los problemas a los que se enfrentan las empresas es de-
cidir donde ubicar sus instalaciones de modo que sus costes de aprovisionamiento
y distribucién sean minimos. La optimizacion robusta no necesita que la incerti-
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dumbre esté provocada por un solo pardmetro (el tiempo), como la optimizacién
dindmica, ni tampoco que exista una distribucién de probabilidad asociada, como
la optimizacién estocastica, requisito no trivial en problemas que, como los de lo-
calizacion, estudian fenémenos tnicos con poca o ninguna informacién histérica.

El Capitulo Solucién Numérica de Problemas de Control Estocastico
en Economia ha sidfo escrito por Dominguez, Novales, Pérez y Ruiz. En el
trabajo se analiza el comportamiento de un consumidor que trata de maximizar
su nivel de utilidad agregada en el tiempo, que deriva del consumo de los distintos
bienes, asi como del nivel de ocio de que disfruta en cada periodo. Las restricciones
a que se enfrenta este decisor, una para cada instante de tiempo, especificardan que
la cantidad que paga por los bienes que consume no puede exceder de la renta de
que dispone. En un contexto mas amplio, los mercados de capitales existen para
que el consumidor pueda reservar parte de su renta cada periodo en la forma de
ahorro. De ese modo, un periodo puede decidir llevar a cabo un consumo cuyo
valor de mercado es inferior a la renta del periodo, ahorrando la renta no gastada.
En otro periodo, podria suceder lo contrario, utilizando la renta de dicho instante,
junto con parte del ahorro que arrastra de periodos anteriores, para financiar su
nivel de consumo.

El Capitulo 14 lleva por titulo: Learning by Doing e incertidumbre adi-
tiva: solucién analitica, cuyo autor es Francisco Alvarez. En este trabajo se
presenta la solucién analitica al fenomeno de que algunas empresas reducen sus
costes de produccién a lo largo del tiempo como consecuencia de la acumulacién
de experiencia. Esto se denomina learning by doing. El problema de eleccién por
parte de una empresa de su senda temporal de niveles de producciéon cuando ésta
tiene learning by doing puede plantearse matematicamente como un problema de
optimizacion dinamica. Ademads se analiza la presencia de shocks aleatorios.

En el Capitulo 15 Antonio Heras Martinez y Ana Garcia Aguado realizan una
aplicacién de la Programacién estocastica por metas al campo actuarial, y
en particular a los sistemas de tarificaciéon a posterior como el diseno de Sistemas
de Tarificacién Bonus-Malus, un problema clasico de tarificacién en el seguro del
automovil. La aplicacién de técnicas de Programacién por Metas Estocéstica
permite obtener algunas caracteristicas deseables de las soluciones que no son
tenidas en cuenta por los métodos clasicos de resolucién de tales problemas.

Los dos capitulos finales estan dedicados a las aplicaciones de la metodologia
de los conjunto borrosos. Asi el Capitulo 16 escrito po Antomil, Arenas, Bilbao,
Pérez y Rodriguez Uria con el titulo: Planificacién 6ptima de la actividad
quirurgica en hospitales piiblicos mediante un modelo de Programacion
Compromiso Probabilistica. Este Capitulo analiza el fenémeno de las pro-
blema de las listas de espera que es un problema de toma de decisiones racionales
con presencia de criterios multiples en un entorno de incertidumbre e imprecision
. Se trata por tanto de un problema de Programacién Multiobjetivo Lineal con
datos vagos/imprecisos. El trabajo propone un instrumento de gestién de listas
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de espera quirturgicas basandonos en los datos de un hospital ptblico.

El tdltimo Capitulo realizado por José Emilio Boscd, Vicente Liern, Aurelio
Martinez y Ramén Sala, presenta un modelo de Andlisis Envolvente de Datos
(DEA) en presencia de incertidumbre en los datos. El modelo propuesta presenta
una aplicacién a las ligas profesionales de futbol de Espana e Italia, en donde
se sustituye el score unico de los modelos DEA tradicionales por un intervalo de
eficiencia que permite analizar en qué casos un equipo (DMU) puede llegar a ser
eficiente mejorando determinados aspectos de sus inputs y outputs.

No quisiéramos acabar esta presentaciéon del volumen sin dedicar una pocas
lineas a las personas que han hecho posible que este volumen vea la luz. En
primer lugar a los miembros de la Junta Directiva de ASEPUMA, sin los cuales
no hubiera sido posible la realizacién de este volumen.

A todos los autores que han colaborado de forma de desinteresada en este
volumen.

Finalmente, aunque no los ultimos, a Vicente Liern y Carlos Ivorra, miembros
del Consejo de Redacciéon de Rect@, por su trabajo de conversion de los trabajos
de Word a LaTeX, por la composicién de los capitulos y por su dedicacién a que
este libro fuera una realidad en los plazo fijados.

Valencia, Junio de 2004.

ANTONIO ALONSO-AYUSO, EMILIO CERDA,
LAUREANO ESCUDERO Y RAMON SALA

Coordiandores
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Programacion Estocastica

E. Cerda?, J. Moreno”

@ Departamento Andlisis Econémico. UCM.
b Departamento de Estadistica. UCM.

1 Introduccion

Tal como su nombre indica, la Programacién Estocéstica trata problemas de Pro-
gramacién Matemadtica en cuya formulacién aparece algin elemento estocastico.
Por tanto, mientras que en un problema deterministico de Programacién Ma-
temdtica, ya sea de Programacion Lineal, Programacién No Lineal, Programacién
Entera, Programacién Mixta Lineal Entera o Programacion Mixta No Lineal En-
tera, todos los datos (coeficientes) que aparecen en su formulacién son ndimeros
conocidos, en Programacién Estocdstica dichos datos (o al menos alguno de ellos)
son desconocidos, aunque para ellos se conoce o se puede estimar su distribucién
de probabilidad. Para precisar mas, veamos las dos definiciones que propone
Prekopa [29]:

Primera definicion: “Programacién Estocéstica es la ciencia que ofrece solu-
ciones para problemas formulados en conexién con sistemas estocasticos, en los
que el problema numérico resultante a resolver es un problema de Programacién
Matematica de tamafno no trivial“.

Segunda definicién: “La Programacion Estocéastica trata problemas de Progra-
macién Matematica en los que algunos de los parametros son variables aleatorias,
bien estudiando las propiedades estadisticas del valor éptimo aleatorio o de otras
variables aleatorias presentes en el problema o bien reformulando el problema
en otro de decisién en el que se tiene en cuenta la distribucién de probabilidad
conjunta de los pardmetros aleatorios“.

Los problemas resultantes de ambas definiciones son llamados problemas de
Programacién Estocéstica.
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4 Programacion Estocastica

La aleatoriedad en coeficientes en unos casos se deberd a la falta de fiabilidad
en los datos recogidos, en otros casos a errores de medida, en otros a eventos
futuros atin no conocidos, etc.

Tal como indica Dantzig [11], la Programaciéon Estocdstica comenzé en 1955
con los trabajos de Dantzig [10] y Beale [2]. y ya en la misma década alcanzd
con Markowitz [23] una aplicacién muy destacada al problema de seleccién de
carteras que le llevaria a la consecucién del Premio Nébel. En [34] se recogen
unas 800 referencias sobre trabajos publicados entre 1955 y 1975, clasificadas en
funcién de su contenido.

En 1974 se celebré en Oxford (Inglaterra) la primera conferencia internacio-
nal en Programacion Estocastica, organizada por Michael Dempster. En 1981
se celebr6 en Koszeg (Hungria) la segunda conferencia, organizada por Andra
Prekopa. En dicho encuentro se puso en marcha el Committee on Stochastic Pro-
gramming (COSP), como una rama de la Mathematical Programming Society.
Dicho comité ha sido el responsable de organizar los sucesivas conferencias que
se han ido celebrando. La novena conferencia internacional se celebré en Berlin
(Alemania) en 2001 y la décima se celebrard los dias 9 a 12 de Octubre de 2004
en Tucson, Arizona (USA).

El COSP ha puesto en funcionamiento la pagina web http// stoprog.org en la
que se puede encontrar mucha informacién y documentacién sobre Programacién
Estocastica.

2 Definiciones basicas

Se considera el siguiente problema de Programacién Estocéastica:

mfﬂgo (1‘7g)v

queto~a: (1.1)
i (xvf) <0,i=1,2,..,m,

x €D,

donde el conjunto D C R", §~ es un vector aleatorio definido sobre un conjunto
E C R®.Suponemos que estdn dados una familia de eventos F', formada por
subconjuntos de E y una distribucién de probabilidad PP, definida sobre F'. Por
tanto, para cada A C E, es A € F, y la probabilidad P (A) es conocida. Ademds
suponemos que las funciones g;(z,-) : E — R, Vz,i son variables aleatorias y
que la distribuciéon de probabilidad P es independiente del vector de variables de
decisién x.

Obsérvese que en el problema formulado (PE) para cada realizacién & del vec-
tor aleatorio é se tiene un problema deterministico. Un vector x € D puede ser
factible para una realizacion del vector aleatorio y no serlo para otra realizacion.
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Asfmismo puede ocurrir que para una realizacién &' sea go (acl, 51) < go (xz, fl)

y en cambio para otra realizacién £2 del vector aleatorio & sea go (x2,§2) <
90 (‘rlv £2) .
Un caso particular del problema (PE) es el siguiente problema de Progra-
macién Lineal Estocastica:
min c’ (é) z,
xr
sujeto a: A

r(902(9) "
z2>0

donde la matriz A y el vector b son deterministicos. La matriz T (-) y los vectores
¢(-) y h(-) dependen del vector aleatorio £ y por tanto son estocasticos.
Normalmente el problema estocdstico se reemplaza por un problema deter-
ministico, que se llama determinista equivalente cuya soluciéon 6ptima pasa a
considerarse la solucién 6ptima del problema estocastico.
Fundamentalmente existen dos tipos de modelos en Programacién Estocéstica:

e Modelos “esperar y ver” (“wait and see”) o modelos de programaciém
estocdstica pasiva, basados en la suposicién de que el decisor es capaz de
esperar a que se produzca la realizacién de las variables aleatorias y hacer
su decision con informacién completa de dicha realizacion, con lo que el pro-
blema se convierte en deterministico y es posible encontrar el valor 6ptimo
de las variables de decisién con las técnicas habituales de programacion
matematica deterministica. En ocasiones puede tener interés el conocer
la distribucién de probabilidad del valor objetivo éptimo o algunos de sus
momentos (valor esperado o varianza) antes de conocer la realizacién de
sus variables aleatorias. Tales problemas se llaman problemas de distri-
bucién. Estos problemas se estudian en [4], [33], [29].

e Modelos “aqui y ahora” (“here and now”) o modelos de programacién es-
tocastica activa. En estos modelos el decisor toma la decision sin el conoci-
miento de la realizacién de las variables aleatorias, sin que por ello queden
afectadas las distribuciones de probabilidad de las mismas. En los siguientes
apartados veremos diferentes enfoques para resolver el problema.

3 Programacién con restricciones probabilisticas

Se considera el problema (1.1) en el que se supone que la funcién objetivo no
contiene ninguna variable aleatoria:
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min 9o (),
sujetoa: g; (mf) <0, =12, .. m, (1.3)
x €D,

El método de restricciones de azar (chance constrained) fue introducido
por Charnes, Cooper y Symonds en 1958. Véanse [7], [8]. La idea consiste
en transformar el problema dado en un determinista equivalente en el que se
verifiquen las restricciones con, al menos, una determinada probabilidad fijada
de antemano. Hay que distinguir dos casos segun se fije la probabidad para el
conjunto de las restricciones o para cada una de ellas por separado.

Restricciones de azar conjuntas:
Se considera el problema (3.1). Sea p € [0,1] dado. Se define el determinista
equivalente:

min g0 (z),
sujeto a s P (§1(2,€) <0,52(2,8) <0, Gn(2,§) <0) =p,  (14)
reD.

Para este problema, 1 — p es el riesgo admisible para el decisor de que la
solucion del problema sea no factible.
En el caso particular de que para cada x € D las variables aleatorias

gl(x7 é:)’gz(x’ g)? "'7.&"”("1“75)

sean mutuamente estadisticamente independientes, el problema equivalente de-
terminista anterior se puede expresar de la siguiente forma.

e
sujeto a: P (gl(x,é) < 0) P (gz(x,é) < o) P (gm(ag,é) < o) >p, (L5
xr e D.

Restricciones de azar separadas o individuales:
Se considera el problema (1.3). Para cada restriccién ¢ € {1,2,...,m} sea
p; € [0,1] dado. Se define el determinista equivalente:

mml'n 9o (),
sujetoa: P (91(33,5) < O) >p;, parai=1,2 ..m, (1.6)
x e D.
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La siguiente Proposicion recoge la relacién entre los dos casos:

Proposicién 3.1. Supongamos que & es una solucion factible del problema
m

(1.6) para los valores p1,pa, ..., pm. Entonces para p=1—m+ > p;, se verifica
i=1
que & es factible para el problema (1.4).

Demostracién: Sea Z solucién factible del problema (1.4). Ello quiere decir
que se verifica: P (] g; (2,£) <0) > p;,para todoi = 1,2,...,m. Definimos los
eventos A; de la siguiente forma: A; = {£| g; (,£) <0},parai=1,2,...,m.

Se verifica que P (A;) > p;, P (AY) <1 — p;. Veamos que se verifica que

lo cual quiere decir que & es factible para el problema (1.4). En efecto:

Teniendo en cuenta la desigualdad de Boole: P (U Sk> <> P (Sk), se tiene
k k

que
m m c m
P(ﬂAl) = 1-P (ﬂA,) :1—P<U(Ai)c>2
> I—ZP((AZ')C)ZIfZ(lfp,):p
Sean:

Q(w) = P(f | 9 (1'75) < 0792 (x,f) < 07 -y gm (fE,f) < O)a
Qz(l') = P(g | gi (l‘,g) < O) ,i=1,2,...,m.

El conjunto factible del problema (1.4) lo podemos representar de la siguiente
forma: C(p) = {z € D | q(x) > p}.

Sea: C; (p;) ={x € D|q(z)>p}, i€{l,2,..,m}.

El conjunto factible del Problema (1.6) lo podemos respresentar como

m

C (p1, P2, ooy Pm) = ﬂ C; (p;) -

i=1

Serfa deseable que los conjuntos C(p) y C (p1, P2, ---» Pm ), que son los conjuntos
de soluciones factibles de los deterministas equivalentes que estamos estudiando,
fueran no vacios, cerrados y convexos. Las siguientes proposiciones tratan sobre
dichas cuestiones.
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Proposicién 3.2 Sea C(p) el conjunto de soluciones factibles del Problema (1.4).
En dicho conjunto se verifican las siguientes propiedades:

1) Sip! < p?, entonces C(p') D C(p?).
2) C(0)=D.
3) C(p) es no vacio para todo p € [0, 1] < C(1) # @.

Demostracion:

1) Sea p! < p?. Six € C(p?), es

Q(‘T) = P(f | g1 (l‘,f) < 0,92 (:c,{“) <0, 9m (!L‘7f) < O) > p2 > p1 = T €
C(ph).

2) C(0) = {x € D] q(x) > 0} = D, ya que g(x) es una probabilidad y por tanto
es mayor o igual que cero.

3)SiC(p) # @, ¥p € [0,1] = C(1) # @. Por otra parte, si C(1) # @ = Vp < 1,
por 1) es C(p) D C(1) # @. "

Obsérvese que si C(p) # @,Vp € [0,1], entonces C (p1,p2, ..., pm) # @, para
todo p1,p2, ..., Pm en [0,1].

La siguiente proposicién, cuya demostracién se encuentra en [17, ?] da condi-
ciones que aseguran que los conjuntos que estamos considerando son cerrados.

Proposicién 3.3 5i las funciones g; : R" X E — R son continuas, entonces los
conjuntos factibles C(p) y C (p1, p2, .-, Pm) son cerrados.

A continuacién se aborda el problema de la convexidad de los conjuntos C(p)
y C (p1,p2, .-, Dm) - Estos conjuntos en general no son convexos. Veamos con-
diciones en que si lo son. Las demostraciones de las proposiciones siguientes se
encuentran en [17, ?]. Véase también [29].

Definicién 3.1 Una medida de probabilidad P : F — [0,1] se dice que es cua-
siconcava si ¥S1,S2 € F, siendo S1 y Sa conjuntos convexos, y VA € [0,1],se
verifica que P (AS1 4+ (1 —X)S2) > min{P (S1),P (S2)}.

Definicién 3.2 Una medida de probabilidad P : F — [0,1] se dice que es log-
concava $iVS1,S2 € F, siendo Sy y Sz conjuntos convezxos, y VA € [0,1],se verifica
que P (AS1 + (1 —X) S2) > [P (S)]M [P (S2)]" .

Las dos proposiciones siguientes dan condiciones para que una medida de
probabilidad sea cuasi-céncava.

Proposicion 3.3 Si P es una medida de probabilidad log-concava en F', entonces
P es cuasiconcava.

Proposicién 3.4 Sea P una medida de probabilidad en R*, de tipo continuo con
funcion de densidad asociada f. Entonces se verifica:
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e P es log-concava si y solo si el logaritmo de [ es una funcidn céncava.

e P es cuasi-concava si y sélo si f~/* es convexa.

La siguiente proposicién da condiciones suficientes para que los conjuntos que
estamos estudiando sean convexos.

Proposicién 3.5 Si g; (+,-) es conjuntamente convexa en (x,§), para cada i =
1,2,..,m y P es cuasi-céncava , entonces C(p) es convexo para todo p € [0,1] y
C (p1,p2, .-y Pm) €8 convexo, Vp1,pa, ..., Pm en [0, 1].

Algunas medidas de probabilidad cuasi-céncavas son: La uniforme k—dimen-
sional, sobre un conjunto convexo S C R, la distribucién exponencial en R, la
normal multivariante en R*, la distribucién de Dirichlet, la beta, la distribucién de
Wishart, la gamma para ciertos valores del pardmetro, la distribucién de Cauchy,
la distribucién de Pareto para determinados valores etc.

El caso lineal:
Se considera el problema lineal estocdstico (1.2), en el cual se supone que la
funcién objetivo no contiene ninguna variable aleatoria:

min ctx,

sujeto a : Ax~: b, (1.7)
T(&)x = h(S),
x>0

Para el Problema (1.7), dado el valor p € [0, 1], el programa determinista equi-
valente correspondiente al método de restricciones de azar tomadas en conjunto
sera:

min e,

T
sujeto a: Ax =b,

P (T > h(é)) > p,
x>0,

(1.8)

Para el mismo Problema (1.7), dados los valores p1, pa, ..., bm, Pertenecientes
al intervalo [0, 1], el programa determinista equivalente correspondiente al método
de restricciones de azar tomadas de manera separada sera:

min Tz,
sujeto a: Ax =0,
J pd . (1.9)
P (T (f) x> h; (f)) >pi, t=1,2,...,m,
x>0,
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Sean C(p) el conjunto factible del programa (1.8) y C’(pl,pg, woeyDm) €l con-
junto factible de (1.9). Aunque el programa estocéstico inicial (1.7) es lineal,

los conjuntos de soluciones factibles C(p), C(p1, p2, ..., Pm) DO tienen por qué ser
convexos, como se puede observar en el siguiente ejemplo.

Se considera el siguiente programa estocastico con una sola variable de decisién
T

min go(x),
xT

sujetoa : Tx >h (é) ,

endondeT—<_12 >,

h (5) toma los valores:

( _04 ) , con probabilidad 1/2, y ( _§ 0 ) con probabilidad 1/2.

Para este programa estocdstico se tiene que, para todo p € [0,1/2] es C(p) =
C(p) = [0,2] U [3,5], que no es convexo no conexo.

Las siguientes proposiciones recogen los principales resultados conocidos para
el tipo de problema que estamos considerando.

Proposicién 3.6 Se considera el programa estocdstico (1.7). Supongamos que
& es un vector aleatorio cuya distribucion de probabilidad es discreta y finita.Sea
P (f = §k) = ay, para k = 1,2,..., K. Entonces para p > 1—mingeri2,.. x}y
se verifica que el conjunto factible C(p) es convexo.

La demostracién se encuentra en [17, ?]

A la vista de la proposicién anterior, se comprueba inmediatamente que si
p; > 1 —mingeqy 2, k)  para cada j = 1,2,...,m, el conjunto C (p1,p2, ..., Pm)
es convexo.

Proposicién 3.7 Se considera el programa estocdstico (1.7). Supongamos que

T (é) =T y que la probabilidad P correspondiente a h(é) = I es cuasi-céncava.

Entonces los conjuntos C(p) y C (p1,p2, s Dm) SON cerrados y convexos.
La demostracién se puede ver en [5]

Proposicién 3.8S5e considera el programa estocdstico (1.7). Sean Ty, Ts.,.... T

las filas respectivas de la matriz T (é) ,h (5) = h. Supongamos que Ty, Toy, T,

h tienen distribucién normal con
- 5 5 N\T
E {(T _E (T)) (Tj. - E( j.) ﬂ = ri;C, parai,j=1,2,...m,
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E [(TZ - E (Tz» (ﬁ—E (h))] — 5,C, parai,j=1,2,....m,

donde r;; y s; son constantes para todo i,j. Entonces, C(p) es convexo para
p>0,5.

La demostracién se puede ver en [5]
Ejemplos:

1) Se considera el programa estocastico con conjunto factible
g(z) > €, (1.10)

en donde z € R™, g(z) = (g1(x), g2(2), ..., gm(2))" no contiene ningtin elemneto
aleatorio y é = §~1, 52, e §~m es un vector aleatorio de dimensién m.

En este caso para p € [0,1] se tiene que el conjunto factible del determinista
equivalente para restricciones de azar conjuntas es

Clp) = {weR"[P(E|g(x) =€) >p}=
{ver" | Fe(9(@) 2 p},

en donde Fy es la funcién de distribucion del vectora aleatorio 3
Para p; € [0, 1], considerando restricciones de azar individuales se tiene que

Ci(pi) ={z € R" | P (& | 9i(z) 2 &) = pi} =
= {ee R F (@) 2 pi} = {r €R" | 9:(@) = 3},

en donde y; = Fg_l (pi) -

2) Se considera el programa estocdstico lineal (1.7) y su determinista equiva-
lente (1.9) para restricciones de azar separadas. Sea la restriccién estocdstica

T (5) z > h (é) de la forma Tz > h, siendo (fT,ﬁ)T un vector aleato-

rio con distribucién conjunta normal de media x4 € R"*!, y matriz de varian-
zas y covarianzas V, de dimensién (n+ 1) x (n 4 1). Calculemos su correspon-
diente restriccién en el determinista equivalente (para restricciones de azar sepa-
radas). P ((tT,h)T 1Tz > h) —pP ((tT,h)T 12Tt —h > o) =Py nx)>0),
en donde 7j(x) = 2T — h. La variable aleatoria 7j es normal (unidimensional),
por ser combinacién lineal de variables conjuntamente normales. Su media es

n
mg(x) = Y f1jT5 — finy1, y SU varianza es o2 (r) = 2(x)TV2(z), donde z(z) =
j=1
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(xl,xg,...,xn,fl)T.

P(ij(x) 20) 2 pi <P (ﬁ(x)ag(zﬁ(x) > _:ng(;ﬂ)) > pi. =
- (B <) e () 2

donde ® es la funcién de distribucién de la normal de media cero y varianza 1.
Por tanto, la restriccién de azar correspondiente queda como:

= oi(z)

<P (1-p) = -2 (1 -pi)os(z) —mz(x) <O0.
El conjunto de los x € R™ que verifican esa condicién es convexo si y sé6lo si
®~1 (1 —p;) <0, lo cual se verifica si y sélo si p; > 0, 5.

Pueden encontrarse méas ejemplos en [14], [27], [28], [30], [33], [35]. En [26] se
presenta una aplicacion muy interesante.

4 Funcién objetivo aleatoria

Consideremos el siguiente problema estocastico, en el que todas las restriccio-
nes son deterministicas y la funcién objetivo es aleatoria.

lefn gO(xv é)v

: (1.11)
sujetoa: z € X

El conjunto factible X C R"™ estd compuesto por restricciones deterministicas,
bien porque lo sean de manera natural, bien porque se haya obtenido el determi-
nista equivalente utilizando el método de restricciones de azar.

Se trata de transformar el objetivo estocéstico en su determinista equivalente.
Ello puede hacerse utilizando distintos criterios, que vamos a ver a continuacién,
siguiendo el enfoque de los trabajos [6] y [27].

4.1 Algunos conceptos de soluciéon

a) Criterio del valor esperado.
Se convierte la variable aleatoria go(z,£) en una funcién deterministica to-
mando la esperanza matematica
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El determinista equivalente del problema estocdstico (1.11) serd

mzin E[QO("E7£)]7

. (1.12)
sujetoa: € X

Para resolver el problema de programacién estocéstica siguiendo este criterio,
basta con conocer el valor esperado de la funcién objetivo estocastica y, por tanto,
es aplicable atin en el caso en el que se desconozca la distribucién de probabilidad
de la variable aleatoria jo(z,£).

En [29] se sefiala que para que este criterio sea considerado apropiado se deben
cumplir dos condiciones:

1) El sistema debe repetir su realizacién de manera independiente un gran
nimero de veces, para asegurar que la media de los resultados sea bastante
préxima al valor esperado.

2) La magnitud de la variacién del resultado no debe ser grande. En otro caso
nuestra politica 6ptima puede llevar al sistema a la bancarrota antes de que
la deseada media a largo plazo pueda ser alcanzada.

En muchas situaciones précticas estas condiciones no se cumplen y, por tanto,
este criterio no deberia ser utilizado en tales casos.

b) Criterio de minima varianza.

Se convierte la variable aleatoria §0(x,§~)~en una funcién deterministica to-
mando su varianza: Var[jo(z,€)] = E[(o(z,€))?] — {E[go(x, &)]}>

La utilizacién de este criterio da lugar a la eleccién de aquel vector x para
el que la variable aleatoria go(x,é) estd mas concentrada alrededor de su valor
esperado, de manera que el determinista equivalente segun el criterio de minima
varianza puede interpretarse como una medida de error cuadratico.

El criterio de optimizacién es el de minima varianza tanto si se trata de mini-
mizar la funcién objetivo (como estamos suponiendo en este trabajo) como si se
trata de maximizarlo.

Para poder utilizar este criterio es suficiente con que se conozca la varianza
de la variable aleatoria go(z,£). No hace falta que se conozca su distribucién de
probabilidad.

El determinista equivalente del problema estocastico (1.11), segun el criterio
de minima varianza sera

min  Varlo(e, ) w3
sujetoa: xze€ X )
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c) Criterio de eficiencia valor esperado desviacién estdndar.

Este concepto de eficiencia fue introducido por Markowitz en 1952 para resol-
ver problemas de seleccién de carteras en el campo de las finanzas. Véase [22] y
también [23] y [24].

Se trata de elegir una politica z° que sea eficiente en el sentido de Markowitz.
Expliquemos su significado: R

Sean 11(x) = Eljo(w, )], 0*(x) = Varlgo(w, )]

Se tiene que verificar que no existe ningin z € X para el cual se tenga que
u(2) = u(a°) y o(x) < 0(a?), 0 bien o(z) = 0(2°) y () < p(a?).

El conjunto de puntos eficientes normalmente tiene infinitos elementos. Por
tanto, normalmente este criterio no especifica un tnico punto como solucién
Optima. Si se quiere llegar a “una*® solucién éptima habra que afiadir otras con-
sidereciones al conjunto obtenido de puntos eficientes.

El calculo de soluciones eficientes valor esperado desviacion estandar se tra-
duce en el cédlculo de soluciones eficientes del siguiente problema biobjetivo de-
terminista equivalente:
min (E[g]O(xvf)]vVGT[QO(:C,E)]) ) (114)

xr
sujetoa: xe€ X

d) Criterio de minimo riesgo.

Este criterio fue introducido por Bereanu [3] con el nombre de criterio de
minimo riesgo y por Charnes y Cooper [9] con el nombre de P-modelo.

Se trata de maximizar la probabilidad de que la funcién objetivo sea menor
o igual que cierto valor previamente establecido. Por tanto, para resolver el
problema hay que fijar un nivel para la funcién objetivo estocéstica, A € R,
al que se denomina nivel de aspiraciéon, y maximizar la probabilidad de que el

objetivo sea menor o igual que ese nivel: P {f]o(x,g) < )\} .

La idea del nivel de aspiracién es que “como mucho el valor objetivo sea A”.
El determinista equivalente del problema estocéstico (1.11), segin el criterio
de minimo riesgo sera

meix P{QO(x’g) = ’\}’ (1.15)
sujetoa: z € X
Teniendo en cuenta que max P {go(:r,é) < )\} = méx {1 — P{g0 (m,é) > )\}} =

1 —minP {go(x,é) > )\} , el problema (1.15) es equivalente a
min P {go(xa£> > )\}7

x
sujeto a: x € X,
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y el problema puede interpretarse como la minimizacién del riesgo de que la
funcién objetivo sobrepase el nivel de aspiracién .

Si el problema a resolver consistiera en maximizar la funcién objetivo (en lugar
de minimizar como estamos considerando), es decir, si el problema original fuera

mla',x go(l', g)v
sujetoa: € X

el problema de minimo riesgo determinista equivalente seria

mix P {go(x,6) = A},
x
sujetoa: x € X

En este caso la idea del nivel de aspiracién es que “el valor objetivo al menos
sea \”.

e) Criterio de Kataoka o criterio f—fractil

El criterio fue introducido por Kataoka [20].

Se comienza fijando por el decisor una probabilidad 8 € (0, 1) para la funcién
objetivo y se determina el menor nivel que puede alcanzar la funcién objetivo
con esa probabilidad. En concreto, el determinista equivalente del problema es-
tocastico (1.11), segtin el criterio de Kataoka! sera:

min A
sujeto a: P {go (m,é) < )\} =0,
rzeX

Si el problema a resolver consistiera en maximizar la funcién objetivo (en lugar
de minimizar como estamos considerando), es decir, si el problema original fuera

min gO <SC,£> )
xr
sujetoa: € X

el problema de Kataoka determinista equivalente seria

min A

(=T,

sujeto a : P{go (x,é) > )\} =4,
reX

IEn trabajos posteriores al de Kataoka otros autores como Stancu-Minasian [33] plantean el
problema con restriccién probabilistica de desigualdad: P {go (w,ﬁ) < A} > B. Se demuestra

que si la variable aleatoria go (m, 5) es continua el resultado del problema es el mismo en ambos
casos.
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Comparando los tres primeros criterios con los dos dltimos (que se llaman de
méxima probabilidad) aparecen algunas diferencias:

e En el criterio de minimo riesgo se fija el nivel de aspiracién y en el criterio
de Kataoka se fija la probabilidad, luego ambos dependen de los valores que
se asignen a estos pardmetros, mientras que en los tres primeros casos no
hay que fijar ningtin parametro.

e En los criterios valor esperado, minima varianza y eficiencia valor esperado
desviacién estdndar sélo necesita conocerse la esperanza t/o la varianza ,
no haciendo falta la distribuciéon de probabilidad.

La eleccién de un criterio u otro debera realizarse en base a las caracteristicas
del rpoblema y a las preferencias del decisor. De todas formas, los cinco cri-
terios estan relacionados entre si, dado que cada uno de ellos utiliza diferentes
caracteristicas de la funcién objetivo.

4.2 Relaciones entre las soluciones segun los distintos cri-
terios

En [6] se obtienen algunos resultados para problemas estocdsticos como (1.11)
que cumplen algunas condiciones adicionales. Veamos algunos de dichos resulta-
dos.

Consideremos el problema estocdstico (1.11) en el que suponemos ahora que
el conjunto de soluciones factibles X C R™ es no vacio, cerrado, acotado y con-
vexo. Suponemos también que §~ es un vector aleatorio definido sobre un con-
junto E C R® cuyas componentes son variables aleatorias continuas y cuya distri-
bucién de probabilidad es independiente de las variables de decisién del problema,
L1y L2y eeey Ty-

Las demostraciones de todas las proposiciones que presentamos a continuacién
se encuentran en [6].

Proposicién 4.1 Se considera el problema estocdstico (1.11) con las hipdtesis
adicionales introducidas en este subapartado.

a) Si la solucion dptima del problema segin el criterio del valor esperado es
Unica, entonces es una solucion eficiente valor esperado desviacion estdndar. Si
no es unica solo se puede asequrar que las soluciones optimas valor esperado
son soluciones débilmente eficientes valor esperado desviacion estdndar, pero no
tienen por qué ser eficientes valor esperado desviacion estdndar.

b) Si la varianza de la funcidn objetivo es una funcidn estrictamente convexa,
el problema de varianza minima tiene solucion dunica que es una solucion eficiente
valor esperado desviacion estandar. Si no es unica sélo se puede asequrar que las
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soluciones optimas de minima varianza son soluciones débilmente eficientes valor
esperado desviacion estdndar, pero no tienen por qué ser eficientes valor esperado
desviacion estandar.

La siguiente proposicion establece relacion entre las soluciones 6ptimas segin
los criterios de minimo riesgo y de Kataoka.

Proposicién 4.2 Se considera el problema estocdstico (1.11) con las hipdtesis
adicionales introducidas en este subapartado.  Supongamos que la funcién de
distribucidn de la variable aleatoria §o(x,&) es estrictamente creciente. Entonces

*

x* es la solucion de minimo riesgo para el nivel de aspiracion \* si y solo si
T y . .
(m*T, )\*) es la solucion de Kataoka con probabilidad 3*, con A\* y 0% verificando

P (o, &) < ) = 8.

A la vista de la proposicién anterior se puede asegurar que en las condiciones
que estamos considerando en este subapartado:

e Para cada nivel de aspiracién A, la solucién de minimo riesgo es también la
solucién de Kataoka con una probabilidad ( igual a la méxima probabilidad
obtenida en el problema de minimo riesgo.

e Para cada valor 8 fijado, la soluciéon de Kataoka es también solucién de
minimo riesgo para un nivel de aspiracion igual al valor éptimo del problema
de Kataoka.

En [6] se establecen también relaciones entre soluciones de Kataoka y solucio-
nes eficientes valor esperado desviacion estandar para algunos tipos de programas
estocasticos lineales.

4.3 Ejemplo

Como ejemplo vamos a considerar el caso de funcién objetivo lineal con dis-
tribucién de probabilidad normal.
Sea el programa estocdstico lineal
y ’T
min x
x & (1.16)
sujetoa: zeX

El conjunto factible X C R™ estd compuesto por restricciones deterministicas,
bien porque lo sean de manera natural, bien porque se haya obtenido el determi-
nista equivalente utilizando el método de restricciones de azar. Se supone que el
vector aleatorio 5 sigue una distribucién de probabilidad normal multivariante,
con valor esperado £ y matriz de varianzas y covarianzas S definida positiva.
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En estas condiciones la variable aleatoria £ 2 es normal con valor esperado

cT : T i otz ; ;
x y varianza z! Sz. Por tanto se tiene que >~==-" es una variable aleatoria
§ay q o

N(0,1) (normal con valor esperado 0 y desviacién tipica 1).

A continuacion se calcula el determinista equivalente del programa estocastico
(1.16) para cada uno de los criterios considerados en este apartado.

a) Criterio del valor esperado

min g,
xr
sujeto a: x € X

b) Criterio de minima varianza

min zT Sz,
xr
sujetoa: xze€ X

c) Criterio de eficiencia valor esperado desviacién estandar
min (ETx, RY, xTS;E) ,
x
sujetoa: z e X
d) Criterio de minimo riesgo de nivel A
max P {éTx < )\} ,
T

(1.17)
sujetoa: x € X

Pero

. e —Te AN—ETx A—ETy
P{ngS)\}:P< VaT Sx = \/xTSx> ZCI><W>7 (1.18)

donde @ es la funcién de distribucién de la N (0, 1), que es estrictamente creciente,

. A—€T A=¢r
por o e (€12 20} = it (5 ) = o (min () v

problema (1.17) es equivalente a
) A—&la
max —

p N (1.19)

sujetoa: xe€ X.
Una vez resuelto este problema, la probabilidad méxima para la que se puede
asegurar que la funcién objetivo estocdstica es menor o igual que el nivel de

aspiracion fijado A, es: ® <mé A ng)
, €s: X — .
@ VaT Sz
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e) Criterio de Kataoka o criterio f—fractil

min A
sujetoa: P {ng < )\} = 0,
reX

Teniendo en cuenta (1.18), y que la funcién de distribucién @ es estricta-

. . )\—E_TJ; _ )\—f_Tl' _ —1 _
mente creciente, se tiene que ® (—m) =3 =0 B) = )=

&1 (B8) VaT Sz + Tz, por lo que el problema (4.11) se puede expresar:

min A

(@2 )

sujetoa A =& 1 (B)Val Sy + T,
reX

y este problema es equivalente al problema con n variables de decisién:

min =1 (B) VaT Sz + T,
T
sujetoa: =z € X.
Este problema es convexo para 6 > 0,5. Una vez resuelto este problema, el

menor nivel A para el que podemos afirmar que la funcién objetivo no supera ese
nivel con probabilidad 3 es A = min ®~ ! (3) VaT Sz + €% x.
xr

5 Bibliografia

[1] Alvarez, F., Cerd4, E. “A Solution Method for a Class of Learning by Doing
Models with Multiplicative Uncertainty“. Top, 7, 1, 1-23, 1999.

[2] Beale, E.M.L., “On Minimizing a Convex Function Subject to Linear Ine-
qualities“. Journal of the Royal Statistical Society, B 17, 173-184, 1955.

[3] Bereanu, B. “Programme de Risque Minimal en Programmation Linéaire
Stochastique“. C. R. Acad. Sci. Paris, 259, 981-983, 1964.

[4] Bereanu, B. The Generalized Distribution Problem of Stochastic Linear Pro-
gramming. Symposia Matematica. Academic Press, 1976.

[5] Birge, J.R., Louveaux, F.V. Introduction to Stochastic Programming. Sprin-
ger, 1997.

[6] Caballero, R., Cerdd, E., Munoz, M.M., Rey, L. “Analysis and Comparisons
of Some Solution Concepts for Stochastic Programming Problems“. Top,
10(1), 101-124, 2002.

Rect@ Monogréfico 2 (2004)



20 Programacion Estocéstica

[7] Charnes, A., Cooper, W.W. “Chance-Constrained Programming“. Manage-
ment Science, 5, 73-79, 1959.

[8] Charnes, A., Cooper, W.W., Symonds, G.H. “Cost Horizons and Certainty
Equivalents: An Approach to Stochastic Programming of Heating Oil“. Ma-
nagement Science, 4, 235-263, 1958.

[9] Charnes, A., Cooper, W.W. “Deterministic Equivalents for Optimizing and
Satisfying under Chance Constraints“. Operations Research, 11, 1, 18-39,
1963.

[10] Dantzig, G.B. “Linear Programming under Uncertainty“. Management
Science, 1, 197-206, 1955.

[11] Dantzig, G.B. “Planning under Uncertainty “. Annals of Operations Research,
85, 1999.

[12] Dempster, M.A.H. Stochastic Programming. Academic Press, 1980.

[13] Diwelar, U. “Optimization under Uncertainty: An Overview“. SIAG/OPT
Views -and-News, 13,11-8, 2002

[14] Goicoechea, A., Hansen, D.R., Duckstein, L. Multiobjective Decision Analy-
sis with Engineering and Business Applications. John Wiley and Sons, 1982.

[15] Hammer, P.L. Stochastic Programming. State Of The Art, 1998. Annals of
Operations Research, Vol 85, 1999.

[16] Higle, J.L., Sen, S. Stochastic Decomposition. Kluwer Academic Publishers,
1996.

[17] Kall, P. Stochastic Linear Programming. Springer-Verlag, 1976.

[18] Kall, P. “Stochastic Programming“. Furopean Journal of Operational Re-
search, 10, 125-130, 1982.

[19] Kall, P., Wallace, S.W. Stochastic Programming. John Wiley, 1994.

[20] Kataoka, S. “A Stochastic Programming Model“. Econometrica, 31, 1-2,
186-196, 1963.

[21] Kibzun, AL, Kan, 1.S. Stochastic Programming Problems with Probability
and Quantile Functions. John Wiley, 1996.

[22] Markowitz, H. “Portfolio Selection“. The Journal of Finance, 7, 77-91, 1952.

[23] Markowitz, H. Portfolio Selection: Efficient Diversification of Investment.
Cowles Commission Monograph 16, John Wiley and Sons, 1959.

Rect@ Monogréfico 2 (2004)



E. Cerdd, J. Moreno 21

[24] Markowitz, H. Mean Variance Analysis in Portfolio Choice and Capital Mar-
kets. Blackwell, 1987.

[25] Marti K. (ed). Stochastic Optimization. Numerical Methods and Technical
Applications. Lecture Notes in Economics and Mathematical Systems 379.
Springer-Verlag, 1992.

[26] Medova, E. “Chance Constrained Stochastic Programming for Integrated
Services Network Management“. Annals of Operations Research, 81,213-
229,1998.

[27] Munoz M.M. Programacidn FEstocdstica: Algunas Aportaciones Tedricas
y Computacionales. Tesis Doctoral. Universidad Complutense de Madrid,
1998.

[28] Prawda, J. Métodos y Modelos de Investigacion de Operaciones. Vol. 2. Mo-
delos Estocésticos. Ed. Limusa, 1980.

[29] Prekopa, A. Stochastic Programming. Kluwer Academic Publishers, 1995.

[30] Rios Insua, S. Investigacion Operativa. Optimizacidn. Editorial Centro de
Estudios Ramén Areces, S.A. Segunda Edicién, 1993.

[31] Ruszczynski, A., Shapiro, A. (ed). Stochastic Programming. Handbooks in
Operations Research and Management Science, Vol 10. Norh-Holland, 2003.

[32] Sen, S., Higle, J.L. “An Introductory Tutorial on Stochastic Linear Program-
ming Models“. Interfaces, 29:2, 33-61, 1999.

[33] Stancu-Minasian, ILM. Stochastic Programming with Multiple Objective
Functions. D. Reidel Publishing Company, 1984.

[34] Stancu-Minasian, I.M., Wets, M.J. “A Research Bibliography in Stochastic
Programming 1955-1975“. Operations Research, 24, 1078-1119, 1976.

[35] Vajda, S. Probabilistic Programming. Academic Press, 1972.

[36] Wets, R.J.B. “Stochastic Programming “. En NEmhauser, G.L., Rinnooy
Kan, A.H.G., Todd, M.J. (ed). Optimization. Vol. 1 North-Holland, 1989.

Rect@ Monogréfico 2 (2004)






Aproximacion metodolégica
a la optimizacién en la
incertidumbre

Jaime Gil Aluja

Catedratico de la Universitat de Barcelona

e-mail: gilaluja@fuzzyeconomics.com

1 El latir de una sociedad compleja

La sociedad en la que se desenvuelve la actividad econémica esta soportando,
cada vez mas, el efecto de cambios profundos para los que no resulta facil estimar
las consecuencias sobre los hombres, las instituciones y las relaciones entre unos
y otros. De una manera muy resuntiva, acostumbramos a hablar de las nuevas
perspectivas utilizando palabras tales como revoluciones, convulsiones,... que
dan lugar a comportamientos no lineales que conducen hacia un futuro cargado
de incertidumbre.

Conocer, explicar y tratar este nuevo mundo constituye el principal objetivo
de quienes deseamos una sociedad mejor al servicio del hombre. Pero para ello,
serd necesario vencer no pocos obsticulos colocados por quienes son remisos a la
apertura de su pensamiento a la recepcion del aire fresco que exigen los nuevos
tiempos.

Somos consientes de las dificultades que entrafia traspasar el umbral de una
nueva era, sobre todo, si se tiene en cuenta que todos cuantos nos hemos for-
mado a través del estudio de la ciencia econémica sabemos del gran arraigo de
la matemaética determinista como elemento capaz de describir las interrelacio-
nes existentes entre los fenémenos econémicos. Somos conscientes de la enorme
atraccién ejercida por los razonamientos sobre ella fundamentados, avalados por
la seguridad que otorga tantos siglos de experiencia. Pero pretender traducir un
mundo tan cambiante en el lenguaje numérico tradicional resulta hoy, mision casi
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imposible. Bien es cierto que, afortunadamente, aan se dan en determinadas oca-
siones circunstancias aptas para la utilizacién de la aritmética de la certeza y del
azar, pero también lo es que cada vez resulta mas dificil incluso acotar convenien-
temente los fenémenos, lo que constituye la condicién minima para el empleo del
mas rudimentario de los nimeros inciertos.

Desde hace unas pocas décadas los estudiosos de la economia y gestion de em-
presas estdan intentando canalizar sus inquietudes a través de un buen namero de
propuestas que, en diferentes sentidos, pretenden dar un nuevo tratamiento tanto
a viejos problemas como a los que van surgiendo del complejo entramado de rela-
ciones econémico-financieras. Sin embargo en muchas de ellas se constatan, bajo
formas diferentes, viejas rutinas que no han conseguido generar horizontes capa-
ces de ofrecer luz a las obscuras profecias de brujos y adivinadores de inquietantes
futuros.

Creemos que la principal causa de tanto inmovilismo viene dada por la influen-
cia del “principio del tercio excluso”, que ha constituido norma a la vez que guia
para los cientificos durante méas de 2000 anos. Hemos pensado llegado el momento
de enunciar un nuevo principio, el de la “simultaneidad gradual”’, que puede co-
bijar un elevado nimero de razonamientos légicos capaces de crear conceptos,
establecer métodos y elaborar modelos y algoritmos, aptos para proporcionar,
por lo menos, algunas de las respuestas esperadas.

Hemos repetido en muchas ocasiones, que el saber cientifico no debe servir para
explicar y tratar el universo que nos gustarfa vivir sino el que realmente vivimos®.
Para ello es necesario revisar en profundidad aquellos conocimientos “sagrados”
hasta ahora, que describen un mundo estable y crear una nueva estructura del
pensamiento capaz de convivir con los desequilibrios y equilibrios inestables que
conducen a la incertidumbre, aunque para ello sea necesario reflexionar sobre la
idoneidad del comportamiento cientifico generalmente aceptado.

Una de las ideas recurrentes en la ciencia occidental durante muchos siglos ha
sido la idea de las leyes de la naturaleza®. Segiin ella, la naturaleza sigue ciertas
reglas estructuradas en torno a la certeza. Parece llegado el momento de poner
de manifiesto que cada vez resulta més patente la contradiccién de esos plantea-
mientos con el aspecto cambiante del universo en general y con los cambios que
se producen en el entorno del ser humano en particular. Creemos llegado el mo-
mento de impulsar una idea darwiniana de la evolucién de los sistemas sociales y
econdmicos, colocando dentro de sus justos limites la idea geométrica. Es necesa-
rio saber “explicar” los fenémenos que van apareciendo, dia a dia, dando razén de
los cambios inductores de incertidumbres. Afortunadamente, somos hoy capaces
de extraer también de la incertidumbre ciertos comportamientos expresables, la

1Gil Aluja, J.: “La incertidumbre en la economia y gestién de empresas”. Actas del IV
Congreso de la Asociacién Espanola sobre Tecnologia y Logica Fuzzy.Blanes, 14 de Septiembre
de 1994. Pags: 9-14

2Gil Aluja, J.: “Investment un uncertainty” .Kluwer academica Publishers. Dordrecht 1998.
Pags.:19-20
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mayor parte de ellos mediante posibilidades, algunos a través de probabilida-
des y muy pocos por la certeza.

Ha sido, sobre todo, a lo largo de los ultimos decenios cuando més importantes
han sido las mutaciones, no sélo en cuanto a la fenomenologia socio-econémica,
sino también en los comportamientos y en el pensamiento individual. Ante este
contexto, parece licito preguntarse cémo se puede concebir una actividad cientifica
cuando el pensamiento humano, cargado de un alto grado de subjetividad, intenta
encontrar, entre tanto cambio, lo objetivo.

No resulta, pues, honesto cerrar los ojos y decir que se cree en las certezas,
aunque éstas no residan en nuestro mundo, sobre todo teniendo en cuenta que la
incertidumbre puede dar lugar a una nueva manera de representar las inestabi-
lidades y a través de ella comprender mejor el papel que juegan en unas nuevas
reglas que explican la naturaleza. Parece abierta, asi, una puerta que quizd sea
angosta, pero es suficiente para salir del universo determinista que resulta alie-
nante ya que en él todo se halla predeterminado e inscrito en el Big Bang. Al
traspasar esta puerta aparecerda un universo incierto que permitird explicar los
nuevos héabitos, las nuevas normas de conducta, los nuevos fenémenos.

La matematica del determinismo ha tenido un gran predicamento y ha impe-
rado y continda imperado ain hoy en muchos ambitos de la actividad cientifica
en economia y gestién de empresas. Pero al iniciarse en la sociedad importan-
tes cambios, que tienen cada vez mayor presencia en el campo econdémico, se
levantan ciertas voces clamando por una nueva manera de enfocar los problemas.
Se subraya, asi, la insuficiencia del mecanicismo para explicar los fenémenos y
comportamientos de la nueva sociedad en emergencia.

En el ambito de la matemaética aplicada, se estan intentando crear elementos
capaces de llegar a un adecuado tratamiento de los fenémenos que tienen lugar
en el seno de los estados y de las empresas, cuando su conocimiento se produce
de manera tan poco precisa que no somos capaces de representar numéricamente
las magnitudes resultantes de la actividad econémica . No podemos, hoy, ante la
imposibilidad de recoger las complejas e inciertas realidades, recurrir a una sim-
plificacidn inicial para realizar los desarrollos posteriores en base a estos elementos
simplificadores.

2 De los principios a la légica

La revision del complejo entramando cientifico existente, aceptado sin fisuras
significativas hasta hace poco, comporta hurgar en los principios mismos que
forman la base a partir de la cual se construyen los elementos tedricos necesarios
para, finalmente, llegar a un adecuado tratamiento de los problemas susceptibles
de ser planteados. A partir de ellos se levantan cuatro niveles o estratos: logica,
matematica pura, matematica aplicada y estudios de optimizacion.
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En la configuracién de la actividad investigadora 3, la ciencia occidental se
ha ido construyendo a lo largo de los siglos tomando como uno de los indiscuti-
bles soportes el principio del tercio excluso, a partir del cual, una arquitectura
légica va tomando forma hasta consolidarse con los trabajos de George Boole.
Un tnico operador 1égico permite el encadenamiento de proposiciones a través de
dos modos: hacia adelante con el “modus ponens” y hacia atras con el “modus to-
llens”. El paso del razonamiento 16gico, expresado en palabras, a su presentacion
mediante simbolos ha dado lugar al desarrollo de la matematica en su estado
mas puro que, con el tiempo, ha adquirido “formas” diferentes, pero siempre
dentro de un mecanicismo, tanto en cuanto se ha seguido el camino de la certeza
como en cuanto se ha emprendido la senda del azar. La formulacién de la ma-
tematica binaria resulta esclarecedora de cuanto acabamos de exponer. En base
a estos razonamientos logicos, expresados mediante simbolos, se han elaborado
técnicas especificas en forma casi siempre de modelos y algoritmos, cuyo objetivo
ha sido y continta siendo el suministro de instrumentos capaces de prestar una
ayuda en la adopcion de decisiones. La matematica aplicada alcanza, asi, su
mayor nivel de operatividad. La utilizaciéon de estos elementos en los diferentes
ambitos en los cuales aparece el problema decisional constituye el tltimo peldano
de esta escalera que los investigadores han subido para suministrar la necesaria
ayuda a quienes tienen responsabilidades en el gobierno de las naciones y en la
gestion de empresas e instituciones.

En los momentos actuales y, como consecuencia de las razones reiteradamente
expuestas y otras que podriamos anadir, no es posible asentar toda la actividad
investigadora sobre el principio del tercio excluso, el cual ha resultado estrecho
para albergar las “explicaciones” de las complejas realidades y fenémenos propios
de nuestra época. La formulacién de un nuevo principio se ha convertido, asi,
en cuestion fundamental si se desean abrir nuevas puertas a las aventuras que el
futuro propone.

Hace casi un siglo, en 1910, Lukaciewicz 4 expuso su “principio de valencia”,
senalando que entre la verdad y la falsedad habia una tercera posicién. Entre el
1 y el 0 colocaba, asi, el 0.5 que representaba la indeterminaciéon. Retomaba, de
esta manera, la idea de los epiciireos.

Los amplios desarrollos habidos en los tltimos decenios en el dmbito de la
matematica no determinista y las fructiferas aplicaciones sobre todo en el area
de la ingenieria y de la economia nos ha llevado al intento de definir un principio
capaz de cobijar los distintos operadores légicos que habian ido surgiendo, los
cuales dificilmente tenian cabida dentro del principio del tercio excluso ya que su
encastre solo era posible a través de medios artificiosos. Pretendiamos, ademaés,
que el nuevo principio pudiera generalizar el de tercio excluso. De estas reflexiones

3Gil Aluja, J.: “Elements for a theory of decision in uncertainty”. Kluwer Academic Publi.
Boston. London, Dordretch 1999. Pag.: 15
4Lukaviewicz, J.: “O zasadzie wylaczonego srodka”. Przegl’d Filozficzny. 13. 1910
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nacié el principio de la simultaneidad gradual. Este principio puede ser
enunciado de la siguiente manera: “Una proposicién puede ser a la vez verdadera
y falsa. a condicién de asignar un grado a su verdad y un grado a su falsedad”.

Pasemos, mediante unos ejemplos, a poner en evidencia el contenido y signifi-
cacién de este enunciado, al tiempo que mostramos la posicion relativa del mismo
con respecto al principio tradicional.’

Existen ciertas proposiciones para las cuales normalmente no se plantean pro-
blemas mayores para aceptar el cumplimento del principio del tercio excluso. Asi,
cuando se anuncia “Pedro pertenece al sexo masculino”, concluimos en la verdad
de esta proposicién y en la falsedad de la negacién. Pero se pueden aportar otras
proposiciones para las cuales el cumplimiento no resulta tan claro. En efecto, pro-
posiciones tales como “Pedro es alto”, “Pedro es moreno”, “Pedro es inteligente”,
plantean ciertos problemas dada la relatividad del calificativo “alto”, “moreno”,
“inteligente”. Para solucionarlos, los estudios tradicionales acostumbran a esta-
blecer un umbral (evidentemente subjetivo y arbitrario) a partir del cual se asume
la verdad de la proposicién. Si se acepte en el caso de la altura que el umbral
es 1 m. 80 cms., quienes lleguen o sobrepasen esta altura serdn consideradas
personas altas y para los que no alcanzan esta talla se les asignara la falsedad de
la proposicién. Llegamos, de esta manera, a admitir que una persona con una
altura de 1m. 80cms. es alta mientras que otra de 1 m. 79 cms. es no alta.
Creemos que la aceptacién del principio de la simultaneidad gradual permite una
buena solucién convirtiendo el principio del tercio excluso en un caso particular.
Vedmoslo.

Para una mayor comodidad continuaremos con uno de nuestros ejemplos. En
cuanto a la proposiciéon concerniente a la altura se buscaran aquellas medidas para
las cuales se cumple plenamente la verdad y la falsedad de esta proposicién. El ser
humano més alto del mundo mide 2 m 38 cms y el méds bajo (proposicién negativa
de la anterior) 0 m. 56 cms. A partir de estas cotas, en nuestro caso numéricas
(aunque no tienen porque ser siempre asi) se establece un orden desde la verdad
(alto) hasta la falsedad (bajo). Este escalado puede venir enmarcado por un
intervalo, por ejemplo [0, 1] o por cualquier otro concepto apto para permitir la
ordenacién. Si, a efectos de una mayor sencillez y para no separarnos del ambito
numérico se acepta el intervalo [0, 1], asignaremos un 1 a la verdad y un 0 a la
falsedad y, entonces, el gigante de 2 m. 38cms. serd alto en un grado 1 y el enano
de 0 m. 56 cms, alto en grado 0. Una persona con altura de 1 m, 70 cms. podria
ser considerada alta en un grado 0.3, por ejemplo. Se establece, asi, que cuando
més nos acercamos a la verdad de la proposicién el grado asignado se halla mas
proximo de 1 y cuanto més nos alejamos, el grado adscrito se encuentra mas cerca

de 0.

5El posterior desarrollo ha sido recogido de la obra de Gil-Aluja, J.: ”?Elements for a theory
of decision in uncertainty”. Kluwer Academic Publ. Boston, Londres, Dordretch 1999, Pags.:
16-18
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Pero cuando planteamos la falsedad de la proposicion, convirtiendo el alto
en no alto, o bajo si se quiere, sucede que los mismos protagonistas juegan un
papel diferente, al serles asignado un grado distinto. Asi, como bajo, el enano lo
es en grado sumo por lo que le serd asignado una valuacién de 1, mientras que
el gigante no es bajo en absoluto y su grado serd 0. Quien con altura de 1 m 70
cms. era alto en un grado 0.3, serd bajo en un grado 0.7, pero ejemplo. De esta
manera, cualquier persona es alta y baja a la vez, si tomamos la precaucién de
acompanar al calificado de un grado expresable numéricamente (como en nuestro
ejemplo) o no numéricamente, si asi procediera.

Pero es que, ademas, a todas aquellas proposiciones a las cuales se acomoda
confortablemente el principio del tercio excluso también les son aplicables el prin-
cipio de simultaneidad gradual. Lo que sucede, entonces, es que de todos los
grados posibles sélo le son asignados los extremos. De esta manera, con las re-
servas derivadas del caso, a la proposicién “Pedro pertenece al sexo masculino”
se le asigna un 1 en su grado de verdad y a la proposicién “Pedro no pertenece
al sexo masculino” un grado 0 de verdad. Por tanto, pertenece y no pertenece al
sexo masculino, pero en grado distinto.

Esta breve exposicién permite, asi lo esperamos, poner de manifiesto la ge-
neralidad del principio de simultaneidad gradual, capaz de albergar una gran
variedad de desarrollos 16gicos. En efecto, frente a las limitaciones existentes en
la légica formal surgidas del rigor derivado del principio del tercio excluso, se ha
comprobado la enorme flexibilidad y adaptabilidad de las llamadas 16gicas mul-
tivalentes. Un claro ejemplo de cuanto acabamos de senalar lo hallamos en los
operadores logicos de inferencias. Asi, en la inferencia binaria el unico operador
es:

c=aVb

en donde a y b son los predicados y c¢ la inferencia, mientras que en el &mbito de la
multivalencia son posibles una préactica infinidad de operadores. Se acostumbran
a citar como mas conocidos, la llamada inferencia de Lee, cuyo operador es el
mismo que el del campo binario ya presentado; la inferencia de Lukaciewicz, cuya
formulacion habitual es la siguiente:

c=1A(@+0)

la inferencia de Goguen, cuya expresion, que reproducimos, permite la utili-
zacién de valuaciones o probabilidades:

b
c=1AN-

a
6.

asi como las surgidas de cualquier T-conorma A ellas es posible anadir un

6Como es conocido de toda T-conorma se puede obtener un operador de inferencia con sélo
sustituir la proposicién o predicado de a por a.
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sinnimero de operadores que cumplen los requisitos necesarios para ser conside-
radas como inferencias. No vamos a extendernos més en estos planteamientos y si,
en cambio, hacer referencia al transito de la légica a la matemética fundamental.

3 Una propuesta de matematica de la incerti-
dumbre

Cuando se encadenan palabras y/o proposiciones de una manera “razonada”
llegamos normalmente a ciertos resultados. Estos resultados se amalgaman a
su vez entre si y siempre a través de palabras, expresadas de forma verbal o
escrita, se consiguen nuevos resultados. Todo este proceso puede ser considerado
propio del ambito de la légica. Pero tanto las palabras como las proposiciones son
susceptibles de representacion a través de simbolos, de la misma manera que los
lazos entre ellas, pueden ser expresados mediante operadores. Cuando se actia
asi, y se traspasa la frontera de la palabra para llegar al reino de los simbolos, se
transita de la logica a la matemadtica.

Desde hace casi cincuenta anos, han aparecido algunos intentos de llevar a
cabo la construccién formal de una matematica a partir de las incipientes logicas
multivalentes. Poco a poco los rescoldos de estos ensayos irfan formando un
caldo de cultivo del cual naceria una idea capaz de aglutinar, con el tiempo, a
centenares de miles de investigadores cuyos trabajos abririan el camino a una ma-
tematica de la incertidumbre. Tiene lugar, en primer término, el desarrollo
de los elementos numéricos, dando paso a una nueva aritmética de la incertidum-
bre. A los operadores llamados “duros”, propios del mecanicismo y aptos para
la manipulacién de magnitudes objetivas, se van incorporando otros operadores,
considerados “blandos”, los cuales ejercen una funcién central cuando se trata de
amalgamar, de la mejor manera posible, elementos con una alta carga de subje-
tividad. Si el operador mas representativos de los primeros es el de composicién
suma-producto, el que posee una mayor significacién entre los segundos es el de
composiciéon o convolucién maxmin.

Durante el ultimo tercio del siglo XX, se observa que matematicos e ingenieros
principalmente, van pasando desde el campo de la investigacion tradicional y secu-
lar a esta nueva manera de formalizar los razonamientos. Los investigadores se
afanan en el analisis y desarrollo de nuevos conceptos, aportando una simbologia
capaz de identificar los elementos numeéricos que conforman una emergente
matematica, diferenciada de la sustentada sobre razonamientos mecanicistas. Pa-
ralelamente, quizas con un cierto “gap”, se van abriendo paso algunos conceptos,
surgidos casi siempre de planteamientos combinatorios, los cuales permiten vis-
lumbrar la formacién de un nicleo de conocimientos bésicos con un contenido
suficientemente unitario para poder hablar de una matematica no numeérica
de la incertidumbre. Asi se estda consiguiendo, cada vez mas, expresar con
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mayor fidelidad los razonamientos surgidos de las 16gicas multivalentes mediante
la matematica numérica de la incertidumbre, por una parte, y no numérica de la
incertidumbre, por otra.

Todos cuantos, de alguna manera, nos hallamos en el ambito de las inves-
tigaciones sociales, econémicas o de gestién, somos conscientes de la necesidad
de disponer de un “instrumental” apto para ser utilizado en el tratamiento de
los problemas complejos, caracteristicos de nuestros tiempos y que, dificilmente,
la matemaética en su estado puro puede suministrar, por lo menos de manera
inmediata. De ahi la importancia de una matematica aplicada que, en los
diferentes campos del conocimiento ha tomado nombres distintos. Recordemos a
este respecto la investigacion operativa de los estudios clasicos o los trabajos
recogidos con la denominacién de técnicas operativas de gestién, en época
mas reciente. La incorporacion al acervo cientifico de trabajos realizados en el
ambito de la matemadtica pura han facilitado (y estén facilitando) la construccién
de herramientas de indudable eficacia. Estas herramientas son presentadas, gene-
ralmente mediante modelos o algoritmos. Estos elementos técnicos no son siempre
novedosos, aparecido de manera instantanea y subita, sino que, en buena medida,
constituye total o parcialmente, reformulaciones de conceptos conocidos o bien
adaptaciones de esquemas utilizados con éxito en otros momentos.

Quizés uno de los aspectos que permite vislumbrar mejor la linea que separa
las matematicas del determinismo y del azar con los de la incertidumbre viene
dado por la naturaliza de las asignaciones numéricas. En efecto, sabemos que el
concepto de medida, utilizando en teoria de conjuntos, significa un dato que es
aceptado con cardcter general porque se le supone objetivo. Tedricamente debe
satisfacer determinadas propiedades entre las que se encuentran la “aditividad”.
Asi cuando se consideran dos subconjuntos booleanos A y B que son disjuntos
(no poseen ningdn elemento comdn) se puede escribir:

m(AUB) = m(A) + m(B)

En el campo de las probabilidades, la nocién de medida adquiere toda su signifi-
cacion, ya que el “evento” constituye, en si mismo, un concepto objetivo.

Sin embargo cuando se hace referencia a una “sensaciéon” o “percepciéon” de
tipo subjetivo que no es posible o no se sabe medir, se recurre a otro concepto: el
de valuacion, utilizado, entre otros por la teoria de los subconjuntos borrosos.

Asi, dados A y B, si se supone que A estd incluida en B, es decir, que para
cada elemento el nivel de pertenencia es siempre igual o mayor en B que en 4 ,
se podra escribir que, dado que A se halla incluido en B :

v(4) <v(B)

Esta propiedad se sustenta en el concepto subjetivo de sensacion.

En el ambito de la economia y la gestién de empresas, se han realizado inten-
tos, creemos que de manera parcial logrados, de crear unos elementos capaces de
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llegar a un adecuado tratamiento de los fendmenos que tienen lugar en el seno
de los estados y de las empresas, cuando su conocimiento tiene lugar de manera
poco precisa. Para ello se han utilizado la teoria de los errores, la de los inter-
valos de confianza, la de los nimeros borrosos, de los subconjuntos borrosos y
todas las generalizaciones propuestas, que ya hemos empleado. La diferencia con
el tratamiento realizado en los esquemas tradicionales, es importante. Ante la
imposibilidad de recoger con precision la compleja e incierta realidad econémica,
se recurria a una simplificacion inicial para realizar los desarrollos posteriores en
base a estos elementos simplificadores. Las posibles desviaciones iniciales se iban
acumulando y ampliando a medida que el proceso operativo avanzaba. Se perdia
ademads, una informacion desde el principio que ya no era posible recuperar.

Por nuestra parte preferimos recoger los fenémenos econémicos y de gestion
con su incertidumbre, para realizar los pertinentes desarrollos conservado la im-
precisidn (y también toda la informacién) para hacerla “caer” lo més tarde posi-
ble, dado que siempre es posible (perdiendo informacién) reducir la incertidumbre.

Cuanto acabamos de senalar, tiene como finalidad plantear ciertas reflexiones
sobre los profundos cambios que se estan produciendo en el ambito de estudio de
los problemas en las empresas e instituciones de nuestros dias. Creemos que, de
una manera casi imperceptible pero continuada, los investigadores van aceptando
las nuevas bases sobre las que se asientan las modernas técnicas de optimizacion.

Ahora bien, conviene poner en evidencia una vez mas que no todos los concep-
tos, métodos y técnicas que se estan utilizando han nacido de manera espontanea
y subita. Algunos de ellos, incluso, han sido empleados hace ya varias décadas,
aunque en otros contextos clasicos. Quizéd haya sido la irrupcién de la teoria de
los subconjuntos borrosos 7 la espoleta que ha elevado el nivel de su interés y
utilidad, hasta convertirlas en el eje de los nuevos movimientos.

Todo cuanto ha sido expuesto no debe inducir a la falsa creencia de la inu-
tilidad de los modelos basados en los instrumentos surgidos al amparo de los
paradigmas clésicos. Es mas, los indudables avances que en su aplicacién se
han producido en los tultimos anos han permitido un perfeccionamiento de los
estudios cuantitativos dirigidos al tratamiento de los fenémenos complejos, re-
sultado, asi, véalidos aquellos esquemas, en muchas ocasiones afortunadamente.
Sélo cuando no es posible, honestamente, considerar estimaciones “objetivas”, se
debe recurrir a principios y modos de actuacién diferentes. Pero en un mundo
convulsionado como el de nuestros dias, no parece que la incertidumbre vaya a
remitir y inicamente conviviendo con ella resultara facil la aceptacién de nuevas
reglas.

La nocién de subconjunto borroso forma parte, ya hoy, del conglomerado
de elementos conocidos con el nombre de matematicas. Se adapta muy bien
tanto al tratamiento de lo subjetivo como de lo incierto. La nueva concepcién
de la incertidumbre, a partir de los conceptos borrosos, ha dado lugar a una

"Zadeh, L.: “Fuzzy Sets”. Information and Control. 8 de Junio de 1965. Pags.: 338-353
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distinta manera de pensar que reune el rigor del razonamiento con la riqueza de
la imaginacién, asociando, asi, las posibilidades secuenciales de la maquina a las
posibilidades de las partes menos utilizadas del cerebro humano.

Los elementos instrumentales surgidas de los desarrollos de la matematica bo-
rrosa no son mucho mas complicados que los utilizados normalmente, e incluso
resultan més simples y mucho més cercanos a la manera habitual de pensar del
hombre. La teorfa de los subconjuntos borrosos es un intento, por el momento
parcialmente logrado, de rehabilitar cientificamente la subjetividad y la impre-
cision.

La utilizacién de los esquemas borrosos tiene lugar actualmente, en la practica
totalidad de los campos de estudio de las ciencias. Se encuentra en la gestién de
las empresas, en biologia, en medicina, en geologia, en sociologia, en fonética y
hasta en musica, por sélo citar algunos. Todo problema situado en el ambito
de la incertidumbre es susceptible de ser tratado a través de la teoria de los
subconjuntos borrosos. A medida que transcurre el tiempo, cada vez se van
incorporando en los esquemas formales mas mecanismos del pensamiento tales
como las sensaciones y las opiniones numéricas y no numéricas.

Desde hace 70 anos en elevado namero de matematicos se ha interesado por
las 16gicas multivalentes, entre ellos cabe destacar a B. Rusell, Lukaciewicz, Post,
etc., pero es en 1965 en que Lofti Zadeh publica su primer articulo ® donde se
inicia el verdadero avance en el estudio de esta nueva rama de las matemaéticas.
Hoy se estima que existen mas de 600.000 investigadores dedicados a su estudio
y desarrollo.

Asi, pues, se concibe hoy una matematica borrosa de la misma manera que no
existié problema en su momento en concebir una matematica del azar. Es mas, si
para las relaciones hombre-ordenador en la situacién actual resulta imprescindible
recurrir a teorias mecanicistas, para la relacién entre el hombre y sus semejantes
parece mas adecuada la utilizacién de la teoria de la incertidumbre en la que la
borrosidad juega un papel esencial.

4 Breve referencia a la matematica numérica para
la optimizacién

Los modelos numéricos establecidos para el tratamiento de los problemas en
un ambiente de incertidumbre se asientan, fundamentalmente, en la definicién de
un amplio abanico de nimeros en cuya esencia se halla ausente el concepto de
precisién. Se considera, asi, inicialmente una magnitud para la que no se conoce
de manera precisa su valor o, si se prefiere, que es “incierta”. Supongamos que la
magnitud pertenece a R.

8Zadeh, L.: “Fuzzy Sets”. Information and Control. 8 de Junio de 1965. Pags.: 338-353
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Existen muchas situaciones en las que se puede afirmar, sin embargo, que una
magnitud « es superior o igual a a; € R e inferior o igual a ay € R, es decir que
x pertenece al segmento [a1,as] C R .Por otra parte, se supone que no existe ley
de probabilidad alguna, incluida la ley uniforme o equiprobable, que pueda ser
afectado a los elementos de este segmento. Se dira entonces que:

A = ay, as)

es un “intervalo de confianza” en R.
Hay que senalar que:

(a2 = a1) (A=la1,a1) = a1)

Un intervalo de confianza se puede generalizar a través de un “dominio de
fianza” en R™. Se incorpora, normalmente, la hipétesis segan la cual un “dominio
de confianza” (es decir, un intervalo de confianza si se considera n = 1) es siempre
convexo.

La definicién de la convexidad de un dominio de confianza es la siguiente:

Sea A un dominio de confianza en R",n = 1,2,3,.... Si se consideran dos
puntos (z1) y (22) que pertenecen a A, entonces todo punto (z*) situado sobre
el segmento que une z' y 22 pertenece a A.

También se puede utilizar otra definicién que, evidentemente equivale a la
anterior:

(ACR™ convexa) <= (V(z')e€ AV (z?) € A):

(a2 + (1 =N)(@?))) > Min [ua(e'), pa(@®)], VA €0,1])
en donde:
(ha(z) =0) <= (z ¢ A)

(pa(z) =1) < (z € A)

Cuando el dominio de confianza D no es convexo resulta preferible utilizar las
palabras “subconjunto de confianza”. Se trata aqui pura y simplemente del con-
cepto de subconjunto ordinario tal que al introducir el concepto de “funcién ca-
racteristica” se pude hacer:

Para todo z € E:
() = 1, ze€D
DW= 0, = ¢ D

El concepto de subconjunto de confianza anade al concepto de subconjunto
una idea suplementaria. Se hace referencia a uno o varios elementos del referencial
y se establece la hipétesis que este (o estos) elementos se hallan en el dominio y
no pueden encontrarse fuera del dominio. A la definicién de subconjunto se anade
una idea de decisién, de eleccién, de confianza.
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Vamos ahora a avanzar e imaginar que el subconjunto de confianza puede ser
considerado a diferentes niveles de presuncién ?. Generalmente, cuando el nivel
de presuncion se eleva el nimero de elementos afectados, disminuye. Esto va a
justificar la utilizacion de la palabra presunciéon. En el ambito de la matematica
se acostumbra a expresar, partiendo de una referencial £ y de subconjuntos de
confianza A, que dependen de a , de la siguiente manera:

(@ >a) <= (A, C Ay)

Dicho de otra manera, estos subconjuntos de confianza se encajan de manera
monétona los unos dentro de los otros cuando crece.

El valor de « se llama “nivel de presuncién”. Generalmente la determinacién
de A, para cada valor es un “dato subjetivo” aunque en ciertas ocasiones puede
ser una medida. Este dato subjetivo se halla, de esta manera, asociado a una
apreciacién de la incertidumbre. El nivel 0 corresponde siempre al referencial. A
medida que aumenta el nivel de presuncion los subconjuntos obtenidos no pueden
aumentar (ampliarse). Es posible que al nivel 1 el subconjunto sea vacio.

De esta manera, mediante un encaje, se ha construido un nuevo concepto que
se llama “subconjunto borroso” o de manera impropia para simplificar “conjunto
borroso”. Se le puede, asi, presentar como una generalizaciéon del concepto de
subconjunto ordinario.

L. A. Zadeh presenta los subconjuntos borrosos a partir de la nocién de con-
junto. Se puede representar un subconjunto vulgar a partir de un par:

(E,pa(@))
en donde F es el referencial y A C E se halla definido por su funcién caracteristica:

1, z€A
MA(‘%'): 0, $¢A

de esta manera, en los subconjuntos ordinarios o vulgares, la pertenencia de un
elemento de subconjunto es de todo o nada.
En el supuesto de un subconjunto borroso se escribira:

(B, pa(x))
en donde E es el referencial y se escribe también A C E que se halla definido por:

palr) =a, zeA,

imponiéndose la anteriormente enunciada propiedad de encaje.
Se ha podido observar la utilizacién del simbolo_ (tilde en lengua espaiola)
para indicar que se trata del concepto de subconjunto borroso. Se ha colocado

9Del latin “praesumptio”: coyuntura. confianza, exceso de confianza....
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este simbolo debajo de la letra mayéscula que indica que se trata de un conjunto
o subconjunto; algunos autores colocan el _ debajo de la letra mientras que otros
no utilizan este simbolo con objeto de simplificar la elaboraciéon tipografica.

Los intervalos de confianza constituyen un medio de tratamiento de la incer-
tidumbre en R y en Z cuando se dispone, para informaciones aceptadas como
ciertas, de los extremos inferior y superior. Pues bien si se asocia la nocién de
subjetividad a la de incertidumbre, se llega, para R o Z, a la nocién de niimero
borroso. Para ello, vamos a considerar dos propiedades concretas de los subcon-
juntos borrosos.

Subconjunto borroso normal. Un subconjunto borroso 4 C R es “normal”
cuando:

Vaiia () =1

Subconjunto borroso convexo. Se ha podido observar, que todo subconjunto
borroso esta constituido por un encaje de subconjuntos vulgares en funcién del
nivel de presuncién considerado. Supongamos ahora, que todos los subconjuntos
vulgares de nivel o sean segmentos o intervalos de confianza A, = [a(la),aga)]
entonces la anterior propiedad (o' > o) <= (A, C Ag) se escribira:

(@ > a) ([a%“ ), al)] [a%“%aé“’])

Se dird entonces que el subconjunto borroso A es convexo.
Una definicién equivalente de la convexidad adaptada al caso R seria:

(ACR" convexa) <= (Va1 € Ay, Voo € Ay, Va € [0,1],A € [0,1] :

pa, Ay 4 (1 = N)xo) > pa, (21) A pa, (22))

Se llega, asi, a la nocién de nimero borroso.

Se define un nimero borroso como un subconjunto borroso del referencial de
los reales, que tiene una funcién de pertenencia normal (debe existir una x; para
la que p(x) toma el valor uno) y convexa (cualquier desplazamiento a la derecha
e izquierda de x este valor p(z) va disminuyendo).

Un nimero borroso puede ser representado a través de los segmentos formados
al “cortar” (asignar un valor) la funcién de pertenencia a unos determinados
niveles.

La teoria de los niimeros borrosos puede considerarse como una ampliacién
de la teoria de los intervalos de confianza, cuando se consideran estos intervalos a
todos los niveles desde 0 hasta 1, en lugar de considerar un solo nivel. También es
posible, a partir de un niimero borroso, conocer los intervalos de confianza, para
cada uno de los niveles desde 0.1 hasta 1 para un determinado nimero borroso.

De todo ello se deduce que un niimero borroso se caracteriza por los pares
“nivel de presuncion” “intervalo de confianza”, ya que a cada nivel de presuncién
se le adscribe un intervalo de confianza.
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Para realizar operaciones con nimeros borrosos se actda de la misma manera
que con los nameros reales ordinarios, operado nivel a nivel tal como se hace con
los intervalos de confianza.

De entre todos los niimeros borrosos aparece, por su facilidad de utilizacion, el
numero borroso triangular cuya singularidad consiste en que se halla determinado
por tres cantidades: una por debajo de la cual no va a descenderse, otra en la que
por encima no serd posible llegar, y finalmente, aquella que representa el maximo
nivel de presuncién. La representacién grafica de un nimero borroso triangular
(a1, az2,a3) queda reflejado, en un sistema de coordenadas, por un tridngulo. De
ahi su denominacién.

El nimero borroso triangular permite formalizar de manera muy fidedigna
gran cantidad de situaciones econdmicas en la que se estiman magnitudes locali-
zadas en el futuro. Asi, en la estimacién del coste de un producto a elaborar, es
frecuente pensar que su precio no va a ser inferior a 40 ni superior a 70, siendo el
precio que tiene la méxima posibilidad 55 unidades monetarias: se ha definido,
entonces, en el campo de la incertidumbre, un nimero borroso triangular.

Dado que en el ambito de la economia y gestiéon de las empresas se estudian
problemas cuyas magnitudes se proyectan hacia el futuro, no exigen, frecuente-
mente, una extrema precisién sino la mayor adaptacién posible a la realidad. Un
presupuesto no precisa de una exactitud al céntimo sino que refleja lo que va a
suceder en la realidad con una “buena aproximaciéon”. Una estimacién de ventas
para un periodo no puede realizarse de una manera totalmente rigida, pues hay
demasiados elementos que influyen en ella. Los ejemplos surgen a millares. En
actividades repetitivas, en cambio, la probabilidad resulta altamente fructifera,
pero en la gestién de las empresas, la repetitividad constituye la excepcién. De ahi
el interés en la utilizacién de los niimeros borrosos en general y de los triangulares
en particular.

Conviene senalar, en ultima instancia, que la transformacién de los modelos
tradicionales de caracter numérico al campo de la incertidumbre, basada en la
sustitucién de nimeros precisos por nimeros inciertos, los generalizan e incluso
los hacen mas aptos para el tratamiento de la realidad. Ahora bien, en si misma,
esta transformacion no resulta suficiente para abordar la compleja realidad de
nuestros dias. Son los modelos inciertos, desarrollados a partir de conceptos
emergidos de la matemética no numérica, quienes son capaces de llenar el vacio,
cada vez mads profundo, en el estudio de unos fenémenos que escapan, no sélo a
la medicién sino también a la valuacién 1°, aun cuando ésta sea realizada a través
del més simple de los niimeros inciertos.

La incorporacion de estos instrumentos significa una clara ruptura en relacién
a situaciones precedentes. Y ello, aun cuando en su desarrollo se utilicen elemen-

10R, d 1 d luacié imil . iy - lizad
ecordemos que el concepto de valuacién se asimila a una asignacién numérica realizada
subjetivamente. La subjetividad es la caracteristica que la diferencia de la nocién de medida,
de cardcter eminentemente objetivo
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tos ya empleados en los estudios clasicos. La actual situacién de equilibrio en
la cohabitacion de modelos numéricos y no numéricos en la incertidumbre, estéd
dando paso a una mayor supremacia de estos ultimos, como consecuencia de las
crecientes dificultades de acotar siquiera los fenémenos sociales, econémicos y de
gestién. Por ello, aquellos conceptos que exigen inevitablemente ser expresados
numéricamente (en la certeza o en la incertidumbre) han ido dejando protago-
nismo por las dificultades de expresarlas objetiva y hasta subjetivamente, habida
cuenta del contexto cada vez mas incierto en el cual se inscriben.

5 Elementos no numéricos para la optimizacion

La optimizacién implica, frecuentemente, la necesidad de tomar partido por
una alternativa frente a otra u otras. Los estudios econémicos y de gestion se
han desarrollado, en gran parte, con la busqueda de elementos capaces de dar
pautas, ayudar en definitiva, a aquellos en quienes recae la tarea de pasar de los
planteamientos a su ejecucién. En los estudios clasicos las ayudas toman muchas
veces la forma de criterios basados en conceptos con apoyo numérico. Asi,
se hallan presentes en practicamente todas las areas del conocimiento econémico
las nociones de economicidad, rentabilidad, productividad, ... las cuales compor-
tan informaciones siempre expresadas mediante niimeros precisos, aleatorios o, de
manera mas reciente, inciertos. Ahora bien, mantenerse en esta linea exige plan-
tear la pregunta relativa a como poder suministrar criterios cuando honestamente
no es posible establecer unas asignaciones numeéricas, ni siquiera subjetivas. El
camino parece, pues, cortado y se hace precisa la busqueda de nuevas vias.

Nos hemos acostumbrado a disponer, cuando se inicia un proceso de opti-
mizacion, de una cifra representativa del nivel de apreciacién de cada objeto
fisico o mental que en él interviene. El mayor (o en su caso el menor) de estos
nimeros determina muchas veces el resultado buscado. Tan asociados se han
hallado ntimero y nivel de apreciaciéon que es dificil concebir el uno sin el otro. Sin
embargo, esta inveterada costumbre no debe impedir el intento de separar este
matrimonio, no siempre bien avenido. Creemos llegado el momento de dar una so-
lucién amistosa a las incompatibilidades, haciendo durar la convivencia en todos
aquellos casos en los cuales no sea necesario el engano y dejando que el niimero
y el nivel de apreciacion puedan estar presentes de manera independiente en los
diferentes planteamientos de la ciencia econdémica, cuando las circunstancias lo
exijan.

Sabemos muy bien, es evidente, como utilizar el andlisis numérico, principal-
mente en la certeza y el azar, pero también en la incertidumbre. EI nivel de
apreciacién en cambio, carece de la costumbre de actuar por si solo y se ve ne-
cesitado de una estructura suficientemente sélida para poder enfrentarse a los
planteamientos méas generales.

Puesto de manifiesto la existencia de un nuevo contenido de la matematica
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para la optimizacién, pasamos ahora, a la descripcién de aquellos elementos que
constituyen su soporte. En otras palabras, vamos a ver cudl es la tipologia bésica
sobre la que se asienta la optimizacién. Nos referimos a los conceptos de relacion,
asignacion, agrupacién y ordenacién. El estudio de la optimizacion en las
ciencias sociales pone de manifiesto que en la practica totalidad de los casos la
optimizacion tiene lugar bien para establecer una relacion, bien para afectar una
“cosa” a otra “cosa”, bien para realizar agrupaciones casi siempre homogéneas, (
las cuales sirven también para separar los grupos formados) o bien para establecer
un orden de prioridades, unas veces de mejor a peor (de mds a menos) , otras
veces en sentido inverso.

Vamos a proceder, a continuacién a la anunciada descripciéon, muy somera
como procede en este contexto, de estos cuatro elementos:

11

a) Relacién

El fenémeno de la relacién forma parte consustancial de la vida social,
econdmica y de la actividad de las empresas. Afecta tanto a los seres inteli-
gentes como a los animales inferiores y objetos inanimados. Se trata de lo que
para generalizar llamamos “objetos” fisicos o mentales.

Quizés el aspecto de las relaciones que resulta méas familiar, se sitda en el
ambito de las conexiones entre las personas integrantes de nuestra sociedad. Los
individuos que viven dentro de un contorno social forman circulos dentro de los
cuales realizan la totalidad de sus actividades vitales. La caracteristica de cada
uno de estos vinculos es que un sujeto cualquiera es capaz de relacionarse con
todo otro sujeto, bien de manera directa o a través de otros sujetos.

La vida se desarrolla en el interior de cada circulo unas veces aumentando el
nivel de la relacién, otras veces “enfriandolo”, es decir, reduciendo la fuerza de
la conexién.

El paso de un circulo o “casta” a otro resulta, la mayor parte de las veces, muy
dificil. Casi siempre es necesario algan tipo de revolucién. Ahora bien, cuanto se
acaba de senalar no impide la existencia de algunas relaciones entre uno o varios
miembros de un “circulo” con uno o varios miembros de otros “circulos”. Sin
embargo, esta relacién no es simétrica en el sentido de que una cierta relacién en
un sentido no es correspondida en el sentido inverso (prestar un servicio, conceder
una ddvida, ... sin contrapartidas). A pesar de ello, es posible imaginar una
sociedad ideal, en la cual todos sus miembros se hallan relacionados entre si, de
manera directa o indirecta.

La fuerza de la costumbre nos ha llevado a considerar el “conjunto producto”
como la nocién capaz de representar la totalidad de relaciones existentes entre los
elementos de un conjunto referencial o las relaciones entre dos o mas referenciales.
La incorporacién del concepto de “grafo” permite desarrollar la idea de relaciones
entre una parte de los elementos del conjunto producto, con fructiferos resultados.

11 Gil Aluja, J.: “Elements for a theory of decision in uncertainty”. Kluwer Academic Publis-
her. Boston. Londres, Dordretch. Pags: 20-28
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Los estudios clasicos, basados en la logica booleana, consideran la alterna-
tiva de existencia o no de relacién. La necesidad de establecer un grado o nivel
de relacién, aconseja pasar al ambito de las 16gicas multivalentes. La relaciéon
borrosa o matriz borrosa adquiere, entonces, un papel relevante.

En efecto, a partir de un grafo borroso, presentado en forma matricial o sa-
gitada, es posible, mediante adecuados algoritmos, conocer si existe un solo
circulo de relaciones (grafo fuertemente conexo) o varios circulos de relaciones
(grafo no fuertemente conexo). En este dltimo caso parece la nocién de clase de
equivalencia o subgrafo fuertemente conexo.

Establecidos los nexos de relacién y el nivel de los mismos, cabe preguntar
cudl sera la evolucion de los mismos a través de sucesivos periodos de tiempo o
etapas, en su caso. En otro orden de ideas, también se puede centrar el nivel de
interés en el conocimiento de las variaciones en el grado o intensidad de la relacién
a medida que van interviniendo mas elementos que actdan como intermediarios.
En otras palabras, cuando la cadena de relaciones se va alargando.

Existe un operador capaz de dar cumplida respuesta a tales cuestiones. Se
trata del operador convolucion maxmin. La utilizacién de este interesante
agente conector permite llegar a la conclusién de que el tiempo, el espacio, o las
conexiones, segan los casos, desemboca en tres situaciones a largo plazo, tipifica-
das por la convergencia en el limite, la periodicidad y las situaciones cadticas.

Una amplia tipologia de relaciones permite establecer ciertas caracteristicas
y propiedades poseidas por cada tipo de relaciéon. De esta manera se abre un
abanico de formas tedricas aptas para representar diversas realidades. A partir
de ellas el encadenamiento de relaciones entre objetos pertenecientes a varios
conjuntos conduce a conexiones directas e indirectas.

Finalmente, otros aspectos merecen especial atencién. A medida que trans-
curre el tiempo o se suceden etapas, se pueden generar nuevas relaciones dentro
de cada subgrafo o entre elementos pertenecientes a subgrafos distintos. En este
caso la red de relaciones va siendo cada vez més tupida. Pero no tiene porque ser
siempre asi. En ciertos supuestos desaparecen lazos, antes existentes.

Pero es quizas al analizar la variacién en las intensidades, niveles o fuerza de
las relaciones, cuando surgen particularidades que es necesario tener en cuenta a
la hora de representar fielmente las realidades sociales, econémicas y de gestion.
Asi, en multitud de supuestos tiene lugar la “degradacién” en el nivel de una
o varias relaciones, mientras que en otros, no pocos también, el transcurso del
tiempo o la sucesién de etapas “fortalece” los vinculos.

El testudio de este tipo de relaciones presenta unas particularidades tales que
no pueden ser tratadas de la misma manera que las no acumulativas. Resulta
entonces necesario variar, en cierto modo, el camino seguido, haciendo intervenir
ademads de la relacién o relaciones primarias entre los objetos de un conjunto
con los de otro u otros, la relaciéon de objetos de cada conjunto consigo mismo.
Asi, cuando se trata de establecer la relacién acumulada directa o indirectamente
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entre los elementos de dos conjuntos, ademas de presentar una relaciéon en forma
matricial o sagitada entre los objetos de un conjunto y los del otro, se deben definir
las relaciones en forma matricial o sagitada entre los objetos de un conjunto entre
si y los del otro conjunto, también entre si. Se tiene, entonces, que el proceso
formalizador parte bien sea de tres matrices o de tres grafos sagitados.

Un caso particular de cuanto acabamos de exponer viene dado por las llamadas
relaciones de incidencia o causalidad 2. En ellas un conjunto de causas estd
“conectado” con un conjunto de efectos. A medida que se van obteniendo los
efectos acumulados de primera y segunda generacion se observa un aumento del
nivel de la relaciéon. En este caso, las relaciones entre objetos de un mismo
conjunto deben poseer la propiedad reflexiva, en el sentido de que la incidencia
de un objeto consigo mismo es total. Es asi que sus representaciones matriciales
se caracterizan por poseer el valor unidad en todos los elementos de su diagonal
principal. Lo mismo sucede en la forma sagitada en la cual cada arco que une
un vértice consigo mismo esta valuado con un uno. Nadie puede dudar de la
importancia ejercida por las relaciones de causalidad a lo largo del desarrollo del
pensamiento cientifico. El proceso propuesto permite, ademas, obtener “todas”
las relaciones directas e indirectas, sin posibilidad de error u omisién, recuperando
lo que se ha venido denominando “efectos olvidados”.

b) Asignacién:

Una manera muy especial de establecer relaciones tiene lugar mediante un
proceso conocido con el nombre de “asignaciéon”. También se emplean, como
sinénimos, otros términos tales como afectacion o adscripcién. Por nuestra parte
utilizaremos habitualmente el primero de estos vocablos en el bien entendido que
no hacemos bandera de esta eleccién.

La calificacién de relacién “especial” creemos tiene su plena justificacion en
un aspecto consustancial con la asignacién, tan diferenciable que lo ha ido apar-
tando de los estudios relacionales clasicos. Nos referimos al hecho de que el objeto
susceptible de afectacién y objeto al cual éste debe ser afectado, no pueden jugar
papeles reversibles, en caso alguno. El sentido, pues, de la adscripcién es siempre
el mismo. De ahi, la consideracién fundamental de un conjunto de elementos a
asignar y de otro conjunto de elementos que siempre recibirdn la asignacién. Y
todo ello con independencia del propio fenémenos de la asignacion, cuyas carac-
teristicas especificas lo hacen merecedor de especial atencién.

El planteamiento del problema de la asignaciéon parte de la existencia de tres
conjuntos, normalmente finitos, de objetos fisicos o mentales. El primero recoge
los elementos a asignar, el segundo los elementos que deben recibir la asignacién
y el tercero los elementos en los cuales se basa el proceso asignador ( cualida-
des, caracteristicas, singularidades, ...), en definitiva lo que podriamos denominar
criterios de asignacién. Cdémo organizar el papel que juega cada uno de estos

2Kaufmann, A. y Gil Aluja, J.: ” Modelos para la investigacién de efectos olvidados”. Ed.
Milladoiro. Santiago de Compostela, 1988
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conjuntos, constituye el punto de arranque a partir del cual se desarrollan las
distintas técnicas que se han elaborado. Consideramos, por nuestra parte, que
una buena manera de representar estos aspectos viene dada por la construccion
de un subconjunto borroso para cada uno de los objetos a asignar tomando como
referencial el conjunto de “criterios” de asignacién. Se tienen, entonces, unos
descriptores, tantos como elementos posee el primero de los conjuntos (elemen-
tos a asignar). De igual manera, se elaboran el mismo nimero de subconjuntos
borrosos, con idéntico referencial, del conjunto de los “criterios”, como objetos
receptores de la asignacién. Se trata, también en este caso, de descriptores,
pero ahora de los elementos del segundo de los conjuntos (objetos receptores).

Con objeto de obtener las relaciones, a partir de las cuales iniciar el proceso
para la asignacién, se puede recurrir a alguno de los indices capaces de expresar
el “alejamiento” o “acercamiento”, en su caso, entre los objetos a afectar y los
objetos a los cuales debe realizarse la afectacién. Entre los méas conocidos caben
citar los que surgen de la nocién de distancia y los que parten de la nocién de
adecuacién. A partir de ellos, es posible utilizar una amplia gama de variantes.

La tarea de asignar convenientemente un objeto a otro objeto, tiene en si
misma, un caracter combinatorio. Por este motivo las técnicas precisas para esta
labor han tenido que ser buscadas en este campo de la mateméatica. No es de
extranar, entonces, que se haya hurgado en aquellos algoritmos capaces de acotar
el nimero de operaciones necesarias para encontrar la o las soluciones éptimas.
La justificacion de tales algoritmos proporciona una buena base tedrica sobre la
cual es posible sustentar una teoria de la asignacion, quizas aun hoy incompleta.

Elementos de la programacion matematica, flujos en redes, acotaciones en ar-
borescencias, ... confluyen para encauzar los estudios de asignacién hacia proce-
dimientos de cédlculo capaces de dar amplia respuesta a los problemas planteados.
Estos procedimientos se concretan en algoritmos. Entre los més utilizados cita-
remos el algoritmo por eliminacion de filas y columnas, al que es necesario
anadir otros dos aptos para la optimizacién: el algoritmo hingaro y algoritmo
branch and bound.

Las posibilidades de utilizar estos algoritmos en las realidades sociales, econé-
micas y de gestién, son muchas. De hecho, disponemos de una buena experiencia,
en este sentido, en campos tales como los recursos humanos, finanzas e inversiones,
marketing, ... e incluso conocemos de un estudio realizado para la asignaciéon de un
jugador de futbol a una posicién del equipo. Un amplio ventanal se ha abierto para
las optimizaciones basadas en la afectacion, adscripcion o, si se quiere, asignacion.

c) Agrupacién

El problema de la agrupacion homogénea de objetos fisicos o mentales consti-
tuye una constante para la optimizacién. En efecto, son frecuentes las situaciones
en las cuales es necesario reunir, en bloques, “objetos” muchas veces con aparien-
cia diferente, bien para una seleccién entre los componentes del mismo grupo bien
para elegir un grupo entre varios de ellos. En la actividad social, econémica y de
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gestion, son miultiples los casos en que se presenta este planteamiento. Asi, en
el ambito productivo, la separaciéon por grupos homogéneos de materias primas,
productos semielaborados o productos acabados 3 , constituye una constante en
el dia a dia de los procesos de fabricacién. En la actividad financiera la agrupacion
de productos o instrumentos de financiacién * o la de objetos de la inversién '° es
algo que de manera expresa o tacita se halla en la mente de los agentes activos de
este campo. La actividad comercial presenta una variada gama de planteamientos
decisorios en cuyo origen se halla la necesidad de agrupar '6. Y la gestién de los
recursos humanos no es ajena a este problema 7. Nos hemos limitado a sefalar
algunos de los muchos casos que aparecen en los estudios de optimizacion.

La formalizacion de estos planteamientos ha tenido lugar, a lo largo del tiempo,
a partir de ciertas técnicas cuyo desarrollo no ha proporcionado, en nuestra
opinidn, los resultados deseados para dar cumplida respuesta a los retos plantea-
dos. La posterior dispersién de los caminos emprendidos ha evitado la formacién
de un esquema unitario con la suficiente generalidad para abarcar el amplio es-
pectro de la compleja realidad social de nuestra época.

En efecto, vamos a tomar como referencia el concepto de semejanza. Este
término adquirié en su momento, gracias al desarrollo de la matematica de la
incertidumbre, una importancia especial, sobre todo para procesos de agrupacién
o separaciéon. Con el tiempo se ha ido constatando que este concepto no ha
resultado lo suficientemente 1til para una eficaz agrupacién, como consecuencia
de la no existencia de la propiedad transitiva. En efecto, si se dispone de un
grupo de objetos concretos o abstractos, A, B, C, y se cumple que A y B son
semejantes a un determinado nivel, asi como B y C son semejantes, también a
este nivel, no tiene porque cumplirse que al nivel especificado lo sean A y C. Para
que esto se cumpla es necesaria la intervencion de la citada propiedad transitiva.

Es suficientemente conocida la manera de obtener los subgrafos transitivos a
partir de un grafo de semejanzas (reflexivo y simétrico). Estos subgrafos expresan
“relaciones de similitud” entre algunos elementos del referencial, formando el ma-
yor “grupo” posible con caracteristicas similares: Son las llamadas subrelaciones
maximas de similitud. Para su obtencién se han elaborado algunos algoritmos en-

13Gil Aluja, j.:MAPCLAN. Modelo for assembling products by means of clans. Proceedings
de la Third International Conference on modellling and simulation MS’97. Melbourne 29-31
Octubre 1997. Pédgs 496-504

14@Gil Lafuente, A.M.:Fundamentos de Analisis Financiero. Ed Ariel. Barcelona. 1993. Pégs:
285-300

15Gil Aluja, J.: Invertir en al incertidumbre. Ed. Piramide. Madrid 1997. Pags: 115-139

16Gil Lafuente,J.:Marketing para el nuevo milenio. Ed. Piramide. Madrid. 1997. Pags:145-
161

17Gil Aluja, J.: La gestién interactiva de los recursos humanos en la incertidumbre. Ed.
CEURA. Madrid. Pags: 145-158
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tre los cuales caben citar el de Pichat '® y el de Lafosse-Marin Kaufmann '°. Los
subconjuntos que se forman no son disjuntos. Y aunque esta circunstancia carece
de importancia en muchos casos, cabe plantearse el problema de la formacién
de subrelaciones maximas de similitud disjuntas. Cuando esta propiedad se con-
vierte en una exigencia, habra que recurrir a la transformacién del grafo borroso
de semejanza en un grafo borroso de similitud a través del cierre transitivo.

La importancia que ha representado disponer de estos elementos tedricos ca-
paces de obtener agrupaciones por semejanzas o similitudes, ha sido enorme. A
pesar de ello, estos elementos no han resultado suficientes para resolver toda la
gama de problemas de optimizaciéon que las realidades econémicas y de gestién
plantean. No se olvide que el punto de partida es una matriz cuadrada, en la
cual los elementos de las filas coinciden en cantidad y en esencia con los elementos
de las columnas. Y esto es un caso particular de otro mas general, en el que no
coinciden, ni en nimero ni en concepto, las filas con las columnas. Para llegar a
él se puede partir de una matriz rectangular, ni simétrica ni reflexiva.

Conscientes de esta necesidad, intentamos en su dia abordar la construccién de
un conglomerado de conocimientos a partir de la nocién de afinidad, ya utilizada
en trabajos anteriormente, realizados junto al anorado profesor Kaufmann 2° . Los
resultados han permitido poner en evidencia el caracter general de este concepto,
del cual la importante nocién de similitud constituye un caso particular.

Para lograr este objetivo, tomamos como punto de arranque el concepto de
relacion, en su aspecto mas amplio, en el sentido que pueden existir conexio-
nes a distintos niveles entre elementos de dos conjuntos referenciales finitos. La
presentacion de estas relaciones mediante una relacién borrosa, normalmente rec-
tangular, permite un amplio juego del que se derivan interesantes reflexiones.

Una de ellas, y no la menos importante, hace referencia a la flexibilidad deri-
vada de la posibilidad de obtener, a partir del tratamiento mediante ac— cortes, un
abanico de matrices booleanas capaz de permitir la adaptabilidad necesaria en la
formacién de agrupaciones, considerando los niveles deseados de homogeneidad.

Al disponer de matrices booleanas, se consigue un entronque con los estudios
clasicos de la légica binaria, lo que permite aprovechar relevantes aspectos, hasta
ahora creemos poco utilizados en los procesos de optimizaciéon. Cabe destacar a
este respecto, el conglomerado de conocimientos elaborados a partir del concepto
de “familia de Moore”, los cuales permiten la obtencion de adecuadas agrupacio-
nes. La presentacién de estas agrupaciones mediante estructuras reticulares pone

18Pichat, E.: Algorithm for finding the maximal elements of a finite universal algebra. Inform
Proceeding 68. Publ. North Hollanda. 1969

YKaufmann, A.: Modeles mathématiques pour la stimulation inventive. Ed. Albin Michel,
1979. Pag.: 62

20Senalemos a titulo de ejemplo las obras de Kaufmann, A. y Gil Aluja, j.: Técnicas de gestién
de empresa. Previsiones, decisiones y estrategias. Ed. Pirdmide. Madrid. 1972, Cap. 10 y
Técnicas especiales para la gestiéon de expertos. Ed. Milladoiro. Santiago de Compostela, 1993.
Cap 13, de los mismos autores
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en evidencia las afinidades. Para ello se ha recurrido a los reticulos de Galois, a
cuya belleza formal se afiade su gran capacidad de adaptacion.

Las posibilidades de utilizar este conjunto de elementos tedricos y técnicos a
la optimizacién en la incertidumbre, se ven facilitadas por la puesta a punto de
algunos algoritmos de empleo alternativo segin las circunstancias concretas de
cada momento. En efecto los algoritmos de la “correspondencia inversa méaxima”
y de las “submatrices completas maximas” constituyen eficaces instrumentos de
solucién répida y eficaz a los problemas planteados. A ellos, hemos podido anadir
un tercero, cuya base se halla en la llamada teoria de clanes. Creemos que, con esta
trilogia, se puede cerrar, aunque sea provisionalmente, la esfera de la “agrupacién”
como concepto fundamental de la optimizacion en la incertidumbre.

d) Ordenacién

Se llega finalmente, a la nocién de orden. Si en los estudios tradicionales la
ubicacion de los elementos numéricos adquiere categoria de protagonismo, cuando
las realidades sociales sufren convulsiones que incapacitan la adopcién de técnicas
lineales, su desplazamiento resulta inevitable. Es entonces cuando el proceso de
ordenacién asume la mayor responsabilidad.

En efecto, cada vez resulta mas dificil circunscribir la fenomenologia actual
al estricto reducto de un niimero e incluso acotarla entre dos o mas ntmeros.
Ante estas circunstancias, el recurso a una comparacién basada en formas no ma-
nifestadas cuantitativamente, puede proporcionar excelentes soluciones. Resulta
evidente que seria preferible, para todos, disponer de la informacién suficiente,
capaz de permitir una asignacién numérica a cada fenémeno susceptible de opti-
mizacion. Pero a falta de soportes aptos para el suministro de tales elementos,
creemos mas honesto conformarnos con menos, aunque este menos impida preci-
siones muchas veces superficiales.

Con objeto de obtener estructuras capaces de conducirnos hacia algoritmos
aptos para la ordenacion se han creado ciertos desarrollos que permiten una sufi-
ciente gama de caminos capaces de cubrir un amplio abanico de problemas hasta
hace poco sin solucién satisfactoria.

El primero parte de la nocién de funcién ordinal de un grafo. La definicién
de este concepto a partir de la teoria de grafos resulta altamente fructifera al
proporcionar una estructura bésica a partir de la cual, siguiendo cada una de las
formas senaladas, se elaboran algoritmos de facil asimilacién y eficacia probada
para su utilizacién en los planteamientos econémicos y de gestion.

La teoria de grafos suministra, asi, interesantes esquemas para establecer una
relacién de orden. Si se exceptian los grafos “fuertemente conexos” los cuales,
representados por matrices con una sola clase de equivalencia, no permiten hallar
un orden entre sus vértices, la posibilidad de descomponer un grafo no fuerte-
mente conexo en subgrafos si fuertemente conexos, ha abierto las puertas a la
ordenacién cuando no de vértices, por lo menos de conjunto de vértices (los que
componen cada clase de equivalencia o subgrafo fuertemente conexo).

Rect@ Monogréfico 2 (2004)



J. Gil Aluja et al. 45

Una vez obtenidas todas las clases de equivalencia o subgrafos fuertemente
conexos, se ha vencido el escollo mas importante que podia evitar la ordenacion.
Ahora, cuando no se pueden ordenar vértices por la existencia de circuitos, es
posible la ordenacién de clases de equivalencia, es decir, de grupos de objetos
fisicos o mentales.

Sin abandonar la misma metodologia general, se puede abordar un segundo
camino que tiene como punto de arranque la denominada matriz latina. Su
andadura, pues, tiene lugar, por lo menos inicialmente, a partir de una forma
matricial. La utilizacién de adecuados operadores, principalmente el de convo-
lucién maxmin, conduce al método de la composicion P-latina. La exigencia de
una propiedad especifica (la del camino elemental) permite establecer la enume-
racién de los caminos elementales de un grafo, que son, en si mismos, fuente
inmediata de ordenacién. El algoritmo que se desprende hace el resto.

El dltimo sendero susceptible de utilizacién ofrece unas caracteristicas dife-
renciales de los dos anteriores. Su fundamento se halla en conocidas propiedades
del célculo matricial, las cuales fueron sagazmente utilizadas primero por Saaty
21 y luego por Dhin 22

En un sistema social y econémico marcado por la incertidumbre el concepto
de orden ocupa un puesto de privilegio para la optimizacién. Ordenar inversio-
nes, ordenar fuentes de financiaciéon, ordenar recursos, ... es la antesala de la
optimizacién. Cuando no es posible obtener un cuadro “valorado” de objetos,
apelar a un “orden no cuantificado” de los mismo puede ser suficiente para una
optimizacién aceptable.

Relacion, asignacion, agrupacién, ordenacién, ... y tantos otros vocablos que
en un futuro inevitablemente van a aparecer, son conceptos que van emergiendo,
en este intento de buscar nuevos caminos para dar soluciéon a los complejos pro-
blemas que la optimizacion plantea.

6 Consideraciones finales

Tradicionalmente, la ciencia econémica ha tenido como uno de sus objetivos
fundamentales, la busqueda de la optimizacién. No puede extranar, entonces, que
estemos viviendo unos momentos de desconcierto, cuando una realidad, llena de
convulsiones que hacen la vida inestable, quiere ser tratada como se habia hecho en
situaciones de equilibrio, envueltas en estabilidades. Nos hemos de acostumbrar
a pensar que la sociedad, la economia y la actividad de las empresas, tal como las
hemos conocido hasta ahora, no tienen ninguna posibilidad de sobrevivir en un
futuro muy inmediato y que muchos, pero que muchos cambios seran inevitables.

21Saaty, T.L.:Exploring the interface between hierarchies, multiples objectives and fuzzy sets.
Fuzzy Sets and Systems. 1978. Vol. 1 N. 1. P4gs: 57-68

22Dihn, Xuan B4.: A method for estimating the membership function of a fuzzy set. Revue
Buseval, L.S.I. University Paul Sabatier. Toulouse 1984, N. 19 Pags.:68-82
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Creemos que consenso e inestabilidad son conceptos que van cada vez mas
unidos y todavia lo irdn méas en el futuro. Tanto es asi, que en las nuevas ten-
dencias de la investigacién cientifica en el &mbito de la economia y la gestién de
las empresas, estan tomando una posicién cada vez mas fundamental. Inestabili-
dad y volatibilidad de los mercados financieros, inestabilidad y fluctuacién de los
precios, inestabilidad y precariedad de las ofertas de trabajo, son claros ejemplos.

Pueda resultar 1til, en este contexto, una breve reflexién en torno a las po-
sibilidades que ofrecen las propuestas que llegan de los laboratorios en donde se
ensayan los nuevos hallazgos cientificos. En ellos, podemos comprobar que la ac-
tividad cientifica se halla en una encrucijada en la que esta en juego el futuro de
la humanidad. Por un lado, la concepcién geométrica del universo, por el otro,
la concepcién darwiniana. De una parte la imposicién de unas creencias prees-
tablecidas desde el esplendoroso amanecer newtoniano, en el que se sonaba con
reducir el funcionamiento del mundo a la predictibilidad de un mecano. De otra
parte, el vacio de lo desconocido. La atraccién de la aventura, sélo guiados por
la esperanza de abrir nuevos horizontes. La respuesta a la llamada de Bertran
Russell, de Lukasiewicz, de Zadeh, de Lorenz, de Prigogine, de Kaufmann. El
rechazo al yugo de la predestinacién y la proclamacién de la libertad de decisién
que una y otra vez choca con el muro de la incertidumbre.

Incertidumbre. Vocablo casi proscrito hace sélo unos pocos decenios. Sujeto
a maltrato y objeto de confusiéon por quienes mas debian ser celosos guardianes
del “grial” de la Ciencia. Hoy, gracias a los originales trabajos de Zadeh, resurge
acaparando un protagonismo que facilita nuevos cauces a tantos investigadores
deseosos de proporcionar respuestas a los interrogantes que la sociedad convulsa
de hoy plantea.

Aunque resulta dificil buscar las raices més profundas de las nuevas miradas
con que los investigadores escrutan el mundo, no existe la menor duda de que algo
importante estaba pugnando por emerger a la superficie de la actividad cientifica
cuando destilaban las primeras esencias del evolucionismo, rica herencia del siglo
XIX.

En efecto, en su fundamental obra “El origen de las especies” publicada
en 1859, Darwin considera que las fluctuaciones en las especies bioldgicas,
gracias a la seleccién del medio, dan lugar a una evolucién biolégica irreversible.
De la asociacién entre fluctuaciones (que asimila a la idea de azar, dirfamos
nosotros incertidumbre) e irreversibilidad tiene lugar una autoorganizacién
de sistemas con una creciente complejidad.

Por su parte, Clausius formula, en 1865, la “ley de aumento de la en-
tropia”, con la correspondiente divisién entre procesos reversibles e irreversi-
bles. Esta distincion se hace explicita en la segunda ley que postula la exis-
tencia de una funcion, la entropia, la cual, en un sistema aislado, aumenta
cuando existen procesos irreversibles y se mantiene constante en presencia de pro-
cesos reversibles. Por lo tanto, la entropia alcanza un valor méximo cuando el
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sistema estd llegando al equilibrio y acaba el proceso irreversible.

Tanto en el caso de Darwin como en el de Boltzmann, azar (o si quiere
incertidumbre) y evolucién se hallan estrechamente relacionados, pero el resul-
tado de sus respectivas investigaciones conducen a conclusiones contrapuestas.
En Boltzmann, la probabilidad llega a su maximo cuando se esta alcanzando
la uniformidad, mientras que en Darwin la evolucién conduce a nuevas es-
tructuras autoorganizadas.

En contraposicion con estas perspectivas, el prototipo de la fisica clasica
y como consecuencia de la teoria econémica marginalista, es la mecanica del
movimiento, la descripcién de procesos de caracter reversible y determinista,
en donde la direccién del tiempo no juega papel alguno, en la cual no existe
un lugar ni para la incertidumbre ni para la irreversibilidad. En definitiva, los
sistemas econémicos y de gestion constituyen inmensos autématas.

Es bien cierto que algunos fenémenos que surgen en la vida de los estados,
instituciones y empresas se pueden perfectamente describir mediante ecuacio-
nes deterministas pero, en cambio, otros comportan procesos inciertos o,
en todo caso, estocasticos. Podria suceder que nuestra propia existencia, con
toda su complejidad, se hallara, también inscrita en las leyes generales desde
el momento primigenio del Big-Bang. Pero la ciencia, de tanto buscar las gene-
ralidades, las simetrias y las leyes, ha encontrado lo mutable, lo temporal
y lo complejo.

Nos encontramos, pues, en una encrucijada que podria ser bautizada como
geometrismo — darwinismo, en cuyo epicentro se halla una querella que data
de més de dos mil anos. En efecto, Aristételes (384 - 322 a.C.) senalaba que:
“respecto de las cosas presentes o pasadas, las proposiciones, sean positivas o
negativas, son por necesidad verdaderas o falsas. Y de las proposiciones que
se oponen contradictoriamente debe ser una verdadera y una falsa”. FEn esta
misma linea se situaba el pensamiento de los estoicos a una de cuyas figuras
centrales, Crisipo de Soli (~ 281 -208 a.C.), se le atribuye la formulacién del
llamado “principio del tercio excluso”. Los epicuareos, con su fundador Epicuro
(341 - 270 a.C.) al frente, contestaron con vigor este principio, sefialado que sélo es
aceptable si no se da una tercera posibilidad “tertium non datur” (tercio excluso).

Tienen que transcurrir veintidés siglos para que Lukaciewicz, retomando la
idea de los epicureos, senalara que existen proposiciones que no son ni verdaderas
ni falsas, sino indeterminadas. Esto le permite enunciar su “principio de valen-
cia” (cada proposicién tiene un valor de verdad). Se inicia, asi, el camino para
las llamadas légicas multivalentes.

Con ocasion del Congreso Internacional SIGEF de Buenos Aires, intentamos
asentar la posicion epicarea en las nuevas coordenadas surgidas de la importante
obra de Zadeh, enunciando el “principio de la simultaneidad gradual” (toda pro-
posicién puede ser a la vez verdadera y falsa, a condicién de asignar un grado
a su verdad y un grado a su falsedad). Antes y después, un buen nimero de
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cientificos han ido colocando, piedra tras piedra, los cimientos de lo que puede ser
un nuevo edificio del saber econémico. Desde nuestro d&mbito de estudio, muchos
nombres jalonan este ya fructifero camino y numerosos grupos de investigacién
pertenecientes a universidades de los cinco continentes han aceptado el testigo y
estan trabajando en las distintas ramas del drbol de la ciencia, para proporcionar
a quienes se hallan inmersos en el intrincado mundo de las optimizaciones, unos
elementos tedricos y técnicos susceptibles de permitir una lucha maés equilibrada
frente a las incertidumbres de hoy y de manana.
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1 Introduccion

En este trabajo nos centramos en el estudio de problemas de decision en los que
el nimero de objetivos es multiple y algunos o todos los parametros del problema
son variables aleatorias con distribuciéon conocida. De esta forma, se relaja la
hipétesis frecuente cuando se plantea un modelo de optimizaciéon referente a que el
objetivo del proceso de decisién puede representarse a través de una unica funcién
a optimizar. En general, un problema de programacién estocédstica multiobjetivo
se puede formular como:

donde x € R™ es el vector de variables de decisién del problema y E es un vector
aleatorio definido sobre un conjunto £ C R". Suponemos dada la familia F
de eventos, es decir, subconjuntos de FE, y la distribuciéon de probabilidad P
definida sobre F', de manera que para cualquier subconjunto de £, A C E, A C
F', la probabilidad de A, P(A), es conocida. Ademds, se mantiene la hip6tesis
de que la distribuciéon de probabilidad, P, es independiente de las variables de
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decisién,z1, ..., x, . Suponemos que las funciones z1(x,€), Z2(z,§) ..., Z4(z,§) ¥y
gﬁ(x,g),gz(x,g), e ,g}},ﬁb(x,g), estdn definidas en todo el espacio R" x E.

A partir de los anélisis realizados en articulos previos, sabemos que la reso-
lucién de problemas de programacién estocastica pasa por la eleccion de criterios
para obtener, a partir del problema estocastico, un problema determinista equi-
valente cuya solucién es considerada solucién éptima del problema original. Esto
da lugar a que para un mismo problema estocastico se puedan obtener distin-
tas soluciones, una por cada uno de los criterios de obtencién del determinista
equivalente, y que se puedan considerar todas ellas soluciones 6ptimas del pro-
blema estocastico de partida. La elecciéon de un criterio u otro dependera de las
caracteristicas del proceso de decisién a partir del cual se genera el problema.

Esta diversidad de criterios es trasladable al caso multiobjetivo, con la difi-
cultad anadida de que el nimero de objetivos del problema es mayor que uno.

Los estudios realizados hasta ahora en programacién estocastica multiobjetivo
abordan la resolucién del problema planteado desde distintos enfoques. Para cla-
sificar los trabajos realizados distinguiremos entre problemas con variables alea-
torias discretas y problemas con variables aleatorias continuas.

Dentro del caso discreto, cabe destacar los trabajos de Ben Abdelaziz (1992)
y Ben Abdelaziz, Lang y Nadeau (1994 y 1995) en los que se analiza la obtencién
de soluciones eficientes de problemas de programacién estocastica multiobjetivo
con variables aleatorias discretas. En estos trabajos se dan distintos conceptos
de eficiencia de problemas de programacién estocastica multiobjetivo y el estudio
que se realiza es paralelo al andlisis de eficiencia en programacién estocéstica (con
un solo objetivo). Por otro lado existen también estudios en los que se aborda la
resolucién del problema planteado bajo la filosofia de la programacién recurso de
la programacion estocéstica. As{, Teghem, Dufrane, Thauvoye y Kunsch (1986)
plantean la resolucion de problemas de programacién estocdstica multiobjetivo
con parametros que son variables aleatorias discretas con distribucién conocida.
Estos autores proponen el método STRANGE, un método interactivo de reso-
lucién de problemas con las caracteristicas descritas. En este método, basado en
el método STEM de la programaciéon multiobjetivo, se define una funcién que
penaliza la violacién de las restricciones, que se anade al resto de objetivos del
problema determinista equivalente. Posteriormente, Urli y Nadeau (1990) propo-
nen el método PROMISE para resolver problemas de programacién estocastica
multiobjetivo con informaciéon incompleta, esto es, para el caso en el que sdlo
se conoce una medida de tendencia central y una de dispersién de cada uno de
los parametros aleatorios que intervienen en el problema. Al igual que el ante-
rior, este método es interactivo, basado en el método STEM, y se utiliza una
funcién que penaliza la posible violacién de las restricciones del problema, que se
incorpora como un objetivo més del problema determinista equivalente.

En cuanto al estudio de problemas de programacién estocastica multiobje-
tivo con parametros que son variables aleatorias continuas existen en la literatura
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miultiples trabajos que lo abordan. De entre ellos cabe destacar los trabajos de
Stancu-Minasian (1984), Stancu-Minasian y Tigan (1988), Leclerq (1982), Szida-
rovszky, Gershon y Duckstein (1986), Goicoechea, Hansen y Duckstein (1982) y
el libro de Slowinski y Teghem (1990). La mayor parte de los estudios realiza-
dos hasta ahora resuelven el problema estocastico multiobjetivo transformando el
problema en uno de optimizacién determinista equivalente y consideran solucion
del problema estocédstico multiobjetivo a la solucién del problema transformado.
En general, esta transformacién consta de dos etapas que constituyen una doble
transformacién. En una de ellas se transforma el problema estocastico en uno
determinista equivalente y en la otra se transforma el problema multiobjetivo en
uno de optimizacién. El orden en que se lleven a cabo estas transformaciones
depende del método que se siga para resolver el problema. Asi, Stancu-Minasian
(1984) plantea que para la resolucién de estos problemas se pueden considerar
dos posibles formas de abordarlo:

e Transformar el problema de programacion estocastica multiobjetivo en un
problema de programacion estocastica con una unica funcién objetivo y resolver
éste mediante alguno de los criterios que se utilizan en programacion estocastica
con un solo objetivo.

e Transformar el problema de programacion estocastica multiobjetivo en un
problema multiobjetivo determinista equivalente, fijando un criterio de trans-
formacion para cada objetivo estocastico y, posteriormente, buscar soluciones
eficientes del problema multiobjetivo determinista obtenido.

En este sentido, Ben Abdelaziz (1992) clasifica los métodos de resolucién de los
problemas en tres grupos, que denomina enfoques o aproximaciones, para la reso-
lucién de problemas de programacién estocastica multiobjetivo. Esta clasificacién
se realiza en funcién del orden en el que se lleven a cabo las transformaciones an-
teriormente mencionadas y distingue:

e Enfoque multiobjetivo: En €l se transforma el problema en uno multiobjetivo
determinista equivalente y posteriormente en uno de optimizacion.

e Enfoque estocastico: Consiste en reducir el problema a un problema de
programacion estocastica con una funcién objetivo y, posteriormente, a uno un
problema de optimizacién determinista equivalente.

e Enfoque interactivo: Se combinan ambos enfoques para obtener, en inte-
raccion con el decisor, una soluciéon de compromiso. La siguiente figura muestra
las dos transformaciones basicas que generalmente se siguen para resolver proble-
mas de programaciéon estocastica multiobjetivo.
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PROBLENA PROBLEMA DE
MULTI OBJETI VO PROGRAMACI ON
ESTOCASTI CO ESTOCASTI CA

PROBLEMA PROBLEMA
MULTI OBJETI VO DE OPTI M ZAC
DETERM NI STA DETERM NI STA

EQUI VALENTE EQUI VALENTE

Fig. 1 Transformaciones usuales de un problema multiobjetivo estocéstico

A esta clasificacion habria que afiadir los trabajos realizados para resolver el
problema mediante programacion estocdstica por metas. El primero de ellos se
debe a Contini (1968) y posteriormente aparecen otros trabajos debidos a Stancu-
Minasian (1984), Stancu-Minasian y Tigan (1988) y Ballestero (2001). El an4lisis
de estos trabajos nos ha llevado a considerarlos como un bloque aparte de la
clasificacién anterior, si bien, algunos de los problemas planteados mediante este
enfoque se podrian encuadrar dentro de alguno de los enfoques que distingue Ben
Abdelaziz.

En cuanto a los métodos interactivos, hemos de senalar la importancia del
método PROTRADE, (Goicoechea, Hansen y Duckstein (1982)), basado en el
método STEM, y del método MULT propuesto por Leclerq (1982), y en el que
se abordan problemas de programacion estocdastica con restricciones estocdsticas.
Para resolver este problema, Leclerq transforma las restricciones estocasticas en
restricciones de azar y las considera objetivos adicionales del problema. El pro-
blema resultante se resuelve mediante un método interactivo, que propone el
autor.

En adelante nos centraremos en el andlisis de la resoluciéon de problemas me-
diante el enfoque multiobjetivo y el enfoque estocastico, basicamente nos centra-
remos en los distintos conceptos de solucién asociados y ofreciendo referencias de
las posibles relaciones que pueden existir en la resoluciéon de problemas mediante
los mismos. El problema que abordaremos es:

Ngcin 5(:1:’5) = ((51(.’17,5)7 (gQ(x’g)v [EE] (Zz(mvg))

(PEM)
sa: x€D
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en el que se supone que el conjunto de oportunidades es determinista o bien ha sido
transformado en su determinista equivalente siguiendo el criterio de restricciones
de azar separadas (obsérvese que la transformacién del conjunto de oportunidades
es igual en programacion estocdstica y en programacion estocdstica multiobjetivo)
y se mantiene como criterio de optimizacién el de minimo.

2 Enfoque Multiobjetivo

Abordamos la resolucién de problemas de programacién estocastica multiob-
jetivo mediante el enfoque multiobjetivo, es decir, siguiendo las siguientes etapas:

Etapa 1: Transformacién del problema estocédstico multiobjetivo en uno
multiobjetivo determinista equivalente, siguiendo algin criterio que se con-
sidera apropiado.

Etapa 2: Resolucién del problema multiobjetivo determinista obtenido en
la etapa anterior, sin considerar el caracter estocdstico del problema de
partida, salvo por la transformacién realizada en la primera etapa.

Evidentemente, existen muchos posibles criterios para llevar a cabo la transfor-
macién del problema estocédstico multiobjetivo siguiendo las dos etapas descritas.
Asi, por ejemplo, en un problema de dos objetivos estocdsticos es posible que se
considere adecuado el criterio valor esperado para transformar el primer objetivo
estocastico y el criterio minimo riesgo para el segundo y, una vez obtenido el
problema biobjetivo determinista equivalente, obtener soluciones eficientes, satis-
facientes o de compromiso del mismo.

Sin embargo, existen en la literatura conceptos de solucién eficiente de proble-
mas de programacién estocastica multiobjetivo que se encuadran dentro de este
enfoque. Estos conceptos son generalizaciones de los criterios bésicos de resolucién
de problemas de programacién estocdastica: valor esperado, minima varianza, va-
lor esperado desviacién estandar, minimo riesgo y Kataoka. La idea basica en
todos ellos es elegir un criterio de transformacién de los objetivos estocasticos,
aplicarlo a cada uno de ellos y construir un problema multiobjetivo determinista
equivalente con las transformaciones obtenidas.

La mayor critica que se realiza a esta forma de resolver problemas de pro-
gramacion estocastica multiobjetivo es que, al aplicar el criterio de obtencién del
problema determinista equivalente a cada objetivo por separado, puede ocurrir
que no se tenga en cuenta la posible dependencia estocdstica entre unos objetivos
estocasticos y otros, de manera que, en cierto modo, se prima la naturaleza mul-
tiobjetivo del problema sobre la naturaleza estocastica. Por otro lado, la mayor
ventaja del enfoque multiobjetivo es que es facilmente aplicable para la resolucion
de problemas estocéasticos multiobjetivo.

Rect@ Monogréfico 2 (2004)



56 Programacion estocastica multiobjetivo

En este epigrafe se recogen algunos conceptos de solucién eficiente de proble-
mas de programacion estocastica multiobjetivo y se analizan las relaciones entre
ellos. Como veremos a continuacion, estos conceptos de eficiencia estan relacio-
nados entre si.

En Caballero, Cerdd, Mutioz y Rey (2002) se analizan con detenimiento los
procesos de obtencion del determinista equivalente de un objetivo estocastico me-
diante algunos de los criterios maés utilizados y se realizan comparaciones entre
ellos, por lo que en lo que sigue no nos detendremos en ese aspecto concreto
del problema que nos ocupa. Tampoco entraremos en la segunda de las etapas
anteriormente senaladas, esto es, la resolucién del problema multiobjetivo deter-
minista equivalente resultante de aplicar estos criterios.

2.1 Conceptos de solucion eficiente

Consideremos el problema de programacién estocdstica multiobjetivo:
Min 2(2,8) = ((5(2.8), (2, 8).. .., (5(2,8)) (PEM)

sa: zxz€D

Se supone que el conjunto D de soluciones factibles es no vacio, compacto y
convexo.

Existen en la literatura distintos conceptos de solucién eficiente de este pro-
blema multiobjetivo. Los conceptos que vamos a ver a continuacién son aquellos
en los que se transforma el problema estocdstico multiobjetivo en uno multiob-
jetivo determinista equivalente, fijando algin criterio de transformacién de los
existentes en programacién estocastica para transformar el objetivo estocéstico
en determinista. Todos los conceptos que analizamos transforman cada una de las
funciones objetivo del problema en determinista mediante un mismo criterio de
transformacion, que se aplica por separado a cada una de las funciones objetivo
del problema.
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Eficiencia en Esperanza

La definicién de solucién eficiente en esperanza no es mas que una consecuencia
de uno de los métodos mds utilizados para resolver el problema (PEM), que
consiste en la obtencién del determinista equivalente del problema estocéstico
tomando el valor esperado de cada una de las funciones objetivo del problema, es
decir:

Min (E(zi(@ O} E{&@,),.., B{7(.9)) (®)

sa: ze€D

Una vez planteado este problema podemos definir el concepto de solucién
eficiente valor esperado como sigue:

Definiciéon 1: Solucién eficiente valor esperado

Sea x € D. =z es eficiente valor esperado del problema de programacién es-
tocdstica multiobjetivo (PEM) si es solucién eficiente en el sentido de Pareto del
problema (E).

Denotamos por g al conjunto de soluciones eficientes valor esperado.

A partir del concepto que acabamos de definir, dado un problema de pro-
gramacién estocdstica multiobjetivo, podemos obtener soluciones eficientes del
mismo sin mas que considerar el problema planteado anteriormente. Los obje-
tivos del problema determinista equivalente seran lineales si lo son las funciones
objetivo estocdasticas y cuadraticos y convexos en el caso de que las funciones es-
tocasticas lo sean. En cuanto a la bondad de este criterio para resolver problemas
de programacién estocastica multiobjetivo, mantenemos las mismas consideracio-
nes que se hacen en programacion estocastica, esto es, consideramos que el valor
esperado no es mas que una medida de tendencia central de la variable aleatoria y,
en este sentido, la eleccién de este criterio puede no ser adecuada en determinados
casos, puesto que sélo se recogen determinados aspectos del objetivo estocéstico.

Al igual que en programacion estocastica, la obtencién de soluciones eficientes
valor esperado del problema (PEM) es posible siempre que se conozca el valor
esperado de cada una de las funciones objetivo del problema, aiin si se desconoce
la distribucién de probabilidad de alguna de las funciones objetivo estocasticas.
Sin embargo, al igual que en programacion estocastica, este criterio recoge sélo el
valor esperado de las funciones objetivo estocésticas del problema y, por tanto,
recoge s6lo una de las caracteristicas estocéasticas de los objetivos aleatorios del
problema.

Eficiencia Minima Varianza

Aligual que hemos definido el concepto de solucién eficiente en esperanza, cabe
definir el concepto de solucién eficiente minima varianza sin més que plantear el
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problema de programacion multiobjetivo de minimizar la varianza de cada una
de las funciones del problema de programacién estocastica multiobjetivo (PEM),
es decir:

Min (Var{z(z,)}, Var{Z(@,0)},. .., Var{Z,(z,6)}) %)

s.a: zeD

Una vez planteado este problema, que serd siempre de minimo, independien-
temente de que el problema de partida sea de minimo (como suponemos en este
trabajo) o de maximo, podemos definir el conjunto de soluciones eficientes minima
varianza del problema de programacion estocédstica multiobjetivo (PEM) de la si-
guiente formas:

Definicion 2. Solucién eficiente minima varianza

x € D es solucién eficiente minima varianza del problema de programacién
estocdstica multiobjetivo (PEM) si es solucién eficiente en el sentido de Pareto
del problema (0?).

Denotamos por E,» al conjunto de soluciones eficientes del problema o2. Asi
pues, para la obtencién de soluciones eficientes minima varianza del problema
(PEM) hemos de construir un problema de ¢ funciones objetivo, formado por
cada una de las varianzas del problema multiobjetivo estocéstico de partida. Es-
tas funciones son cuadréticas y convexas tanto en el caso de que los objetivos
estocasticos del problema sean lineales como en el caso de que sean cuadraticos.
Al igual que con el criterio valor esperado, podremos obtener soluciones eficientes
minima varianza si conocemos la varianza de cada una de las funciones obje-
tivo estocdsticas del problema, independientemente de que se conozca o no la
distribucién de probabilidad de cada una de las funciones objetivo del problema
estocédstico multiobjetivo de partida. La eleccion del criterio minima varianza
supone buscar soluciones que acerquen el valor de cada una de las funciones ob-
jetivo estocdsticas a su valor esperado y, en este sentido se puede considerar un
criterio poco arriesgado.

Eficiencia Valor Esperado Desviacion Estandar

Al igual que en el caso de optimizacion estocdstica monobjetivo considera-
mos la transformacién del problema estocédstico en uno determinista biobjetivo,
con objetivos el valor esperado y la desviacién estandar de la funcién objetivo
estocdastica, planteamos ahora la posibilidad de establecer estos dos criterios de
transformacién de cada funcién objetivo estocdstica y consideramos el siguiente
problema:

Min (B ) B O Var e D) Ve @ ) (g

sa: xe€D
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Una vez planteado este problema podemos definir el concepto de solucién
eficiente valor esperado desviacién estandar de la siguiente forma:

Definicion 3

x € D es solucién eficiente valor esperado desviacién estandar del problema
multiobjetivo estocdstico (PEM) si es solucién eficiente en el sentido de Pareto
del problema (E,).

Sea £, €l conjunto de soluciones eficientes valor esperado desviacion estandar
del problema de programacién estocdstica multiobjetivo (PEM).

Este concepto ha sido ampliamente utilizado en la literatura para resolver
problemas de programacion estocastica. En algunos trabajos se ha considerado
el criterio de eficiencia valor esperado varianza. Para ello se plantea un pro-
blema con 2q objetivos que recoge el valor esperado de cada funcién objetivo y
la varianza de cada uno de ellos en lugar de su desviacién estdndar. En este tra-
bajo hemos preferido definirlo mediante la desviacién estandar, dado que de esta
forma conseguimos establecer relaciones entre este concepto y otros conceptos de
solucién eficiente de problemas de programacién estocastica multiobjetivo que se
definen mas adelante. En cualquier caso, es facil demostrar que el conjunto de so-
luciones eficientes valor esperado desviacion estandar coincide con el de soluciones
eficientes valor esperado varianza.

Las funciones objetivo del problema que se genera para la obtencién de solu-
ciones eficientes valor esperado desviacién estandar son funciones convexas, para
problemas estocasticos multiobjetivo lineales.

Eficiencia Minimo Riesgo de niveles uq,us,. .., uq.

Definido por Stancu-Minasian y Tigan (1984), este concepto de solucién consi-
dera soluciones eficientes del problema de programacién estocastica multiobjetivo
(PEM) a las soluciones eficientes del problema multiobjetivo determinista que se
obtiene al aplicar a cada una de las funciones objetivo del problema el criterio
minimo riesgo. Para aplicar este criterio hemos de fijar un nivel de aspiracion
a alcanzar para cada uno de los objetivos estocdsticos,uy,us,...,uq, ur € R,
k=1,2,...,q. Una vez fijados estos valores, el problema minimo riesgo, equiva-
lente determinista del problema (PEM) consiste en maximizar la probabilidad de
que cada uno de los objetivos estocasticos no supere el nivel de aspiracion fijado,
es decir:

i (2, 8) <uy), ..., P(Z(x,€) <
1\/156111 (P(Zl(xvg) - ul)v 7P(Zq(xa€) — uq)) (MR(H))
sa: x€D
Una vez planteado este problema, Stancu-Minasian y Tigan (1984) definen el

concepto de solucién vectorial minimo riesgo de nivel u del problema (PEM) de
la siguiente forma:
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Definicién 4. Solucién eficiente minimo riesgo de niveles u,us,...,uq

x € D es solucién vectorial minimo riesgo de nivel u si es solucién eficiente en

el sentido de Pareto del problema (MR(u)).

En adelante nos referiremos a estas soluciones como soluciones eficientes minimo
riesgo de niveles uq, ug, ..., uq . Denotamos por €,,,-(u) al conjunto de soluciones
eficientes del problema (MR(u)).

Obsérvese que el problema multiobjetivo determinista que se obtiene al aplicar
este criterio, (MR(u)), depende, en general, del vector de niveles de aspiracién
fijado, u, de tal forma que, podemos afirmar que en general, dados u, u’e R, si
u=u’ entonces los conjuntos de soluciones eficientes minimo riesgo de niveles u
y u’ seran distintos: €,,,(u) = ey (1).

Puesto que para aplicar este criterio de eficiencia, hemos de fijar un nivel de
aspiracion, uy € R , para cada uno de los objetivos estocésticos del problema,
es necesaria la intervencion del decisor para generar soluciones eficientes minimo
riesgo. Ademds, dado que en el problema que se genera interviene la funcién
de distribucién de cada una de las funciones objetivo estocésticas, la aplicacién
de este criterio se centra en los casos ya conocidos en programacién estocastica:
problemas estocasticos multiobjetivo lineales con hipétesis de normalidad o de
aleatoriedad simple. En ambos casos, los objetivos del problema determinista
equivalente son fraccionales. Puesto que esto sale del objetivo de este trabajo,
no plantearemos los problemas que se generan. Por otro lado, en los casos en
los que desconocemos la funcién de distribucién de los objetivos estocésticos del
problema, podemos aplicar la desigualdad de Cantelli a la funcién de distribucion
y obtener una cota inferior para la misma. Asi, si sustituimos las funciones de
distribucién por estas cotas en el problema (MR(u)) obtenemos el problema:

Max ( (w1 =B {5 (2.6)})* (ug—B{Z(z.H}* )
= & ~ = 290 ~ = ~ 2 2
o \Var(zi(@,9)+w—E{z(2,)}) Var(Zq(@,8)+(ug—E{Z(¢.)})
sa: E{ZH(z ) <up, k=12....q (AMR(u))
xeD

Evidentemente, el conjunto de soluciones eficientes del problema (AMR(u)),
que denotamos por € 4 r(u), no coincide, en general, con el conjunto de solucio-
nes eficientes del problema (MR(u)), eanmr(u) = enmrr(u), y sélo puede tomarse
como aproximacién del mismo.

Eficiencia con Probabilidades 51,52, ..., 3,

Finalmente, consideramos un concepto de solucién que se basa en una idea
expresada en Goicoechea, Hansen y Duckstein (1982), el concepto de solucién
estocastica no dominada de nivel .
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Definicién 5: Solucién estocastica no dominada de nivel

Sea zj(z) un valor perteneciente al rango o soporte de la variable aleatoria
Zr(z), k=1,2,...,q. Se dice que = € D es solucién estocéstica no dominada de
nivel 5 € (0,1) si:

(i) P{zk(x,&) < zx(x)} = B paratodo k € 1,2,...,q

(i) no existe ningtin vector y € D tal que: P{Z(z,&) < zx(x)} = 3 para todo
kel,2...,qgexiste l € 1,2,...,q tal que z1(y) < z1(x), 2x(y) < 2zr(z),
para todo k € 1,2,...,q,k =1

A partir de esta definicién, dado el problema de programacion estocastica mul-
tiobjetivo (PEM), si aplicamos el criterio de Kataoka a cada una de las funciones
objetivo estocasticas del problema para una probabilidad 3 , el problema que se
genera es:

Min u = (u1,ug,...,uy)
s.a: P{Ek(x,g) <wup}t =0, k=1,2,...,q
zeD

y tenemos que el conjunto de soluciones eficientes de este problema es el conjunto
de soluciones no dominadas de nivel 8 que se ha definido anteriormente, puesto
que para cada k € 1,2,..., ¢ la variable uy, serd una funcién zp(z) que se obtiene
a partir de la igualdad P{Zj (x,g) <wup} =0 . Asi, tenemos que el conjunto de
soluciones no dominadas de nivel 3 se obtiene a partir de aplicar el criterio de Ka-
taoka a cada una de las funciones objetivo del problema multiobjetivo estocéstico,
fijando el mismo nivel de probabilidad para todas las funciones estocdsticas. A
partir de aqui, cabe la posibilidad de generalizar este concepto considerando dis-
tintos niveles de probabilidad para las funciones objetivo del problema, sin mas
que plantearnos el problema:

Min u = (u1,ug,...,uq)
s.a: P{Zk(x,g) <upt=0k k=12,...,q (K(8))
reD

Una vez planteado el problema, definimos el concepto de solucién eficiente con
probabilidades 31, B2, ..., 84 de la siguiente forma:

Definicién 6. Solucién eficiente con probabilidadesf, 32,. .., 3,

Sea z € D. Se dice que x es solucién eficiente con probabilidades (1,082,. . .,
B, si existe un u € R" tal que (x*,u’) es solucién eficiente del problema (K (8)).

Denotamos por e () C R™ al conjunto de soluciones eficientes con probabili-
dades (1, B2, ..., Bq-
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Obsérvese que el concepto de solucién eficiente con probabilidades 31,03s,. . .,
B4 se define para los vectores x, aunque las soluciones del problema (K (3)) sean
vectores (x!,u’)! € R"t4.

Al igual que en el caso minimo riesgo, este concepto de eficiencia va asociado a
unos niveles de probabilidad fijados a priori, con lo cual, el problema multiobjetivo
determinista mediante el que se obtienen soluciones eficientes con probabilidades
B, 082,...,8q , (K(B)), depende, en general, del vector de probabilidades fijado,
B = (51,82, ...,58y)", de tal forma que, podemos afirmar que en general, dados,
B, € RY ,si 8=/ entonces el conjunto de soluciones eficientes para [ es
distinto del que se obtiene para 3’ €k (B) # sk(ﬁ/).

De nuevo, para poder aplicar este criterio de eficiencia, hemos de fijar una
probabilidad 8 € (0, 1), para cada uno de los objetivos estocésticos del problema.
Esto hace necesaria la intervencién del decisor para generar estas soluciones efi-
cientes. Ademads, en el problema interviene la funcién de distribucién de cada
una de las funciones objetivo estocdsticas. Consideramos los mismos casos an-
tes citados: funciones objetivo lineales bajo la hipétesis de normalidad o bajo la
hipétesis de aleatoriedad simple. En ambos casos es posible obtener soluciones
eficientes del problema de programacién estocastica multiobjetivo y los problemas
resultantes son, bajo determinadas hipdtesis, problemas convexos.

Por otro lado, en los casos en los que desconocemos la funcién de distribucién
de los objetivos estocasticos del problema, podemos aplicar la desigualdad de
Cantelli a la funcién de distribucién y obtener una cota inferior para la misma.
Asi, si sustituimos las funciones de distribucién por estas cotas en el problema
(K(B)) obtenemos el problema:

Min  u = (uy,ug,...,uq)
sa: B{&(z,€)} +/1Z\/Var{a(@,8)}, k=1,....¢ (AK(B))
rzeDCR"

Al igual que en el caso minimo riesgo, el conjunto de soluciones eficientes
del problema (AK(5)), que denotamos por (€ax(/)) serd distinto del conjunto
de soluciones eficientes del problema K(3), (eax(8)) # (ex(8)), pero, podemos
tomar este conjunto como aproximacion.

2.2 Relaciones entre los diferentes conceptos de solucién
eficiente definidos

En Caballero, Cerdd, Muifioz y Rey (2000) se obtiene una relacién entre las
soluciones eficientes minimo riesgo de niveles g, us,...,uq y las soluciones efi-
cientes con probabilidadesfi, B, ..., 8y : Consideremos los problemas MR(u) y
K(B) definidos anteriormente. Supongamos que los conjuntos factibles de ambos
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problemas D C R" y

(2t u') € DxRY/ P{Zp(2,&) <up} =06k, k=12,...,q

son cerrados, acotados y no vacios, y por tanto ambos problemas tienen soluciones
eficientes. También suponemos que para cada k € 1,2,...,q, y cada x € D, la
funcién de distribucién de la variable aleatoria Zj (x, §) es continua y estrictamente
creciente. Estas hipétesis implican que para cada probabilidad 8y, , existe un tinico
numero real ug, tal que P{zx(x,&) < up} = Bp.

El siguiente Teorema, cuya demostracion se puede ver en la referencia dada,
relaciona los conjuntos de soluciones eficientes €,,,-(u) (del problema MR(u)) y
er(B) (del problema K(3)).

Teorema 1: Supongamos que la funcién de distribucién de la variable aleatoria
Zk(x, €) es continua y estrictamente creciente. Entonces x es una solucién eficiente
del Problema MR(u) si y sélo si (x',u)! es una solucién eficiente del Problema
K(3), con uy [ tales que

P{Z(x,8) <up} = Br, VEe€1,2,...,¢q

Corolario 1:

U (Burw) = [ (Bx(8)

u€ERY peB

COHB:{(ﬂhﬂZP"?ﬂq)t G]Rq| Br € (031)’ k:17237Q}

De los resultados obtenidos se ve que las uniones de los conjuntos eficientes
de ambos problemas coinciden. Ademads, si x € D es una solucién eficiente del
Problema K (), para ciertas probabilidades dadas 8 = (81,82, ..., ,)", por el
Teorema 1 sabemos que es también una solucién eficiente minimo riesgo de niveles
U1, Uz, ..., Ug, manteniendo para los niveles de satisfaccién y probabilidades la
relacion que aparece en el enunciado del Teorema, y viceversa. Este resultado
permite realizar el andlisis de estas soluciones eficientes por uno cualquiera de los
dos conceptos y, por el Teorema 1, obtener el nivel o probabilidad para el cual es
eficiente de acuerdo con el otro.

En Caballero, Cerdd, Munoz, Rey y Stancu-Minasian (2001) se obtienen las si-
guientes relaciones entre soluciones eficientes valor esperado, soluciones eficientes
minima varianza y soluciones eficientes valor esperado desviacion estandar:

Teorema 2:

Se considera el problema (PEM). Sean los conjuntos de soluciones eficientes
valor esperado (Eg), minima varianza (E,2), y valor esperado desviacién estandar
(Fg,). Sean E%,Egz,Eg, los conjuntos de soluciones débilmente eficientes aso-
ciados a los problemas(E%),(E4,),(EZ) respectivamente.

Entonces,
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. Ex(E,2 C Eg,. Cada solucién que es a la vez valor esperado eficiente

y minima varianza eficiente es también solucién valor esperado desviacion
estandar.

. EgUE,2 C E%U. Cada solucion eficiente valor esperado o minima varianza

es solucién débilmente eficiente valor esperado desviacién estandar.

E¢NEZ, C E¢, . El conjunto de soluciones débilmente eficientes valor es-
perado desviacion estandar incluye a la unién de los conjuntos de soluciones
débilmente eficientes valor esperado y minima varianza.—

Asimismo, en el mismo articulo se obtienen relaciones entre soluciones eficien-
tes valor esperado desviacién estdandar y soluciones eficientes con probabilidades
B1, 82, ..., B4 cuando las funciones objetivo son lineales y el vector de pardmetros
aleatorios sigue una distribucién normal o bien verifica la hipétesis de aleatori-
dad simple. Estas relaciones y la demostracion del Teorema 2 se encuentran en
Caballero, Cerdd, Munoz, Rey y Stancu-Minasian (2001).

3

Enfoque Estocastico

Nos centramos ahora en la resolucién de problemas de programacion estocastica
multiobjetivo mediante el enfoque estocastico. Como ya se ha comentado ante-
riormente, en la clasificacién que realiza Ben Abdelaziz (1992) de los métodos
de resolucién de problemas de programacién estocastica multiobjetivo agrupa, en
lo que denomina enfoque estocéstico, a todos los métodos de resolucién de estos
problemas en los que se siguen las dos etapas siguientes:

Etapa 1: Transformacion del problema estocédstico multiobjetivo en un pro-
blema de programacién estocdstica con una tnica funcién objetivo siguiendo
alguno de los criterios existentes para ello en programacién multiobjetivo.

Etapa 2: Resolucién del problema de programacion estocastica obtenido
en la etapa uno mediante algin método de resolucién de programacién
estocastica. La solucion obtenida en esta etapa es considerada, en estos
métodos, solucién al problema estocastico multiobjetivo de partida. Abor-
daremos ahora la resoluciéon de problemas de programacién estocédstica con
objetivos multiples siguiendo estas dos etapas, tal y como se describe en la
Figura 2.
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PROBLEMA DE
OPTI M ZACI ON
DETERM NI STA
EQUI VALENTE

PROBLENVA
MJULTI OBJETI VO

PROBLEMA DE
PROGRAMACI ON
ESTOCASTI CO

POR METAS

Fig. 2 Transformacién de un problema multiobjetivo estocastico mediante el enfoque
estocastico

Para resolver problemas de programacién estocastica multiobjetivo siguiendo
los pasos descritos, pueden aplicarse distintos criterios de transformacion de los
q objetivos estocasticos del problema en la etapa uno. Hecho ésto se obtiene un
problema de programacion estocastica con una unica funcién objetivo estocéstica
y, para su resolucion, es posible aplicar también distintos criterios. Por tanto,
el proceso de resolucién de problemas de programacién estocdstica multiobjetivo
mediante este enfoque pasa por un proceso de decisién previo en el que se ha
de elegir la manera de transformar los objetivos del problema para obtener un
problema de programacién estocastica y en la eleccién de un criterio de resolucién
de este problema.

De todo lo anterior se desprende que la diversidad de criterios de transfor-
macién del problema en las dos etapas de resolucion, dard lugar, en general, a
todo un conjunto de posibles soluciones al problema de programacién estocéstica
multiobjetivo que, de acuerdo con lo descrito, no son comparables.

En este trabajo hemos optado por fijar un tnico criterio de transformacion en
la etapa uno del proceso y, al llegar a la etapa dos, resolver el problema obtenido
mediante algunos de los criterios para la programacién estocastica. Asi, dado el
problema de programacién estocdstica multiobjetivo, hemos considerado la apli-
cacién del método de la ponderacién al mismo. Hecho ésto, nos hemos planteado
su resolucion mediante los criterios valor esperado, minima varianza, minimo
riesgo vy Kataoka. No hemos considerado la resolucién del problema ponderado
mediante el criterio de eficiencia valor esperado desviacién estandar, puesto que
consideramos poco logico transformar el problema multiobjetivo en un problema
ponderado y, posteriormente, considerar un problema bicriterio para resolverlo.
Para los criterios considerados analizaremos el problema de optimizacion determi-
nista equivalente que se obtiene tras aplicar las dos etapas e intentamos establecer
relaciones entre la solucion obtenida mediante este proceso y los conceptos de so-
lucioén eficiente de problemas de programacion estocédstica multiobjetivo definidos
en la seccién anterior.

Antes de abordar la resolucién de este problema mediante el método de las
ponderaciones consideramos importante senalar que este mismo estudio ha sido
abordado por Stancu-Minasian (1984) para problemas con funciones objetivo es-
tocasticas lineales que verifican la hipdtesis de aleatoriedad simple. En ese tra-
bajo, Stancu-Minasian aplica el criterio de Chebychev al problema multiobjetivo
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estocastico y, posteriormente, aplica al problema resultante el criterio minimo
riesgo (véase Stancu-Minasian (1984), pag. 223-225).

Consideremos el problema de programacion estocdstica multiobjetivo (PEM).
Si aplicamos al problema anterior el método de las ponderaciones de la progra-

macién multiobjetivo, fijando unos pesos no negativos,iiq, ft2, ..., g, b > 0,
para todo k € 1,2,...,q, obtenemos el problema de programacién estocéastica:
~ ~ 4 ~
Min  f(z,€) = kzzjlui%(x,s) (AE)
sa: xze€D

Para resolver este problema consideramos a continuacién los criterios valor es-
perado, minima varianza, minimo riesgo y de Kataoka. Dividimos nuestro estudio
en funcién del criterio que apliquemos.

Criterio Valor Esperado

Sea el problema (AE) y consideremos la resolucién del mismo mediante el
criterio valor esperado, que nos lleva a obtener el siguiente problema determinista
equivalente:

Min f(z) =Y miE{E@,8)} = ) juzu(w) AEE)
sa: x€D = .

Por tanto, si se aplica el criterio valor esperado al problema (AE), el pro-
blema resultante minimiza una combinacién lineal de los valores esperados de
las funciones objetivo estocédsticas del problema original, y los coeficientes de tal
combinacion lineal no son més que los pesos asignados a los objetivos estocasticos
en la primera etapa de la resolucién del problema. En otras palabras, el problema
que se obtiene es el mismo que resulta trasformando el problema original multiob-
jetivo en otro multiobjetivo en que cada objetivo es el determinista equivalente
que se obtiene al aplicar el criterio valor esperado a cada uno de los objetivos es-
tocdsticos del problema (PEM) y aplicando entonces el método de la ponderacién
para obtener las soluciones eficientes valor esperado.

Criterio minima varianza

Sea el problema (AE) y consideremos la resolucién del mismo mediante el cri-
terio minima varianza, que nos lleva a obtener el siguiente problema determinista
equivalente:

q q
Min  o%(z) = D oo’ (@) +2 Y ppsoks()
k=1

k,s=1,k<s (AEV)

sa: x€D
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La relacién entre el problema estocéastico obtenido al utilizar el método de
ponderacion y el problema determinista equivalente multiobjetivo que se obtiene
al aplicar a cada objetivo estocéstico el criterio de minima varianza no es tan
directa como en el caso anterior. Distingamos dos casos:

(i) Las covarianzas de las funciones objetivo son cero. Es decir:
oks(z) = 0 para cada k,s € {1,2,...,q} con k = s y para cada = € D.

Entonces el problema (AEV) resultante de aplicar el criterio de minima
varianza al problema ponderado (AE) es:

q

Min o?(z) = Z ko (z)
‘ k=1

sa: z€D

y este problema es el mismo que se habria obtenido resolviendo el problema
estocdstico multiobjetivo mediante el enfoque multiobjetivo, es decir, apli-
cando a cada uno de los objetivos estocasticos el criterio de minima varianza
y a continuacién el método de ponderacién al determinista equivalente mul-
tiobjetivo para obtener sus soluciones eficientes.

(ii) Las covarianzas de las funciones objetivo no son todas cero. En este caso
la solucién obtenida al resolver el problema (AEV) no tiene por qué ser
eficiente minima varianza al aplicar el enfoque multiobjetivo, como se ve en
un ejemplo que se presenta en Caballero, Cerdd, Munioz y Rey (2004).

Criterios minimo riesgo y Kataoka.

Para aplicar el criterio de minimo riesgo al problema (AE) debemos fijar un
valor u (nivel de aspiracién de la funcién objetivo del problema) y resolver:

q
M Zx,6) <
Lax P {Zukz(z,ﬁ) < u}
k=1
sa: xe€D

Dado que f(z, 5) = > (e, E) es una funcién de las ¢ funciones objetivo
para el problema, la eleccién del valor u no es nada sencilla. Notese que este
nivel debe ser fijado para la variable aleatoria f(z,&) = Y 7_; mz(x,€) que ha
sido construida a partir del problema original para resolverlo. Por consiguiente,
el valor u, que en programacién estocastica es el nivel de aspiracion del decisor
para el objetivo estocastico, no tiene ahora tal significado. Se puede determinar
el nivel de aspiracién uy para cada funcién objetivo y tomar w = > {_, prur y
entonces el problema deterministico equivalente es:
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Max P {Z (2,6 <y #kuk} (AEMR(u))
k=1

k=1
sa: xz€D

Por otra parte, si aplicamos el criterio de Kataoka al problema (AE), el pro-
blema determinista equivalente generado es el siguiente:

i
sa: P {Zukz(x,g) < u} =0 (AEK())
veD

Al igual que hemos hecho en el criterio de minimo riesgo, podemos tomar
6= 22:1 i B considerando la posibilidad de pedir al decisor que fije una pro-
babilidad B para cada uno de los objetivos estocésticos.

Una vez establecida una posible forma de fijar los niveles de aspiracién y las
probabilidades en los dos criterios de maxima probabilidad, para plantear las
posibles relaciones que se obtienen en los dos enfoques, senalemos que se puede
aplicar el Teorema 1, tomando k = 1 , obteniendo relaciones entre los problemas
deterministas equivalentes (AEMR(u)) y (AEK(()).

Para profundizar en el enfoque estocastico y en las relaciones entre las solucio-
nes por los enfoques estocdstico y multiobjetivo véase Caballero, Cerdd, Mufioz
y Rey (2004).

4 Conclusiones

Este trabajo se centra en el andlisis de los distintos conceptos de solucién
eficiente que aparecen en la programacién estocatica multiobjetivo y en la trans-
formacion del problema estocédstico en uno determinista equivalente. A la hora de
abordar esta transformacién, se observa que, ahora, ésta es "doble”, y consiste,
béasicamente, en pasar del problema de programacion estocastica multiobjetivo a
uno determinista de un 1nico objetivo. Basdndonos en estudios previos, denomi-
namos enfoque multiobjetivo a la resolucién del problema transformando, en una
primera etapa el problema multiobjetivo estocédstico en uno determinista equiva-
lente y, posteriormente, centrandonos en la obtencién de soluciones eficientes de
este ultimo, y enfoque estocdstico al conjunto de técnicas que, en una primera
etapa, transforman el problema en uno de programacién estocdstica con un solo
objetivo y, posteriormente, resuelven el problema estocastico obtenido mediante
cualquier técnica.

Evidentemente, la existencia de distintos criterios de transformacién del pro-
blema en cada una de las etapas descritas da lugar a que se pueda obtener todo
un abanico de posibles problemas equivalentes del problema de partida. Una vez
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definidos estos conceptos, se analizan en este trabajo las posibles relaciones entre
los mismos.
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1 Introduccion

Desde que en 1965, [26], el profesor estadounidense, aunque de origen irani,
Lotfi A. Zadeh introdujera el concepto de conjunto borroso permitiendo la perte-
nencia de un elemento a un conjunto de forma gradual, y no de manera absoluta
como establece la teoria conjuntista clasica, es decir, admitiendo pertenencias va-
loradas en el intervalo [0,1] en lugar de en el conjunto {0,1}, las aplicaciones y
desarrollos basados en este sencillo concepto han evolucionado de tal modo que,
hoy en dia, es practicamente imposible calcular el volumen de negocio que gene-
ran en todo el mundo, pudiendo encontrar productos cuyo funcionamiento estd
directamente basado en dicho concepto desde los més usuales electrodomésticos,
lavadoras, microondas, camaras fotograficas, ..., hasta los més sofisticados siste-
mas, frenado de trenes, control de hornos, navegacién, ...

La necesidad de encontrar la solucién optimal, o la mejor solucién entre las
disponibles, en un problema correctamente planteado es por lo que se estudian las
teorias, y se proponen metodologias adecuadas al campo cientifico en el que surge
la cuestiéon que se ha de resolver. Desde un punto de vista més concreto, pero
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muy general, una importante clase de problemas son los conocidos con el nombre
de problemas de optimizacién, habitualmente asociados a tener que encontrar
el maximo, o el minimo, valor que una determinada funcién puede alcanzar en
un cierto conjunto previamente especificado. Todo lo relativo a estos problemas
se enmarca dentro del cuerpo doctrinal denominado Programacién Matematica,
que incluye una enorme variedad de situaciones, segin que se consideren casos
lineales, no lineales, aleatoriedad, un solo decisor o varios decisores, etc.

Entre todos los modelos que se incluyen en la Programacion Matematica, el
mas y mejor estudiado, asi como el que ha probado tener unas repercusiones
practicas mas importantes, es el correspondiente al caso lineal uni-objetivo, tema
del que se ocupa la Programaciéon Lineal. Los métodos y modelos de la Progra-
macion Lineal tienen relevantes aplicaciones en las diferentes dreas de las Inge-
nierias, la Economia, las Matematicas, la Investigaciéon Operativa, la Inteligencia
Artificial, y demds disciplinas mds o menos relacionadas con la optimizacién,
y constituyen un sustrato tedrico mas que adecuado para abordar de un modo
elegante y eficiente situaciones muy complejas.

Aunque como se ha dicho, los modelos y técnicas de la Programacién Li-
neal son los mas y mejor estudiados, es justamente por ese motivo, junto con la
mencionada eficiencia y elegancia que los caracteriza, por lo que son facilmente
adaptables a nuevos contextos tecnolégicos, lo que impulsa a su vez el que sean
protagonistas en los mas recientes desarrollos cientificos, como es el caso de su
incorporacién e implementacion en los sistemas generadores de modelos de los
Sistemas de Ayuda a la Decisién. De este modo la Programacién Lineal aparece
entroncada en una de las més prometedoras lineas de desarrollo en el &mbito de
la Inteligencia Artificial, y consiguientemente, y a pesar de sus mas de cincuenta
anos de vida, a la vanguardia del avance cientifico.

En ese contexto de Sistemas de Ayuda a la Decisién, dentro del marco de la
Inteligencia Artificial, lo que principalmente se persigue es disponer de sistemas
automaticos que, desde implementaciones que faciliten actuaciones lo més cer-
canas a la realidad de la inteligencia humana, sean capaces de actuar como lo
haria en cada ocasién concreta una persona. Esto significa que los modelos de
Programacién Lineal que vayamos a usar en esas condiciones no van a poder ser,
en general, los conocidos y bien desarrollados hasta ahora, porque van a tener
que ser redefinidos para adecuarlos a ese nuevo contexto.

Es de sobra conocido que habitualmente el planteamiento de un problema real
se hace en términos que, siendo perfectamente comprensibles, son dificilmente re-
presentables de forma eficaz: ”el costo del transporte seré de unas 750 pesetas”,
”el beneficio es de un 30%”, ... Cuando hemos de manejar datos de esa natura-
leza, que obviamente no tiene porqué ser probabilistica, generalmente se actiua
forzando los datos a tomar aquellos valores que entendemos son los méas repre-
sentativos de los verdaderos, por ejemplo 750 y 30%, planteando de esta manera
problemas que podriamos denominar deformados, y que pueden llevarnos a ob-
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tener soluciones que, siendo optimales para el problema planteado, estdn muy
alejadas de la verdadera solucion que corresponderia al problema original, si este
se hubiera planteado sobre sus auténticos valores, que podrian haber sido 742 y
28.5%.

Es por todo esto que en el contexto de los Sistemas de Ayuda a la Decisién,
y de la Inteligencia Artificial entre otras disciplinas, la representaciéon adecuada
de la informacién es una tarea primordial, como garantia de correccién de las
soluciones que se persiguen y porque, ademas, segtin la versién que adoptemos
de imprecisién, podemos encontrarnos con diferentes conceptos de 6ptimo y, por
tanto, de optimizacion.

En todo lo que sigue, por imprecision entenderemos lo que habitualmente se
conoce por borrosidad (fuzziness), es decir, esa vaguedad lingiifstica que tiene
perfecto sentido para los seres humanos, a pesar de la falta de informacién exacta
que muestren ("no sé que edad tiene, pero es joven”). Escogemos esta versién
de imprecision por entender que en general es la mas cercana y apropiada para
los desarrollos que nos interesan en el &mbito de la Inteligencia Artificial, ya que
lo que habitualmente hacemos a la hora de definir algo, es extraer objetos de la
realidad como conceptos lingiiisticamente etiquetados en el dominio referencial
que se considere, reflejando la borrosidad de cualquier etiqueta lingiiistica cierta
distancia entre los objetos etiquetados y algin punto referencial, que en cada caso
depende del contexto, por lo que modeliza bastante adecuadamente el modo de
razonamiento y comunicacién humano.

En este marco, y desde un punto de vista mucho méas concreto, en general un
problema de Programacién Lineal (PL) se formula como

Max{z = cx/Az < b,z > 0}

siendo A una matriz de nimeros reales de dimensién m x n, b un vector en R™
y ¢ un vector de costos en R™.

Sobre este planteamiento podemos suponer, a tenor de lo comentado con an-
terioridad, que el decisor se expresa, conoce o formula los datos del problema de
forma imprecisa, pero perfectamente clara para él: ”el rendimiento sera superior
al del ano pasado”, ”se trabajard un numero elevado de horas”, ”el salario bruto
es de unos tres millones”, etc. En este ambiente de optimizacién con tal tipo de
datos, es en el que nace la Programacién Lineal Borrosa (PLB).

Aunque la PLB tiene su antecedente teérico en 1970 en el magistral trabajo
sobre Teorfa de la Decisién de R. Bellman y L.A. Zadeh ya clésico en la literatura
cientifica [1], los problemas de PLB nacen formalmente en 1974, afio en que
separadamente en dos trabajos, [21] y [28], se propuso el mismo modelo para
tratar los problemas de PL en los que el conjunto de restricciones estaba dado
por un conjunto borroso. A pesar de la coincidencia, enfocaron su resolucién
desde puntos de vista, y por tanto con métodos, diferentes que proporcionaban
una solucién constituida por un dnico punto, y que por tanto puede considerarse
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ajena al contexto borroso en el que se calculaba. Més adelante se demostré que
tales métodos eran casos particulares de uno més general que permitia obtener
una solucién borrosa, contexto-dependiente, y que englobaba las que se habian
propuesto previamente en los referidos trabajos, [23].

Concretando, el problema central en PLB consiste en resolver un problema de
PL en el que el conjunto de restricciones es borrosa,

Max z=cx
s.a :
Angb
x>0

es decir, donde se supone que el decisor puede aceptar violaciones moderadas sobre
el cumplimiento de las restricciones, evaluandose el grado con que se efectiian estas
violaciones mediante ciertas funciones de pertenencia,

i i R—10,1],i=1,...,m

que el mismo decisor establece.

Aunque desde este planteamiento inicial, las lineas de trabajo que se han
seguido en este tema han sido muchas. De forma resumida pueden sintetizarse en
los siguientes apartados:

a) Extensiones del modelo anterior a problemas mds complejos. Particular-
mente en el campo donde mas se ha incidido ha sido en el de los problemas
multiobjetivo, aunque también es de destacar el trabajo realizado en otras
parcelas, como es el caso de la Programacién Estocastica o la Fraccional.

b) Métodos de resolucion de los diferentes problemas.

¢) Aplicaciones en dominios concretos (transporte, juegos, politica hidrdulica,
agricultura, razonamiento a partir de conocimiento proposicional, - - -).

Inicialmente abordaremos aquellos elementos tedricos basicos que son nece-
sarios para el desarrollo del articulo. En este sentido, y sin profundizar hasta
conceptos que puedan resultar triviales, se presentan las ideas més elementales
relativas a conjuntos y nimeros fuzzy. A continuacién, pero dentro del contexto
borroso, introducimos los problemas mas tipicos de Programacién Lineal Borrosa.

2 Conceptos basicos

Un concepto que se muestra bésico es el de nimero borroso. Desde el punto
de vista de que un nimero borroso es un conjunto borroso en R, podemos decir
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que la nocién de nimero borroso se introduce en 1965 en el célebre trabajo de
L.A. Zadeh, [26].

Sin embargo, los niimeros borrosos no toman carta de naturaleza hasta apro-
ximadamente 1978 con los trabajos de S. Nahmias sobre variables borrosos y de
D. Dubois y H. Prade sobre el manejo de cantidades imprecisas. Desde entonces,
el estudio de las posibles definiciones de nimero borrosos y, sobre todo, el cémo
manipularlos y compararlos, es un tema de gran interés en el area de los conjuntos
borrosos, [25].

En esta secciéon se introducen las nociones y operaciones elementales entre
conjuntos borrosos para llegar al referido concepto de nimero. Establecida esta
nocion, se dedica el resto de la seccién al problema de comparar dos ntmeros
borrosos. Este es un problema complejo porque, dado el cardcter impreciso de
las cantidades que se consideran, por ejemplo A y B, de antemano no puede
garantizarse el que A < B, o el que B < A, sino que, ambas propiedades van
a verificarse simultdneamente con ciertos grados de cumplimiento. Esto hace
que existan multiples métodos de comparar dos nimeros borrosos, lo que en
la literatura especializada se ha desarrollado mediante los llamados indices de
comparacion.

2.1 Introduccién al Concepto de Conjunto Borroso

Sea X un conjunto cuyos elementos notaremos por z, y sea A un subconjunto
de X. La pertenencia de un elemento x de X al conjunto A viene dada por la
funcién caracteristica

(@) = 1 siysélosiz e A
HAWTI =1 0 siysélosiz ¢ A

donde {0, 1} es el llamado conjunto valoracién.

Si el conjunto valoracién es el intervalo real [0, 1], A se denomina un conjunto
borroso ([26]) v pa mide el grado de pertenencia del elemento z a A. A se
caracteriza por el conjunto de pares {(z, pa(z)), z € X}.

Dos conjuntos borrosos A y B se consideran iguales (A = B) si y sélo si:
Vo € X, pa(z) = pp(z).

Definicién 1 (/26]) Dado un conjunto borroso A = {(x,ua(x))}, se define su
soporte como el conjunto ordinario Sop(A) ={x € X / pa(x) > 0}.

Definicién 2 (/26]) Dado un conjunto borroso A, llamamos a-corte de dicho
conjunto, al conjunto ordinario Ay = {x € X / pa(x) > a} con a € [0,1].

Claramente se ve cémo los conjuntos A4,, « € [0, 1] constituyen una sucesién
decreciente. Si a; > ag & A,, C Aa,, a1,a2 € [0,1].
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Teorema 1 (Teorema de Representacidn) Si A es un conjunto borroso y A, sus
a-cortes, a € [0, 1], se verifica que:

A= | a4,

a€l0,1]

entendiendo esta notacion formal como la igualdad entre las funciones de perte-
nencia de ambos conjuntos. Si pa, (x) nota la funcion caracteristica de A, caso
particular de la funcion de pertenencia,

() = 1 sty sélo si x € Ag
HAT) =9 ¢ en otro caso

la funcion de pertenencia del conjunto borroso A puede expresarse en términos
de las funciones caracteristicas de sus a-cortes segun la formula

wa(z) = sup min(a,pa,(z))
a€l0,1]

Definicién 3 (/26]) Un conjunto borroso es convexo si y sélo si sus a-cortes son
CONVeTos.

Una definicién equivalente a la convexidad es que A es convexo si y sélo si
Yoy, x9 € X, VA € [0,1], pa(Azy + (1 — N)z2) > min(pa(zy), pa(ze)).

Definicién 4 Se define la altura de un conjunto borroso Alt(A) = sup,¢c x pta(x).

Definiciéon 5 Un conjunto borroso se dice normalizado si y solo si dx € X en el
que pa(z) = 1.

2.2 Numeros Borrosos

Definicién 6 [10] Un nidmero borroso A, es un conjunto pa de la recta real,
convezo, normalizado y tal que

a) Jzg €R / pa(zo) =1, que suele llamarse moda,y
b) na es continua a trozos.

Todo ntimero borroso estd pues caracterizado por una funcién de pertenencia
pa : R — [0,1] y toda funcién como la anterior engendra un nimero borroso
donde, Vz € R, ua(x) es el grado de pertenencia de z al ntimero borroso A.

Notaremos por F(R) al conjunto de las funciones de pertenencia sobre R,
por tanto nos podemos referir al hablar de nimero borroso tanto al elemento
A e F(R) como a 14 € F(R).
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Un nidmero borroso A, se dice que es del tipo L — R, si y sélo si su funcién de
pertenencia 4 es de la forma

L[W] paraxz <m, a >0
pa(z) =
R[@} paraz >m, >0

donde m es la moda de A y « (8) la amplitud por la izquierda (derecha), L y
R representan una funcién a la izquierda y derecha de m respectivamente, £ no
decreciente y R no creciente. El niimero borroso A lo notaremos abreviadamente
por A= (m—a,m,m+ B)ex.

Definicién 7 [11] Un nidmero borroso plano es un nimero borroso A tal que
A(my,me) €R, my <mg y palz) =1, VY € [my,ms]

Un numero borroso plano puede modelar un intervalo borroso. Un numero
borroso plano A de tipo L — R estéd definido como

L[W} para z < mi, a >0

,UA(-%') = R [%} para x > msg, >0 (4.1)
1 para m; <z < my
0 otro caso

Més brevemente, se va a notar por (m; — «,mi, me, ma + )R-

Como es evidente, segin sean las funciones £ y R, obtendremos distintos tipos
de numeros borrosos.

Vamos a considerar nimeros borrosos planos, lineales y normalizados, cuya
funcién de pertenencia analitica es la siguiente.

Un ndmero borroso plano, que notaremos por uf = (rj,gj,ﬂj,Rj), tendra
como funcién de pertenencia

&jﬂ)) TS VS U
(R;—v) _
Yo eER, ps(v)=1< &= UjSv< Ry (4.2)
J
1 U, <v<wy
otro caso
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En adelante, se utilizardan con bastante frecuencia niimeros borrosos expresa-
S . - f .
dos como combinaciones lineales yf = Zj ujzjconz; €R, j=1,...,n
En [22] podemos encontrar la funcién de pertenencia de dichos ntimeros que
expresamos a continuacién.

Proposicién 1 Si yf = Zj uij = ufx es una expresion lineal, en la que los

uf, j =1,...,n, son numeros borrosos con funciones de pertenencia lineales,
f
J
pertenencia de y/ es

= (rj,u;,u;,R;) yx; >0, 5 =1,...,n, entonces la funcion de

dados por u j

(Sf;_rfr)) six>0yre <z<ux
u(z) = ((1%111__{2) six>0yur <z< Rx

1 stur < z <ux

0 otro caso

donde r = (ri,...,rn), 4= (Uy,...,u,), &= (U1,...,Un) y R=(R1,...,Rp).

2.3 Formas de Comparar Niumeros Borrosos

Un problema de constante actualidad a lo largo de los ultimos 15 anos ha sido
el de la ordenacion de cantidades imprecisas, y por tanto el de la comparacion
de nameros borrosos. Los diversos y miiltiples enfoques con los que se puede
plantear el problema, justifican la existencia de un amplio catdlogo de métodos
que permiten realizar la mencionada comparacién. Al respecto, una excelente
recopilacién de técnicas, métodos y enfoques puede encontrarse en [31], [25].

Utilizaremos las formas de comparar niimeros sélo como un medio, para ana-
lizar la repercusiéon que, en un problema de Programacion Lineal Borrosa, tiene
el empleo de diferentes métodos de comparacién. Desde este punto de vista, no
es nuestro objetivo recoger aqui todas las formas posibles que hay para la com-
paracién.

La resolucion del problema puede abreviarse por alguna de las 2 siguientes vias,
seglin se emplee un método basado en la definicién de una funcién ordenadora o
basado en la comparacion de alternativas.

Métodos Basados en la Definicién de una Funcién Ordenadora

Consideramos A, B € F(R). Un método simple de comparacién entre ellos
consiste en la definicién de una funcién g : F(R) — R. Si se conoce esta funcién
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g(+), entonces
g(A) < g(B) & A es menor que B
g(A) > g(B) & A es mayor que B
g(A) = g(B) & A esigual que B

Usualmente, g se llama funcién de ordenacion lineal si
1) VA, B € F(R), g(A+ B) = g(4) + g(B)
2) VreR, r >0, g(rd) =rg(A), VA € F(R)

En este caso los indices pueden clasificarse conforme a que la funcién ordena-
dora sea lineal o no.

Métodos Basados en la Comparacion de Alternativas

Estos métodos, consisten en obtener el conjunto borroso de las alternativas
optimales: . _ _
O = {i, pos (1)}, nos (i) = pos (A, A" € F(R)

donde pors(i) representa el grado con el cual la alternativa i-ésima puede ser
considerada la mejor.

Destaquemos finalmente que a pesar de la extraordinaria abundancia de métodos
para comparar niimeros borrosos, ain son pocos los indices que se han estudiado,
puesto que es perfectamente justificable el que cada decisor humano que se con-
sidera tenga su propio método de comparacién, que no tendrd porque ajustarse a
ninguno de los métodos tedricos descritos en la literatura. Un estudio detallado
sobre este aspecto puede encontrarse en [19] donde se emplea una red neuronal
artificial que aprende el criterio de ordenaciéon de cada decisior que se considere.

3 Programacién Lineal Borrosa
En general un problema de PL se plantea como
Max{z = cx/Az < b,z > 0}

donde A es una matriz m X n de nimeros reales, b € R™ y ¢ € R™.

Como es obvio, se estd asumiendo que el decisor dispone de una informacién
exacta sobre los elementos que intervienen en el problema. Sin embargo, aunque
esto fuera asi, es usual que dicho decisor se encuentre mas comodo expresando
su conocimiento en términos lingiiisticos, es decir, mediante etiquetas lingiiisticas
convencionales [27], que utilizando datos numéricos de precisién exacta. Por tanto
tiene perfecto sentido que hablemos de problemas de optimizacién planteados
a partir de ese tipo de predicados vagos, entendiendo que esa vaguedad estd
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producida por la forma de expresar el conocimiento que posee el decisor, y no
como causa de una cierta naturaleza aleatoria que, para nada, serd considerada.
En definitiva se trata de suponer que la imprecisién de los datos que definen al
problema es borroso.

El primer antecedente sobre problemas de optimizaciéon con planteamiento
borroso que existe en la literatura se remonta a més de tres decadas, [1]. De ese
articulo provienen los conceptos clave de restriccion, objetivo y decisién optimal
borrosa que ya son clasicos.

Igual que ocurre con la PL en el contexto de la optimizacién convencional,
los métodos de PLB han sido uno de los temas mas estudiados en el ambito
borroso. Como ya se dijo, sin ser exhaustivos hay tres tipos mas importantes de
problemas de PLB, segin que la imprecision se establezca en las restricciones,
en los coeficientes de la matriz tecnoldgica o en los costos que definen la funcién
objetivo. Dedicamos el resto de este apartado a estudiar cada uno de ellos.

Existen en la literatura muchos modelos y métodos para la resolucién de estos
problemas, fundamentalmente para el caso en que f y g;, i € M, son funciones
lineales [7], [8], [14], [30]. Se obtienen soluciones puntuales en algunos casos
y soluciones borrosas en otros, mas acordes con el planteamiento impreciso de
los problemas. Estas ultimas recogen un conjunto de buenas alternativas, que
engloban a las soluciones puntuales obtenidas con otros métodos. En cualquier
caso, el decisor debe tomar la decisién final para su problema.

Aunque en la literatura podemos encontrar muchos modelos de PLB, [12],
[4], 6], [15], [7], [18], [17], ..., la mayoria de ellos suponen vaguedad sélo en
algunos de los elementos descritos en el modelo. Al final de esta seccién se pre-
senta un modelo general de PLB en el que todos los elementos que intervienen
son borrosos. Para ello se presentaran los tipos de modelos méas importantes en
programacién lineal borrosa y el modelo general de PLB, [3]. De este modelo, se
deriva cada caso particular del problema de PLB facilmente y resulta conforme a
sus caracteristicas.

3.1 Programacion Lineal con Restricciones Borrosas

Consideramos el caso en el que un decisor asume que puede haber cierta to-
lerancia en el cumplimiento de las restricciones, en el sentido de estar dispuesto
a tolerar cierto margen de violacién que él mismo establece, [3]. Para cada res-
triccion esta suposicion se puede representar de la forma

a;x <y by, ieM=1{1,2,...,m},
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y modelizarla por medio de una funcién de pertenencia

1 sia;x < b;
pi:R—[0,1] / pi(asr) =< filax) sib; <azw < b+t

0 si (LZZL'Zbl-l-tl

Estas funciones expresan que el decisor tolera violaciones en cada restriccién
hasta un valor b; + t;, ¢ € M. Por otra parte, las funciones f; se asumen no
decrecientes y continuas para estas restricciones.

La funcién pu; se define para cada z € X y da el grado de cumplimiento de la
i-ésima restricciéon para x € X.

El problema asociado se representa de la siguiente forma

Max z=cx
s.a:
Az <; b (4.3)

x>0

donde ¢ € R", b € R™, A es una matriz m x n de nimeros reales.

Aunque el origen de (4.3) se encuentra en [1], este problema fue desarrollado en
[21] y [29], donde se consideraron algunas hipétesis adicionales sobre la naturaleza
de la funcién objetivo, que aqui no son relevantes.

Para resolver (4.3), se pueden considerar tres aproximaciones diferentes [21],
[29] y [23]. En particular, y haciendo uso del Teorema de Representacién para
conjuntos borrosos, en [23] se demuestra c6mo encontrar una solucién borrosa a
(4.3) por medio del problema auxiliar de PL paramétrica.

Max z=cx

s.a:
Az < g(a)
x>0, a€l0,]1]

donde g(a) € R™ es un vector columna definido por las funciones inversas de las
fi, i € M. Obviamente, la linealidad y la dimensién de (4.3) se conserva en este
dltimo modelo.
Las soluciones propuestas en [21] y [29] aparecen de la solucién borrosa pro-
puesta en [23] para valores particulares del pardmetro a € [0, 1].
Suponiendo la linealidad de las f;, tenemos que el modelo auxiliar que resuelve
(4.3) es
Mazx z=czx
s.a:
Az <b+t(1—a) (4:4)
x>0, ael0,]1]
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cont=(ty,...,tm,) € R™.

Si notamos S(a) = {x € R" / z(z) = méxcz, ¢ € X(a)} con X(a) = {z €
R™ / Az < b+t(l —«), a € 0,1]}, definimos una solucién borrosa a (4.3) como,

Definicién 8 La solucidn borrosa a (4.3) es un conjunto borroso con funcion de
pertenencia
sup « six € U S(a)
AMz) =14 z€S(w) =
0 otro caso

Consideramos (4.3) y la imprecisién de las restricciones representada por fun-
ciones de pertenencia no lineales

, 1 si ;T < bz
w(x) =4 flla;x) sib; <ajx<b+t;
0 si a; T > bz +t;

donde la funcién f/(-) se supone estrictamente decreciente y continua, f/(b;) =1
y fi(b; +t;) =0.

Si usamos la aproximacién propuesta en [23] y con una discusién similar a la
anterior para el caso lineal, la solucién optimal borrosa para (4.3) puede obtenerse
de la solucién paramétrica optimal del problema

Max z=cx

s.a:
Az < ¢ ()
x>0, a€l0,1]

donde ¢'(a) = f'~(«), Va € [0,1].
En [9], se muestra una relacién entre las soluciones obtenidas del caso lineal
y el no lineal. Los siguientes resultados se demuestran en [9].

Proposicién 2 Sea [a,b] un intervalo real y f : [a,b] — [0,1] continua, lineal y
estrictamente decreciente con f(a) =1 y f(b) = 0. Para cualquier otra funcidn
continua, estrictamente decreciente f': [a,b] — [0,1], tal que f'(a) =1y f(b) =
0, existe una funcion r:[0,1] — [0,1] tal que r(-) o f(-) = f'(-).

Proposicién 3 Consideramos el problema de PLB (4.3). Notamos x(-) y '(:) a
las soluciones optimales borrosas para este problema, usando funciones de perte-
nencia lineales y no lineales, respectivamente, para la imprecision de las restric-
ciones. Entonces x'(a) = x(r~1(a)), donde r(-) es la obtenida en la proposicion
anterior.

Con estos resultados, el valor de la funcién objetivo serd z'(a) = ca’(a) =
cr(r~1(a)).
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Esto demuestra que resolver un problema de PL con restricciones borrosas
modelizadas por funciones de pertenencia lineales pueden obtener la solucién
borrosa del mismo problema modelizado por funciones de pertenencia no lineales.
Para el caso en que el problema de PL tiene restricciones borrosas modelizadas por
funciones de pertenencia definidas a trozos obtenemos un resultado similar, [9].
Asi, no se pierde generalidad si siempre suponemos el problema de restricciones
borrosas con funciones de pertenencia lineales.

3.2 Programacion Lineal con Costos Borrosos

En este caso, el decisor no conoce con exactitud los valores de los coeficientes
¢, representando esta situacién por el problema de PLB siguiente, [3].

Max z=clz
s.a:

Az <b (4.5)
x>0
con ¢/ € (F(R))" y suponiendo funciones de pertenencia de la forma
0 siv<r;6v>R;
N . ) hi(v) sir; <wv<g
PJJ'RH[Ovl]a ]GN / MJ(U)* gj('U) SiEjS’USRj (46)
1 si ¢ <v<E

donde h;(-) y g;(-) son funciones continuas estrictamente crecientes y decrecientes,
respectivamente, tales que, h;(c;) = g;(¢;) =1, Vj € N.

Aunque existe una gran gama de funciones h; y g; (lineales, exponenciales,
logaritmicas, parabdlicas concavas y convexas, etc.) se suelen considerar los costos
borrosos como nimeros borrosos planos con funciones h;(-) y g;(-) lineales. Asi

para el nimero (rj,gj,Ej, R;) estas funciones vendran dadas de la forma:

vy Ri—u _
. T < v < C.: g . < < )
hij(v) =< &7 == g;(u) = Rj—¢; GG SusR;
J ) j
0 otro caso 0 otro caso

Para resolver (4.5) hay diferentes aproximaciones [6], [20], [22]. En [8] se
demuestra que el método propuesto en [6] da un contexto formal para encontrar
la solucién de (4.5) englobando las soluciones de las métodos propuestos por [20],
[22], [18].

La solucién borrosa propuesta en [6] para este problema se puede obtener de

Rect@ Monogréfico 2 (2004)



84 M¢étodos y Modelos de Programacién Lineal Borrosa

la solucién del siguiente problema paramétrico multiobjetivo

Mazx =z =[c'z,cx,..., 2" ]

s.a:
Ax <b, <0
ke {h;t(1-a)g;'(1-a)}
acl0d], k=1,...,2", jeN

3.3 Programacion Lineal con Nimeros Borrosos en la Ma-
triz Tecnoloégica

Ahora, consideramos que los coeficientes en la matriz tecnoldgica y los coefi-
cientes de la parte derecha se representan por niimeros borrosos, siendo nimeros
reales los costos que definen la funcién objetivo, [3].

Este tipo de problema de PLB se plantea en los siguientes términos,

Maxr z=cx
s.a:

4.
alz <; bl ieM (47)

i

x>0

donde para cada i € M, a{ = (aifl,...,a{n), a{j € FR), j € N, be € F(R),

mGX:{xER"/a{ngb{7i€M,x20}yc€R”.

Una versién casi idéntica de (4.7) fue el punto de partida de este tipo de
modelos (en [22] se presenté un problema similar a éste, pero suponiendo también
imprecisién en el objetivo). Ahora bien, para resolver (4.7), con la intencién de
obtener una solucién borrosa y no una puntual, como se hacia en (4.3) podemos
suponer que se admiten violaciones en el acoplamiento de sus restricciones, hasta
una amplitud maxima de valor tlf , 4 € M. [7]. Nétese que, a diferencia de (4.3),
t{ ha de ser un nimero borroso debido a la naturaleza de los coeficientes que
toman parte en cada restriccién.

Desde este punto de vista, en [7] se propone un método de resolucién para el
modelo general (4.7). La aproximacién consiste en la sustitucién del conjunto de
restricciones de (4.7) por el siguiente conjunto borroso convexo:

afxggblert{(lfa), ieM, ae€l0,1]

i

donde a{ = (azf17 . ,azfn), t{ es un numero fijado por el decisor que nos da la

violacién tolerada en la restriccién, y <, es una relacién entre tales nimeros.
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Asi el problema (4.7) queda de la siguiente forma

Max z=cx
s.a:

afxggbzf—i-t{(l—a), ieM

%

x>0, a€l0,1]

En [5], la solucién al problema originalmente planteado se obtiene por parti-
cularizacién, en el problema auxiliar, de la relacién para cada diferente método
de comparacion de ntimeros borrosos.

3.4

Un Modelo General de Programacién Lineal Borrosa

Un modelo general de PLB, [3], en el que consideramos todos los casos ante-
riores es un problema del tipo:

n

_ I

Max zfg CiTj
Jj=1

s.a

n
f f
Z a;rj <y b
j=1

x;>0,i¢M, jEN

donde los elementos borrosos se consideran dados por:

a)

b)

Para cada costo 3p; € F(R) tal que p; : R — [0,1], j € N las cuales
definen el vector de costos borrosos.

Para cada fila Ju; € F(R) tal que u; : R — [0,1], ¢ € M las cuales definen
el nimero borroso en la parte derecha.

Para cada ¢ € M y j € N Jpu;; € F(R) tal que p;; : R — [0,1] las cuales
definen los niimeros borrosos en la matriz tecnolégica.

Para cada fila 3u° € F[F(R)] tal que p' : F(R) — [0,1], i € M que nos da
para cada = € R", el grado de acoplamiento del niimero borroso a{lxl +
ag;xg + ...a{nxn, i € M con respecto a la i-ésima restriccion, es decir,
la adecuacion entre estos numeros borrosos y el correspondiente bf con
respecto a la i-ésima restriccion.

Un método de resolucién, [2], para el modelo general (4.8) consiste en la
sustitucién del conjunto restriccién de (4.8) por un conjunto borroso convexo.
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Sea g una funcién ordenadora de niimeros borrosos y sea la funcién ¢ : F(R) x
F(R) — F(R) tal que

tlf siafxggblf
Wlalz,bl) = thodzab! sibf <gale<,0f @t
0 siafxggbfc@tlf

con t{ € F(R) tal que su soporte esté incluido en RT y <, una relacién que mide
el que A <, B,VA,B € F(R), y © y & las operaciones usuales entre nimeros
borrosos.

f
i
b{, con t{ un numero borroso, dando la violacion mdxima en la verificacion de la
i-ésitma restriccion, es la siguiente:

Definicién 9 La funcion de pertenencia asociada a la restriccion borrosa a; x <j

g((alz,b)))
g(t])

donde g es una funcion ordenadora de niumeros borrosos.

p'iFR) = (0,1 / p(alw,b]) = (4.9)

Si consideramos el problema (4.8), <; con funciones de pertenencia (4.9) y
utilizando el teorema de representacion para nimeros borrosos, obtenemos que

g(f(afxb])) _ _ gt] cafzab]))

7 >as 7 >as
g(ti) g(ti)

M%(Zf%‘,b{) Zas
g(t]) — glalz) + g(0]) > g(t))a = g(alz) < g(bf @t/ (1 - ) &

afxggbif—kt{(l—a)

i
donde <, es la relacién correspondiente a g.
Con lo cual, un problema auxiliar para resolver (4.8) es el siguiente:

n

E I o

Max ;T
=1

S.a (410)

n
Zaifjxj <y I)f-,c—i-t{(l—a)7 ieM
j=1

z>0, a€[0,1], jEN
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Si en el problema (4.8) no hubiera niimeros borrosos en su formulacién, sino
sblo restricciones borrosas, este enfoque coincide con el correspondiente modelo

Mazx z=cx

s.a:
Az <b+1t(1 —a)
x>0, ael0,]1]

Es decir, en el caso de una restriccién borrosa a;z <f b; la funcién de perte-
nencia asociada a esta restriccion sera de la forma:

g(f(aixa bl))
g(t:)

donde g es el orden clasico en R y ¢; es la violacién maxima en el acoplamiento
de la i-ésima restriccién (¢; € R).

p' e F(R) = [0,1] / pi(asw,by) =

1 a;x < b;
p'(a;x, b)) =< (1— —‘“f;b) by <a;x < b+t
0 ;T Z bz + ti

Se pueden utilizar, para resolver dicho problema, las distintas relaciones de
comparaciéon de nimeros borrosos, tanto en las restricciones como en el objetivo,
o relaciones de comparacién en las restricciones y a-cortes en el objetivo, que nos
llevaran a obtener distintos modelos convencionales, lo que permite la obtencion
de una solucién propiamente borrosa.

4 Ejemplos

Ejemplo 1 Un pais productor de un cierto mineral se ve obligado a exportar
anualmente una cantidad del producto no inferior a 2000 toneladas apoximada-
mente ni superior a 4000 toneladas aprorimadamente. La venta del producto se
puede hacer en el mercado internacional a 2500 unidades monetarias la tonelada
o bien a un pais vecino a un precio de 2000 unidades monetarias por tonelada.
El gobierno desea saber qué parte del mineral producido (xo) debe de vender en el
mercado internacional y qué parte (x1) al pais vecino si su objetivo es mazimizar
los ingresos.

Six1 y x2 son las cantidades de mineral vendidas al pais vecino y en el mercado
internacional, respectivamente, y teniendo en cuenta que las ventas en general no
pueden ser inferiores a 2000 toneladas aproximadamente ni superiores a 4000
aproximadamente, tendremos que la suma de las cantidades que nos reflejard el
total exportado deberd verificar

T+ o Zf 2000
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X1+ X9 Sf 4000

donde estamos suponiendo que se permite vender un poco menos de 2000 tone-
ladas (25 toneladas) y un poco mds de 4000 toneladas (100 toneladas). Estas
restricciones borrosas podrian modelarse como

0 st x1 + 1o < 1975
pa(zn,w0) = LERIT 61975 < oy + a5 < 2000
1 otro caso
1 st x1 + o < 4000
po(z1,x2) = 4100;# si 4000 < x1 + xo < 4100
otro caso

Como el gobierno tiene que decidir sobre las cantidades que vende en cada
mercado, y debe vender como minimo 100 toneladas al pais vecino y 200 toneladas
al mercado internacional, las variables x;, i = 1,2 deberdn ser mayores o iguales
a 100 y 200, respectivamente. Puesto que el gobierno quiere calcular x1 y o con
objeto de mazximizar sus ingresos, deberd de resolver el problema

Max 2000x; + 2500x4
S.a :
1+ 2o Zf 2000
1 + w2 <y 4000
x> 100
xo > 200

El modelo auxiliar, utilizando [23], para resolver el problema es el siguiente
problema paramétrico:

Maz 2000x7 4+ 250022

s.a:
21 + 5 > 2000 — 25(1 — @)
1 + x2 <4000 + 100(1 — «)
x1 > 100
xo > 200
a € [0,1]

donde 25 y 100 son los mdrgenes de la violaciones permitidas en el verificacion
de las restricciones.
La solucion optimal es
x} = (100,4000 — 100c)

y el valor optimal de

10200000 — 250000« unidades monetarias
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para o € [0,1].

Ejemplo 2 Dos productos, A y B, para la exportacion deben producirse utili-
zando tres procesos diferentes (corte, doblado y empaquetado). La produccion
de una unidad del producto A (B) requiere 10 (6) minutos de tiempo de trans-
formacidn en el departamento del corte, 5 (10) minutos en el departamento de
doblaje, y sobre 7 (7) minutos en el departamento de empaquetado. FEl tiempo
total disponible para cada proceso de produccion es 2500 minutos para el corte,
como mdzimo 2000 minutos para doblar (aunque se permiten violaciones hasta
2064 minutos) y alrededor de 2050 minutos para empaquetar (dependiendo de la
urgencia del envio), pero este tiempo de empagquetado total nunca puede excederse
de 2124 minutos. Cuando se vende al exterior, el producto A (B) tiene un bene-
ficio alrededor de 23 euros (32 euros) por unidad, dependiendo del cambio actual.
Si los encargados desean maximizar el beneficio, podrdn resolver el problema:

Maz 237z + 3272y

s.a
10x1 + 622 < 2500
5581 + IOIQ Sf 2000
7f$1 + 7f.132 < 20507
2;>0,j=1,2

La sequnda restriccion puede modelarse como

1 ) 5(E1 + 101’2 < 2000
(e, ) = ¢ 2004=821=1022 62000 < 5z 4 1022 < 2064
0 otro caso

y la tercera restriccion nunca puede exceder del nimero borroso 21247 = (2094,2124, 2154).
Suponemos que los numeros borrosos estdn definidos por funciones de perte-
nencia lineales: 237 = (22,23,25), 327 = (31,32,34), 77 = (6,7,8.5) y 2050/ =
(2025, 2050, 2075).
El primero modelo auxiliar para resolver el problema es el siguiente problema
parameétrico:
Maz 23721 + 3272
s.a:
10z; 4 622 < 2500
5x1 + 1022 < 2000 + 64(1 — «)
oy + Ty <, 20507 + 747 (1 — @)
z; >0,j=1,2a¢cl0,1]
donde 64 y 745 son los mdrgenes de la violaciones permitidas en el verificacion

de la segunda y tercera restriccion, respectivamente, y <, es la relacion asociada
con la funcion de ordenacion lineal g.
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Puesto que hay diferentes aproximaciones y métodos para resolverlo, pode-
mos obtener diferentes soluciones. En cualquier caso, y siendo coherente con la
naturaleza imprecisa del problema, todas las soluciones serdn borrosas.

Por ejemplo, si elegimos como funcion de ordenacion lineal g para la res-
triccidn tercera el primer indice de Yager, [31], y como funcidn de ordenacidn
para nimeros borrosos de la funcidn objetivo el segundo indice de Yager, [31],
obtenemos el siguiente problema auxiliar

24x1+34xo
Max 2x1+2xo+1

5.0
1021 + 622 < 2500
51 + 1025 < 2000 + 64(1 — a)
7162, + 7.16z2 < 2050 + 74(1 — a)
z;>0,7=1,2a€cl0,1]

cuya solucion optimal es
xr =(0,206.4 — 6.4c)

y el valor optimal alrededor de
6604.8 — 204.8«¢ euros

(definido por el nimero borroso (6398.4—198.4«, 6604.8—204.8¢, 7017.6—217.6cr) )
para un o fijado.

5 Conclusiéon y epilogo

Los métodos de optimizacion basados en la logica borrosa no terminan en la
PLB. En efecto, la facilidad de resolver problemas reales de dimensién cada vez
mayor, gracias a la mayor potencia y el menor costo de los computadores, la impo-
sibilidad de conocer en todos los casos las soluciones exactas que les corresponden
a esos problemas, y la necesidad de dar respuestas a las situaciones practicas con-
templadas en multitud de casos (problemas de secuenciacién, de diseno de rutas,
de localizacién, etc.), han motivado que los algoritmos de tipo heuristico sean
empleados cada vez maés, como valiosas herramientas capaces de proporcionar
soluciones donde los algoritmos exactos no son capaces de encontrarlas. Asi en
los ultimos anos ha aparecido un enorme catalogo de técnicas diversas, animadas
por el principio de que es mejor satisfacer que optimizar, o lo que es lo mismo
que, antes que no poder dar la solucién optima a un problema, es mejor dar una
solucién que satisfaga al usuario en algin sentido que previamente habra especi-
ficado, y que se han demostrado extraordinariamente efectivas. Ejemplos de esas
técnicas pueden ser los algoritmos de Bisqueda Tabid, Enfriamiento Simulado,
GRASP (”Greedy Randomized Adaptive Search Procedure”), Genéticos, o los
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mas recientes: Meméticos, VNS (Busqueda por Entornos Variables), Colonias de
Hormigas, Busqueda Dispersa, Programacién por Restricciones, que en definitiva,
demuestran el gran interés de este campo, y la falta de un minimo marco tedrico
en el que encuadrar, relacionar y poder comparar estos algoritmos.

Se puede decir que en la mayoria de los casos, estas heuristicas se han inspi-
rado en algin modelo real de la naturaleza, la sociedad, la fisica, ... para producir
modelos tedricos que se ajustan a las circunstancias consideradas. Desde esta
perspectiva se ha conseguido proporcionar solucién a casos que, hace muy poco
tiempo, eran intratables con las técnicas convencionales. Sin embargo, las solu-
ciones conseguidas no han sido en la inmensa mayoria de los casos las 6ptimas.
Han sido soluciones ”cercanas a las éptimas”, que frecuentemente se han obtenido
con cargo a criterios distintos del cldsico ”conseguir el mejor valor de la funcién
objetivo”, al considerar caracteristicas subjetivamente establecidas por el decisor.

Como a lo largo de este trabajo ha quedado patente, cuando hablamos de sub-
jetividad asociada a personas humanas, o incluso de cercania a un valor 6ptimo,
la forma mejor contrastada de modelizar ese tipo de situaciones es mediante los
conjuntos borrosos. Sin embargo esa forma de modelizacién de la subjetividad,
tan desarrollada en otros &mbitos, practicamente no ha sido aplicada al caso del
disenio de algoritmos heuristicos, [24], a pesar de todo apunta que este puede
ser un enfoque muy prometedor porque, aparte de proporcionar soluciones tan
cercanas al éptimo como las otras heuristicas convencionales ya conocidas,

a) encuentran la solucién del problema en cuestién con un menor costo que los
demads métodos, y

b) como es habitual en el marco de las metodologias borrosas, generalizan
las heuristicas ya conocidas (que deben ser casos particulares de las aqui
presentadas, en los valores 0 o 1 del grado de cumplimiento que se considere).

Estos aspectos describen de forma general el contexto por el que parece que
discurriran las investigaciones en el futuro mas inmediato, para poder abordar
diferentes tareas:

1. De generalizacién: mediante el estudio, diseno e implementacion de nuevos
algoritmos heuristicos basados en la légica borrosa, que se demuestren ope-
rativos sobre problemas reales. A su vez, estos nuevos algoritmos podran
obtenerse desde diferentes perspectivas: Considerando reglas de parada bo-
rrosas, suponiendo que los conjuntos solucion estan definidos de forma vaga,
midiendo el rendimiento de los objetivos de forma cualitativa, etc.

2. De sistematizacién: desarrollando estructuras comtnes (”templates”, es-
queletos, esquemas, ...) para incluir tantas heuristicas como sea posible, y
que permitan disenar metaheuristicas hibridas o ajustar los parametros de
cada una de ellas. Con estos se podra realizar la implementacién de procedi-
mientos que contemplen los aspectos efectivos de las diversas heuristicas, y
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que permitan al usuario o el propio sistema decidir que componentes incluir
y que valores asignar a los parametros. Estas tareas de sistematizacién,
a su vez, deberfan contemplar los casos uni y multi-objetivo, asi como la
viabilidad de paralelizar las componentes del ”template” para facilitar la
labor del usuario a la hora de elegir una via de solucién.

De implementacién: para obtener Sistemas de Ayuda a la Decisién que,
incorporando en sus Sistemas Gestores de Modelos esos u otros templates
integrados por Algoritmos Heuristicos basados en metodologias borrosas,
resuelvan efectivamente problemas de tanta trascendencia hoy dia como los
de Diseno de Redes, de Planificacién Logistica o de Bioinformatica.
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1 Introduccion

En muchos problemas de optimizacion, en especial en aquellos que evolucio-
nan en el tiempo a lo largo de un horizonte de planificacién dado, es habitual que
algunos de los coeficientes de la funcién objetivo y del vector del término inde-
pendiente e, incluso, de la matriz de restricciones, no se conozcan con exactitud
en el momento de tomar las decisiones correspondientes, aunque se disponga de
alguna informacién sobre ellos.

Supongamos que es posible representar la incertidumbre de estos coeficientes
mediante un arbol de escenarios, ver mas abajo. En este caso, una de las dis-
ciplinas mas apropiadas para tratar el problema es la Programacién Estocastica
(Stochastic Programming, SP) via andlisis de escenarios. La gran ventaja de este
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enfoque es que, con el, se puede considerar el riesgo de una mala decisiéon en
el propio modelo. La contraposicién a la SP es una mala utilizacién de la Pro-
gramacién Determinista en cualquiera de sus modalidades (programacién lineal,
nolineal, entera, combinatoria, etc.). Esta mala utilizacién se pone de relieve en
el caso muy frecuente en el que se reemplazan los pardametros inciertos por su
propio promedio, y se optimiza el nuevo modelo para obtener la solucién 6ptima
a proponer al decisor. Se puede observar que dicha solucién sélo es la solucién op-
tima del escenario promedio que, incluso, puede no existir como tal escenario. La
implantacién de dicha solucién en los diversos escenarios puede dar un resultado
muy malo en la funcién objetivo e, incluso, la solucién puede ser infactible para
algunos de ellos. En cambio, la SP contempla todos los escenarios, sin subordi-
narse a ninguno, de forma que el riesgo de una mala decisién viene reflejado en el
mismo modelo. El campo de aplicacién de la SP es, pues, el mismo campo de la
Programacién Determinista, pero con incertidumbre en algunos pardmetros. Para
una panoramica general sobre los modelos y técnicas de SP pueden consultarse
los libros [6, 10, 11, 17].

El tratamiento de las variables 0-1 en SP es més reciente que el tratamiento
del caso continuo, pero su campo de aplicacién es enorme, como lo es el campo de
aplicacién de la programacion mixta 0-1, sobre todo en los entornos con horizonte
temporal. La mayoria de los enfoques hoy dia existentes también se basan en
el andlisis de escenarios para aprovechar la estructura del Modelo Determinista
Equivalente (Deterministic Equivalent Model, DEM) del programa estocdstico 0—
1 mixto de recurso completo. Un punto clave serd la descomposicién del DEM en
lo que llamaremos clusters de escenarios.

Es interesante destacar la aparicién reciente de trabajos en la literatura en
los que la funcién a optimizar (sea, minimizar) no es sélo el valor esperado de la
funcién objetivo, sino que se contempla una funcién compuesta, de forma ponde-
rada, por dicho valor esperado y la probabilidad de que la solucién a implantar
permita valores no deseables en la funcién objetivo. Esta alternativa permite
considerar la variabilidad del valor de la funcién objetivo al obtener la solucién
que minimiza su valor esperado.

En este capitulo se estudia la utilizaciéon del procedimiento llamado Branch-
and-Fiz Coordinado (BFC) para obtener la solucién 6ptima 0-1 mixta del pro-
blema estocastico original. Se puede utilizar tanto la descomposicién Lagrangiana
como la descomposicién de Benders, entre otras metodologias, para aprovechar la
estructura del DEM. Estos tipos de descomposiciones permiten obtener solucio-
nes factibles continuas una vez obtenidas soluciones factibles 0-1, de forma que
todas ellas satisfagan las llamadas condiciones de no anticipacion en la solucién
optima.

El resto del capitulo se estructura de la forma siguiente: La seccién 2 revisa
algunos conceptos importantes en programacién estocastica 0-1, analizando la
minimizacion del valor esperado de la funcién objetivo. La seccién 3 trata algunas
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medidas de riesgo que permitan valorar la bondad de la solucién obtenida. La
seccién 4 revisa la descomposicion Lagrangiana como medio de acotacién en una
metodologia Branch-and-Bound. Por ultimo, la seccién 5 estudia el esquema
Branch-and-Fixz Coordinado.

2 Minimizacion del valor esperado
Sea el siguiente modelo determinista

min cx + ay

sa.Ar+ By =1 (5.1)
z €{0,1}"¢,y >0,

donde ¢ y a son los vectores de coeficientes de la funcion objetivo, b es el vec-
tor (de dimension m) del término incdependiente, A y B son las matrices de
restricciones (de dimensiones m X n y m X nc respectivamente), x e y son los
vectores (de dimensiones nc y n, respectivamente) de las variables 0 — 1 y con-
tinuas, respectivamente, a optimizar sobre un conjunto de etapas T, y m, n 'y
nc son el numero de restricciones, variables 0—1 y variables continuas, respectiva-
mente. El modelo debe extenderse para recoger la incertidumbre en los valores de
algunos parametros; por tanto, se precisa un procedimiento para modelizar dicha
incertidumbre.

Como se ha mencionado antes, la Programacién Estocdstica 0-1 (S01P) es
mas reciente que la SP continua, pudiendose encontrar numerosas aplicaciones
préicticas, en campos como la planificacién de la produccién [1, 2, 3, 14], la pla-
nificacién energética [8, 12, 15, 21] y finanzas [7, 22], entre otros muchos.
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Sean las siguientes definiciones bésicas:

Definicién 1. Dado un horizonte temporal, se llama etapa a un conjunto
de periodos de tiempo en el que los pardmetros inciertos toman un determinado
valor.

Al inicio de cada etapa se suponen conocidos los valores que toman todos los
parametros del problema para todos los periodos de tiempo incluidos en dicha
etapa.

Definicion 2. Un escenario es una realizacién de los parametros inciertos,
junto con los pardmetros deterministicos, a lo largo de las etapas del horizonte
temporal.

Definicién 3. Un grupo de escenarios para una etapa dada es el conjunto de
escenarios para los que los parametros inciertos toman el mismo valor hasta la
etapa considerada.

Muchos de los enfoques actuales en SP y, desde luego, en S01P, gestionan la
incertidumbre a partir del analisis de escenarios. Para ilustrar este concepto, sea
la Figura 1: cada nodo representa un punto en el tiempo donde puede tomarse
una decisiéon. Una vez que la decisién estd tomada, pueden ocurrir distintas
eventualidades (e.g., en este ejemplo tenemos tres posibles eventualidades en el
periodo t = 2), y la informacién relativa a dichas eventualidades esté disponible al
principio de la etapa siguiente (en este caso, periodo de tiempo). Esta informacién
se suele representar por medio de un arbol, donde cada camino de la raiz a las
hojas representa un escenario, y se corresponde con una realizaciéon de todo el
conjunto de parametros inciertos. Cada nodo en el arbol ha de asociarse con
un grupo de escenarios, de forma que dos escenarios pertenecen al mismo grupo
en una etapa dada si tienen las mismas realizaciones de los parametros inciertos
hasta dicha etapa. De acuerdo con el principio de no-anticipacion, ver [18], las
variables con indices de tiempo correspondientes a las etapas anteriores hasta la
etapa considerada inclusive deben tomar el mismo valor para ambos escenarios.

Sea la siguiente notacién relacionada con el arbol de escenarios:

T, conjunto de etapas (en este caso, periodos de tiempo) del horizonte tem-
poral dado. T3 =T — {|7|}.

Q, conjunto de escenarios.

G, conjunto de grupos de escenarios.

G?, conjunto de grupos de escenarios en la etapa t, para t € T (St cg).
Q9] conjunto de escenarios en el grupo g, para g € G (Q9 C Q).

7(g), nodo predecesor inmediato del nodo g, para g € G.

N9, conjunto de grupos de escenarios {k} tales que Q29 C QF para g € §
(N9 C 9). Es decir, conjunto de grupos de escenarios (uno por cada etapa)
cuyos conjuntos de escenarios contienen el subconjunto de escenarios del
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grupo g. Nétese que el (tinico) camino desde el nodo asociado con el grupo
de escenarios g hasta el nodo raiz en el arbol de escenarios correspondiente
atraviesa todos los nodos asociados con grupos de escenarios en NY9. Por
motivos técnicos, se supone que g € NY.

wy, peso asociado al grupo de escenarios g, para g € G. Nota: w, =
Zwem w*, donde w* representa el peso que el modelizador asocia al esce-
nario w, w € Q,y 3 cqw” =1y > cgiwy =1Vt €T.

Dependiendo del tipo de recurso que se considere, simple, parcial o completo,
pueden construirse distintos tipos de modelos. En este trabajo sélo se considera el
recurso completo, y, en primer lugar, se trata la minimizacién del valor esperado.
En ese caso, la version estocdstica del programa (5.1) resulta

min Qg = Z w* (¢?z® + a“y”)

weN
s.a. Az¥ 4+ By = b Yw € Q) (5.2)
veN
zv € {0,1}",y* >0 Yw € Q,

donde ¢ y a“ son los vectores de coeficientes de la funcién objetivo y b es
el vector del término independiente para el escenario w, x“ e y“ son las varia-
bles correspondientes, v = (z,y) y N es el espacio factible correspondiente a las
condiciones de no anticipacion para las variables x e y, tal que

veN={¥¥ =1 YueQi:ge§ teT}, (5.3)

donde v¥ es tal que v¥ = (v, Vi € T) y w’ € Q9.

Nota: Los modelos de recurso completo son aquellos que satisfacen las condiciones
de no anticipacion para todas las variables, exigiendo una variable inica para cada
grupo de escenarios, sin subordinarse a ninguno de ellos.

Para modelizar las condiciones (5.3) pueden utilizarse dos enfoques distintos:
la representacion con variables divididas y la representacion compacta. En el pri-
mer caso se pueden utilizar dos tipos de formulaciones. Una de ellas es la conocida
como representacién asociada a los nodos (o asociada a los grupos de escenarios).
Dicha formulacién requiere utilizar copias de las variables con elementos no nega-
tivos en las restricciones que pertenecen a etapas distintas. La otra formulacion,
conocida como representacién asociada a los escenarios, requiere utilizar copias
de todas las variables del modelo. En ambos casos, las condiciones de no antici-
pacion deben incorporarse explicitamente al modelo, pero la segunda formulacién
preserva la estructura del modelo de una forma més adecuada para el enfoque
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considerado en este trabajo; el modelo asociado es el siguiente,

min Qg = Z w” (?z” + a“y”)
weN

.a. Az* + By” =¥ Q

s.a. Az* + By b Yw € (5.4)
v‘f—v;"l:O,dondew’ng, YVwoeQ:geGhteT
zv € {0,1}",y* >0 Yw € .

La representaciéon compacta requiere modelizar con més detalle las relaciones
entre las variables. Como ilustracién, se supone que el vector de variables vy
tiene coeficientes no negativos en las restricciones correspondientes a las etapas ¢
y t+1, de forma que el modelo determinista pude escribirse de la forma siguiente,

min cx + ay
S.a. A;.ﬁl}tfl + Atxt + B;yt,]_ + Btyt = bt VteT (55)

zy € 0,1}y, >0 vt e T,

donde z; e y; son los vectores de variables para la etapa t tal que x = (x4, Vt € T)
ey = (y, Vt € T), n/ es la dimension de los vectores x4, y A; , Ay, B vy By son las
correspondientes matrices de restricciones. Abusando ligeramente de la notacién,
la versién estocastica del modelo puede escribirse de la siguiente forma,

min Qp = Z wy(cgg + agYg)

ge$
8.2, A7 Tr(g) + Aty + By Yr(g) + Biyg = by Vg€ G teT (5.6)
Zg € {0, 1}n/7yg >0 Vg € G,

donde ¢4 y a4 son los vectores de coeficientes de la funcién objetivo, by es el vector
del término independiente, y x4 e y4 son los vectores de las variables del grupo de
escenarios g, con ¢, = ¢, ag = af y by = by donde, en general, d¥ = (dy, Vt € T),
paraw €N :ge G ted.

3 Minimizacién de las funciones objetivo wvalor
esperado—riesgo y CaR

Los modelos contemplados en la seccién anterior buscan la minimizacién del
valor esperado de la funcién objetivo. Sin embargo, existen otros enfoques que
se ocupan también de medidas de riesgo, por medio de semi-desviaciones [16] y
probabilidades de exceso [20]. Estos enfoques son mds adecuados que los cldsicos
de media—varianza, sobre todo cuando aparecen variables 0—1. Ver también [19].
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Sea ¢ un umbral preestablecido para la probabilidad de exceso, Qp, tal que
Qp=PlweQ:zY+ay” > ¢). (5.1)
Asi, como alternativa a la minimizacién de Qg (5.2), donde
Qr = Z w” (?z” + a¥y"), (5.2)
weN

la funcién de wvalor esperado—riesgo a minimizar es,

Qe +6Qp, (5.3)

donde § es un parametro de peso no negativo.
Una expresién méds manejable que (5.3), a efectos computacionales al menos,
puede ser

min Qg + 3 Z w’ v

weN
s.a.c?z¥ +ay” < o+ MvY Vw e (5.4)
v’ €{0,1} Yw €,

donde v* es una variable 0—1, que toma el valor 1 si el valor en la funcién objetivo
para el escenario w es mayor que el umbral ¢, y toma el valor 0 en otro caso, y
M es el valor més pequeno que no elimina ninguna solucién factible bajo ningin
escenario en el problema estocastico.

Como alternativa a min Qg y min Qg + 6Qp, la funcién de Cost-at-Risk
(CaR) a optimizar para un nivel de riesgo @ dado puede expresarse como

min CaR

s.a.c’z¥ +a¥y?Y < CaR+ MvY Yw e Q

g w?r? < a,

weN

(5.5)

con 0 <a<l1.

Nétese que la sustitucién de la funcién de valor esperado Qg (5.2) por el
sistema de valor esperado-riesgo (5.4) no modifica la estructura del modelo. Por
el contrario, la minimizacién de CaR (5.5) si destruye dicha estructura, ya que
la restriccién ) o w“r* < « incluye variables de todos los escenarios y no
es separable. Sin embargo, puede advertirse que la relajaciéon Lagrangiana que
resulta de su dualizacién recupera la separabilidad del modelo y permite el uso
del esquema BFC, ver secciéon 5. Nuestra conjetura es que su soluciéon puede
proporcionar un buen CaR.
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4 Acotacion del Branch-and-Bound

Los casos del DEM 0—-1 mixto (5.4) pueden ser de dimensiones tan grandes que
la utilizacién de las herramientas estandar de optimizacién no puedan resolverlos.
Puede utilizarse el esquema de la descomposicién de Benders [5], al menos para
casos de tamano mediano; ver [6, 13] para problemas enteros, entre otros.

Como alternativa, se considera un esquema de tipo Branch-and-Bound (BB)
para optimizar el DEM en el caso de variables enteras, de forma que se pueda uti-
lizar la Descomposicion Lagrangiana en cada nodo BB, dualizando las condiciones
de no anticipacion

v — ¢ =0,dondew’ € Q9, VYweQI:ge§teT, (5.1)

ver [8, 12, 15, 19, 21], entre otros. En cualquier caso, serfa preciso utilizar
heuristicas Lagrangianas.
El modelo Lagrangiano es el siguiente,

min Y w (e + eyl + f) + Y — o)

wEeN teT,weNI:geG?t

s.a.c’z® + a“y” < o+ Mv¥ Yw € Q
Ax® + By” = b Yw € Q
0<2¥ <1,y >0 Yw €

(5.2)
donde py, Vw € Q9 : g € G',t € T1 es el vector de multiplicadores de Lagrange
asociados a las condiciones de no anticipacién (5.1).

Notese que el numero de multiplicadores de Lagrange depende del nimero de
variables del vector v y del nimero de grupos de escenarios, |G|, a lo largo del
horizonte temporal T.

5 Branch-and-Fix Coordinado

5.1 Enfoque general

Como alternativa al enfoque de tipo Branch-and-Bound, consideremos el en-
foque denominado Branch-and-Fiz Coordinado (BFC), que trata de forma coor-
dinada los || modelos independientes

min ¢“z% 4+ a*y* + ¥
s.a.c?’z” +a¥y” < o+ MY
Azx® 4+ By¥ =b¥
x* €{0,1}",v* € {0,1},y* > 0,

(5.1)
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que aparecen tras la relajacién de las condiciones (5.1). En cualquier caso, pueden
incluirse técnicas Lagrangianas en el desarrollo de la metodologia. BFC esta
disenado especialmente para coordinar la seleccién de la variable y el nodo sobre
el que ramificar en el érbol Branch-and-Fiz (BF') correspondiente a cada escenario,
de forma que las condiciones (5.1), que han sido relajadas, se satisfagan al fijar
las variables adecuadas a cero o a uno. El procedimiento también coordina y
refuerza la fase de eliminacién de nodos activos, asi como la fijacién de variables
y la acotacién de la funcién objetivo del subproblema correspondiente a cada
nodo.

En [4] puede encontrarse el desarrollo de los resultados en los que se asienta
BFC. En [3] pueden encontrarse aplicaciones a problemas bietdpicos 0-1 mixtos
donde en la primera etapa sélo aparecen variables 0—1, y en [2] aplicaciones a pro-
blemas multietdpicos 01 puros. En [7] se presenta un enfoque para la resolucién
de un problema bietapico con variables 0—1 y variables continuas en la primera
etapa y variables continuas en la segunda etapa; se utiliza el esquema de la des-
composicion de Benders para resolver los subproblemas LP correspondientes a
ciertos nodos en los arboles BF, aquellos llamados Familias de Nodos Gemelos
Enteros, que definiremos maés adelante. En la actualidad, estamos trabajando
en algunos desarrollos de problemas multietdpicos con variables 0—1 y continuas
en todas las etapas; para resolverlos se estd desarrollando un algoritmo hibrido
que utiliza tanto el esquema BFC como algunos esquemas de descomposicién tipo
Benders y Lagrangianos.

Para presentar el esquema BFC, sea R* el arbol BF asociado al escenario w,
€% el conjunto de nodos activos en R¥ para w € 2, J el conjunto de indices de
las variables = en cualquier grupo de escenarios, y (z¢'); la variable i-ésima del
vector ¥, para t € T,i € J,w € Q. Nota: n’ =|I|.

Definicién 4. Dos variables (2¢); y (2¢);, se llamaran variables comunes
para los escenarios w y w’, si w,w’ € Q9 : g € G, para w # ', t € T1,i € J.
Noétese que dos variables comunes tienen elementos no nulos en la condicién de
no anticipacion correspondiente a un grupo de escenarios dado.

Definicién 5. Diremos que dos nodos activos, e € E¥ y ¢’ € &+ son nodos
gemelos respecto a un grupo de escenarios dado si los caminos desde sus nodos
raiz hasta ellos en sus drboles BF R¥ y ]R“’,, respectivamente, o bien todavia no
han ramificado en sus variables comunes o bien tienen los mismos valores 0-1 en
las variables comunes ya ramificadas/fijadas (z¢); y (2); para w,w’ € Q,t €
T1,1 €.

Definicién 6. Llamamos Familia de Nodos Gemelos (Twin Node Family,
TNF), s, a un conjunto de nodos tales que cualquiera de ellos es gemelo de
todos los demds nodos de la familia, para f € F, donde F es el conjunto de
familias. Nota 1: Por motivos précticos, se considerara que todos los nodos BF
pertenecen al menos a una TNF, aunque sea de cardinal uno. Nota 2: Puede
haber nodos gemelos en el mismo arbol BF. Seria el caso de nodos cuyos caminos
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desde la raiz hasta ellos en su propio arbol BF han ramificado en alguna variable
comun cuyo grupo de escenarios pertenece a una etapa posterior al conjunto de
etapas a las que pertenecen las otras variables ramificadas.

Definiciéon 7. Una TNF candidata es una TNF cuyos miembros todavia
no han ramificado/fijado todas sus variables comunes relativas a un grupo de
escenarios dado.

Definiciéon 8. Una TNF' entera es una TNF en la que todas las variables
x y v toman valores enteros, y se satisfacen las condiciones de no anticipacion
(29); — (2¥); = 0Vw,w' €W :ge G w#w, te T il

Sea el arbol de escenarios y los arboles BF que se muestran en la Figura 2,
donde z{ es una variable subindicada h bajo el escenario w, y ) es la notacién
genérica de dicha variable. Para simplificar la exposicién, se supone que se esté
optimizando sélo el valor esperado de la funcién objetivo (i.e., no hay variables
v). A titulo ilustrativo, sea el siguiente orden de ramificacién es 1, xa, x3, T4.
Las TNFs son: J; = {1,2,3}, do = {4,6,8}, 5 = {5,7,9}, J4 = {4,6}, 35 = {8},
36 = {10, 12}7 37 = {11, 13}, 38 = {14}, 39 = {15}, 310 - {16, 18}7 311 =
{177 19}7 Ji2 = {20}, J13 = {21}7 Jua = {22726730}’ cey J16 = {22326732}7 Jir =
{22,27,30}, ..., J19 = {22,27,32}, and Jop = {24,28,30}, ..., Jao = {24, 28, 32}.

Se puede observar que la primera TNF candidata es Jp, ya que la variable de la
etapa 1 es una variable comun a todos los nodos raiz. Ademas, J> es una familia
que ha ramificado en el mismo valor de la variable comin x1. Nétese que el nodo 7
es no factible, y, por tanto, también lo es la TNF Js;. Como sélo hay una variable
en el nodo raiz del arbol de escenarios, Js no es una TNF candidata. Adviértase
que los nodos 4 y 6 también forman una TNF, ya que atn no se ha ramificado en
sus variables comunes, xo y T3, ni éstas han sido fijadas. Por otro lado, el nodo 8
es el nico nodo en la TNF Js. Ramificando en la variable x5 resultan las TNF's
Je, ..., Jg. Se toma la decision de ramificar independientemente en las TNFs J;
y Jg considerando z3 la variable de ramificacion, y, de esta forma, se construyen
las TNFs Jyg, J11,J12 ¥ J13. Finalmente, se ramifica en la variable x4,. Como
resultado, supongase que los nodos 23, 25, 29 y 33 son no factibles. Por otro
lado, surgen las siguientes TNF's enteras: Jig4, ..., Jaa, y la TNF Jg se elimina (se
supone que la cota dada por la TNF es peor que el valor de la mejor TNF entera).
Finalmente, a titulo ilustrativo, ndtese que los nodos 22 y 27 son gemelos para el
grupo de escenarios b (i.e., han ramificado en los mismos valores de sus variables
comunes x1,Ta,x3), y los nodos 22,27, 32 son gemelos para el grupo de escenarios
a (i.e., han ramificado en el mismo valor de su variable comin ).
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Arbol de escenarios

[ 3] =+ grcar |
(1)
) ) = e e 2
. _4.7_.4- a
etapa 1 2 3

_ variables x1 3,73 x4 )
Arbal HF H° Asbal HE M Axbal BF 8

Fig. 2 Esquema del Branch-and-Fix Coordinado

Es claro que no es necesario relajar las condiciones de no anticipacion (5.1)
para todos los pares de escenarios al objeto de resolver el problema original. El
ntimero de escenarios a considerar conjuntamente en un modelo dado depende
bésicamente de las dimensiones del modelo correspondiente a los escenarios (5.1).

Definicién 9. Un cluster de escenarios es un conjunto de escenarios cuyas
condiciones de no anticipacion estdn consideradas explicitamente en el modelo.

El criterio para la formacién de los clusters 4, ...,§,, donde ¢ es el nimero
de clusters de escenarios, depende de cada caso. De cualquier forma, nétese que
QN =2, p,p =1....¢:pFp y Q=3 .

El modelo a considerar para cada cluster de escenarios p = 1,...,q puede
escribirse utilizando la representacién compacta (5.2), donde w para d € G171 es
el tinico escenario tal que w € Q¢ y, por otro lado, §, = {g € §: W N Q, # @}.

min Z w* Z (cgwg + agyg) + 4 Z w¥v”

degiTI g,  9eN? wEy
s.a. deNd (cg:cg + agyg) < ¢+ M vd e g7l NSy
A Tr(g) + Arzg 4+ By Yr(g) + Biyg = by Vge G NGp,t €T
2y €{0,1}",y, >0, Vg €,
v € {0,1} Yw € Q,.

(5.2)
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Adviértase que N? es el conjunto de nodos en el camino predecesor desde el nodo
hoja d hasta el nodo raiz en el arbol de escenarios.

Los modelos correspondientes a los cluster de escenarios (5.2) estdn relacio-
nados mediante las condiciones de no anticipacion:

Tgp — Tgpr = 0 (53)

Ygp — Ygrr = 0, (54)

Vp,p'=1,....q:p#p, donde g? € G, g* € Gy y g? = g”.

En [2] se presenta un procedimiento heuristico para obtener (posibles) buenas
soluciones para el modelo (5.2)—(5.4), mediante un procedimiento que modifica el
esquema BF(C explorando de forma selectiva sélo algunas TNFs. Este esquema es
util especialmente para resolver problemas dindmicos de gran tamaio (i.e., casos
con docenas de miles de restricciones y variables en un horizonte temporal).

5.2 Acotacion del Branch-and-Fix Coordinado

Para mayor simplicidad en la exposicién, se considera el caso sin clusters de
escenarios, ni probabilidad de exceso. Se puede obtener la acotaciéon de una TNF
dada, Jy, f € F, mediante la resolucién de |J | modelos LP independientes asocia-
dos con los nodos en la familia. Sin embargo, puede obtenerse una acotacién me-
jor utilizando la Descomposicion Lagrangiana (Lagrangian Decomposition, LD).
Abusando ligeramente de la notacién sea el modelo LD,

Zp(p) = min Z w! (da? 4+ aly?) + Z p? (v? — I th)
Jj€dy ) ) J€Jy
s.t. Azl + By =¥ Vjedys (5.5)

0<a/ <1,57 >0 Vjedy,

donde w?,¢? y a?, v b’ son el peso, los vectores de coeficientes de la funcién ob-
jetivo y el vector del término independiente para el escenario correspondiente al
nodo gemelo j, respectivamente, A y B son las matrices de restricciones, z7 y 37
son los vectores de variables x e y, respectivamente, v = x para una TNF candi-
datay v = y para una TNF entera, y 11/ denota el vector de los multiplicadores de
Lagrange asociados a las condiciones de no anticipacidn v’ —vit1 =0Vj € g £, tal
que j+1 € Jy para j = |J¢|. El modelo se puede descomponer en modelos LP in-
dependientes. Nétese que ya se han ramificado/fijado algunas variables del vector
27 en los caminos desde los nodos raiz en los arboles BF hasta los nodos miembros
de la TNF. Nétese también que el niimero de multiplicadores de Lagrange es el
nimero de variables no ramificadas/fijadas en el vector v/ multiplicado por el
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ndmero de nodos, |J¢|, en la familia. Este nimero es menor (y puede ser mucho
menor) que el nimero de multiplicadores en un nodo de BB, véase la seccién 4.
La acotacion LD puede expresarse como

Zp (), (5.6)

donde
w* = argmaz{Zp(u)}. (5.7)
Alternativamente, puede obtenerse otra acotacién usando una estrategia de

sustitucidn Lagrangiana. En nuestro caso, consiste en agregar [9] las condiciones
de no anticipacion, de forma que el nuevo término Lagrangiano puede expresarse

A Z (w? — P/r)vd, (5.8)
JjE€y
donde A es el vector de los nuevos multiplicadores de Lagrange, r = |Jf| y P =
> jea, w?. Nétese que la dimensién de los multiplicadores de Lagrange es n/, la
dimension de los vectores v¢. Y, finalmente, la nueva cota no es peor que la cota
proporcionada por la relajacion lineal del modelo. La nueva acotacion, alternativa
al modelo (5.6), se puede expresar como

Zp(XY), (5.9)

donde
X = argmaz{Zp(\)}. (5.10)

6 Bibliografia

[1] S. Ahmed, A.J. King y G. Parija. A multi-stage stochastic integer program-
ming approach for capacity expansion under uncertainty. Journal of Global
Optimization, 26:3-24, 2003.

[2] A. Alonso-Ayuso, M.F. Clement, L.F. Escudero, M.L. Gil y M.T. Ortufio.
FRC-S3, On dealing with the uncertainty for stochastic sequencing and sche-
duling problem solving. Centro de Investigacion-Operativa, Universidad Mi-
guel Hernandez, Elche, 2004.

[3] A. Alonso-Ayuso, L.F. Escudero, A. Garin, M.T. Ortuiio y G. Pérez. An
approach for strategic supply chain planning based on stochastic 0—1 pro-
gramming. Journal of Global Optimization, 26:97-124, 2003.

[4] A. Alonso-Ayuso, L.F. Escudero y M.T. Ortufio. BFC, a Branch-and-Fix
Coordination algorithmic framework for solving some types of stochastic
pure and mixed 0-1 programs. Furopean Journal of Operational Research,
151:503-519, 2003.

Rect@ Monogréfico 2 (2004)



108 Branch-and-fix coordinado

[5] J.F. Benders. Partitioning procedures for solving mixed variables program-
ming problems. Numerische Mathematik, 4:238-252, 1962.

[6] J.R. Birge y F.V. Louveaux. Introduction to Stochastic Programming. Sprin-
ger, 1997.

[7] L.F. Escudero, A. Garin, M. Merino y G. Pérez. On structuring Mortgage-
Backed Securities porfolios under uncertainty. Report I-2003-04. Centro de
Investigacion-Operativa, Universidad Miguel Hernandez, Elche, 2003.

[8] N. Groewe-Kuska, K. Kiwiel, M.P. Nowak, W. Romisch e I. Wegner. Power
management in a hydro-thermal system under uncertainty by Lagrangian
relaxation, En C. Greengard y A. Ruszczynski, editores. Decision making
under uncertainty: Energy and Power, 39-70. 2001.

[9] M. Guignard, Lagrangean Decomposition and Lagrangean Substitution for
Stochastic Integer Programming. Technical note. OPIM Dept., Wharton
School, University of Pennsylvania, Philadephia, USA, 2003.

[10] J.L. Higle y S. Sen. Stochastic Decomposition. Kluwer Academic Publishers,
1996.

[11] P. Kall y S.W. Wallace. Stochastic Programming. John Wiley, 1994.

[12] W.K. Klein Haneveld y M.H. van der Vlerk. Optimizing electricity distribu-
tion using integer recourse models. En S. Uryasev y P.M. Pardalos, editores.
Stochastic Optimization: Algorithms and Applications. Kluwer Academic Pu-
blishers, 137-154, 2001.

[13] G. Laporte y F.V. Louveaux. An integer L-shaped algorithm for the capaci-
tated vehicle routing problem with stochastic demands. Operations Research,
50:415-423, 2002.

[14] S.A. MirHassani, C. Lucas, G. Mitra y C.A. Poojari. Computational solution
of a capacity planning model under uncertainty. Parallel Computing Journal,
26:511-538, 2000.

[15] M.P. Novak, R. Schultz y M. Westphalen. Optimization of simultaneous
power production and trading by stochastic integer programming. Stochastic
Programming E-Print Series, http://dochost.rz.hu-berlin.de/speps, 2002.

[16] W. Ogryczak y A. Ruszezynski. From stochastic dominance to mean-risk
models: semi-deviations as risk measures. Furopean Journal of Operational
Research, 116:33-50, 1999.

[17] A. Prekopa. Stochastic Programming. Kluwer Academic Publishers, 1995.

Rect@ Monogréfico 2 (2004)



A. Alonso Ayuso et al. 109

[18] R.T. Rockafellar y R.J-B Wets. Scenario and policy aggregation in optimi-
sation under uncertainty. Mathematics of Operations Research, 16:119-147,
1991.

[19] R. Schultz. Stochastic programming with integer variables. Mathematical
Programming, Ser. B 97:285-309, 2003.

[20] R. Schultz y S. Tiedemann. Risk aversion via excess probabilities in stochas-
tic programs with mixed-integer recourse. SIAM Journal on Optimization,
14:115-138, 2004.

[21] S. Takriti y J.R. Birge. Lagrangean solution techniques and bounds for loo-
sely coupled mixed-integer stochastic programs. Operations Research, 48:91—
98, 2000.

[22] W.T. Ziemba y J.M. Mulvey, editores. Worldwide Asset and Liability Mo-
deling. Cambridge University Press, 1998.

Rect@ Monogréfico 2 (2004)






Modelado de algoritmos de
descomposicion con GAMS

Santiago Cerisola®, Andrés Ramos?
Alvaro Baillo®

2 Escuela Técnica Superior de Ingenieria - ICAI,

e-mails: {Santiago.Cerisola, Andrés.Ramos, Alvaro.Baillo}@iit.icai.upco.es

1 Introduccion

Las técnicas de descomposicién tiene sentido aplicarlas a un problema de opti-
mizacion cuya estructura especifica permite identificar partes del mismo que son
facilmente resolubles de modo individual. Los problemas multietapa y los pro-
blemas estocasticos de gran tamano son ejemplos de problemas cuya resolucion
se puede abordar mediante técnicas de descomposicién. Los problemas enteros
mixtos tales que la relajacién de un conjunto de restricciones reduce la dificultad
del mismo son también ejemplos en los que el uso de técnicas de descomposicion
puede ser preferible a la resolucién del problema de un modo directo.

Este documento describe una implantacién de la Descomposiciéon de Benders
[2, 14] y de la Relajacién Lagrangiana [8, 9] en el lenguaje de modelado algebraico
GAMS [4]. La descripcién se centra en problemas lineales deterministas aunque
su extensién para problemas estocdsticos [11, 7] (en el caso de Benders) o para
problemas mixtos (en el caso de Relajaciéon Lagrangiana) es inmediata. A lo largo
del documento se describe brevemente cada una de las dos descomposiciones y su
implantacién en GAMS para la resolucién de problemas académicos concretos.
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2 Descomposiciéon de Benders

EL método de descomposicién de Benders [2, 14] se centra en la interpre-
tacion de un problema de optimizacion como un problema bietapa PL-2. Para
este tipo de problemas, las variables de decisién aparecen claramente separadas
en dos bloques: las variables de la primera etapa y las variables de la segunda
etapa. Esta divisién induce de modo natural un algoritmo iterativo de resolucion
en el que los problemas asociados a las variables de la primera etapa (problema
maestro) y los asociados a las variables de la segunda etapa (subproblema) son
resueltos consecutivamente. Este método de descomposicién recibe también el
nombre de descomposicidn primal (porque el problema maestro fija variables del
primal), descomposicién en L (porque se aplica a problemas con matriz de restric-
ciones con dicha forma) y descomposicion por recursos (porque el maestro asigna
directamente las decisiones sobre los recursos al subproblema).

Un problema lineal bietapa PL-2 se representa matematicamente de la forma
siguiente,

minclz + qTy

Ty

Az =b (6.1)
Te+Wy=nh

z,y >0

donde z representa el conjunto de variables de la primera etapa e y representa
el conjunto de variables de la segunda etapa. Supondremos que A € RM1*™
y W € f#m2X"2 y que las restantes dimensiones son conformes con éstas'. El
tamano del problema completo es (mj + m2) X (n1 + nz2). La estructura de la
matriz de restricciones del problema (denominada triangular inferior por bloques)
se presenta en la figura 6.1. Las restricciones Ax = b afectan tnicamente a las
variables de la primera etapa x, mientras que las restricciones Tx + Wy = h
afectan a ambos conjuntos de variables x e y.

El problema lineal bietapa PL-2 (6.1) se puede interpretar también de esta
manera;

min ¢’z + ()
Ax=1b (6.2)
x>0

donde la funcién de recurso, 6(x), representa la funcién objetivo de la segunda
etapa como funciéon de las decisiones de la primera etapa y tiene la siguiente
expresion:

1Por convencién en la formulacién los vectores son columna, su transposicién se representa
por un superindice 7', las variables se ubican a la izquierda de las expresiones y los coeficientes
de las variables preceden a éstas.
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Figura 6.1: Estructura de la matriz de coeficientes de las restricciones en proble-
mas lineales bietapa.

f(r) = mingly

Yy
Wy=h-Tx T (6.3)
y=>0

donde 7 son las variables duales de las restricciones.

El problema (6.2) se conoce en la literatura como problema maestro y el pro-
blema (6.3), que evalia la funcién de recurso para las decisiones de la primera
etapa, como subproblema de la descomposicién de Benders. El problema maestro
puede ser reformulado de modo lineal utilizando la representacién dual de sub-
problema. Con esta reformulacién, el algoritmo de descomposicién resuelve en
cada iteracién un problema maestro lineal.

2.1 Representacion lineal del problema maestro

El subproblema, expresado en su forma dual es:

g 6.4
WTr <gq (64)
Sea Il = {W%,W% N (1 } el conjunto finito de vértices del poliedro convexo

definido por la regién factible W¥r < q. Obsérvese que la regién factible del
problema dual no depende del valor de x. Dado que la solucién 6ptima de un
problema lineal reside en un vértice el problema se puede resolver por enumeracion
de todos ellos:

0(z) = méx{(h — Tx)"7'} 1=1,...,v (6.5)

De la ecuacién anterior se deriva que la funcién de recurso 6(x) es una funcién
poligonal convexa de las variables . El subproblema de Benders puede ser refor-
mulado como:
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(6.6)
0> (h—Tx)Tn"

con 6 € RN. Obsérvese que la variable 0 es libre. Las restricciones de esta formu-
lacién se denominan cortes de Benders y constituyen una aproximacién exterior
de la funcién de recurso. Como el nimero de vértices (soluciones duales del sub-
problema de Benders) es finito, esta aproximacién exterior es una funcién convexa
a tramos. El problema original PL-2 se puede expresar como:

mincTz + 6

(6.7)

Esta formulaciéon se denomina problema maestro completo, ya que contiene
todos los cortes posibles. Presenta todas las restricciones de la primera etapa més
todas las condiciones necesarias derivadas de la segunda etapa. Desde el punto de
vista practico, la resolucién del problema maestro completo implica disponer de
forma explicita de todos los cortes de Benders, lo cual es practicamente imposible
en problemas de tamano realista. Por esta razon, la resolucién del problema
original PL-2 es reemplazada por la resolucién iterativa del problema maestro
relajado?® definidos como:

mincTz + 6

z,0

6> (h—Tz)Tr! l=1,...,j

x>0
donde 8 € R y [ representa el indice de iteraciones®. De cara a una implan-
tacién eficiente del algoritmo de descomposicién, los cortes de Benders aceptan
la siguiente formulaciéon como linealizacién de la funcién de recurso en torno a
los valores de las variables de la primera etapa y de los valores de la variable 6
obtenidos en cada iteracion:

2Por simplicidad de la exposicién, se denomina como problema maestro al problema maestro
relajado.
3Se entiende por iteracién un ciclo maestro-subproblema, en este orden.

Rect@ Monogréfico 2 (2004)



S. Cerisola et al. 115

0>nT(h—Tz)=nT(h—Tx +Tal —Ta?) =
=T [h—Txl —=T(x —29)] = 79T (h — Tad) — 79T T(x — 29) = (6.9)
= fI — 2T (x — 27)

siendo 2/ y f/ = /T (h — Ta’) los valores de las variables de la primera etapa
y el de la funcién de recurso para la iteracién j. De este modo el corte para la
iteracién j también se expresa como

0— 7 >aTT(ad —x) (6.10)

o de modo equivalente como

0+ mTTe > fI 4+ 7iTTad (6.11)

Esta expresién indica que 77T es un subgradiente del valor de la funcién de
recurso 0(z) para la propuesta 27 del maestro.

Con esta formulacién el problema maestro relajado de Benders tiene ahora
esta expresion:

minclz + 6

w)

Az =b 6.12
0+ n'TTx > fl 4 77T l=1,...,j (6.12)

x>0
y el subproblema de Benders para cada iteracién j se formula como:
f7= ming"y

y . .
Wy=h-—-Taz’ st (6.13)
y=0

2.2 Cortes de infactibilidad

La descripcién anterior del algoritmo de Benders ha supuesto que el subpro-
blema de Benders es factible y acotado para cualquier propuesta del problema
maestro. Esta hipdtesis, conocida en la literatura como recurso parcialmente
completo*, no suele satisfacerse en la practica y el algoritmo de descomposicién
es modificado cuando esto ocurre. La modificacién del algoritmo consiste en la
construccién de otro tipo de corte, corte de infactibilidad, que elimina la solucion
propuesta en el problema maestro. La construccién de este corte se comenta a
continuacion.

4en un problema bietapa por recurso completo se entiende que el subproblema de la segunda

etapa es siempre factible para cualquier valor de las variables de la primera etapa.
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Si el subproblema es factible para un valor de x los valores duales de las restric-
ciones forman un corte en el problema maestro denominado corte de optimalidad
tal como se ha presentado anteriormente. El caso en el que un subproblema es
no acotado carece de interés algoritmico, puesto que esta situacion implica que
el problema bietapa PL-2 es no acotado. La situacién que debe ser destacada
es aquélla en la que el subproblema es infactible para la propuesta del maestro.
En ese caso se puede generar un corte de infactibilidad derivado de la Fase I
del simplex [14]. El subproblema de minimizacién de infactibilidades se formula
como:

0*(z) = min efvt +elv~
Wy+Iot —Tv- =h—Tal  :n (6.14)
y, vt 20
siendoe’ = (1 --- 1), I matriz identidad (g x ms) y 7 las variables duales

de las restricciones para la solucién 6ptima. 6*(x) representa la funcién de recurso
asociada a la fase I del subproblema de Benders.

El corte de optimalidad que el subproblema de minimizaciéon de infactibili-
dades obtiene (siguiendo la metodologia descrita hasta el momento) viene dado
como:

0* > 1T (h — W) (6.15)

Reemplazando la variable de recurso 8* por 0 se obtiene una condicién ne-
cesaria para aquellas soluciones del problema maestro que son factibles en el
subproblema de Benders. Esta condicién indica que la suma de infactibilidades
para esas soluciones debe ser menor que 0. Linealizando en torno a la solucion
obtenida en el problema maestro se obtiene la siguiente expresién para el corte
de infactibilidad, similar a la del corte de optimalidad:

T Ty > I 4w T Tl (6.16)

donde f7 representa el valor del subproblema de minimizacién de infactibilidades
para la solucién propuesta.

El problema maestro relajado considerando ambos tipos de cortes se formula
de la siguiente manera:

minclz + 6
x,0

Az =D (6.17)
80+ 7 TTx > ff + 7 TTa! l=1,...,j

x>0

siendo 6! = 1 para los cortes de optimalidad y §* = 0 para los de infactibilidad.
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2.3 Algoritmo de descomposicion de Benders

El algoritmo de descomposicién de Benders resuelve en cada iteracién el pro-
blema maestro relajado y pasa el valor de las variables de la primera etapa z7
al subproblema. La resolucién del subproblema de Benders con el término de la
derecha (RHS) (h—T427) genera unas variables duales 7/ que se usan para generar
un nuevo corte de Benders que se anade al problema maestro relajado. En cada
iteracién, el valor obtenido por la funcién objetivo del problema maestro relajado
z es una cota inferior del problema completo PL-2. La sucesién de estas cotas
inferiores es mondtona creciente dado que en cada iteracion en problema maestro
relajado contiene mayor niimero de restricciones. Por otra parte, una cota supe-
rior Z del valor éptimo de la funcién objetivo del problema original PL-2 viene
dada en cada iteracién por (cfa? + qTy7) siendo 27 e y? soluciones factibles en
maestro y subproblema en esa iteracion. El criterio de parada del algoritmo es la
coincidencia de ambas cotas con una tolerancia relativa e (por ejemplo, 10™%).

z2—z  |d"y ¥
2l feTad 4 gTyd

B (6.18)

En cada iteracion del algoritmo de Benders, la variable dual generada en el
subproblema es distinta del conjunto de variables duales generadas con anterio-
ridad por el algoritmo [14]. Dado que el conjunto de posibles valores duales es
finito, el algoritmo de descomposiciéon de Benders converge en un nimero finito
de iteraciones.

Para obtener el valor 20 de las variables de la primera etapa en la primera
iteracién del algoritmo de descomposicion, se suele proceder a la resolucién del
problema maestro relajado sin cortes, lo que equivale a fijar el valor de la variable
de recurso a cero, § = 0. Otra alternativa consiste en estimar razonablemente
este valor en caso de que la naturaleza del problema sea conocida.

Para el caso en que las variables de la primera etapa sean continuas, en cada
iteracién se dispone de una base del problema maestro relajado que es infactible
s6lo por una variable bésica, la variable de holgura del nuevo corte. Cuando se
soluciona el dual del problema maestro relajado los cortes aparecen como colum-
nas. Al anadir una nueva columna la solucién previa sigue siendo factible y la
nueva solucién éptima puede obtenerse en pocas iteraciones del simplex. Por ello
es tedricamente conveniente resolver el maestro mediante el simplex dual. Por
otra parte, cada subproblema sélo cambia las cotas de las restricciones en cada
iteraciéon. Por esta razon, suponiendo que ninguna soluciéon del maestro ocasiona
infactibilidad en el subproblema, es conveniente resolverlo mediante el método
simplex primal (siempre que su tamano lo aconseje).

Esquematicamente el algoritmo se formula a continuacion:

1. Inicializaciéon: 7 =0,Z =00 2z

I
|
3
™
I

—

jan}
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2. Resolucién del problema maestro

mincTz + 6
x,0

Az =0 (6.19)
SO+ TTae > fl+ 7 TTat 1=1,...,5

x>0

Obtener la solucién z/*1, #7+1 y evaluar la cota inferior z = (¢T'z7+1 +07+1)

3. Resolucién del subproblema de suma de infactibilidades

fitl = rJIrn'ni eTvt +eTv™
Wy + Ivt — v~ = h—Teit!  x (6.20)
y, 0,07 >0

Si fi+1 > 0, obtener m/*!, formar un corte de infactibilidad y afadirlo al
problema maestro, incrementar el numero de iteraciones j = j + 1 e ir al
paso 2.

Si i+l =0, ir al paso 4.
4. Resolucién del subproblema de Benders
fI* = ming"y
y .
Wy =h—Tait! i (6.21)
y=>0
Obtener y/*! y actualizar cota superior z = (cT 2/t + ¢Tyi )

5. Regla de parada Si ligfl < € detener el algoritmo. En otro caso, obte-

ner w1, formar un corte de optimalidad y afiadirlo al problema maestro,
incrementar el numero de iteraciones j = j + 1 e ir al paso 1.

Mientras no se haya generado ningun corte de optimalidad, se fija el valor
de la variable de recurso 6 a cero, pues en otro caso el problema maestro es no
acotado. Una vez obtenido algun corte de infactibilidad, esta variable pasa a ser
libre.

La siguiente secciéon presenta con un ejemplo los pasos del algoritmo de des-
composiciéon de Benders.

Rect@ Monogréfico 2 (2004)



S. Cerisola et al. 119

2.4 Ejemplo

Supongamos que se desea resolver el siguiente problema de programacién li-
neal:

min —x1 — 2T — 2y1 — 3Yo
x1,T2,Y1,Y2
T+ X2 < 600
xr1 — 229 < 0
1+ T2+ y1+ y2 < 1000
T + < 500
—2y1+ y2 < 0
X, x2, Y1, Y2 Z 0
entonces,
1000
-1 —2 600
c<_2), q(_3>, b< 0), h=| 500 |.
0
1 1 1 1 1 1
A= 1 2 ) = 1 0 y W= 1 0
0 0 -2 1

El algoritmo comienza con un problema maestro que no contiene ningin corte
de Benders, por lo que el valor de la variable de recurso 6 estd fijado a cero.
La resolucién del primer problema maestro obtiene la siguiente solucién para las
variables de la primera etapa:

()
600

Para estos valores de la primera etapa, el subproblema es factible. Como
solucién se obtiene

133.3 —2.667
Y=\ 266.7 y m= 0.000
' —0.333
y un valor para la cota superior Z = —2266.7. Como la diferencia entre ambas

cotas es elevada (la cota superior es este momento es infinito) se continia iterando.
Con los valores duales se forma un corte para el problema maestro dado por:

0 —2.667x1 — 2.667x2 > —2666.7
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La resolucién del problema maestro obtiene una nueva solucion
_( 0.000
=\ 0.000

y un valor para la cota inferior z = —2666.7. Al introducir en el subproblema
estos valores se obtiene como solucién

333.3 —2.667
y= ( 666.7 > y m= 0.000
—0.333
Se calcula la cota superior en esta iteracién, siendo Z = —2666.7. La diferencia
entre ambas cotas es ahora nula y, por lo tanto, acaba el algoritmo. La funcién
objetivo es z* = —2666.7 y la solucién éptima es:

. { 0.000 . (3333
= 0000 ) ¢V T\ 666.7
2.5 Descomposicién de Benders en GAMS

Dentro del lenguaje GAMS la descomposicién de Benders puede implantarse
creando un modelo para el problema maestro y un modelo para el subproblema.
La adicion de cortes para el problema maestro dentro del proceso iterativo se
consigue declarando la ecuaciéon de cortes de Benders sobre un indice estatico
sobre el que se construye un conjunto dindmico que representa el conjunto de
cortes activos en cada iteracién. Posteriormente, la ecuacion de cortes se cons-
truye sobre este conjunto dindmico, de modo que durante el proceso iterativo la
activacién incremental del conjunto dindmico implica la inclusién incremental de
estas restricciones adicionales en el problema maestro. Estas ideas se presentan a
continuacion en el siguiente cédigo que resuelve el problema académico de la ante-
rior seccién. Se ha seguido en la manera de lo posible la notacién y la formulacién
presentada anteriormente.

$TITLE Descomposicién de Benders (Bd)

SETS
I indice de variables de la primera etapa / il * i2 /
L indice de variables de la segunda etapa / 11 * 12 /
M indice de restricciones de la primera etapa / ml * m2 /
N indice de restricciones de la segunda etapa / nl % n3 /
J indice de iteraciones / j1 * j20 /

JJ(j) subconjunto de iteraciones
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* Datos del problema

PARAMETERS
C(1)

Q)

B(m)

H(n)

TABLE A(m,i)
mil
m2

TABLE T(n,i)
nil
n2
n3

TABLE W(n,1)
nl

n2
n3

coeficientes funcién objetivo primera etapa
/ it -1
i2 -2/
coeficientes funcién objetivo segunda etapa
/11 -2
12 -3/
cotas restricciones primera etapa
/ mi 600
m2 0/
cotas restricciones segunda etapa
/ n1 1000
n2 500
n3 0/

matriz de restricciones primera etapa
i1 i2
1 1
1 -2

matriz de restricciones segunda etapa
i1 i2

1 1

1 0

0 0

matriz de restricciones segunda etapa
11 12

1 1

1 0

-2 1

* Fin datos del problema

POSITIVE VARIABLES

X(1)
Y1)

VARIABLES
Z1
Z2
theta

SCALARS
TOL
Z_INF
Z_SUp

PARAMETERS
PI(n,j)
DELTA(j)
X_J(,3)

variables primera etapa
variables segunda etapa

funcién objetivo primera etapa
funcién objetivo segunda etapa
funcién de recurso

tolerancia relativa / 1le-6 /
cota inferior / -INF /
cota superior / INF /

variables duales restricciones segunda etapa en la iteraciém j

tipo de corte (infactible O 6ptimo 1)

de la iteraciém j

valores de las variables de la primera etapa en la iteraciém j
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z22_J(3) valor de la funcién objetivo del subproblema en la iteracién j;

* Declaracién de las ecuaciones

EQUATIONS
EQ_0BJ funcién objetivo problema completo
EQ_Z1 funcién objetivo primera etapa
EQ_Z2 funcién objetivo segunda etapa

EQ_R1(m) restricciones primera etapa
EQ_R2(n) restricciones segunda etapa
CORTES(j) cortes de Benders ;

* Construccién de las ecuaciones

EQ_O0BJ .. Z1 =E= SUM(i, C(i)*X(i)) + SUM(1, Q(L)*Y(1)) ;
EQ_Z1 .. Z1 =E= SUM(i, C(i)*X(i)) + theta ;

EQ_Z2 .. Z2 =E= SUM(1, Q1)*Y(1)) ;

EQ_R1(m) .. SUM(i, A(m,i)*X(i)) =L= B(m) ;

EQ_R2(n) .. SUM(i, T(n,i)*X(i)) + SUM(1, W(n,1)*Y(1)) =L=
H(n) ;

CORTES(jj) .. DELTA(jj) * theta =G= Z2_J(jj) +

SUM(n $(ORD(n) < 3), PI(n,jj)*SUM(i, T(n,i)*(X_J(i,jj) - X(i)))) ;

MODEL MAESTRO / EQ_R1, CORTES, EQ_Z1 / ; MODEL SUBPROBLEMA /
EQ_R2, EQ_z2 / ; MODEL COMPLETO / EQ_R1, EQ_R2, EQ_0BJ
/

FILE COPT / cplex.opt / ;

PUT COPT PUT ’scaind -1’/’lpmethod 1’ / ’preind 0’ / ’epopt
1.1e-9’ / ’eprhs 1.1e-9’ PUTCLOSE COPT ;

MAESTRO.OPTFILE = 1 ; SUBPROBLEMA.OPTFILE = 1

* Algoritmo de Descomposicién de Benders

* Inicializacién de parametros del problema

JI(3) = NO ;
theta.FX = 0 ;
DELTA(j) = 0 ;
z2_3(j) =0 ;
X_J(i,j) =0 ;
PI(n,j) =0
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* Iteraciones del algoritmo

LOOP(j $(ABS(1-Z_INF/Z_SUP) > TOL),

* Resolucién del problema maestro
SOLVE MAESTRO USING LP MINIMIZING Z1 ;
* Adquisicién de la solucién

X_J(i,j) = X.L(1) ;

* Fijacién de la variable de la primera etapa y
* Resolucién del subproblema

X.FX(i) = X.L(1) ;

SOLVE SUBPROBLEMA USING LP MINIMIZING Z2;

* Adquisicién de los pardmetros para formar un nuevo corte
IF (SUBPROBLEMA.MODELSTAT = 4,
* Subproblema infactible
DELTA(j) = 0 ;
Z2_J(j) = SUBPROBLEMA.SUMINFES;
ELSE
* Actualizacién de la cota inferior
Z_INF = Z1.L ;
DELTA(j) =1 ;
theta.L0 = -INF ; theta.UP = INF ;
* Actualizacién de la cota superior

Z_SUP = SUM(i, C(i)*X.L(i)) + SUM(1, Q(1)*Y.L(1)) ;
) s

22_J(3) = Z2.L;
PI(n,j) = EQ_R2.M(n) ;
X.L0(i) = 0 ; X.UP(i) = INF;

* Incremento del conjunto de cortes
JJ(j) = YES;

Los lenguajes de modelado algebraico como GAMS permiten el uso de diferen-
tes optimizadores para resolver los problemas. En el caso anterior, el optimizador
escogido ha sido CPLEX [10]. Para que las variables duales devueltas por el sub-
problema de Benders sean correctas para generar un corte de Benders tanto en el
caso de optimalidad como en el de infactibilidad, para este optimizador deben ser
desactivadas las opciones de preproceso (preind 0) y de escalado (scaind -1) y
el subproblema debe ser resuelto mediante el algoritmo simplex primal (1pmethod
1). Con el uso de otros optimizadores se debe comprobar la correccién de las
variables duales tanto para optimalidad como para infactibilidad. Si las variables
duales no son las adecuadas para generar un corte de infactibilidad, el subpro-
blema de minimizacién de infactibilidades debe de ser planteado explicitamente
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y resuelto en el c6digo GAMS.

2.6 Problema de transporte con coste fijo mediante des-
composicion de Benders

Veamos a continuacién un caso ejemplo caracteristico de la aplicacién del
método de descomposiciéon de Benders. Se trata del problema de transporte
donde algunos o todos los arcos tienen un coste fijo asociado a la decisién de su
instalaciéon o a su uso. El problema consiste en la minimizacién de los costes
fijos y variables sujeto a las restricciones de respetar las ofertas maximas de los
origenes y las demandas en los destinos. El problema se formula de la siguiente
manera

mind ;i + fijvi)

> Tig < a;

iy > by (6.22)

@iy < Mijyij

zij 2 0,yi; € {0,1}
siendo ¢;; el coste variable unitario de transporte, f;; el coste fijo asociado a la
decisién de inversiéon en el arco 45, a; la oferta maxima de producto en el origen 1,
b; la demanda del destino j, x;; la variable que indica el flujo que recorre el arco
ij, ¥s; la variable que representa la decisién de inversién en el arco ij y M;; un
cota superior de cualquier flujo en dicho arco ij (por ejemplo, M;; = min{a;,b;}).

Las variables y;; son binarias. Una vez conocidas el problema anterior es un

problema clésico de transporte. Las variables y;; son las variables que complican
la resolucién y, por consiguiente, son asignadas al problema maestro en un entorno
de descomposicion de Benders. El subproblema se formula de la siguiente manera

min g, cij i

> T < a

2 ij > b (6.23)
x5 < Mgy s T

Lij > 0

y el problema maestro como

min >, (0 + fijvij)
Yij,0

0+Zij(7réjMijyij) > fl +Zij(7réjMijyéj) I=1,....k (6'24)
Yij € {0, 1}

A continuacién se expresa en GAMS este problema para un caso ejemplo
en el que se suponen cuatro origenes del producto y tres puntos de demanda. El
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problema debe decidir la combinacién éptima de arcos de entre todos los posibles,
dados en la figura 2.

Fig. 2: Arcos posibles.

$TITLE Problema de transporte con coste fijo (Bd)

OPTION OPTCR = O

SETS
J indice de iteraciones / ji1 * j20 /
JJ(3) subconjunto de iteraciones
I origenes /il x i4 /
L destinos / 11 x 13 /

* Datos del problema

PARAMETERS
A1) ofertas de producto
/ i1 10, i2 30, i3 40, i4 20 /
B(1) demandas de producto

/ 11 20, 12 50, 13 30 /

TABLE C(i,1) coste variable unitario de transporte

11 12 13
i1 1 2 3
i2 3 2 1
i3 2 3 4
i4 4 3 2

TABLE F(i,1) coste fijo de transporte
11 12 13
i1 10 20 30
i2 20 30 40
i3 30 40 50
i4 40 50 60

Rect@ Monogréfico 2 (2004)



126 Modelado de algoritmos de descomposicion con GAMS

* Fin datos del problema

ABORT $(SUM[i, A(i)] < SUM[1, B(1)]) ’Problema infactible’

POSITIVE VARIABLES
X(@i,D flujo por los arcos

BINARY VARIABLE

Y(i,1) decisiones de inversién en los arcos
VARIABLES

zZ1 funcién objetivo primera etapa

72 funcién objetivo segunda etapa

theta funcién de recurso
SCALARS

TOL tolerancia relativa / le-6 /

Z_INF cota inferior / -INF /

Z_SUP cota superior / INF /
PARAMETERS

Y_J(i,1,j) valores de las variables de la primera etapa en la iteracién
PI(i,1,j) variables duales restricciones segunda etapa en la iteracién
DELTA(j) tipo de corte (infactible O 6ptimo 1) de la iteracién
72_3(3) valor de la funcién objetivo del subproblema en la iteracién

[ SR S Y Y

* Declaracién de las ecuaciones

EQUATIONS
EQ_Z1 funcién objetivo primera etapa
EQ_Z2 funcién objetivo segunda etapa
EQ_O0BJ funcién objetivo problema completo

OFERTA (i) ofertas de los origenes
DEMANDA(1) demanda de los destinos
LIMITE(i,1) limite de uso del arco
CORTES(j) cortes de Benders ;

EQ_Z1 .. 21 =E= SUM[(i,1), F(i,1)*Y(i,1)] + theta ;
EQ_Z2 .. 22 =E= SUM[(i,1), C(i,1)*X(i,1)] ;
EQ_OBJ .. 21 =E= SUM[(i,1), F(i,1)*Y(i,1)] + SUMI(i,1),

C(i,l)*X(i,Dj;
OFERTA(i) .. SUM[1, X(i,1)] =L= A(i) ;

DEMANDA(1) .. SUM[i, X(i,1)] =G= B(1) ;

Rect@ Monogréfico 2 (2004)



S. Cerisola et al. 127

LIMITE(i,1) .. X(i,1) =L= MIN[A(i),B(1)] * Y(i,1) ;

CORTES(jj) .. DELTA(jj) * theta - Z2_J(jj) =G=
- SUMI(i,1), PI(i,1,jj) * MIN[A(i),B(1)] * (Y_J(i,1,jj) - Y(,10] ;

MODEL MAESTRO / EQ_Z1, CORTES / ;

MODEL SUBPROBLEMA / EQ_Z2, OFERTA, DEMANDA, LIMITE / ;
MODEL COMPLETO / EQ_OBJ, OFERTA, DEMANDA, LIMITE / ;
X.UP(i,1) = MIN[A(i),B(1)] ;

FILE COPT / cplex.opt / ;

* para que los resultados de un problema infactible sean los correctos con CPLEX sélo
* se puede utilizar el método simplex y sin preproceso ni escalado

PUT COPT PUT ’scaind -1’/ ’lpmethod 1’ / ’preind 0’ / ’epopt
1.1e-9’ / ’eprhs 1.1e-9’ PUTCLOSE COPT ;

MAESTRO.OPTFILE = 1 ; SUBPROBLEMA.OPTFILE = 1 ;
* inicializacién de parametros del problema

JI(3) = NO ; theta.FX =0 ; DELTA(j) =0 ; Y_J(i,1,j) =0
5 22_3(3) =0 ; PI(i,1,j) =0 ;

* Iteraciones del algoritmo
LOOP(j $(ABS(1-Z_INF/Z_SUP) > TOL),

* Resolucién del problema maestro
SOLVE MAESTRO USING MIP MINIMIZING Z1 ;
* Adquisicién de la solucién

Y_J(i,1,j) = Y.L(i,D) ;

* Fijacién de la variable de la primera etapa y
* Resolucién del subproblema

Y.FX(i,1) = Y.L(i,1) ;

SOLVE SUBPROBLEMA USING RMIP MINIMIZING Z2;

* Adquisicién de los pardmetros para formar un nuevo corte
IF (SUBPROBLEMA . MODELSTAT = 4,
DELTA(j) = 0 ;
Z2_J(j) = SUBPROBLEMA.SUMINFES;
ELSE
* Actualizacién de la cota inferior
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Z_INF = Z1.L;

DELTA(j) =1 ;

theta.LO = -INF; theta.UP = INF;
* Actualizacién de la cota superior

Z_SUP = SUM[(i,1), F(i,1)*Y.L(i,1)] + SUM[(i,1), C(i,1)*X.L(i,1)];
72_J(j) = Z2.L;

PI(i,1,j) = LIMITE.M(i,1) ;
Y.LO(i,1) = 0 ; Y.UP(i,1) =1 ;

* Incremento del conjunto de cortes
JJ(j) = YES;
)
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Fig. 3: Evolucion de arcos propuestos por el algoritmo de Benders.

La solucién optima es y11 = Y23 = ¥Y31 = Y32 = ya2 = 1 y se alcanza en
15 iteraciones con un coste total fijo mas variable de 380. La evolucién de las
combinaciones de arcos propuestas por el algoritmo de descomposicién se presenta
en la figura 3. Debe destacarse que solamente las propuestas de las iteraciones 7,
10 y 15 son factibles para el subproblema, de modo que la mayoria de cortes que
el algoritmo genera son de infactibilidad y sélo dos cortes son de optimalidad. Por
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Iteracién | Cota Inferior | Cota Superior
1 -00 00
2 -00 o0
3 -00 00
4 -00 00
) -00 00
6 -00 00
7 140 390
8 140 390
9 120 390
10 360 380
11 360 380
12 360 380
13 360 380
14 360 380
15 380 380

Tabla 6.1: Evolucién de cotas en el algoritmo de Benders

dltimo, el cuadro 6.1 presenta la evolucion de la cota superior y la cota inferior del
problema durante el algoritmo. En este ejemplo, el algoritmo converge cuando
la cota inferior es exactamente la misma que la cota superior. La convergencia
se alcanza también cuando aparece una propuesta repetida. En este ejemplo, la
propuesta de arcos de la tltima iteracién es de hecho la propuesta de la iteracion
10.

3 Relajacién Lagrangiana

La Relajacién Lagrangiana [9] es una de las técnicas méds extendidas en opti-
mizacion discreta. Se emplea principalmente cuando en un problema de progra-
macién matematica aparece un conjunto de ecuaciones que complica la resolucién
del problema. Esto es, la resolucién del problema sin esas ecuaciones tiene una
estructura cuya resolucion es mas sencilla. Esta técnica se basa en la dualizacion
de esas ecuaciones y en la formulacion de un problema dual cuya resolucién pro-
porciona una aproximacién del valor éptimo del problema original mejor que la
resolucién de su relajacién lineal®. En caso de que el problema sea lineal y que
el conjunto de ecuaciones de complicaciéon sean el conjunto de restricciones del
problema, este problema dual es el problema dual del problema original.

Se considera el siguiente problema de optimizacién lineal:

5Por relajacién lineal de un problema P se entiende el problema P en el que las variables
enteras son sustituidas por variables continuas.
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min ¢’z
xr
Az =b (6.25)
Dz <d
x>0
y supongamos que Axr = b son el conjunto de restricciones de complicacion.

Supondremos que A € RM™*" D € R™2X" y que el resto de dimensiones son
conformes con éstas.
Dado A € ™ se formula la funcién de Lagrange L(z, A) como:

L(z,\) = cTx + M (Az — b) (6.26)

y la funcién dual w(A) como evaluacién del siguiente problema, subproblema de
Lagrange:

wA) =minclx + AT (Ax — b)
Dz <d (6.27)
x>0

Para todo A € R™ es inmediato observar que w()\) < c¢f'z*, siendo z* la

solucién 6ptima del problema (25). El problema dual consiste en buscar el vector
de multiplicadores A para el cual esta cota inferior dada por la funciéon dual es
maxima:

m/éxw()\)
A€ R™

La funcién dual es céncava independientemente de que el problema original sea
lineal o lineal entero mixto. Por esta razon, las técnicas basadas en subgradientes
aparecen de modo natural a la hora de maximizar la funcién dual [13, 12]. Estas
técnicas actualizan los valores de los multiplicadores siguiendo la direcciéon del
subgradiente, utilizando diferentes longitudes de paso en cada iteracién [1]. Nétese
que si 27 es la solucién éptima del subproblema de Lagrange para un valor A/ del
multiplicador, Az7 —b es un subgradiente de la funcién dual. Una alternativa a las
técnicas basadas en el subgradiente es la representacion lineal del problema dual,
lo que induce de modo natural un algoritmo de aproximacion exterior similar
al algoritmo de descomposiciéon de Benders. La proxima seccién presenta este
algoritmo que posteriormente es formulado en GAMS.

La Relajacion Lagrangiana recibe también el nombre de descomposicion dual
o descomposicion por precios porque se basa en la evaluaciéon del subproblema
para distintos precios o variables duales.

Se describe a continuacién la formulacién del algoritmo de aproximacion exte-
rior de la funcién dual, que denominaremos algoritmo de descomposicién basado
en Relajacion Lagrangiana.

(6.28)
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3.1 Representacion lineal del problema dual

Consideremos de nuevo el subproblema de Lagrange que evalia la funcién
dual w(A):

w(A) = minclx + AT (Az — b)
Dz <d (6.29)
z>0

En caso de disponer de forma explicita del conjunto de soluciones factibles
de la regién {Dx < d,z > 0}, el anterior problema podria ser resuelto mediante
enumeracion de todas ellas como:

w(\) = min ezt + \T (At — b) l=1,...,v (6.30)

La expresién anterior indica que la funcién dual es céncava y que el problema
dual puede reformularse como el siguiente problema lineal, denominado problema
maestro de la Relajacion Lagrangiana:

max w
w <zl + AT (Ax! —b)
(6.31)

w < cla” + AT (Az” —b)

Cada restriccion del problema anterior se denomina Corte de Lagrange. Dado
que para problemas realistas disponer del conjunto de soluciones es practicamente
imposible, la optimizacién del problema dual se reemplaza por la resolucion ite-
rativa de problemas maestros relajados®, cuyo ntimero de cortes de Lagrange
aumenta con cada iteracién. Cada resolucién de un problema maestro relajado
propone un nuevo valor del multiplicador A que, una vez evaluado en la funcién
dual a través del subproblema de Lagrange, propone un nuevo corte de Lagrange
que aumenta el problema maestro relajado”.

De modo similar a la posibilidad de subproblemas infactibles en el algoritmo
de descomposicién de Benders, el algoritmo de descomposicion debe afrontar la
posibilidad de encontrar subproblemas de Lagrange no acotados. Cuando esto
ocurre, el multiplicador propuesto no es valido y se debe ser introducir una res-
triccion en el problema maestro que lo elimine del conjunto de multiplicadores
posibles. Este tipo de corte se denota Corte de Acotamiento y su construccion se
comenta en la siguiente seccion.

6Relajado hace referencia a que no se dispone de la totalidad de los cortes, sino solamente
de un conjunto de ellos

"Por simplicidad de la exposicién, se denomina como problema maestro al problema maestro
relajado.
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3.2 Cortes de acotamiento

Consideremos un valor del multiplicador A y consideremos de nuevo el sub-
problema de Lagrange

w(A) =minc’z 4+ AT (Az — b)
Dz <d (6.32)
x>0

Supongamos que para este valor A del multiplicador existe v > 0y Dv < 08 tal
que ¢’ — AT A < 0. Entonces, si x( es una solucién del subproblema de Lagrange,
observando que tv > 0 y Dtv < 0 para cualquier valor positivo de t se tiene que

T (xo 4+ tv) + AT (A(xg + tv) — b) = T wog + AN A(zg — b) +t(ch — AT A)v (6.33)

con lo que el subproblema no esta acotado dado que toma valores muy pequenos
cuando t tiende a infinito.

Del razonamiento anterior se deduce que el conjunto de multiplicadores acep-
tables debe verificar que

(" +XTA)x >0 Voe{xr>0Dx<0} (6.34)

La condicién anterior, una vez propuesto un valor para el multiplicador, puede
ser comprobada resolviendo el siguiente problema, que denotamos subproblema de
acotamiento:

w*(\) =minc’z + AT Az
Dz <0 (6.35)
0<z<1

y en caso de que tenga un valor negativo, se debe ser introducir un corte de
acotamiento en el problema maestro de la Relajacion Lagrangiana de la forma:

0<clad + AT Axd (6.36)

De este modo, el algoritmo de la Relajacién Lagrangiana itera entre un pro-
blema maestro, formado por cortes de Lagrange y cortes de acotamiento, y un
subproblema de Lagrange que evaliia los multiplicadores propuestos por el maes-
tro. El problema maestro, considerando ambos tipo de corte, puede ser formulado
de la siguiente forma

max w

5JWSCTIJ+)\T(AxJ—§Jb) ]:17,k (637)

8Es decir v € {x > 0, Dz < 0} que es el sistema homogéneo asociado a {x > 0, Dz < d}

Rect@ Monogréfico 2 (2004)



S. Cerisola et al. 133

considerando 6/ = 1 para los cortes de Lagrange y 6/ = 0 para los cortes de
acotamiento. Con esta formulacién, el algoritmo de Relajaciéon Lagrangiana se
describe esquemdaticamente en la siguiente seccion.

3.3 Algoritmo de Relajacién Lagrangiana

El algoritmo de la Relajacién Lagrangiana, considerando la interpretacion
lineal del problema dual anterior, es descrito en los siguientes pasos.

1. Inicializacién: j =0, e = 1074

2. Resolucién del problema maestro de la Relajacién Lagrangiana

max w (6.38)
;W .
dw < cTad + NT(Axd — §7b) i=1...k
Obtener valor de A e ir al paso 3
3. Resolucién del problema de acotamiento
w*(\) = minclz + AT Ax

Dz <0 (6.39)
0<x<1

Si w*(\) > 0 ir al paso 4. En otro caso obtener la solucién 27 y formar corte
de acotamiento

0<clad + AT Azl (6.40)
Ir al paso 2.

4. Resolucién del subproblema de Lagrange

wA) = minclz + AT (Az —b)
Dz <d (6.41)
x>0
Obtener la solucién 27, y formar corte de Lagrange
w < Tl + NT(Azd —b) (6.42)

Ir al paso 5.
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5. Regla de parada

Calculo de la diferencia entre los multiplicadores propuestos en la iteracién
J v la anterior 57 — 1.

Si d(M — M~1) < e detener®.
En otro caso, ir al paso 2.
En el algoritmo de la Relajacion Lagrangiana, los multiplicadores A en el
problema maestro estan acotados por valores suficientemente amplios que impiden
que éste sea no acotado. El problema lineal resuelto por Benders es ahora resuelto

mediante el algoritmo de Relajacion Lagrangiana para ver en detalle los pasos del
algoritmo.

3.4 Ejemplo

Se desea resolver el siguiente problema lineal:

min —x1 — 229 — 2y1 — 3Yo
T1,22,Y1,Y2
r1+ X9 < 600
T — 229 < 0
T1+ 224+ 1+ y2 < 1000
T1 + un < 500
—2y1+ y2 < 0
x1, €2, Y1, Y2 Z 0
entonces,
> 11 00 600
c= Pk A= 1 -2 0 0], b= 0 1,
_3 0 0 -2 1 0
1 1 1 1 1000
D<1 0 1 0>y d( 500)

esto es, se estd considerando que las ecuaciones x1 + x2 + x3 + x4 < 1000 y
1 + x4 < 500 son de complicacion.

Para este ejemplo académico, codificado en GAMS tal como se presenta en
la préxima seccion, las variables A que representan los multiplicadores han sido
acotadas entre 0 y 10. El algoritmo comienza resolviendo un problema maestro

9d(M\ — M 1) representa distancia entre A\ y A1
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de Relajacién Lagrangiana sin ningtin corte, proponiendo un primer valor para
los multiplicadores dado por
0
= (1)

Este valor de los multiplicadores no es adecuado y el subproblema de acota-
miento lo rechaza introduciendo un corte en el problema maestro dado por

0<=5+2\ +2X

Una nueva resolucién del problema maestro propone

2.5
= (70)
y el subproblema de acotamiento

0< —4+1.5) +0.5)

con lo que una nueva resolucién del maestro obtiene

2.667
= ()

Este valor de multiplicadores es aceptado por el problema de acotamiento y
el algoritmo pasa a resolver el subproblema de Lagrange. Una vez resuelto, éste
propone un corte de Lagrange para el problema maestro que es

w < —1000XA; — 500Xz

La nueva resolucion del maestro propone el mismo multiplicador de Lagrange,
por lo que el algoritmo termina.

Para problemas lineales, el algoritmo de Relajacién Lagrangiana termina con
una solucién que es éptima para el dual del problema lineal. Esta solucién viene
dada como el opuesto de este multiplicador éptimo. Este hecho puede apreciarse
en este ejemplo. Los valores de las variables duales de las ecuaciones relajadas
son (cuando se resuelve el problema completo):

[ —2.667
= 0

Una desventaja de este método de descomposicion es la pérdida de factibili-
dad de la solucién primal durante las sucesivas iteraciones del método. En este
ejemplo, la tltima solucién primal, aunque factible (21 29 23 24 ) = (0000 ) no
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es 6ptima. Sin embargo, puede comprobarse que la solucién éptima, ( z1 z2 3
x4 ) = (00 333.333 666.667 ) es una solucién alternativa del ultimo subproblema
de Lagrange resuelto.

Cuando la Relajacién Lagrangiana se aplica a problemas lineales, la sucesiéon
de los valores 6ptimos del problema maestro (que siempre es decreciente) converge
al valor 6ptimo del problema lineal. Por el contrario, esto no se satisface cuando
el problema es entero mixto. Este valor al que la sucesiéon decreciente converge
es simplemente una cota inferior del valor 6ptimo del problema. Esta diferencia
entre el valor 6ptimo del problema y el valor obtenido por la Relajacién Lagran-
giana es lo que se conoce en la literatura como intervalo de dualidad (duality gap).
La aparicién del intervalo de dualidad origina que la solucién primal propuesta
por la Relajaciéon Lagrangiana pueda ser infactible. Una alternativa para evitar
esta situacién consiste normalmente en realizar un postprocesado de las solucio-
nes obtenidas para encontrar la solucién factible. Este postprocesado depende
del problema concreto que se resuelva y suele estar basado en el conocimiento
especifico de dicho problema. Otra alternativa para obtener una solucién facti-
ble consiste en aumentar la funcién objetivo del subproblema de Lagrange con
un término cuadratico que penalize las infactibilidades asociadas a las ecuaciones
relajadas. Esta técnica es conocida como Relajacion Lagrangiana Aumentada y
existen numerosas aplicaciones en la literatura.

Las préximas secciones presentan la implantaciéon en GAMS del algoritmo de
descomposicién basado en Relajacion Lagrangiana para el ejemplo académico an-
terior y para el problema de coste fijo que anteriormente ha sido resuelto mediante
la descomposicién de Benders.

3.5 Relajaciéon Lagrangiana en GAMS

La implantaciéon en GAMS de un cédigo de Relajacién Lagrangiana es similar
a la implantacién de la descomposicién de Benders. Se formula un modelo para el
problema maestro y otro para el subproblema, y éstos son resueltos sucesivamente
en un bucle de iteraciones. Las ecuaciones que representan los cortes de Lagrange
(una tnica ecuacién que engloba a los dos tipos de corte) es declarada sobre un
conjunto estatico de indices y construida sobre un conjunto dindmico. Durante el
proceso algoritmico, este conjunto dindmico se va actualizado, aumentando por
tanto el nimero de cortes de Lagrange que contiene el problema maestro.

$TITLE Relajacién Lagrangiana en GAMS (RL)
OPTION OPTCR = O

SETS
J indice de iteraciones /j1 * j100 /
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JJ(3) subconjunto de indices

I indice de variables /il * i4 /
M indice de restricciones /ml * m2/
N indice de restricciones /nl * n3/

* Datos del problema

TABLE A(m,i) matriz A
i1 i2 i3 i4
mi 1 1 1 1m2 1 0 1 O

TABLE D(n,i) matriz D

i1 i2 i3 i4
ni 1 1n2 1 -2n3 -2 1
PARAMETERS
C(i) coeficientes objetivo
/ i1 -1, i2 -2, i3 -2, i4 -3 /
B(m) término B
/ m1 1000, m2 500 /
Dd (n) matriz d (notacién matematica)

/ n1 600, n2 0, n3 0 /

* Fin datos del problema

SCALARS
TOL tolerancia relativa / 1le-6 /
Z_INF cota inferior / -INF /
Z_SUP cota superior / INF /
DELTA 0 para subproblema de acotamiento 1 para Lagrange
DIF diferencia en iteraciones

PARAMETERS
w_J() funcién objetivo del problema dual la iteracién
X_J(,3) valores de las variables de flujo la iteracién
DELTAJ(j) tipo de corte (acotacién O 6ptimo 1) de la iteraciém
LAMBDA_J(m, j) multiplicadores la iteracién

POSITIVE VARIABLES
X(1) variables
LAMBDA(m) multiplicador

VARIABLES
z variable objetivo primal (subproblema)
W variable dual

* Declaracién de las ecuaciones

EQUATIONS
EQ_OBJ funcién objetivo problema
EQ_R1(m) restricciones que se relajan
EQ_R2(n) resto de restricciones

CORTES_LR(j) cortes de Relajacién Lagrangiana

SR S )
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CORTE_RE corte redundante;

EQ_OBJ .. Z =E= SUM(i, C(i)*X(i)) + SUM(m,
LAMBDA.L(m)*(SUM(i,A(m,i)*X(i))-DELTA*B(m))) ;

EQ_R1(m) .. SUM(i,A(m,i)*X(i)) =L= B(m) ;
EQ_R2(n) .. SUM(i,D(n,i)*X(i)) =L= DELTA*Dd(n) ;

CORTES_LR(jj).. DELTAJ(jj)*W =L= SUM(i, C(i)*X_J(i,jj)) +
SUM(m, LAMBDA (m)*(SUM(i,A(m,i)*X_J(i,jj))-DELTAJ(jj)*B(m))) ;

CORTE_RE .. W =L= 10000 ;

MODEL MAESTRO_LR / CORTES_LR , CORTE_RE / ;
MODEL SUB_LR / EQ_OBJ, EQ_R2 / ;

MODEL COMPLETO / EQ_OBJ, EQ_R1, EQ_R2 / ;
FILE COPT / cplex.opt / ;

PUT COPT PUT ’scaind -1’/ ’lpmethod 1’ / ’preind 0’ / ’epopt
1.1e-9’ / ’eprhs 1.1e-9’ PUTCLOSE COPT ;

MAESTRO_LR.OPTFILE = 1 ; SUB_LR.OPTFILE = 1 ; COMPLETO.OPTFILE = 1

* inicializacién de parametros del problema

JI(3) = NO ; DELTAJ(j) = 0 ; DELTA = 0 ;
X_J(@,3) = 0 ; LAMBDA.LO(m) = O ; LAMBDA.UP(m) = 10 ; DIF =
INF;

* Iteraciones del algoritmo
LOOP(j $(DIF>TOL),

* Resolucién del problema maestro de Relajacién Lagrangiana
IF(ORD(j) > 1,
SOLVE MAESTRO_LR USING LP MAXIMIZING W;
W_J(j) = W.L;
ELSE
LAMBDA.L(m) = 0 ;
)
LAMBDA_J(m, j) = LAMBDA.L(m) ;

* Resolucién del subproblema de acotamiento
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* Normalizacién de las cotas no nulas de las variables
X.UP(1) =1 ;
DELTA =0 ;

SOLVE SUB_LR USING RMIP MINIMIZING Z;

* Si la solucién es negativa, generar un corte de acotamiento
IF(Z.L < -TOL,
X_J(,j) =X.L1) ;
DELTAJ(j) = 0 ;

* En caso contrario resolver el subproblema de Relajacién Lagrangiana
ELSE

X.UP(i) = INF ;

DELTA =1 ;

SOLVE SUB_LR USING RMIP MINIMIZING Z;

X_J(i,j) = X.L({1) ;

DELTAJ(j) =1 ;

* Actualizacién del conjunto de cortes de Lagrange
JJ(j) = YES;

* Actualizacién de la diferencia de multiplicadores
IF(ORD(j)>1,

DIF = SUM(m, MAX(LAMBDA_J(m,j)-LAMBDA_J(m,j-1),
LAMBDA_J(m, j-1)-LAMBDA_J(m,j))) ;

X.UP(i) = INF ; LAMBDA.FX(m) = O ; DELTA = 1 ; SOLVE COMPLETO
USING RMIP MINIMIZING Z ;

Debe destacarse la necesidad de resolver independientemente el subproblema
de acotamiento y el subproblema de Lagrange. En el c6digo presentado esto se
ha simplificado introduciendo un scalar (DELTA) que, declarado como 0 o bien
como 1, genera el subproblema de acotamiento o el subproblema de Lagrange
respectivamente. Otra caracteristica de este cédigo es la introduccién de una
ecuacién redundante para el problema maestro w < 10000. Esta ecuacién es
introducida en el maestro para que la variable objetivo que es maximizada, w, no
desaparezca del problema. La desaparicion de la variable objetivo de un problema
es interpretado por este lenguaje como un error.

En la siguiente seccién se presenta un cédigo en GAMS orientado a resolver el
problema de coste fijo anteriormente descrito mediante Relajacién Lagrangiana.
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3.6 Problema de coste fijo mediante Relajacion Lagran-
giana

Consideremos el problema de transporte con coste fijo de la seccién 2 y su-

pongamos que son las restricciones de capacidad limite las que son relajadas e

introducidas en la funcién objetivo a través del lagrangiano. Para un valor A;; el
subproblema de Lagrange presenta la forma:

min 3, (cigmiy + figig) + Mg (@i — Mijyis)
i

2% < a; (6.43)
2 %ij = b;
zi; >0,y € {0,1}

que reformulado queda como

min 35 (ij + Xig)wij + (fig = Aij Mij)yis
ij

22 %ij < G (6.44)

2 %ij = b;

zij >0,y € {0,1}

Esta reformulaciéon permite observar que el subproblema es separable en dos

problemas. Un problema de transporte en el que el coste variable es ligeramente
modificado por el multiplicador y un segundo problema que es entero puro y cuya

solucion puede obtenerse de modo inmediato.
Problema de transporte

min 2, (cij + Aij) i
o

2T < a (6.45)
2 i Tij > b;
Lij 22 0

Problema entero puro
12111 Zz‘j (fij — Nij Mij)yij
Yij € {0,1}

Esta formulacién de la Relajacion Lagrangiana para el problema del transporte
con coste fijo puede implantarse en GAMS con el siguiente cédigo.

(6.46)

$TITLE Problema de transporte con coste fijo (RL)

OPTION OPTCR = O
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SETS
J indice de iteraciones / jl1 * j100 /
JI(3) subconjunto de indices
I origenes / il * i4 /
L destinos / 11 % 13 /

* Datos del problema

PARAMETERS
A(d) ofertas de producto
/ i1 10, i2 30, i3 40, i4 20 /
B(1) demandas de producto

/ 11 20, 12 50, 13 30 /

TABLE C(i,1) coste variable unitario de transporte

11 12 13
i1 1 2 3
i2 3 2 1
i3 2 3 4
i4 4 3 2

TABLE F(i,1) coste fijo de transporte
11 12 13
i1 10 20 30
i2 20 30 40
i3 30 40 50
i4 40 50 60

* Fin datos del problema

ABORT $(SUM[i, A(i)] < SUM[1l, B(1)]) ’Problema infactible’

SCALARS
TOL tolerancia relativa / le-6 /
Z_INF cota inferior / -INF /
Z_SUP cota superior / INF /
DIF diferencia en iteraciones
PARAMETERS
X_J(@i,1,3) valores de las variables de flujo en la iteraciém j
Y_J(i,1,3) valores de las variables de inversién en la iteraciém j
DELTA(j) tipo de corte (acotacién O 6ptimo 1) de la iteraciém j

POSITIVE VARIABLES
X(@i,D flujo por los arcos
LAMBDA(i,1) multiplicador

BINARY VARIABLE

Y(i,1) decisiones de inversion en los arcos
VARIABLES
Z variable objetivo primal (subproblema)
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W variable dual

* Declaracién de las ecuaciones

EQUATIONS
EQ_0BJ funcién objetivo problema completo
OFERTA (i) ofertas de los origenes
DEMANDA (1) demanda de los destinos
LIMITE(i,1) 1limite de uso del arco
CORTES_LR(j) cortes de Relajacién Lagrangiana ;

EQ_OBJ .. Z =E= SUM[(i,1), F(i,1)*Y(i,1)] + SUML(i,1),
C(i,)*X(i,D]
+ SUM[ (i,1), LAMBDA.L(i,1)*(X(i,1)-MIN[A(i),B(1)] * Y(i,1))];

OFERTA (i) .. SUM[1, X(i,1)] =L= A(Q) ;
DEMANDA(1) .. SUM[i, X(i,1)] =G= B(1) ;
LIMITE(i,1) .. X(i,1) =L= MIN[A(i),B(1)] * Y(i,1) ;

CORTES_LR(jj).. DELTA(jj)*W =L= SUM[(i,1), F(i,1)*Y_J(i,1,jj)] +
SUM[(i,1), C(i,1)*X_J(i,1,jj01 +
SUM[(i,1), LAMBDA(i,1)*(X_J(i,1,jj)-MIN[A(i),B(1)] * Y_J(i,1,jj))1;

MODEL MAESTRO_LR / CORTES_LR / ;

MODEL SUB_LR / EQ_OBJ, OFERTA, DEMANDA / ;

MODEL COMPLETO / EQ_OBJ, OFERTA, DEMANDA, LIMITE / ;
X.UP(i,1) = MIN[A(i),B(1)] ;

FILE COPT / cplex.opt / ;

* para que los resultados de un problema infactible sean los correctos con CPLEX sélo
* se puede utilizar el método simplex y sin preproceso

PUT COPT PUT ’scaind -1’/ ’lpmethod 1’ / ’preind 0’ / ’epopt
1.1e-9’ / ’eprhs 1.1e-9’ PUTCLOSE COPT ;

MAESTRO_LR.OPTFILE = 1 ; SUB_LR.OPTFILE = 1 ; COMPLETO.OPTFILE = 1

H
* inicializacién de parametros del problema

J3(3) = NO ; DELTA(j) = 0; Y_J(,1,j) = 0
X_J(i,1,3) = 0 ; LAMBDA.LO(i,1) = O ; LAMBDA.UP(i,1) = 10 ;
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DIF = INF;

* Iteraciones del algoritmo
LOOP(j $(DIF>TOL),

* Resolucién del problema maestro de Relajacién Lagrangiana
IF(ORD(j) > 1,
SOLVE MAESTRO_LR USING LP MAXIMIZING W;
ELSE
LAMBDA.L(i,1) = 0 ;
)
LAMBDA_J(i,1,j) = LAMBDA.L(i,1) ;

* Resolucién del subproblema de acotamiento

* Normalizacién de las cotas no nulas de las variables
X.UP(i,1) =1 ;
SOLVE SUB_LR USING RMIP MINIMIZING Z ;

* Si la solucién es negativa, generar un corte de acotamiento
IF(z.L < 0,
X_J(i,1,j) = X.L(1,1) ;
Y_J(i,1,j) = Y.L(i,1) ;
DELTA(j) =0 ;
* En caso contrario resolver el subproblema de Relajacién Lagrangiana
ELSE

X.UP(i,1) = MIN[A(i),B(1)] ;

SOLVE SUB_LR USING MIP MINIMIZING Z;
X_J(i,1,j) = X.L(i,1) ;

Y_J(i,1,j) = Y.L(i,1) ;

DELTA(j) =1 ;
)
* Actualizacién del conjunto de cortes de Lagrange
JJ(j) = YES;
* Actualizacién de la diferencia de multiplicadores
IF(ORD(j)>1,

DIF = SUM((i,1), MAX(LAMBDA_J(i,1,j)-LAMBDA_J(i,1,j-1),
LAMBDA_J(i,1,j-1)-LAMBDA_J(i,1,3))) ;

X.UP(i,1) = MIN[A(i),B(1)] ; LAMBDA.FX(i,1) = O ; SOLVE COMPLETO
USING MIP MINIMIZING Z ;

En este ejemplo, la sucesién de valores del problema maestro y la sucesién de
6ptimos de los subproblemas convergen a la soluciéon dada por la relajacién lineal
del problema, véase la figura. En este caso, la cota inferior del valor éptimo del
problema dada por la relajacién lineal del mismo no puede ser superada por la
aplicacién de la Relajacién Lagrangianal®. Por otra parte, los valores obtenidos

10Cuando esto ocurre se dice que el problema satisface la propiedad de integralidad (integrality
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por las variables de decisién no son factibles en ninguna de las iteraciones del
método. Se necesita un método de postprocesado de estas soluciones para obtener
una solucién. En este problema, una posibilidad consiste en considerar la solucién
dada para las variables continuas x;; por el problema de transporte (lineal), y
adecuar las variables binarias a esta solucion, es decir

uijzlsixij>0
Con este procesado de las soluciones puede comprobar que en la iteracién 51

(el algoritmo converge en la iteracién 55) la solucién obtenida es en este caso la
solucion éptima del problema entero mixto:

Y11 = Y23 = Y31 = Y32 = Ya2 = 1

— Cota Superior RL
1000 L - - Cota Inferior RL
500
~~~~~~~~~ -
1 ,\v//‘ /
1] //
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i \‘
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Fig. 4: Evolucion de cotas en Relajaciéon Lagrangiana.

4 Implantacion en grandes modelos

GAMS fue desarrollado para permitir la implantacién rapida de modelos de
optimizacién concentrando la labor del modelador en su formulacién. Ademés,
dada la potencia del lenguaje permite la creacién de modelos complejos con un
nimero reducido de instrucciones. Esto hace que el mantenimiento o la modi-
ficacién de un modelo sea muy sencilla. De la misma manera estas ventajas se
extienden a la escritura de métodos de descomposicién. Sin embargo, el tiempo
de resolucién de un problema en GAMS por métodos de descomposicién es muy
elevado. Las razones son las siguientes:

property) y tiene poco sentido el uso de la Relajacién Lagrangiana como técnica de aproximacién
del valor 6ptimo del problema.
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e ¢l paso de un problema definido en GAMS al optimizador encargado de su
resolucién se hace escribiéndolo en disco en lugar de a través de memoria
principal. Esto hace que se consuma mucho tiempo cuando esta tarea se
debe hacer repetidas veces para cada maestro o subproblema. Este inconve-
niente se puede soslayar parcialmente recurriendo a la creacién de un disco
virtual en memoria principal mediante un controlador RAMDISK.

e cada maestro o subproblema se crea de nuevo cada vez aunque las modifi-
caciones entre una iteracién y la siguiente para cada problema son menores.
Precisamente este idea de resolucion iterativa de problemas muy similares
es el nicleo central de la descomposicion y es la que se deberia poder apro-
vechar computacionalmente tanto en la fase de creacién del problema como
en el algoritmo de resolucién (mediante el simplex dual). GAMS genera
desde cero cada problema aunque si permite guardar la base previa.

En conclusién, GAMS puede ser utilizado para el desarrollo de prototipos de

modelos de optimizacién y de métodos de descomposicion. Sin embargo, una
vez validados estos prototipos se deben utilizar lenguajes alternativos de menores
tiempos de computacién.

5
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1 Introduccion

La vida de una planta petroquimica o de producciéon de enegia comienza con
su estudio de viabilidad, dimensionamiento y localizacién. Siguen el diseno, la
construccién, depués la puesta en marcha que es algo que por su problematica
podemos separar del funcionamiento normal, pasamos a la fase de produccién o
funcionamiento normal, durante la que puede tener lugar alguna modificacién de
la misma con vistas a su posible ampliacién de capacidad o mejora de rendimiento
y finalmente su cierre por obsolescencia econémica o tecnoldgica.

Nos centraremos en la fase de diseno de una nueva planta o en la modificacién
de una existente, si bien las ideas son aplicables también al funcionamiento.

Cuando abordamos el disefio de una planta debemos determinar que unidades
vamos a construir, que forma y dimensiones tendra cada unidad y de qué materia-
les estara construida, como estaran interconectadas, en que lugares fisicos hemos
de situarlas, como sera el sistema de control, y un sin ntimero de caracteristicas
faciles de imaginar. Los modelos que habitualmente aplicamos, sean mas o menos
sencillos o complejos, son deterministas. Solemos analizar: una hipdtesis bésica
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que es la recomendada, una pesimista y otra optimista. Asi nos cubrimos algo en
salud pero pasamos ”el muerto” de la decisién iltima a nuestro jefe.

Generalmente disfiamos la planta para unas ”condiciones nominales” de fun-
cionamiento. Fijamos factores tales como la capacidad de produccién del producto
o productos principales y secundarios, las materias primas que vamos a consumir.
En el cdlculo de las unidades de que consta suponemos conocidos parametros tales
como velocidades de reaccién y/o coeficientes de transferencia de materia, funcio-
namiento de hornos, calderas, turbinas, perdidas de presién en tuberias, cargas
que afectaran a la estructura y otros similares. Y ”por si acaso” tomamos un
coeficiente de seguridad con el que nos cubrimos en salud. Esto era aceptable en
una época en la que los algoritmos de cédlculo y la capacidad de los ordenadores,
cuando les habia, no permitian otra cosa. Pero la realidad no es esa, y en la era
de la globalizacion y de la competencia creciente no queda mas remedio que afinar
todo lo que podamos. Con ello no solo salvaremos a nuestra empresa o entidad
en la que trabajamos, sino que estaremos beneficiando a toda la colectividad.

Pero, jcomo podemos lograrlo?, ;qué debemos hacer para mejorar nuestros
disenos?

Esta claro que acercarnos mas a la realidad. Lo dificil no es decir ésto sino
saber llevarlo a la practica. Trataremos de daros algunas ideas que os ayuden a
hacerlo.

En primer lugar, por el método clasico damos valores fijos a los pardmetros que
intervienen en el diseno, pero la realidad es que solo podemos indicar la frecuencia
con la que esperamos que tomen uno u otro valor. Disponemos de la distribucion
de probabilidades de que esto suceda. Si esta distribucuén de probabilidades tiene
una desviacién tipica reducida respecto del valor que toma su media, el adoptar
ésta como valor del pardmetro en cuestion no origina una desviacién apreciable
en los resultados, pero si no es éste el caso, estamos ante la posibilidad de mejorar
el diseno teniendo en cuenta en los calculos la incertidumbre existente.

Alllegar a este punto pensamos en la incertidumbre existente en las previsiones
de demanda y precios de nuestros productos principales y subproductos, que
pueden alcanzar uno u otro valor, en la probabilidad de que la competencia decida
llevar a efecto un proyecto complementario o competitivo con el nuestro, de la
probabilidad de que dispongamos de ciertas materias primas y de los precios que
puedan alcanzar, o de que en un futuro no lejano aparezca un producto o proceso
ventajoso que origine la obsolescencia econémica del nuestro. Todo ello afectara
al diseno de nuestra planta.

Pero hay mas incertidumbres. ;Porqué sobredimensionamos tanto las unida-
des de extraccién liquido-liquido o los cristalizadores? ;Y ciertos reactores?

La respuesta es sencilla: porque los modelos que representan su funciona-
miento son poco exactos. Cuando determinamos los coeficientes de velocidad
de reaccién a partir de resultados experimentales, lo que realmente obtenemos
-aunque no lo sepamos- es el valor mas probable y la desviacién tipica con la que
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evaluamos dicho valor, que suele seguir una distribucuién normal. Si la relacién
entre el valor mas probable y la desviacién tipica es grande, el valor aludido es
altamente probable que coincida con el real y podemos usar un modelo deter-
minista en el cdlculo de nuestro reactor. Si la relacién aludida es pequena la
incertidumbre en la velocidad de reaccién es alta y deberemos utilizar en nuestros
célculos un modelo que tenga en cuenta esta incertidumbre, esto es, un modelo
estocastico. Pero incluso en el primer caso, tampoco esta claro que el modelo de-
terminista sea suficiente, pues segiramente exista incertidumbre en los caudales y
composiciones de las corrientes que alimentan el reactor, por no hablar de costes,
flujos internos y muchos otros factores.

Hasta con los valores de los parametros exactos, podemos tener la incertidum-
bre en la bondad del propio modelo. El reactor antes aludido puede no compor-
tarse como reactor de mezcla perfecta ni de flujo de pistén perfecto, sino como
algo intermedio, acercdndose mas o menos a uno u otro tipo de flujo, en funcién
de una pluralidad de factores de imposible control durante el funcionamiento.

Los factores inciertos no solo son de los tipos hasta ahora expuestos. ;Podemos
estar seguros de que no va a salir un producto con mejores propiedades que el que
nosotros vamos a fabricar y mas barato que el nuestro o de que no sale un proceso
que desplaza al nuestro por fabricar lo mismo que nosotros con menores costes?
Y ;jcomo protegernos contra esto al disenar nuestra planta? ;Quizad disenando
nuestra planta para que puede fabricar tembién otros productos diferentes?

Ni que decir tiene que nosotros estamos del lado de los modelos que contemplen
la incertidumbre existente, esto es, de los modelos estocdsticos por una razon
muy sencilla: el mundo es asi, la predestinaciéon no existe. Pero para poder
aplicar en este momento las técnicas de optimizacién estocdstica a problemas
reales medianos o grandes, tales como procesos completos o partes importantes
de los mismos no queda mas remedio que transformar nuestro modelo en uno
lineal entero mixto.

La solucién que proporciona un modelo de programaciéon matematica es-
tocastica (que es el nombre de la optimizacion estocédstica) debemos denominarla
solucién inmunizada contra la incertidumbre o solucion robusta en vez de solucién
Optima.

Cuando transcurre el tiempo se suceden los acontecimientos. Si habiamos
hecho un modelo determinista y la casualidad hace que las cosas ocurran de
acuerdo con nuestros supuestos, estamos de enhorabuena. Ahora bien, lo mas
probable es que las cosas no sucedan asii. Lo normal es que no podamos celebrarlo.

En cambio, si habiamos utilizado un modelo en el que contemplabamos las
probabilidades de que las cosas sucedan de una u otra forma, es facil que lo que
ocurra no nos pille desprevenidos. Quiza nuestra solucién no sea la éptima pero
si suficientemente buena. Es casi seguro que lo celebraremos.

La optimizacién determinista ha sido estudiada por muchos autores. La es-
tocéstica estd de moda pero es mucho mas compleja y los éxitos son menores. En

Rect@ Monogréfico 2 (2004)



152 Optimizacion estocdstica aplicada

relacién con la sintesis de procesos citaremos [3], [9], [11], [15], [18], [27], [33], [14].
Exponen aspectos de la sintesis de procesos aplicando técnicas no lineales [5], [6],
[7], [28], [29]. Un buen libro de sintesis de procesos es [1]. Otro que aborda la opti-
mizacién de procesos desde la 6ptica no lineal, con revision de algunos algoritmos
es [12].

En [21], [22] mostramos nuestros primeros trabajos encaminados a la optimi-
zacién determinista del diseno de procesos. Nuestros planteamientos estocasticos
aparecen en [26], [24], [25], [23], y [10].

2 Las ideas

En la optimizacién del disefio, mejora y/o funcionamiento de un proceso en-
contramos elementos cuyo valor es incierto tanto en factores externos -precios,
demandas de productos, disponibilidades de materias primas- como internos re-
lacionados con su funcionamiento. Ademads, en ocasiones, mediante el proceso
resultante deberemos ser capaces de fabricar mas de un producto.

Planteando nuestro modelo de una forma que pudiéramos llamar exacta, lle-
gamos a un sistema que es: no lineal, tanto en la funcién objetivo (a veces mas
de una) como en las restricciones; las mas de las veces fuertemente no convexo;
con variables reales (que pueden tomar cualquier valor comprendido entre dos
limites) y binarias (que toman solo los valores 0 6 1); y algunos de los que nor-
malmente serfan pardmetros han sido sustituidos por funciones de distribucién de
probabilidades. Este tipo de modelos solo funcionard en casos de muy reducidas
dimensiones. Como linea de investigaciéon bésica es muy interesante, pero para
resolver problemas reales no.

Para poder tratar casos medianos y grandes, nosotros consideraremos la in-
certidumbre via escenarios y transformaremos el modelo no lineal en otro lineal
entero mixto, en el que intervengan variables reales -continuas que pueden to-
mar cualquier valor comprendido entre dos limites- y binarias -que solo toman los
valores 0 y 1-. El modelo resultante serda generalmente de muy grandes dimen-
siones. El tratar con muchas variables binarias no serd algo facil pero si factible.
Es un sistema que hemos aplicado con éxito a plantas petroquimicas reales y es
el método que vamos a aplicar aqui.

3 Metodologia

En nuestro sistema distinguiremos las:

e Variables de diseno, que determinan todo lo que interviene en el disenio del
proceso. Son las que debemos determinar en el momento disenarle. Tales
son en un intercambiador de calor el didmetro, longitud, y disposicién de
los tubos, el niimero de pasos por la carcasa y la disposicién de las pantallas
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deflectoras, los materiales empleados, los rangos maximos de temperatura
y presién de funcionamiento, las unidades a las que conectamos cada una
de sus entradas y salidas de fluido y otros detalles constructivos. Existira
un tunico disefio, comun a todos los escenarios.

e Variables de funcionamiento, que indican como funcionard nuestro proceso
en cada escenario. Para cada escenario el proceso funcionara de una manera
diferente, y lo tinico que conocemos es la probabilidad de que esto suceda.
Debemos prever en nuestro modelo la posibilidad de que en algunos esce-
narios ciertas restricciones sean flexible. Asi, el modelo debe poder decidir
para una planta de etileno una capacidad de produccién de 500.000 t/ano,
en tanto que la demanda prevista para algunos escenarios sea de 700.000
t/ano, teniendo en cuenta los posibles efectos que puede originar el que no
suministremos 200.000 t/ano. En el intercambiador antes aludido, varia-
bles de funcionamiento serian para cada escenario los fluidos y caudales que
circulan por los tubos y por la carcasa y sus temperaturas de entrada y
salida.

Nuestro modelo utilizara:

o Variables reales que pueden tomar cualquier valor comprendido entre dos
limites que por defecto son 0 e co. A este tipo pertenecen variables tales
como caudales, temperaturas, presiones, concentraciones.

e Variables binarias que toman tnicamente los valores 0 6 1, cuyo significado
es "si” o "no” instalamos, conectamos o colocamos algo, y en general las
utilizaremos para imponer condiciones logicas.

Nuestro modelo estocéstico, tendria la forma compacta siguiente:
e Funcién objetivo a maximizar o minimizar, segun el caso:
méax ¢ -xP +& yP + > b, e xh + ) @, -yl (7.1
geS g€
e sujeta a:
AD_ D _ HD D F__F F_F -1
b, <A/ x"+B/ -y +A; -x; +B, -y, <b, (7.2)

e con los limites:
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Recomendamos seguir los siguientes pasos:

1. Definicién del problema.

No es sencillo definir el problema en el caso del disenio de un proceso o de
una parte del mismo. Tenemos que decidir el conjunto de materias primas
de posible utilizacién, el conjunto de productos de entre los que el sistema
decidira cuales produce, si deseamos que el proceso sea multiproducto en
cuyo caso es como si tuviéramos ”varios procesos en uno”’. El objetivo
perseguido parece claro que es el beneficio maximo, pero generalmente no
es el Unico. Aspectos tales como el impacto medioambiental, los riesgos en
el abastecimiento de ciertas materias primas, la diversificacién de riesgos y
otros de politica de empresa la complementan.

2. FElaboracion de un primer esbozo de superestructura.

La superestructura es un diagrama de flujo que contemplard muchas si no
todas las alternativas. Veamos un ejemplo sencillo que nos aclare las ideas.

Supongamos que disponemos de una corriente A que es una mezcla de los
compuestos C'1, C2 y C3 en concentracién y caudal variable entre ciertos
limites. Deseamos obtener tres corrientes cuyas concentraciones minimas
limitativas son: 98% de C1 la B, 97% de C2 la C' y 99% de C3 la D.
Supongamos también que utilizamos para ello una red de columnas de des-
tilacién.

Una columna de destilaciéon, como bien sabemos, dispone de varios platos,
un condensador en la parte superior en el que extraemos calor y un hervidor
en la inferior mediante el que proporcionamos calor. El condensador y el
hervidor son intercambiadores de calor. Para una columna de destilacién
dada, la temperatura de la corriente a calentar en el hervidor es mayor que la
temperatura de la corriente a enfriar en el condensador. En un plato pasan
los productos mas volatiles desde la fase liquida a la fase vapor y los menos
volatiles desde la fase vapor a la liquida. La corriente de vapor asciende
por la columna y se enriquece progresivamente en compuestos volatiles,
empobreciéndose en compuestos menos volatiles. A la corriente liquida,
que circiula en sentido inverso, le sucede lo contrario. El vapor que sale
por la parte superior de la columna se condensa en el condensador. Una
parte es reciclado a la columna y otra es la corriente que sale por cabeza.
Por el fondo sale una corriente liquida, parte de la cual se evapora en un
hervidor y se devuelve a la columna, constituyendo el resto la corriente
de fondo que sale de la misma. En ocasiones existen salidas laterales por
las que salen corrientes de composiciones intermedias. El resultado es que
por la parte superior salen los productos mas volatiles y por la inferior los
menos volatiles. Si hay salidas intermedias, por ellas salen corrientes cuya
volatilidad es menor a medida que la salida estd mas proxima al fondo.
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Un intercambiador de calor es un dispositivo formado por tubos por el que
circulan dos corrientes, una de las cuales -llamada fria- se calienta y otra
-denominada caliente y cuya temperatura es mayor que la de la anterior- se
enfria. El calor que pierde la corriente caliente es igual al calor que pasa a
la corriente fria.

La figura 7.1 muestra la superestructura del ejemplo expuesto. Por simpli-
cidad hemos dibujado solamente las columnas de destilacién y sus interco-
nexiones pero no las de la red de intercambiadores de calor (de la que si
aparecen los condensadores y hervidores de las columnas) y otros elementos
necesarios para un buen aprovechamiento energético. Columnas de desti-
lacién con su condensador y hervidor asociados estaran representadas en los
lugares U — 1,U — 2 y U — 2. Tuberias de conexién son las lineas L1, L2, ...

L1l
B (98% C1)
L2
A L1 L3 -
v 1
(C1, €2, €3) L C (97% C2)
L4 LY B
U-1 u-3
L11
LB — & D (99% C3)

Figura 7.1: Ejemplo de superestructura

Nuestro modelo debera decidir de que elementos constard nuestro proceso
de entre los mostrados en la superestructura: columnas de destilacion; in-
tercambiadores de calor; fuentes de vapor y de agua de refrigeracién; si
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debemos o no emplear turbinas de vapor de contrapresién para mejorar el
rendimiento energético. Debera asimismo decidir que diseno e interconexio-
nes deberd tener cada una de estas piezas.

3. Elaboracion de los escenarios y de sus probabilidades asociadas.

La elaboracion de escenarios conlleva hacer previamente una lista de parametros
inciertos. Para cada uno de ellos debemos determinar la distribucién de fre-
cuencias, o mas exactamente, de probabilidades de que tomen uno u otro
valor.

En el caso de las demandas y precios de productos que posiblemente fabri-
quemos y de las materias primas que consumamos y sus restricciones los
escenarios, podemos emplear para su prediccién modelos estaditicos tales
como los econométricos o los de Box-Jenkins. La distribucién de probabi-
lidades deseada nos la proporcionan directamente. Lo mismo sucede con
parametros de tipo técnico obtenidos experimentalmente, como coeficientes
de velocidad de reaccién. El uso de técnicas estadisticas como son sencillas
regresiones.

Pero en otras ocasiones no queda mas remedio que recurrir a probabilida-
des de caracter subjetivo. Tel sucede por ejemplo en la inversiéon de un
equipo con un diseno dado. Podemos solicitar valores de la inversién: mas
probable, y los limites razonables superior e inferior (con probabilidades
respectivas del 10% de ser o no superados), y ajustar una distribucién Beta
de probabilidades con estos datos.

Hemos de tener presente que hay parametros interrelacionados, cuyos valo-
res, si bien inciertos, no son independientes.

Supongamos que unicamente existe incertidumbre significativa en: la can-
tidad de producto ¢i, g2 v g3 a ser producida por nuestro proceso, cuyas
respectivas probabilidades son wi1, we; v wsy; y en las probabilidades de
que los precios de venta sean p; y po, siendo con probabilidades w1z y was.
Sean independientes ambos parametros -cantidades y precios-. Resultaran
los 6 escenarios mostrados en la figura 7.2. Asi: el escenario 1, de probabi-
lidad wy = w11 - wi2, conllevara una produccién ¢; y un precio de venta pi;
el escenario 2, de probabilidad wy = w1y - wage, conllevard una produccién
q1 y un precio de venta po; y el escenario 6, de probabilidad wg = w31 - wag,
conllevard una produccién g3z y un precio de venta ps.

El problema surge cuando del caso académico pasamos al real. La primera
gran sorpresa es que el nimero de escenarios es infinito, o mas exactamente,
varios millones, para no exagerar. La manera de resolver tal problema es
generar escenarios equiprobables y extraer aleatoriamente un niimero ra-
zonable de ellos. Si somos un poco habiles no necesitaremos generarles
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L9
B (98% C1)
L&
-2
L2
L1
A L10
{C1, €2, C3) = C (97%C2)
L4
-1
L11
L& N — D (99% C3)

Figura 7.2: Ejemplo de escenarios

fisicamente. Elaboraremos aleatoriamente solo los que necesitemos. Usa-
remos por tanto en nuestro modelo una muestra del colectivo total de es-
cenarios. Esto implicard que nuestros resultados tendran un cierto nivel
de significacién, pero por bajo que sea este, nuestra solucién siempre sera
mejor que la obtenida por métodos deterministas.

4. FElaboracion de la superestructura.

A la vista del resultado y consideraciones hechas en el paso 3 puede ser
necesario retocar la superestructura elaborada en el paso 2. Llegamos a la
superestructura que vamos a utilizar en nuestro modelo.

5. Determinacion de los limites de funcionamiento de cada unidad.

En la superestructura de nuestro ejemplo (figura 7.1) encontramos que en
los lugares U — 1, U — 2 y U — 3 habra unidades importantes -columnas
de destilacion- cuya existencia y caracteristicas deberd decidir el modelo.
Habida cuenta de la superestructura y de los escenarios, determinaremos el
conjunto de limites que englobaran las distintas maneras de funcionamiento
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de cada unidad, en caso de que exista. Es facil realizar modelos basados en
flujos en redes con diferentes funciones objetivo, que nos den dichos limites.
Asi en nuestro ejemplo, la unidad U —1, cuando exista, podrd separar, segin
los casos por cabeza C'1 o bien C'1 y C2, por el centro C2 o nada, y por el
fondo C3 o C2 y C3.

6. Determinacion del catdlogo de diserios de las unidades.

Esta es una de las fases criticas de nuestro método. Conocemos la superes-
tructura y los limites de funcionamiento de cada una de las unidades de que
consta.

Una forma de abordar el problema es incluir en nuestro modelo los ”"mode-
los” de diseno y funcionamiento de cada una de las unidades. El problema
es que son modelos generalmente no lineales fuertemente no convexos. Ni
siquiera un modelo determinista de una planta real medianamente compleja
que los incluyera funcionaria. Si el lector ha usado modelos comerciales de
simulacién de, por ejemplo, columnas de destilacién, recordara sin esfuerzo
lo que le ha costado obtener resultados, jy lo inico que hacen es resolver un
sistema no lineal de ecuaciones!.

Pero cuando, por ejemplo, calculamos una tuberia o una estructura metalica
lo que hacemos es decidir que tuberia o viga a usamos en cada lugar, se-
leccionandola de entre un catdlogo de tuberias o vigas disponibles norma-
lizadas. Ahora bien, ;porqué las tuberias y vigas estan normalizadas y las
columnas de destilacién o reactores quimicos no? La respuesta es sencilla:
porque las tuberias y vigas se consumen mucho y las columnas de destilacién
no.

Nuestra propuesta es aplicar el principio de divit el vincit. Elaboramos a
nuestra medida un catdlogo o conjunto de disenos de cada una de las unida-
des de nuestra superestructura. Para cada unidad y diseno determinamos
un conjunto de modos de funcionamiento. Un disenio podra funcionar de
distintos modos. Cada modo serd tal que pueda ser representado con su-
ficiente precisién mediante un modelo lineal. Lo que hacemos con esto es
separar el problema de disefio y funcionamiento de las unidades por un lado
y la parte combinatoria estocastica de optimizacion, que es la realmente
compleja, por otro.

Para determinar el diseno y funcionamiento de las unidades puedes usar los
simuladores existentes y en caso de que fuera necesario resultados experi-
mentales. Si usamos simuladores recomendamos hacer un sencillo programa
que los maneje al objeto de elaborar de forma automaética el conjunto de
disenos de cada unidad.

El conjunto de disenios de cada unidad debe ser tal que cubran los limites
de funcionamiento marcados en el paso 5.
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7. Determinacion de los modos de funcionamiento de cada diseno.

Para cada diseno de cada unidad deberemos determinar un conjunto de
modos de funcionamiento. Cada modo tendra unos limites tales que el
funcionamiento pueda ser representado mediante un modelo lineal con la
suficiente precision. Es como si ajustaramos mediante facetas la funcién que
representa el funcionamiento. Esto conlleva el uso de técnicas estaditicas,
que en los casos sencillos se reduce a regresiones. Debemos de terminar
simultaneamente las funciones lineales y los limites.

Dedicaremos un apartado a aclarar este punto mas adelante.

8. FElaboracion del modelo determinista.

Elaboraremos un modelo determinista que contemple todos los disenos y
modos de funcionamiento de las distintas unidades, su posible existencia o
no, sus interconexiones y todos los demas aspectos necesarios. Tendra una
o mas funciones objetivo.

El modelo determinista estard constituido por la funcién objetivo (7.1), las
restricciones (7.2), los limites de variables (7.5) y (7.6) cuando sustituimos
el conjunto de escenarios G por el escenario g € G objeto de estudio, y
ademds afiadimos los limites de variables (7.3) y (7.4).

Pasaremos este modelo determinista para las condiciones especificas de cada
escenario. Esto nos permitira:

e Detectar los errores en el modelo. Es siempre mas ficil en este modelo
que en el estocastico mas complejo.

e Analizar la solucién proporcionada para cada escenario. Obtenemos
una primera idea de la situacién del problema y de la filosofia subya-
cente.

e Servir de paso previo al modelo estocéstico. Las soluciones de cada
escenario nos ayudan a elaborar una buena solucién estocdstica inicial
o al menos una cota inicial que nos permita reducir el tiempo de célculo.

9. Elaboracion del modelo estocdstico.

El modelo estocéastico, como ya dijimos, estd constituido por la funcién obje-
tivo (7.1), las restricciones (7.2), y los limites de variables (7.3), (7.4), (7.5)
y (7.6). Es generalmente un modelo de muy grandes dimensiones. Una ma-
nera de resolverlo en menor tiempo de cédlculo es aplicar la descomposiciéon
de Benders, conservando en el problema maestro las variables binarias y* e
yg , Vg € G. El problema maestro le resolvemos en el ordenador mas rapido
de que dispongamos y los problemas derivados en paralelo en todos los que
podamos.
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10.

Sobre el modelo estocastico trataremos mas detenidamente en siguientes
apartados.

Andlisis de los resultados del modelo estocdstico.

Llamamos solucién robusta o soluciéon inmunizada contra incertidumbre a
la solucién 6ptima del modelo estocédstico. Es una solucién que quiza para
ningin caso o escenario sea la Optima, pero casi siempre suficientemente
buena.

En nuestro ejemplo, la solucién robusta podria ser la mostrada en la figura
7.3. Loégicamente, la solucién robusta contiene mucha mas informacién que
la incluida en esa figura. Parte de la solucion es: el diseno de las unidades
U—-1yU-2(laU — 3 no se construye) que serd el mismo sea cual fuere el
o los escenarios que después ocurran, y para cada escenario temperaturas,
presiones, flujos y composiciones de todas las corrientes que circulan dentro
de las citadas unidades y por las tuberias que las interconectan, entre las
que se encuentran las que abastecen de materias primas el proceso (L1 en
nuestro caso) y sacan de la misma los productos obtenidos (L9, L10 y L11).
Y a la hora de analizar la soluciéon robusta no olvidemos tener en cuenta
uno de los datos: la probabilidad de que suceda cada escenario.

Modelizacion de unidades: Disenos y modos de
funcionamiento

Hemos comentado que debemos modelar las unidades de forma que el modelo
resultado sea lineal. Veamos unas ideas o metodolog’i de como hacerlo. Nos
valdremos de un sencillo ejemplo de un intercambiador de calor.

El problema

Sea un intercambiador de calor cuyo diagrama y esquema de funcionamiento
indicamos en la figura 7.4. Supongamos que es un intercambiador de calor en
contracorriente de un paso por la tuberia y otro por la carcasa. Las corrientes
entrada y salida del fluido caliente son CE y C'S respectivamente. Las corrientes
de entrada y salida del fluido frio son FE y F'S respectivamente. Denominemos

ccl

al intercambiador.

Suponemos que cuando no exista el intercambiador conectamos la corriente
fria de entrada con la de salida y la caliente de entrada con la de salida.

Por simplicidad suponemos que tnicamente hay transferencia de calor sensible,
si bien incluir el calor latente no ofrece ningtin problema.
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Escenario 1

Escenario 2

Escanario 3

Escanario 4

Escenario 5

Escenarno &

Figura 7.3: Ejemplo de solucién robusta

La modelizacién exacta o casi exacta

Supondremos que: ¢cg = Cos Y CFE = CFs

Senalaremos que las variables que definen el diserio son: la existencia o no de
cada unidad Y, el drea A,, y la inversién I, que depende del &rea.

Las variables que definen el funcionamiento dependen del escenario que tenga
lugar, y son: el calor intercambiado @4, los caudales mésicos de las corrientes
Feq4, y sus temperaturas 1., de las corrientes.

Empezamos por elaborar un modelo sencillo del intercambiador C'C'1 de nues-
tro ejemplo.

e En todos los casos:

FCE,g = FCS,g (77)
Frpg=Frsy (7.8)

e Si existe el intercambiador CC1 serd Yoc, = 1, v se cumplira:
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FE

CE CS

FS

CE —p Corriente caliente a enfriar [——» CS

FS =+ Corriente fria a calentar s FE

Figura 7.4: Ejemplo de intercambiador de calor: Diagrama y esquema

— Calor cedido por la corriente caliente:
Qcciy = Fepg - cce (Iop,g — Tes,g) (7.9)
geS§
— Calor tomado por la corriente fria:
Qccig = Frey - ¢rE (Trsy — Tre.g) (7.10)
g€ S$
— Calor transferido en el intercambiador:

Tce,g —Trsg —Tcs,g +1TrEg

_ 7 A 11
Qcct,g = Uccr - Acci o (M) (1)
Tcs,g—TrE,q
g < 9
— Inversién:
Iccr = a1 (Acer)™ (7.12)
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— Relaciones entre temperaturas:

Trs,g 2 TrE,g (7.13)
ge§

Top.y > Tosg (7.14)
ge§

TCE,g > TFS,g (715)
ge§

Tcs,y 2 Treyg (7.16)
ges§

e Si no existe el intercambiador C'C1 serd Yoco1 = 0. Se cumplird entonces
que:

— El area del intercambiador es nula:
Acc1 =0 (7.17)
— El calor intercambiado es nulo:

Qcci,g =0 (7.18)
geS$§

— En las corrientes implicadas no hay variaciones de temperatura, ni de
estado, ni de entalpia:

Treg="Trsy (7.19)
ge§

Tce,g=Tcs,g (7.20)
ge€$

En nuestro modelo observamos no linealidades en las ecuaciones (7.9), (7.10),
(7.11) y (7.12). Estas no linealidades nos van a complicar el proceso de optimi-
zacién, jy el modelo exacto es mucho mas complejo que este!

En efecto. El modelo exacto debe proporcionar ademaés: la longitud, didmetro,
distancia y disposicién de las tuberias; la distancia entre pantallas deflectoras; el
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disenio de los cabezales y de las conexiones de entradas y salidas de los fluidos;
los soportes; los aislantes térmicos; y los espesores y tipo de material de todos los
elementos de que consta.

Incluso esto no es todo, pues durante el funcionamiento ”se mancha o ensucia”
con mayor o menor rapidez y a una velocidad que oscila entre ciertos limites. De
éstas resistencias de ensuciamiento no es dificil encontrar datos en la bibliografia,
aunque puede que en muchos casos no tengamos mas remedio que basarnos en re-
sultados de ensayos en planta real o piloto, en cuyo caso el tipo de modelos ”exacto
o casi exacto” del tipo del expuesto en este apartado no es el mas adecuado.

La modelizacién suficientemente aproximada pero resoluble

Una manera de abordar el problema de las no linealidades es linealizar por
facetas con la ayuda de variables binarias las ecuaciones en las que se encuentran.

Otra forma es el método que exponemos a continuacién. Consiste en linealizar
la unidad en su conjunto. Es mas ventajoso cuanto mas compleja es la unidad.

Continuemos con nuestro intercambiador de calor (unidad u = CC1). Inter-
vienen las variables: Yy, Ay, Iy, Qug, {Feg, Teg, Ve € €y}, y los pardmetros: ¢og,

crE; Uud-
Las restricciones que en nuestro nuevo modelo debemos conservar por cum-
plirse siempre y ser lineales son:

e las ecuaciones (7.7) y (7.8)
e las ecuaciones limitativas (7.13), (7.14), (7.15) y (7.16)

e las ecuaciones (7.17), (7.18), (7.19) y (7.20) aplicables cuando el intercam-
biador no existe.

En la figura 7.5 mostramos las variables que intervienen en una unidad de
proceso, concretamente en un intercambiador de calor.

Las ecuaciones no lineales: (7.9), (7.10), (7.11) y (7.12) son las que debemos
sustituir por facetas. Los siguientes pasos pueden servirnos de guia:

1. Definir y discretizar las variables de diserio.

Tratamos aqui de definir un conjunto de disefios que cubran lo comprendido
entre los limites bajo los que sea posible que en algin momento tenga que
funcionar la unidad en cuestién. Esto forma parte del paso 5 (pdgina 157)
de la metodologia. Es recomendable que incluso haya solapamientos entre
las zonas cubiertas por cada uno.

En nuestro caso elaboraremos un subconjunto Doy de disenos tales que
cada uno de ellos d € Do vendrd definido por su drea A,q4, su inversion
I,4, e incluso elementos de detalle como longitud, disposiciéon y materiales
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Variables exdgenas Variables endogenas
De diseno
I-u —_—
"ﬁ'u: — TL‘-E.q
De funcionamiento Unidad de
proceso
FCE,g —_— u = CCq
(intercambiador * Tesg
calor)
F S
= > ni:l:i.g.
Trg g ="

Figura 7.5: Ejemplo de intercambiador de calor: Clasificacién de variables

de los tubos y deflectores, y todos los detalles constructivos que creamos ne-
cesarios. Podemos fijar las dreas en progresién geométrica e incluso realizar
varios disenos diferentes para el mismo area.

Por tanto, en el momento de establecer un diseno fijamos todas las variables
de disefo, como son en nuestro caso Ayg, Tua, Vu,d € UQ x D,,.

Observemos que con éste truco hemos eliminado de un plumazo restricciones
no lineales como la expresada por la ecuacién (7.12).

2. FElaborar la tabla de datos bdsicos.

Denominamos ensayo a los resultados obtenidos mediante: un ensayo reali-
zado en laboratorio o en planta piloto; las medidas efectuadas en una unidad
de una planta industrial; un modelo de simulacién mas o menos complejo;
un analisis de tipo estadfstico; o una mezcla de todo lo anterior.

En nuestro caso podemos realizar los calculos mediante las ecuaciones antes
mostradas o bien con otro modelo mas exacto y complejo, complementado
si acaso con medidas en planta de los incrementos de las resistencias (de
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Tabla 7.1: Resultados de ensayos con disenio d de unidad u

e Ffege Tcee Tcse Free Tree Trse Qccie
J7 554 230 87 987 48 180 126.442

B5 320 150 74 477 56 140  338.871

transmisién de calor) debidas al progresivo ensuciamiento a lo largo del
tiempo.

Para cada disefio d de cada unidad u (tales que u,d € U® x D,,) elaboramos
un subconjunto €,4 de ensayos cuyos resultados dispondremos en forma de
tabla que nos permita linealizar por facetas el funcionamiento de la unidad.
Cada faceta serda un modo de funcionamiento, representado en nuestro nuevo
modelo por un conjunto de ecuaciones lineales. Cada fila de la tabla corres-
ponderd a un ensayo ele € £,4. Las columnas de la tabla serén el ensayo e y
las variables FFE,e FC’E,e7 TFE,ea TC'E,e7 TFS,ea TCS,ea QCCLQ. También for-
maran parte de los resultados del ensayo otras variables y pardmetros como
Uuwd, CcE, CrE, de gran interés, que no mencionamos aqui explicitamente
por no intervenir directamente en nuestro modelo estocéstico de diseno del
proceso. En cada ensayo debemos fijar 4 de estas variables, pues tenemos
un total de 7 y un ntimero de ecuaciones de restriccion de 3. Decidimos fijar
como exdgenas o independientes las variables Frg . Fog,e, TFE.c; 1CE,e,
y en funcién de ellas determinar las variables endégenas o dependientes:
Trse, Tose, Qoci,e. Para cada u,d|u,d € UQ x D, llegamos a una tabla
como la 7.1 de nuestro ejemplo.

3. Andlisis estadistico de los datos bdsicos y determinacion de las facetas.

A partir del contenido de la tabla 7.1 determinaremos los coeficientes Qydmij;
de nuestro modelo lineal, que sustituird al expresado mediante las (7.9),
(7.10), (7.11) y (7.12). La forma mas sencilla de obtenerlos es:

(a) Definir el subconjunto de modos de funcionamiento M,q de forma
que no se solapen y cubran el espacio completo de funcionamiento
del diseno d de la unidad m. Lo mas sencillo es establecer una malla
dividiendo cada variable explicativa en intervalos que no tienen porqué
estar uniformemente distribuidos.

(b) Agrupar los ensayos en subconjuntos &,,4,,, de acuerdo con la definicién
de de modos.
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(c) Determinar los coeficientes @yqm;; mediante:

min [(Eumdel)Q + (Eumdez)2 + (Eumdes)Z] (7.21)

Sujeto a:

TFS,e = ajudrnlO + EL\udrnll . FFE,e + Eiudml2 . FCE',e
+audm13 : TFE,e + audm14 : TCE',e + Eumdel (722)
Ve € Evam

TCS,g = Z74\udm20 + a4\udm21 : FFE,g + audm22 : FCE,g
+@udm23 - TrE,g + Gudm24 - TOE,g + Eumde2 (7.23)
Vgeg§

QCCl,g = af\udm,BO + /dudm31 . FFE,g + a4\udm.'.’>2 ' FCE,g
+audm33 : TFE,g + Eiudmi’)4 : TCE,g + Eumde3 (724)
Vgeg

(d) Silas desviaciones €umdel, Eumde2 Y Eumdes SON aceptables y pensamos
que no es posible reducir el nimero de modos de funcionamiento sin
que ello las deteriore, terminamos el ajuste.

En caso contrario volvemos al punto 3a, modificando el subconjunto
de modos de funcionamiento M, .

En muchas ocasiones no te sera tan facil distinguir las variables significativas
de las que no lo son ni las explicativas de las explicadas. Para ello tendras
que aplicar técnicas estadisticas que te permitan:

e reducir al maximo el niimero de variables que explique de manera sig-
nificativa el funcionamiento del disefio de la unidad,

e diferenciar las exégenas de las enddgenas, y

e estimar de que variables exdgenas depende cada una de las endégenas,
En casos complejos, las técnicas de cluster, componentes principales, andlisis
discriminante nos pueden ayudar en el intento. En [19] hay una buena
descripcién de ellas.

4. FEcuaciones del modelo.

Nuestro proceso estara compuesto por varias unidades, una de las cuales es el
intercambiador de calor que venimos poniendo como ejemplo. Mostramos a
continuacion la parte del modelo del proceso correspondiente a esta unidad.
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e Funcién objetivo:

, ~F
minz =...+ E Cocrd” Yoci,a
deDecen

(7.25)

Si en vez costes representara beneficios, cambiariamos el signo de este

término y maximizariamos esta funcién.

e Ecuaciones de restriccién:
Balances de materia:

Fegy—Fcs,g =0
Vge§

Frpg— Frsg =0
Vge g

(7.26)

(7.27)

Ecuaciones lineales de la unidad que sustituirédn a las no lineales (7.9),

(7.10), (7.11) y (7.12)::

Trsg — E E [Gudm10 + Gudm11 - FrE g
deD,, meMyq

+Cuam12 - For,g + Qudmi1z - Tre.g
+audm14 ' TCE,g] . YCCl,d,m,g =0
Vu,g € U x G

TCS,g - E § [audmZO + Gudm21 - FFE,g
deD, meMyq

+audm22 - FoB,g + @Gudm23 - TrE,g
+audm24 ' TCE,g] ' YCC’l,d,m,g =0
Vu,g e U X G

Qcci,g — E E [Gudm30 + Gudm3s1 - Fre.g
deD, mEMyq

+audm32 : FCE,g + audm33 : TFE,g
+0yudm34 - TCE,g] : YCCl,d,m,g =0
Yu,g e U X G

(7.28)

(7.29)

(7.30)

Recordemos que los términos cuadraticos formados por el producto
de una variable real por una binaria que aparecen en estas ecuaciones
se transforman sin problema en lineales anadiendo una variable real

adicional.
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e Transformamos las ecuaciones (7.13) y (7.19) en:
Trs,g — Trp,g — urs,Fe,g =0 (7.31
urs,re,g — M -Yoc1 =0 (7.32)
Vge§
y las ecuaciones (7.14) y (7.20) en:
Ter,y —Tcos,g — ucE,cs,yg =0 (7.33)
ucg,.csg —M-Yoc1 =0 7.34)
Vge§
e Las ecuaciones (7.15) y (7.16) las escribimos como:
Trsg—Top,g+M-Yoor < M (7.35)
Vge g
Trp,g—Tosg+M-Yoo1 < M (7.36)
Vg €S

Senalaremos que en la modelizacién de una unidad hay ecuaciones que depen-
den de ciertas hipétesis. En nuestro ejemplo podiamos haber supuesto que si no
existia el intercambiador las corrientes afectadas tendrian flujo nulo. Teniamos

entonces que sustituir algunos de las restricciones impuestas.

5 Nomenclatura

Utilizamos la siguiente nomenclatura:
Conguntos e (indices):

e Conjunto de corrientes, (c¢)

Una corriente puede ser una tuberia por la que circulan flui-
dos, un transportador de solidos, un conductos que trans-
porta energia eléctrica, un cable de fibra 6ptica por el que
circulan senales. Empiezan en una unidad y terminan en

otra.

Cu C, C C, conjunto de corrientes que llegan o salen de la

unidad u, para u, € U

En nuestro ejemplo es: € = {CE,CS,FE, FS}
D Conjunto de disenos de las unidades del proceso, (d)

En tuberias, bombas y otros elementos los disenos estan
normalizados. Aquellos tipos de unidades que no lo estén,
podemos "normalizarlos” nosotros de acuerdo con la con-

veniencia de nuestro caso.
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Mud

U

D, € U, conjunto de disenos del intercambiador u, para
uel

Conjunto de ensayos y/o resultados de cdlculos realizados
con los modelos de simulacién, (e)

&, C &, subconjunto de ensayos y/o resultados de célculos
realizados con los modelos de simulacién para la unidad w,
para u € U

€ud C &, subconjunto de ensayos y/o resultados de
calculos realizados con los modelos de simulacién para el
diseno d de la unidad u, para u,d € UQ x D,

Eudm C Eud, subconjunto de ensayos y/o resultados de
calculos realizados con los modelos de simulacién para el
diseno d de la unidad u en el modo o forma de funciona-
miento m, para u,d,m € U X Dy x Myq

Conjunto de escenarios contemplados, (g)

Conjunto de modos o formas de funcionar las diversas uni-
dades, (m)

Myq € M, subconjunto de modoss o formas de funcionar el
disenio d de la unidad u, para u,d € U x D,,

Conjunto de unidades del proceso, (u)

Una unidad de proceso puede ser una operacon basica, un
reactor, una caldera, un tanque, un almacén, un nodo en el
que confluyen varias tuberias, un controlador, e incluso el
”exterior” de la planta, proceso o parte de los mismos que
estamos analizando.

En nuestro proceso, por el motivo que fuere, podemos des-
glosar en unidades independientes lo que habitualmente
constituye una unidad. Asi, nos puede interesar conside-
rar como una unidad independiente cada plato de una co-
lumna de destilacion, si el hecho de que existe ademés en
él reaccién quimica con o sin la ayuda de un catalizador es
importante.

UX C U, subconjunto de unidades del proceso que son in-
tercambiadores de calor

En nuestro ejemplo es: U? = {CC1}

Subindices especiales:

)

de c?e C D, disenio de una unidad de proceso u utilizado en el
ensayo e, para e € &
Para un u € U, debe ser: (fe CD,yee&,
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Pardametros:
ay, Q2

Audmij

)

S

)

S
ISH

g)
<

Coeficientes usados para el calculo de la inversién de un
intercambiador de calor en funcién de su area

Coeficiente de la variable j en la ecuacién lineal que deter-
mina la variable ¢ en el modelo del diseno d de la unidad u
cuando el punto de funcionamiento se halla en el modo de
funcionamiento m, para u,d,m € U X D, X Myq

Los coeficientes @ydmi; aparecen en modelos como el repre-
sentado por las ecuaciones 7.25, 7.26 y 7.27

Matrices de coeficientes de las restricciones del escenario g
correspondientes a las variables de diseno reales y binarias,
para g € §

Area del intercambiador u para el diseno d, para u,d €
U? x D,

Vectores de limites superior e inferior de las restricciones
correspondientes al escenario g, para g € G

Vectores de coeficientes de la funcién objetivo de las varia-
bles de diseno reales y binarias

Calor especifico de la corriente ¢, para ¢ € C

Vectores de coeficientes de la funcién objetivo de las va-
riables de funcionamiento reales y binarias del escenario g,
para g€ §

Coste fijo anual del disenio d del intercambiador u, para
u,d € UQ x D,

Esta compuesto por las cargas de capital mas el coste anual
de mantenimiento, calculandose ambos como un porcentaje
de la inversion

Inversion del diseno d del intercambiador u, para u,d €
U? x D,

Valor positivo que excede a la mayor diferencia de tempe-
ratura entre los diversos pares de corrientes del intercam-
biador de que se trate

Coeficiente global de transferencia de calor del intercam-
biador u, para u € UQ

Coeficiente global de transferencia de calor del intercam-
biador u para el disefio d, para u,d € U x D,

Probabilidad de que suceda el escenario g, para g € G

Observemos que: 29 Wy =1
ge
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%P, xP Vector de limites superior e inferior de las variables de
diseno reales

ig , 55 Vector de limites superior e inferior de las variables de fun-
cionamiento reales, para g € G

Variables:

Eudmei Desviacion en la ecuacion de ajuste de la variable endégena
i del ensayo e con el diseno d de la unidad de proceso u,
para u,d,m,e € UQ x Dy X Mug X Epdm

A, Area del intercambiador u, para u € UY

I, Inversién del intercambiador u, para u € UQ

F.. Caudal mdsico de la corriente ¢ en el ensayo e, para
u,d,c,e € UQ x D,C x Eug

Fy Caudal mésico de la corriente ¢ en el escenario g, para c,g €
Cx§

Qude Calor transferido en el ensayo e del diseno d de la unidad
(intercambiador) u, para u,d,e € UQ x D, X Euq

Qug Calor transferido en la unidad (intercambiador) u en el es-
cenario g, para u,g € U? x §

Tee Temperatura de la corriente ¢ en el ensayo e, para u,d, e €
UP x Dy X Eya

Teqy Temperatura de la corriente ¢ en el escenario g, para ¢, g €
Cx§

Ucelg 0 < Ueerg < 00, variable auxiliar utilizada en una ecuacién
en la que intervienen las corrientes ¢ y ¢’ en el escenario g,
para c¢,d/,g € Cx {€C—c} x§

xP Vector de variables de disefio reales (que toman valores con-
tinuos)

xg Vector de variables de funcionamiento reales (que toman
valores continuos) del escenario g, para g € §

yP Vector de variables de disefnio binarias (que toman valores
061)

yg Vector de variables de funcionamiento binarias (que toman
valores 0 6 1) del escenario g, para g € §

Y, Y, € {0,1}, variable binaria que indica que la unidad u
existe (Y, = 1) o no (Y, = 0) en la solucién del modelo,
para u € U9

Yud Yua € {0,1}, variable binaria que indica que la unidad u
(si, Yua = 1) 0 (no, Y,4 = 0) existe y tiene el disefio d en la
solucién del modelo, para u,d € U x D,
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Yudmg Yuamg € {0,1}, variable binaria que indica que la unidad
u (si, Yyqg = 1) o (no, Y,q = 0) existe, tiene el diseno d
y funciona en el modo m en el escenario g en la solucién
robusta del modelo, para u,d,m,g € U? x Dy, x Myq x G

6 Los métodos de optimizacion

La fuerte no linealidad que en ocasiones tienen las unidades del proceso hace
que hoy dia no sea viable la optimizacién estocéstica no lineal para problemas
que excedan las dimensiones académicas. En el mejor de los casos nunca tendre-
mos la certeza de que el éptimo hallado sea global y no local. Si es posible, sin
embargo, transformar el modelo no lineal en uno lineal entero mixto, no sencillo
de resolver por el gran ntimero de variables binarias que aparecen. Nos pueden
prestar gran ayuda en esta tarea aplicar, ademds de las técnicas que estan habi-
tualmente disponibles como la ramificacién y limitacién, la de planos secantes, y
las heuristiccas de generacion de columnas, y la de relajar y fijar. Técnicas de
descomposicién como la de Benders y la lagrangeana aumentada nos permiten
paralelizar los calculos acortando tiempos de proceso.

En [13], [8], [4], [17], [30], [32], [31] encontramos amplia informacién sobre
técnicas de programacion lineal entera mixta.

En [16], [2], [20] hallamos técnicas de optimizacién estocdstica.

7 Conclusiones

Tener en cuenta la incertidumbre existente a la hora de disenar un proceso nos
proporciona una solucién con mas garantias de éxito durante su futuro funciona-
miento que la proporcionada por los métodos deterministas de corte tradicional,
en los que consideramos como maximo el escenario base y uno o dos pesimistas y
optimistas.

Basar el modelo en técnicas de programacién matemaética estocéastica lineal
entera mixta es un camino que nos permite hoy dia llegar a una buena solucién
en casos reales de grandes dimensiones.
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1 Introduction and Motivation

Long-term generation planning is a key issue in the operation of an electricity
generation company. Its results are used both for budgeting and planning fuel
acquisitions and to provide a framework for short-term generation planning.

The long-term problem is a well-known stochastic optimisation problem be-
cause several of its parameters are only known as probability distributions (for
example: load, availability of thermal units, hydrogeneration and generations
from renewable sources in general).

A long-term planning period (e.g., a natural year) is normally subdivided
into shorter intervals (e.g., a week or a month), for which parameters (e.g., the
load-duration curve) are known or predicted, and optimized variables (e.g., the
expected energy productions of each generating unit) must be found.

Predicted load-duration curves (LDC’s) — equivalent to cumulative probabi-
lity load distributions — for each interval are used as data for the problem, which
is appropriate since load uncertainty can be suitably described through the LDC.
The probability of failure for each thermal unit is assumed to be known.

Bloom and Gallant [3] proposed a linear model (with an exponential number of
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inequality constraints) and used an active set methodology [18] to find the optimal
way of matching the LDC of a single interval with thermal units only, when there
are load-matching and other operational non-load-matching constraints. These
could be, for example, limits on the availability of certain fuels, or environmental
maximum emission limits. The optimal loading order obtained with Bloom and
Gallant’s method may include permutations with respect to the merit order and
splittings in the loading of units [3, 14]. In this way the energies generated satisfy
the limitations imposed by the non-load-matching constraints while having the
best possible placement, with respect to generation cost, in the matching of the
LDC.

When the long-term planning power problem is to be solved for a generation
company operating in a competitive market, the company has not a load of its own
to satisfy, but it bids the energies of its units to a market operator, who selects the
lowest-price among biding companies to match the load. In this case, the scope
of the problem is no longer that of the generation units of a single generation
company but that of all units of all companies biding in the same competitive
market, matching the load of the whole system. This makes planning problems
much larger than before and is a reason for developing more efficient codes to
solve them.

The Bloom and Gallant model has been successfully extended to multi-interval
long-term planning problems using either the active-set method [18], the Dantzig-
Wolfe column-generation method [8, 23], or the Ford-Fulkerson column-generation
(FFcg) method [9, 21]. The FFcg and the Dantzig-Wolfe procedures have many
common steps. The model has also been coded using the modeling language
AMPL [10] and has been solved with a linear/quadratic programming package
Cplex 7.5 [5] as carried out in [20] for a single interval.

A quadratic model is put forward here to formulate the long term profit maxi-
mization of generation companies in a liberalized electricity market [19] and the
performance of several solutions procedures for solving this problem is compared
[22].

2 The load-duration curve

The LDC is the most sensible way to represent the load of a future interval.
The main features of an LDC (corresponding to the 72 interval) can be described
through 5 characteristics: the duration T?, the peak load power ﬁ"’, the base load
power P°, the total energy E' and the shape, which is not a single parameter
and is usually described through a table of durations and powers, or through a
function.

The LDC for future intervals must be predicted. For a past interval, for which
the hourly load record is available, the LDC is equivalent to the load over time
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curve sorted in order of decreasing power. It should be noted that in a predicted
LDC, random events such as weather, shifts in consumption timing, etc., that
cause modifications of different signs in the load tend to cancel out, and that the
LDC keeps all the power variability of the load.

3 Thermal Units

As far as loading an LDC is concerned, the relevant parameters of a thermal
unit are:

* power capacity: (C; for the 7' unit) maximum power output (MW) that
the unit can generate

x outage probability: (g; for the j® unit) probability of a unit not being
available when it is required to generate

* linear generation cost: (f; for the & unit) production cost in € /MWh
Other associated concepts are:

* merit order: units are ordered according to their efficiency in generating
electric power (€ /MWh); all units will work at their maximum capacity
since no unit should start to generate until the previous unit in the merit
order is generating at its maximum capacity,

* loading order: units will have load allocated to them in a given order;
loading order and merit order may not coincide when there are other cons-
traints to be satisfied.

4 Matching the load-duration curve

Due to the outages of thermal units (whose probability is >0), the LDC does
not coincide with the estimated production of thermal units. It is usual for the
installed capacity to be higher than the peak load: 2?21 C;>P.

The generation-duration curve is the expected production of the thermal units
over the time interval to which the LDC refers. The energy generated by each
unit is the slice of area under the generation-duration curve which corresponds
to the capacity of the thermal unit.

The probability that there are time lapses within the time interval under
consideration, where, due to outages, there is not enough generation capacity
to cover the current load, is not null. Therefore, external energy (from other
interconnected utilities) will have to be imported and paid for at a higher price
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than the most expensive unit in ownership. The peak power of the generation-
duration curve is Z;;l C;+P and the area above power Z?ll C; is the external
energy.

4.1 Convolution method of finding the generation-duration
curve

The loading of thermal units in an LDC was first formulated in [1] and prac-
tical procedures to compute the expected generation can be found in [26]. Analy-
tically, given the probability density function of load p(x), the cumulative load
distribution function Lo(z) (see Fig. ??) is calculated as follows:

Lo(z) =1~ /:p(y) dy

e L)

power(MW) power(MW)
x ; x

a1
)

T
L(x) £ P

Fig. 1 Probability density function of load p(z) (left), and cumulative
load distribution function Lo(z) (right).

The method calculates the production of each thermal unit, given a loading
order. The load is modeled through its distribution Lo(z), which is the probability
of requiring x MW, or more. Let:

C; : maximum power capacity in MW of unit j
g; : outage probability of unit j
1—g¢; : in-service probability of unit j

U; : set of unit indices 1,2,...,7

Ly, _,(z) : probability distribution of uncovered load after loading units 1,2, ...

Ly,(x) : probability distribution of load still to be matched after loading
units 1,2,...,5 — 1,7
x : load in MW

the convolution computes Ly, (x) from Ly, _, (z) as [1, 26]:
Ly, (x) = q; Lu;_, (x) + (1 — ¢;) Lu,_, (z + Cj) (8.1)
Recalling that E=P-T, the expected energy generated by unit j is [1]:

Cj
E; =(1-g¢,) T/o Ly, ,(x)dz . (8.2)
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4.2 Unsupplied load after a set of thermal units is loaded

Let Lo(z) be the cumulative probability distribution of the power load corres-
ponding to the LDC. It is not difficult to derive that, given a set of units whose
indices 1,2, etc. are the elements of the set of indices €2, the unsupplied load after
loading all the units in  will have a cumulative probability distribution Lq(z)

Lo(@) = Lo(@) ] am+ > Loe+> ) [[-a) [[ @) (8.3)

me UcQ ieU icU 1€Q\U

We can thus say that the cumulative probability distribution Lq(z) of the
unsupplied load is the same no matter the order in which the units in 2 have
been loaded.

The unsupplied energy W(2) is computed as:

~

5
W(Q) =T /0 Lo(z) do (8.4)

The integration in (8.4) is to be carried out numerically.

5 Bloom & Gallant’s model for matching the load-
duration curve when there are non-load-matching
constraints

Let the Bloom & Gallant formulation (for a single interval) [3] be given by:

ny+1

1%1]_11 jz::l i E; (8.5)
subject to SNE<E-WU) YUCQ={l,....,n,}  (86)
jeU
As E> R> (8.7)
A_E=R_ (8.8)
Nnay+1
> E=E (8.9)
j=1
E;>0 J=1,.. ng,n, +1 (8.10)

where:
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ny,+1 : index representing the external energy
n> : total number of non-load-matching inequality constraints
A> : €R"™2*" matrix of non-load-matching inequality constraints
R> : rhs of non-load-matching inequality constraints
A_ : €R"™=*" matrix of non-load-matching equality constraints
R_  : rhs of non-load-matching equality constraints

U : subset of Q
W(U) : unsupplied energy after loading all units j € U C Q

The objective function (8.5) can be simplified using (8.9), which leads to:

Ny

Y fiEj+ faE where fj=fj— a1
j=1
with fnuHE being a constant.

5.1 The case where no constraint (8.7) is active

Constraints (8.7) and (8.8) are the non-load-matching constraints. The Ap-
pendix of [14] contains a proof that the merit-order loading energies correspond
to a minimum of the formulation (8.5-8.10) when there are no active constraints
(8.7) and in case that there should be no non-load-matching equality constraints
(8.8).

Assuming that units are ordered in order of merit, the active constraints at
the minimizer of the set of inequalities (8.6) would be:

Ei= E-W(1)
Ei+E,= E—-W(1,2) (8.11)
Ei+Ey+Ey= E—-W(1,2,3)
Ey+Ey+Es+...+E, = E-W(1,2,...,n,)

5.2 The case with equalities (8.8) or where a constraint
(8.7) or nonnegativity bound (8.10) is active

In this case, the equalities (8.8) or at least one of the constraints in (8.7) or
nonnegativity bound (8.10) will be active, which means that at least one of the
active constraints in (8.11) will not be satisfied as an equality.

5.3 The multi-interval Bloom and Gallant model

As power planning for a long time period cannot take into account changes
over time of some parameters, the time period is subdivided into shorter intervals
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in which all parameters can be assumed to be constant. We will use superscript
* to indicate that variables and parameters refer to the it interval.

Therefore some constraints refer only to variables of a single interval, while
others may refer to variables in several intervals. E.g., constraints on the minimum
consumption of gas may affect several or all the intervals, while emission limit
constraints, or the constraint associated with the units composing a combined-
cycle unit refer to each single interval.

The overhauling of thermal units must be taken into account. Therefore, there
will be intervals where some units must remain idle. The set of available units
in each interval may be different. Let Q° be the set of available units in the it®
interval, and let nf, be ni=|Q¢| (the cardinality of this set).

The Bloom and Gallant linear optimization model extended to n; intervals,
with inequality and equality non-load-matching constraints, can thus be expressed
as:

NG Ny
min ) ) SE (8.12)
i=1j=1
subject to: ZEJ’ <E-W{U) YUCQ i=1,...,n; (813)
jeu
ALE' > RL i=1,...,n (8.14)
> AYE > RS (8.15)
i
AL F' = RY i=1,...,n (8.16)
Z AYE' = RY (8.17)
i
Ei>0  j=1,...n i=1...,n (8.18)
where:
(S €R™ ™ matrix of inequalities that refer only to interval 4
A% €R":*™ matrix of inequalities that refer to more than one interval
Lo €R™> rhs of inequalities that refer only to energies of interval ¢
RY €R™® rhs of inequalities that refer to more than one interval
AL eR™=*" matrix of equalities that refer only to energies of interval i
A% €R™ X" matrix of equalities that refer to more than one interval
R.  : €R"™= rhs of equalities that refer only to energies of interval i
RY €R™ rhs of equalities that refer to energies of more than one interval
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The number of variables is now Y ;“n! and there are > ;*(2":—1) load-
matching constraints plus n—=n2 +>, n’ non-load-matching equalities, and n> :n0>—|—zi nd
non-load-matching inequalities. Note that supraindices 0 indicate constraints -
which affect variables of more than one interval.

Should constraint sets (8.15) and (8.17), which are the multi-interval cons-
traints, be empty, the problem would be separable into n; subproblems, one for
each interval. Otherwise a joint solution must be found.

5.4 Approximate model of long-term hydrogeneration

The long term model described is appropriate for thermal generation units but
not for hydrogeneration, which requires additional variables to represent the va-
riability of water storage in reservoirs and discharges necessary for the calculation
of the hydroenergy generated.

A coarse model of hydrogeneration, which does not consider any of the reser-
voir dynamics, can be employed. All or a part of the reservoir systems of one or
several basins are considered as a single pseudo-thermal unit H with cost fg=0,
outage probability ¢g=0 and capacity Cy (normally lower than the maximum
installed hydropower capacity), with a constraint binding the intervals’ hydroge-
nerations over the successive intervals so that they add up to a total expected
hydrogeneration RY; for the whole period:

> Ey =Ry, (8.19)

6 Long-term maximization of profit in a “com-
petitive” market

In the classical electricity markets, utility companies have both generation and
distribution of power. These companies have their own load to supply, correspon-
ding to their clients plus other contracts, and try to minimize their generation
cost. In “competitive” electricity markets, generation companies have no distri-
bution, and therefore no load of their own. Generation companies must bid their
generation to the market operator and a market price is determined for each hour
by matching the demand with the generation of the lowest bids. Generation com-
panies are no longer interested in generating at the lowest cost but in obtaining
the maximum profit, which is the difference between market price and generation
cost for all accepted generation bids. In long-term operation all accepted bids in
a time interval (a week, or a month) must match the LDC of this interval.

There is no specific load to be matched by a specific generation company
(SGC). The only known loads are the predicted LDC’s for the whole market in
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each interval. As all generation companies pursue their maximum profit, it is
natural to attempt to maximize the profit of all generation companies combined.

The SGC must thus solve the problem of the maximization of profit of all
generation companies, taking into account the total market load. The SGC should
introduce its own operation constraints (fuel and emission limits, contracts, etc.)
and may also introduce a market-share constraint for its units in one or several
intervals. (The Lagrange multiplier value of this constraint will tell whether the
market share imposed, though feasible, is reasonable or not.) The long-term
results will indicate how the SGC should program its units so that its profit be
maximized while meeting all its operation constraints.

6.1 Long-term market price function of a given interval

From the records of past market-price and load series (see Fig. ??) it is possible
to compute a market-price function for a given interval. This function is to be
used with expected generations that match the LDC of the interval, so market
prices should correspond in duration with the duration of loads, from peak to
base load in the interval.

1140
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Fig. 2 Hourly loads (continuous curve) and market prices (dashed).

Both the load and the market price series should be reordered in decreasing
load order obtaining a LDC and a price-duration curve that corresponds to the
loads in the LDC. The price-duration-curve obtained will be nonsmooth and may
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even be nondecreasing (see Fig. ??7). However, fitting a straight line or a low order
polynomial to it, a decreasing line or function will generally be obtained. Given
the variability of the price-duration curve, it seems reasonable to fit a straight
line to it. Let b* and I be the basic and linear coefficient of such line for the it
interval. (Predictions of b’ and I* could be obtained taking into account both the
series corresponding to the same interval in several successive years and that of
successive intervals.)

6.2 Maximum profit objective function

In order to determine the maximum-profit objective function, a simplifying
assumption is convenient regarding the shape of the unit contributions in the
generation-duration curve. Instead of having some units (particulary those with
the lowest loading order) with an irregular shape in its right side, it will be
assumed that the contribution of all units will have a rectangular shape with
height C; (for unit j) and base length E;/Cj as in Fig. 4.

a 3 ~ @ © =
S 3 =] 3 S S
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price (Eur/MWh)
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load (MW)

@
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Fig. 3 Market prices ordered by decreasing load power (thin con-
tinuous curve) in weekly interval, market-price linear function (thick

line), and LDC (dashed).

The profit (price minus cost) of unit j in interval ¢ will be:

%

E;/C; S R .
/ Ci{b" + 1"t — f}dt = (b' — f;) E} + 2C‘E;2
0 J
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and adding for all intervals and units, taking into account the external energy
and using (8.9) we get the profit function to be maximized:

Uz n .
i u i ; l?, i 9 N "i
Ei: [;{(b — 1) Ej + 2—qu } - fnu+1E:| (8.20)
with fj:fjffzu_s_l, which is quadratic in the generated energies. Given that

MW

20000 %,

15000

10000

5000 120

0 ¢ "50 "100 150 T 200h

Fig. 4 Long-term price function for a time interval and contribution
of j& unit.

fnuHEi is a constant, the problem to be solved is:

. - i\ i I i
min Zi:zj:{(fjb)EjQCjEﬁ} (8.21)

subject to: > EI<E —W'U) YU CQ i=1,...,n (822

JjeU
ALE' > RY i=1,...,n (8.23)
> AYE' >R (8.24)

%
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AL F' = RL i=1,...,n (8.25)
ZAO;‘EZ‘ZRO: (8.26)
Ef>0  j=1,..ny i=1,...,n; (8.27)

It should be noted that, should all b* and I* be zero, the solution of the
maximum profit problem (8.24) would be the same as that of the minimum cost
problem (8.12-8.18). Otherwise, the cost of the maximum profit solution is higher
than that of the minimum cost solution.

Given that I°<0, the quadratic of the objective function of (8.24) is positive
definite, thus problem (8.24) has a unique global minimizer.

7 Coding the load-matching constraints

The main difficulty of the direct solution of the Bloom and Gallant model is the
exponential number of load-matching inequality constraints (8.13). These cons-
traints are avoided in the application of the Ford-Fulkerson [22] or the Dantzig-
Wolfe column generation method [23, 21, 22|, or are generated as they are required
in the active set method [18]. In a direct solution by linear or quadratic program-
ming all n; x (2™ —1) constraints must be explicitly created.

Leaving aside the storage and processing time for these many load-matching
inequality constraints, their creation has two parts: the linear coefficients, which
is fast [19], and the rhs’s, which is very time consuming as it requires lots of
calculation.

For each interval 7 and for the units of each subset U of the set Q¢ we must
first calculate L}, (x) starting from L{(z) by successive convolution for all units j
in U using (8.1), and then compute

’ﬁi
E'-WYU)=E"— Ti/ L (z)da
0

using numerical integration. This means a lot of arithmetic operations.

8 The Ford-Fulkerson column-generation method
applied to the multi-interval problem

Constraints (8.22) and (8.27) define, for each interval, a convex polyhedron

whose vertices can be easily calculated. To apply the Ford-Fulkerson procedure,

energies £'€R™ must be expressed as convex combinations of all vertices Vi of
the 7 interval polyhedron:

Ei=ViAl, VieR™M  Ai>0, TA=1 Vi
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I'=[1 1 ... 1 ] being the all one vector.

The number ni, of vertices of one such polyhedron is very high as the number
of constraints (8.22) that define it, jointly with the nonnegativity bounds (8.27),
is exponential: 2™+ (which is over a million for n,=20). Note that no account is
made of extreme-rays as the nature of the constraints and nonnegativity bounds
prevents these. ‘

Subtracting surpluses S"ERME, i=0,1,...,n; in the inequalities, problem (8.21
8.27) can be rewritten as:

" R
z _ 2\/ ZA’L _AZ (3 X3 lA’L .2
o ;{(f YVIAT+ SATVEQY } (8.28)
subject to: TA=1 i=1,...,n; (8.29)
ALViAl = RE o
> AV VA =RY (8.31)
=1
> ALVVIA -5 =RY (8.32)
i=1
S>>0 S>>0, A'>0 i=1,...,n;. (8.33)

which is quadratic in A* and lends itself to being solved by the column-generating
method of Ford-Fulkerson [9].

The convex coefficients AieR"i/, 1=1,...,n; and the surpluses SieR™> ,1=0,1,...

of the inequalities are the variables in the problem. In (8.29-8.33) there are linear
equality constraints and non-negativity bounds only.

9 Murtagh and Saunders algorithm using a Co-
lumn Generation procedure

Given a problem such as (8.28-8.33) we apply the Murtagh and Saunders
algorithm [12] using the column generation procedure. The outline of the method
is:

0.- k := 0; Given an initial feasible point Ag, Sy, classify each variable as basic,
superbasic or nonbasic. Let ny be the number of superbasic variables.

1.- Compute the projected gradient, || Z'G||
2- || Z'G|| <€
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- Compute the Lagrange multipliers X of the active non-negativity bounds.
- Look for a constraint ¢;, having a negative multiplier, o; < 0
- If there is any o; < 0 then
-ny=ny+1
- Update ||Z'G||
else
END

3. If |Z/G| > e

- Compute a descent direction for the basic and superbasic variables, dj,
- Determine the step length, ay,
- Update the variables:
- Apyq = A + agdy,
- Skt1 = Sk + agdg,
- Update the basic, superbasic and nonbasic sets

- k:=k+1; go to step 1.-

9.1 Obtaining an initial feasible point

Obtaining a feasible point is not trivial when there are non-load-matching
constraints.

As with the active set methodology [18], the feasible point is obtained from
a point satisfying only the load-matching constraints of all intervals and adding
one constraint at a time, plus either a non-zero surplus for the constraint added
or a new vertex, until all constraints are satisfied. The details of this process can
be found in [21].

9.2 Variable classification

In an active set methodology (such as Murtagh and Saunders is), the active
constraints at a feasible point Ay, Sy are either general linear constraints or simple
bounds. R

At a typical iteration, the matrix of active constraints A will contain all the
general linear constraints and an additional set of rows of the identity matrix that
corresponds to variables at zero.

It is important to mention that in this problem there are only lower (non-
negativity) bounds because the upper bound 1 for the convex coefficients )\}; is
implicit in the convexity constraints (I'A* = 1 Vi).
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As we are in quadratic programming, there is no a priori number of fixed va-
riables. Let ny denote the number of fixed (=0) variables at the current iteration.
Then the constraints matrix is (conceptually) partitioned as follows

1 I f I f I
av, | © av, | O v, o
B= U= N=
A Vg - ﬂ-\a AVy L ﬂ\y AV - ﬂ\N

Fig. 5 General constraint matrix partitioned into basic, superbasic
and nonbasic matrices.

The np x np (where ng = n= + n> + n;) “basis” matrix B is square and
non-singular, and its columns correspond to the basic variables. The ny columns
of N correspond to the nonbasic variables (those fixed at 0). The ny = (ny +
n>) —npg — ny columns of the U matrix correspond to the remaining variables,
which will be termed superbasic.

9.3 The projected gradient

A necessary (but not sufficient) condition to be at the optimizer is that the
projected gradient vanishes:
1Z'Gl < €

We define the matrix of the null space Z, such that AZ = 0, as

-B~U
Z = 1
0
1 is the identity matrix of size ny, number of superbasics.
G is the gradient of the objective function. As we are dealing with a quadratic
function, the gradient at the point Ay, Sk for each group of variables is:

“Grp = (f = b)' Ve +VEQVBAR + VEQVuAy + VEQVNAN Gsp =0

: GAU = (f - b)/VU + V[}QVBAB + VL/;QVUAU + V[}QVNAN GSU =0

“Gay = (f=0)VN + VRQVEAE + Vi QVuldy + Vi QVNAN  Gsy =0

The terms where Ay appears, vanish because Ay = 0. The final expression
of the projected gradient is as follows:

Z'G=Gy -UB VGp =Gy - Ul (8.34)

where G and Gy refer to the gradient with respect to the basic and superbasic,
G n to that of the nonbasic, and II comes from solving system B'Il = Gp.
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9.4 Computation of the multipliers and generation of new
vertices
The overdetermined system A’ 1;][ = G is compatible when Z’G = 0. The

!
detailed subsystem { B 1 } { I } = [ G } is:

N’ b Gn
I - 1T
(A=VB)" | (A>VB)' 0 -
TA= Gs
I
0 _TB TA>
I | =
(A_Vx)' | (AsViy)’ 1 G
>
I
0 1y L 1L

(8.35)

for [Ty € R™ which are the multipliers of the convexity constraints, and 114 €
R"=""> which are the multipliers of the non-load-matching constraints. This
calculation is already performed in the projected gradient computation (8.34).

From the equations that yield the multipliers ¥ two possible types of equation
follow. Either:

AU (AT +oh =Gy, i=1,...,n (8.36)

hence (recall that Gy, = (f — b")'viy;, + Vi Q@ VEAN, + i, Q VEAL):
. = ((f =0") + Q'VEAL + Q'ViAy — (A'TL4)") viyy, — 3 (8.37)
i.e., there is a nonbasic vertex of interval ¢ if 0};<O, and this will be so if for the

modified costs ]?l = (=) +QVENL+QViAL — (A'T14)" the vector of energies
vl yields a cost lower than 7% .
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The other equation we obtain from the ¥ equations is:

—mirtor=0 — o.=7, i=0,1...,n (8.38)
which tells that the surplus 312 x 1=1,2,...,7n;,0 will become superbasic (relaxing
the active constraint A% ;) whenever 7%~ , <0.

The problem of finding a (nonbasic) vertex v}Vk loading order, and compute
the elements of vy, by successive convolution (8.1) and integration (8.2). (And

-~ . .

checking whether f* vl <m} for some interval i.)

It is in the calculation of vertices that the nonavailability of units — by pro-
grammed overhauling during the interval — is taken into account.

9.5 Finding a descent direction

If we have not reached the optimizer, we must find another feasible point
that decreases the objective function value. As we are dealing with a constrai-

-B7U
ned problem, a feasible direction is d = Zp,, for any p,: d = 1 p, =
0
—B~'Up. dp
P = | dy | where the nonbasic variables do not change their va-
0 dn

lue. The projected gradient direction, p, = —Z’G’, can be employed or Newton’s
method:
Z2'HZp, = -7'G’ (8.39)

where H = V/QV is the Hessian matrix.

Our computational experience is that the projected gradient direction has a
poor convergence. Newton’s direction is computationally harder to obtain but is
much more efficient. When the step length applied is 1, only one iteration is re-
quired to achieve || Z'G’|| < e. However, the computational experience shows that,
when applying a step length of 1 using Newton’s direction, sometimes rounding
errors make necessary more than one iteration.

9.6 Computation of the step length

Given a feasible point Ag, Sy and a direction dj, we choose a new point
as Apt1 = Ap + agdp, and Ski1 = Sk + agds, where dp, and dg, are the
components of dj related to Ay and Sy respectively. The optimal step length

=Gy, da,

T @ VIQVdy,
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should be aj = 1 if we use Newton’s direction. o} may lay beyond the upper
limits due to the basic and superbasic variable change.
The variables must be nonnegative, thus:

A . i S7 . i
e — mf Bk ] Bk J
aBk—mln{‘dj le|dABk<0,|dj ‘Vj‘dSBk:<0}
ABk SBk
Ay = min{ 22 Vi | &, <0, S Vi | dl <0}
ayr = min{ — J | dyg. ) 3 J | ds,,
ldy | lds . |
AUk Suk

The step length is ar = min{@py, @y, o) }. Depending on which one gives
ag, changes in the basic, superbasic and nonbasic sets may occur.

9.7 Changes in the variable sets

this section we will use variable both to refer to A or to S) reaches its bound.
In the first case, where all step length can be done, any change in the basic,
superbasic and nonbasic sets is needed. In the second case, when some variable
limits the step length, there are some changes in the groups.

Also, each variable is upper bounded by 1, but we do not have to take care
about this because there are the coefficient convexity constraints (3 A* = 1 Vi)
explicitly in the model.

nonbasic set. No more changes happen. basic set is defined as a set of varia-
bles related to columns of the constraints matrix which form a base. For so, a
superbasic has to be chosen in order to belong to the basic set.

Should aj, be o, = af, no changes occur in the working set. Should «j, be
o = Qyk, a superbasic variables becomes zero and changes to nonbasic.

The case of ap = a@pj is more complicated because a basic variable becomes
zero, and changes to nonbasic while a superbasic variable changes to basic to
substitute it. The new basis has to be refactorized.

In theory, the superbasic chosen to be basic has only to be linearly independent
from the remaining basics. In practice, sometimes we can get stuck without any
apparent reason.

9.8 Choosing a superbasic variable to enter the basis

choosing one of them but not all of them work properly. Not only we have
to get a new basis (so the column related to the new basic must be linearly
independent from the older ones) but also the condition number of the new B
should be low enough.

the direction and multipliers computations, both crucial for the suitable on-
going of the algorithm).

The choice of superbasic to enter the basis is important for the solution accu-
racy and convergence. It is convenient to keep the condition number of B as low
as possible in order to get accurate calculations of IT and dp.
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Once known the basic variable [ that leaves the basis, which of the superbasic
ones will perform better?

The new basis B will be as the former one B except the leaving column [.
The change using an n matrix, can be expressed

B = Bn
different from the unit matrix is in position .

1 w1
1 w2

wy

Wh, 1

with the components w; obtained from the vector w that solves Bw = U.. U,
being the entering column of the superbasic set. It is easy to find an upper bound
to the condition number of the new basis:

cond(B) < cond(B) - cond(n)
The eigenvalues of n are all ones except w;, thus its condition number is

_ 1fwl§1 —>1/w1
cond(n) o { ifw; >1 — Wy

The calculation of the Ith row of B~1U is at no cost if using Newton’s direction,
since the explicit calculation of the upper part of Z is required.

9.9 Management of the nonbasic set. Differences between
Ford-Fulkerson algorithm and Dantzig-Wolfe algorithm

The main advantage of the column-generation procedure is that vertices (co-
lumns) are only generated when they are required. The basic and superbasic
vertices have to be generated and stored properly. At the beginning, there is no
nonbasic vertex but as the procedure evolves some nonbasic vertices are known.
We can do two things with them: get rid of them or store them (and in a next
iteration any known nonbasic vertex can become superbasic again).

The version in which the known nonbasic vertexs are deleted is called the
Ford-Fulkerson algorithm (FF) and the one that keeps them is called the Dantzig-
Wolfe algorithm (DW). In the DW algorithm, before generating a new vertex,
the multipliers of the known nonbasic vertices are computed and if there is any
negative, it is reentered as a superbasic. In the results section both methods are
compared.
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10 Computational results

10.1 Test cases

The characteristics of the test cases employed are summarized in Table 8.1.

The fourth column, Y, n'

u )

is the number of variables and the last but two co-

lumn contains Zi(Q”L — 1), which is the number of load-matching inequality
constraints. All cases except ltp06 correspond to a certain Spanish generation
company together with the rest of the Spanish power pool with a different de-
gree of desaggregation of the generation units; the loads satisfied are those of the
Spanish power pool. Case 1tp06 refers to the planning of a single German genera-
tion company considering only its own load. One or more pseudo-units represent,
in all cases, the hydrogeneration of one or several basins using the approximate
hydromodel of section 5.4.

Tabla 8.1: Test cases for long-term electric power planning

M (M| 305 | 20, n [ |30, s [nd || 30,2 -1 || X, Z;LuH f]E]Z
c’se o solver (€)
ltpOla {1113 140 0] 2 0] 2 79861 || Cplex 4837512292
ltpO1b || 11|13 140 0] 2 1| 4 79861 || Cplex 4854704625
ltp02a || 11|15 162 0] 2 33| 3 319477 || Cplex 3587429530
ltp02b || 11|15 162 0] 2 34| 5 319477 Cplex 3622023526
ltp03a || 11| 17 183 0 2 54| b 1245173 Cplex 3580260681
Itp03b||11| 17| 183 0] 2 55| 7 1245173 || Cplex 3624657306
ltp04a || 11| 18 193 0] 2 64| 6 2457589 || Cplex 3579624419
ItpO4b (|11 18 193 0 2 65| 8 2457589 || Cplex 3624160513
Itp06 ||15|29| 416 0] 1 15| 3||3758096369 || ac.set 1070527267

Market-share constraints can be imposed. Cases whose name ends with “a”
do not have any market-share constraint imposed. Cases ending with “b” have
market-share constraints associated to the units of the SGC imposed and active.

As mentioned earlier, the purpose of these problems and computational tests

is twofold:

e to test the models developed, described in this work, and to observe the
influence of several parameters associated with the models, and

e to have reliable results (obtained with a reliable code for linear and quadra-
tic programming: Cplex 7.5) for the problems posed with which to check
alternative specialised algorithms to solve the same problems, specifically
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the Dantzig-Wolfe and Ford-Fulkerson column generation algorithms, the
active set algorithm, and other algorithms to be developed.

10.2 Performance of the Ford-Fulkerson procedure and com-
parison with the active set method

Tabla 8.2: Comparison of the active set, and the Ford-Fulkerson column genera-
tion method

active set method Ford-Fulkerson cg Cplex 7.5
feas.|total| time|dig.|| feas.|total|time| ver.| ver.|dig.|| total| time| rhs
case ||iters.|iters.| (s)| ag.|/iters.|iters.| (s)|gen.|opt.| ag.|| iters.| (s)| (h)
ItpOla| 193| 246| 6.6 10 21| 79| 7.2 147 15| 10| 781| 1.3| 0.44
Itp01b|| 239 312] 9.0 9 21| 224]16.4] 396 18| 9| 2354| 2.35| 0.44
Itp02a| 450| 642| 62.5| 10|| 128| 357|14.4| 254| 20| 10| 3285| 11.0| 2.28
Itp02b|| 513| 734| 80.1| 9|| 128| 516{16.1| 293| 24| 10|| 7646| 16.9| 2.28
Itp03a|l 672| 964|197.1| 10|| 310| 831|20.5| 348| 23| 10||12622| 56.8| 9.52
1tp03b|| 781|1096(348.0| 9|| 310|1213|21.6| 354| 33| 9(|23213| 86.2| 9.52
Itp04a| 938|1233|508.2| 10| 400| 796|23.7| 383| 25| 9|[17447|115.1|19.27
1tp04b|| 1075| 1404|756.6| 10| 400|1768|38.5| 603| 45| 9|/42785|212.0/19.27
1tp06 || 1803|2646| 24.3| —|| 51| 585| 5.0/ 466| 31| 10|| n.a.| n.a.| n.a.

Both the active set and the FFcg methods require a considerable number of
iterations to reach a feasible solution. Their numbers appear under the heading
“feas. iters.” (feasibility iterations) in Table 8.2; the number of iterations to
achieve the optimizer is shown next. After that, the required CPU time, and the
number of figures of agreement of the objective function value with that obtained
with a different solver are shown, as indicated in the last two columns of Table
8.1. The last three columns in Table 8.2 show the results obtained using an
AMPL plus Cplex 7.5 solution [19], the last column giving the long computation
times required, in hours(!), to have the rhs’s of the Y_,(2"«—1) load-matching
constraints (8.13).

Several conclusions can be drawn from the results of Table 8.2. The first
is that the FFcg method is quicker to get to the solution and that the rate of
increase of the time required with problem size is lower in the case of FFcf than
with the active set or the direct linear programming solution.

The next issue is precision. Direct linear programming, the active set method
and the FFcg procedure reach practically the same optimizer (the number of
agreement digits of these methods’ solution is 9 or more for all cases). Four
agreement digits would be fairly acceptable from an engineering view-point, given
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that many data in this problem are approximations or predictions. Therefore
it could be thought that the optimization process could be stopped when the
objective function does not change in the first five or six figures over a number
of iterations. It must be borne in mind that the active set method for a linear
program behaves like linear programming, and obtaining the right set of active
constraints produces exactly the same optimizer. However, the FFcg procedure
generates the optimizer as the convex combination of vertices of the polyhedrons
of feasible points (one for each interval in long-term power planning). Thus the
calculation of the optimizer, and its objective function value, requires many more
arithmetic operations. The column with header “ver. opt.” contains the number
of vertices at the optimizer. On average, we have 2 vertices for each interval.

Through the -pg option in the Fortran compilation of the programs and the
standard Unix program gprof (profiling), it is possible to analyze where the
CPU time is spent during execution. It was found that most of the execution
time of the active set implementation (over 90%) went to calculating the rhs’s of
the new active constraints tried and, on average, about 20 new constraints are
tried per iteration. With the FFcg implementation almost as much computation
(about 80%) is due to calculating new vertices, which involve the same routines
of convolution and integration as the calculation of the rhs’s. However in the
FFcg the number of vertices generated per iteration is less than one, as in many
iterations a slack variable is made active, and the number of iterations required
has been always below that of the active set procedure.

It is not surprising that case 1tp06, though bigger than cases 1tp02 and ltp03,
and requiring more iterations than former cases, takes less time to convergence.
This is because the convolutions are much shorter in 1tp06 than in the other cases
because the load to be matched (of a single company in Germany) is much lower
than that of the Spanish power pool, and a uniform 1 MW step is taken for storing
the probability distributions of load still to be supplied, and for integration.

All test cases have been solved with two different objective functions: the
linear minimum cost (8.12) and the quadratic of maximum profit (8.20). The
linear cost problems have been solved using the linear programming code in Cplex
7.5 package [5], while for the quadratic profit problem the barrier separable QP
solver [27] in Cplex 7.5 package is employed, both through an AMPL [10] model
and data files. Prior to the solution, the rhs’s of the load-matching inequality
constraints (8.13) have been calculated using an separate program, whose required
CPU time is reported in the last column of Table 8.1. The calculated rhs’s are a
part of the AMPL data files used.

The solutions obtained with the Ford-Fulkerson column generation, which is
the most efficient [22], are compared with those obtained through AMPL plus
Cplex 7.5 quadratic programming and with Dantzig-Wolfe column generation..

The second column of Table 8.3 has the input times required by the AMPL
data files. These times are important because the data files, due to the rhs’s of
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Tabla 8.3: Comparison of AMPL plus Cplex, and the Dantzig-Wolfe and Ford-
Fulkerson column generation methods

AMPL plus Cplex 7.5 Dantz-WIL. || Ford-Fulk. column gen.

input| b gp| b. gp|obj. fun. (8.21)||D.W. F.F. obj. fun. (8.21)
case (s)iters. (s) (€)| ites.| (s)|ites.| (s) (€)
ItpOla|| 1.3| 34| 97.56 9552335013 289| 12.1|| 262| 11.6 9552335013
1tp01b 46| 55.09 0536489728|| 258| 9.1f| 240, 9.5 9536489725
ltp02a|l 5.69| 59| 183.5| 10986157177| 842| 41.4|| 629 36.5| 10986157163
1tp02b 56| 176.9] 10961049191|| 1248| 51.8|| 893| 44.1| 10961049198
Itp03a||24.47| 78/1020.3] 11004938184| 1321| 82.3| 957| 60.4| 11004938185
1tp03b 75| 977.7| 10977720297\ 1934| 97.4|/1341| 77.9| 10977720295
Itp04a||46.88| 87|4393.2] 11006374461 1423| 91.8|[1132| 79.1| 11006374462
1tp04b 116(5787.0|  10979064726| 2063|109.0||1545| 92.0| 10979064723
1tp06 1103|558.3|| 838|423.4 936301399

the load-matching constraints, are very large, e.g., the data file for case ltp04a is
over 100Mbyte.

It can be observed that the Ford-Fulkerson column generation proves to be
systematically more efficient in itarations and CPU time than Dantzig-Wolfe’s.
In the table, the enormous time required to calculate the rhs terms of the load-
matching constraints when using AMPL plus Cplex 7.5 is not included.

10.3 Solutions of long-term maximum profit planning and
comparison with the minimum cost solution

Tabla 8.4: Minimum cost and maximum profit solutions with an approximate
and linearized full hydromodel

It is clear from the results in Table 8.4 that the maximization of profit with

respect to the minimum cost solution brings about a greater increase in generation
cost than an increase in profits.

10.4 Effect of market-share constraints

Three market-share constraints have been introduced in cases whose name
ends with “b”: one for the first interval, one for the intervals corresponding to
the rest of the first year (intervals 2 to 7), and a third for the intervals of the
second year (8 to 11). These three sets of successive intervals will be referred to
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with the supraindices ?, I7 and 77 associated to the variables. The market-share

constraints refer to the units of the SGC, and force their generation to add up to
over a given percentage of the load in the corresponding intervals.

S>> E W™ E Ik I, 11, I, (8.40)

i€lk jeSGC iclk

which are of type (8.15), except set I (a single interval) which is of type (8.14).

The criterion employed to fix a market-share /% for the units in the set SGC
is based on the Lagrange multiplier values of the market-share constraints /¥
and the expected profit rate in the power pool r'*: total profit over total load.
The Lagrange multipliers AI¥ _ express the rate of change in pool profit due
to a market-share increase by the SGC. The reaction of competitor generating
companies to a market-share increase by the SGC would be proportional to the
resulting A2¥__/rF. Therefore, attainable market-shares are those that produce
a small enough value A% _ /7T In the cases reported in Table 8.5 the market-
shares p!* of the SGC have been pushed up until the ratio AL¥__/r!* was close
to but did not exceed %

Tabla 8.5: Effect of market share constraints on the profit of the SGC

pl AL oD [t NI I IID NIIT = T fotal profit|SGC profit
case || % % % (€) (€)
Itp0la|[3.75 0.0 3.36 0.0 3.44 0.0 9552335013| 263380937
Itp01b| 4.2 8.25 26.12|4.2 8.93 27.39| 4.2 8.24 25.10| 9538257985| 268453956
1tp02a(|1.85 0.0 1.94 0.0 2.2 0.0 10986157177 174506646
1tp02bl| 3.4 9.64 29.31| 3.3 10.24 31.12| 3.4 9.45 29.14(10963147542| 206313710
1tp03a|2.08 0.0 2.25 0.0 2.57 0.0 11004938184/ 205156894
1tp03b|| 3.6 9.58 29.35 3.6 10.14 31.17| 3.8 9.64 29.20/10981583153| 235282378
1tp04a|2.08 0.0 2.25 0.0 2.59 0.0 11006374461| 205051615
1tp04b|| 3.6 9.35 29.36| 3.6 9.84 31.18] 3.7 8.94 29.21|10985461774| 232575618

There are also cases whose name ends with “a” in Table 8.5. These cases
are the same as those ending in “b” but without the market-share constraints.
They are thus equivalent to having imposed a nonactive market share, lower than
the share the SGC gets in the solution. It should be noted that the market-
share constraints imposed slightly decrease the overall profit, but they noticeably
increase the SGC profit.
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11 Conclusions

e The long-term hydrothermal planning of the electricity generation problem
has been presented and an extension of the Bloom and Gallant model has
been put forward in order to solve it. multicommodity network flow model,
has been described and a comparative analysis with classical scenario based
stochastic programming has been presented. renewable energy sources) in
long-term planning has been described.

e A new way of formulating the long-term profit maximization of generating
companies in a competitive market has been described.

e An implementation of the Ford-Fulkerson and of Dantzig-Wolfe column ge-
neration procedures for solving a quadratic or a linear problem has been
presented.

e Implementation details of the solution with AMPL of the minimum cost
and the maximum profit long-term planning problems have been given.

e The computational experience with the Ford-Fulkerson and of Dantzig-
Wolfe column generation procedures and with AMPL plus Cplex 7.5 linear
programming and barrier quadratic programming has been reported. This
includes:

— The calculation of the rhs’s of the load-matching constraints for the
data files required by AMPL, which is extremely time-consuming, and
which is fairly time-consuming to be read in the solution process. This
lengthy calculation, requiring extremely long files to store the results,
makes this procedure impractical to use for real cases (where the num-
ber of units to consider may be well above one hundred).

— The solution of the minimum cost and the maximum profit long-term
problems.

— The comparison of the three procedures implemented for a set of real
cases, using the approximate hydrogeneration representation, showing
that the Ford-Fulkerson column generation is the most efficient, and
that AMPL plus Cplex 7.5 is not practical for big cases.

— The analysis of the effect of market-share constraints for a SGC in the
maximum profit solution.
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1 Introduccion

Los sistemas de energia eléctrica siempre han sido un campo habitual de apli-
caciones de optimizacién en general (véanse los articulos [5, 8, 12, 20] o el libro
[17]) y, en particular, de optimizacién estocdstica [7]. Después de la desregulacién
que estd ocurriendo en numerosos sistemas eléctricos surgen de nuevo oportuni-
dades de modelado resueltas mediante optimizacién estocastica.

En este capitulo se van a presentar varios ejemplos caracteristicos de planifi-
cacion y operacion de sistemas de energia eléctrica para cuya resolucién se utili-
zan frecuentemente técnicas de descomposiciéon. Existen numerosas referencias de
aplicaciones especificas, pero la presentacién que se realiza en este capitulo esta
orientada a mostrar los problemas de una forma didéctica eliminando o simplifi-
cando algunas de las complejidades que pueden encontrarse cuando se modelan
sistemas eléctricos reales especificos. Las dos primeras aplicaciones, planificacién
de la expansién de la generacién y programacion semanal, son clasicas en la lite-
ratura de sistemas eléctricos. La tercera, generacién de ofertas, corresponde a un
modelo especifico de programaciéon semanal para mercados eléctricos.

Por otra parte, la introduccién de la incertidumbre en el modelado de los pro-
blemas de optimizacién, incrementa el tamano de los mismos asi como la dificultad
de su resolucion. En este capitulo, se sugieren estrategias de descomposicion de
los problemas propuestos para abordar su resolucién numérica.
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2 Planificaciéon de la expansion de la generaciéon

Un modelo de planificacién de la expansién de la generacién o modelo de
inversion tiene por objetivo determinar la composicién éptima de las nuevas in-
versiones de generacién (denominada politica dptima) para satisfacer la demanda
de electricidad con el minimo coste total de inversién en las nuevas instalaciones
mas el coste de operacion de todo el sistema. Otras funciones objetivo alternativas
o complementarias pueden ser: medidas de fiabilidad del sistema, emisiones con-
taminantes, requisitos financieros [15, 19], etc. que pueden ser combinadas bajo
técnicas de decisién multicriterio. Las nuevas inversiones pueden estar originadas
por varios factores: la retirada de equipos al alcanzar su vida 1til, el crecimiento
de la demanda de electricidad, la aparicién de nuevas tecnologias competitivas
que reemplazan a las actuales, la evolucién de los costes de combustibles que in-
fluyen en los costes de operacién de los equipos actuales, etc. La influencia de
la demanda se produce no sélo por la energia total solicitada sino también por
la potencia méxima asociada. El modelo de planificacién que se presenta aqui se
orienta a entornos regulatorios tradicionales, aunque ya estdn surgiendo modelos
de expansién de la generacién para entornos desregulados [13].

Un modelo de planificacién de expansién de la generaciéon minimiza los costes
totales (fijos y variables) de expansién del equipo generador para un alcance de
varios afos t', t = 1,...,7. Un alcance razonable puede ser de 5 a 15 aflos. Se
trata de un modelo de planificacién dindmica, donde se considera explicitamente
la cronologia de las decisiones de inversion a lo largo del tiempo. Las decisiones
principales que se toman con ayuda de este modelo son la potencia a instalar de
cada tipo de generacion o generador en cada ano del alcance del modelo.

La demanda de electricidad tiene un comportamiento estacionario cuyo valor
varia a lo largo del tiempo. El modelado habitual en problemas de planificacion
utiliza la curva denominada duracién-carga o monotona de carga. La mondtona de
demanda de un ano ¢ se representa dividida en periodos p, p =1,..., P. Sea Dy,
la demanda de potencia de cada periodo p para cada escenario s2, s = 1,...,5,
siendo Prob® la probabilidad del escenario y sea Dury, la duracién de dicho
periodo. La demanda se supone constante en dicho periodo. Esto hace que el
problema de optimizacién sea lineal.

Por simplicidad, sélo se considera generacion térmica. El sistema de gene-
racién se caracteriza mediante un coste fijo, un coste variable y una tasa de
disponibilidad, que indica la proporcién del tiempo en que el grupo se encuentra
disponible. Sea F}; el coste fijo anualizado de inversiéon de cada generador candi-
dato 4,7 =1,...,I, a ser instalado, depende del ano de instalacién ¢; V,;; el coste
variable de produccién del generador en cada periodo y escenario y A; la tasa de

ISe utiliza el indice ¢ para la unidad temporal més relevante en este problema, tipicamente
el ano.

?Los escenarios pueden contemplar entre otros pardmetros (como se verd en la siguiente
seccién) las variaciones de la demanda o de los costes de combustibles a lo largo del tiempo.
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disponibilidad de cada grupo. El coste anualizado de inversién se calcula como
el coste total de inversién del equipo repartido a lo largo de su vida econdémica
teniendo en cuenta la tasa de descuento del dinero. Utilizando este coste anuali-
zado se simplifica el tratamiento de los efectos finales del modelo. Las tecnologias
o grupos a instalar dependen de los costes fijos y variables de cada uno de ellos,
de los costes de los combustibles y de las estrategias de abastecimiento energético
del pais. Los costes variables incluyen los costes de combustible méas los costes
variables de operacién y mantenimiento.

Las variables del problema seran la potencia a instalar de cada generador
en cada afnio del alcance del modelo zy; (son variables enteras) y la potencia de
operacién de cada generador en cada periodo y escenario pj,;. Obsérvese que
la potencia a instalar no depende del escenario, mientras que las potencias de
operacion dependen del escenario. La potencia acumulada instalada al comienzo
del alcance del modelo se considera conocida yyg;.

Habitualmente se tienen en cuenta estas restricciones en las decisiones de
expansién: potencia instalada inicial conocida, maxima (y/o minima) potencia
instalable, inversién mdxima (y/o minima), ndimero méximo (y/o minimo) de
generadores instalables en cada ano. Ademds, también se consideran entre otras
estas restricciones de operacién: el balance generacién demanda en cada afio.

2.1 Formulacion determinista

Se considera un sistema generador puramente térmico. En la formulacion del
problema se consideran los siguientes conjuntos de indices, parametros, variables
y ecuaciones.

Conjuntos

T Conjunto de anos

P Conjunto de periodos

1 Conjunto de grupos térmicos
S Conjunto de escenarios
Indices

t Indice de anos

P Indice de periodos

i Indice de grupos térmicos

S Indice de escenarios
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Pardmetros
Dy, Demanda de potencia

en el periodo p del ano ¢ MW]
Dury, Duracién en el periodo p del afo ¢ [h]
Fy Coste fijo anualizado del grupo %

en el afio ¢ [€ /MWano]
Vi Coste variable del grupo 4

en el periodo p para el escenario s [€ /MWh]
A, Tasa de disponibilidad del grupo @ [p-u]
Prob® Probabilidad del escenario s [p-u.]
Ry Coeficiente de margen de reserva en el afio ¢ [p-u]
M, Presupuesto maximo anual en el afio ¢ [€]
Xy Potencia minima a invertir en el ano ¢

para el grupo i MW]
Variables
Ti; Potencia a instalar del grupo i

en el afo ¢ (variable entera) MW]
Yti Potencia acumulada instalada del grupo ¢
en el afio ¢ [MW]

Dipi Potencia producida por el grupo ¢

en el periodo p del ano ¢ para el escenario s  [MW]

Para facilitar la comprension del modelo vamos a ver en primer lugar un esce-
nario determinista cualquiera. Es decir, s’ es un escenario conocido de demanda,
por ejemplo el de demanda media o cualquier otro. En este caso, la funcién ob-
jetivo serda minimizar la suma de costes fijos de inversién mas costes variables de
operacion para dicho escenario para el alcance del modelo.

T I P
min Z Z (Fn-ym- + Z Vi Durtppfpi> (9.1
p=1

TtisYtisPip; t—1 j—1
siendo y; la potencia acumulada instalada cuyo célculo se formula como
Yti = E Tt/g Vt,i (92)
<t

o bien expresdndolo con ecuaciones de continuidad para cada ano y tecnologia

Yti = Yt—1i+Te Vi (9.3)

siendo la potencia instalada al comienzo del alcance del modelo yg; conocida.
Las decisiones de instalacion de los generadores son enteras. Luego el problema
de optimizacion es lineal entero mixto.
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Las restricciones que condicionan este problema las podemos separar en dos
grupos. Uno, las restricciones de inversion que solo afectan a las variables de
inversién. Dos, las restricciones de operacion, que representan la operacién del
sistema.

Restricciones de inversién

Entre las primeras conviene mencionar, por ejemplo, una limitacién en la po-
tencia minima a invertir en cada ano del alcance del modelo X,; y un presupuesto
maximo anual disponible M.

x> X, Vi (9.4)

I
> Fumy <M, Wt (9.5)
=1

Estas ecuaciones deben incluir también, aunque no estd puesta en ellas, la
retirada de potencia de generadores al final de su vida util.

También se puede incluir una restricciéon que indique que la potencia instalada
total en cada ano debe ser superior a la demanda méaxima més un cierto margen
de reserva

I
>~ (wos ) 2 Remiix(dyy) vt (9.6)
=1

siendo R; un coeficiente de margen de reserva anual.

Restricciones de operacién

Entre las restricciones de operaciéon estan la cobertura de la demanda y la que
relaciona la potencia instalada en cada ano con la potencia de operacion utilizable
para satisfacer la demanda.

La restriccién de cobertura de la demanda se formula para cada periodo p de
cada ano t

I
> phi=Dj,  Vip (9.7)
1=1

Se supone que se dispone de potencia de operacion suficiente para cubrir la
demanda en cualquier periodo y afio. Para ello se asume que siempre existe un
generador con potencia suficiente y coste de operacién muy elevado (denominado
potencia no suministrada) al que se puede recurrir. De esta manera el modelo es
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de recurso completo, es decir, cualquier decision de inversion es factible desde el
punto de vista de la operacién del sistema.

La potencia de operacién en cualquier periodo de un ano debe ser inferior a
la potencia instalada acumulada en ese ano reducida por su disponibilidad A;

Pf;ln‘ < A; (Yoi + Yri) Vi, p, i (9.8)

Esta ecuacién liga las decisiones de inversién con las de operacion.
Ademis de estas restricciones principales estdn el conjunto detallado de con-
diciones de funcionamiento de los grupos entre limites, entre otras.

2.2 Formulacién estocastica

Entre los pardametros que pueden considerarse estocdsticos en un modelo de
expansion de la generacion podemos citar: los costes fijos y variables de las tec-
nologias, la demanda, la fecha de disponibilidad de las nuevas tecnologias, incluso
la vida til de los equipos y por consiguiente su fecha de retirada, ver [10, 11, 14].
Los dos més importantes suelen ser la demanda y los costes variables de los ge-
neradores. La evolucién de la demanda estd influenciada por diferentes factores
como son: la actividad industrial, el crecimiento econémico, las politicas de aho-
rro energético o las tarifas. Los costes variables estan influidos principalmente por
la evolucién de los costes de los combustibles. Existe otro tipo de incertidumbre
que resulta més dificilmente representable en modelos de optimizacién estocastica
como es la incertidumbre regulatoria pero que puede afectan las decisiones de in-
version en sistemas desregulados.

En la formulacién de este problema estocastico se suponen los escenarios inde-
pendientes entre si. Las decisiones de inversién deben ser tinicas para el conjunto
de escenarios, luego es un problema de planificacion bietapa siendo las decisiones
de inversién las de la primera etapa y las de operacién las de la segunda.

La funcién objetivo recoge los costes de inversién mas los costes esperados de
operacion del conjunto de todos los escenarios

T I S P
min Y N Fugei + > Y Prob* Vi Duryp;, (9.9)

P T G s=1p=1

Las ecuaciones que afectan tinicamente a las decisiones de inversiéon permane-
cen idénticas.

x> X, Vi (9.10)
1
Z Ftixti < Mt Vit (911)
i=1
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Yti =Ye—1i+ T Vi (9.12)

I
> (o + i) > Romdx(Dy,) vt (9.13)
i=1

mientras que las ecuaciones de operacién ahora se repiten para cada escenario
I
S _ S
Zptpi - Dtp vs7t7p (914)

pfpz‘ < Az (in + yn) VS, tvpai (915)

Este problema de expansion de la generacién es de recurso fijo puesto que los
coeficientes de las variables de inversién y de operacién en las restricciones no
dependen del escenario.

Descomposicion de Benders

Aparte de la formulacién directa del problema de optimizacién anterior cuando
las dimensiones lo requieren se puede utilizar el método de descomposicion de
Benders [3, 4, 16]. El lector interesado puede encontrar la descripcién del método
de descomposiciéon de Benders en el capitulo de este libro titulado Modelado de
algoritmos de descomposicion con GAMS. En este método el problema maestro o
problema de inversiéon envia propuestas de inversién al subproblema o problema
de operacién y éste devuelve las variables duales de las restricciones donde éstas
aparecen. El problema maestro es un problema lineal entero mixto mientras que
el subproblema es lineal. El subproblema resulta separable por escenarios y aios®
y resoluble independientemente.

El problema maestro se formula como

min Zthl 2521 Friywi + Zsszl Zthl Prob®6°t(x)

Tti,YtisPip;

Ty > Xy Vt, i

Zilzl Fyizy; < Mt Vi (9.16)
ytilz Yi—1i + Tti Vt, i /

> im1 (Yoi + yui) = Ry maéx, (Dj) Vit

y el subproblema para cada escenario s y ano t

3Segtin la formulacién matemé&tica presentada el problema también resulta separable por
periodo. Sin embargo, en formulaciones mas realistas existen restricciones de acoplamiento
entre periodos que aqui, por ser poco detallada no se han presentado.
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0 (x) = minY )| S Vi Dureppj,

tpi

I
Zi:l pfpz — fp . Vp (917)
Pipi < Ai (voi + yii) Vp, i

siendo 6% (x) la funcién de recurso del subproblema para el escenario s y v/, la
propuesta de decisién de inversiéon acumulada para la iteracién j..

2.3 Caso ejemplo

Veamos a continuacién un caso de estudio muy sencillo escrito en GAMS
con las ecuaciones presentadas en las formulaciones determinista y estocastica
anteriores. Sus resultados se utilizan de forma pedagodgica para mostrar la validez
de la solucién estocéstica frente a las deterministas. El alcance del modelo es
de 1 ano dividido en 3 periodos. El sistema de generaciéon estd compuesto de 4
generadores y se consideran 3 escenarios de demanda con probabilidades 0.2, 0.5
y 0.3.

$TITLE Planificacién 6éptima de la expansién de la generacién

SETS
J periodos / per-1 * per-3 /
I generadores / gen-1 * gen-4 /

S escenarios de demanda / s-1 * s-3 /

PARAMETERS
F(i) coste fijo de inversién [euro]
/ gen-1 10
gen-2 7
gen-3 16
gen-4 6 /

PROB(s) probabilidad de cada escenario [p.u.]
/ s-1 0.2

s-2 0.5
s-3 0.3/
DEM(j) demanda para un escenario [MW]
TABLE V(i,j) coste variable de operacién [euro por MW]

per-1 per-2 per-3

gen-1 40 24 4

gen-2 45 27 4.5
gen-3 32 19.2 3.2
gen-4 55 33 5.5

TABLE DEMS(s,j) demanda estocastica [MW]

per-1 per-2 per-3

s-1 3 3 2
s-2 5 3 2
s-3 7 3 2
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SCALARS
POTMIN potencia minima a instalar [MW] / 12/
PRSPTO limite presupuestario [euro] / 120 /
VARIABLES
X(i) potencia a instalar [Mw]
Y(@j,1) potencia en operacién [Mw]
YS(s,j,i) potencia en operacién estocastica [MW]
COSTE coste total

POSITIVE VARIABLES X, Y, YS

EQUATIONS
COST coste total [euro]
COSTS coste total estocastico [euro]
PRESUP limitacién presupuestaria [euro]

INSMIN potencia minima instalada [Mw]
BALPOT potencia en operacién menor que instalada [Mw]
BALPOTS potencia en operacién menor que instalada estocastica [MW]
BALDEM balance de demanda [MwW]
BALDEMS balance de demanda estocastico MWl ;
COST .. COSTE =E= SUM(i, F(i) * X(i))
+ SUM((j,1), V(i,j) * Y(3,1)) H

COSTS .. COSTE =E= SUM(i, F(i) * X(i))
+ SUM((s,j,i), PROB(s) * V(i,j) * ¥YS(s,j,i)) ;

PRESUP .. SUM(i, F(i) * X(i)) =L= PRSPTO ;
INSMIN .. SUM(4i, X(i)) =G= POTMIN ;

BALPOT(j,1) . Y(G,1) =L= X(i) ;
BALPOTS(s,j,i) .. YS(s,j,i) =L= X(i) ;

BALDEM(J) .. SUM(i, Y(j,i))  =G= DEM(j) ;
BALDEMS(s,j) .. SUM(i, YS(s,j,i)) =G= DEMS(s,j) ;

MODEL DETERM / COST, INSMIN, PRESUP, BALPOT, BALDEM / ;
MODEL ESTOCA / COSTS, INSMIN, PRESUP,BALPOTS, BALDEMS / ;

* este bucle resuelve cada escenario determinista por separado
LOOP (s,

DEM(j) = DEMS(s,j) ;

SOLVE DETERM MINIMIZING COSTE USING LP ;
)

* ahora se resuelve el escenario de demanda media

DEM(j) = SUM(s, PROB(s) * DEMS(s,j)) ;
SOLVE DETERM MINIMIZING COSTE USING LP ;

* ahora se resuelve el problema estocastico

SOLVE ESTOCA MINIMIZING COSTE USING LP ;

El problema se resuelve en primer lugar de forma determinista para cada
escenario de demanda por separado. Los resultados aparecen en las tres primeras
columnas de la siguiente tabla. A continuaciéon se resuelve el problema para
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Escenario Escenario Escenario Escenario| Problema
Determinista 1|Determinista 2 | Determinista 3| Medio |Estocastico
Generador 1 . 0.33 3.67 0.67 0.67
Generador 2 . . . . 2
Generador 3 3 4.67 3.33 4.53 4.33
Generador 4 9 7 5 6.8 5
| Coste total | 262 |  346.67 | 43733 | 355.73 | 36247 |

el valor medio ponderado de la demanda (siguiente columna) y finalmente el
problema estocdstico (en la tltima columna). Obsérvese que en este ejemplo
sencillo no hay coincidencia entre la soluciéon de ningin escenario y la del problema
estocastico.

La funcién objetivo del problema estocastico es el coste fijo de las decisiones
de la primera etapa mas el valor esperado de la operacién asociada a las deci-
siones de la segunda etapa (362.47 en el ejemplo). A continuacién se calculan
algunos parametros caracteristicos que ayudan a valorar la utilidad del problema
estocastico frente a soluciones de escenarios deterministas. El valor de la solucion
estocdstica (value of stochastic solution VSS) es la diferencia entre la funcién ob-
jetivo del problema estocastico y la del problema determinista para el valor medio
de los pardmetros (362.47-355.73=6.73). Se denomina valor esperado con infor-
macion perfecta (expected value with perfect information EVWPI) a la suma
ponderada para cada escenario de la funcién objetivo total sabiendo que dicho
escenario va a ocurrir con certeza (356.93 para el ejemplo). Es decir, el valor
esperado si se revela la incertidumbre antes de tomar las decisiones de la primera
etapa. Este valor siempre serd menor o igual, en un problema de minimizacion,
que la funcién objetivo del problema estocastico. Para cada escenario, la solucién
del problema estocastico es siempre peor o igual que la solucién con informacién
perfecta (la funcién es 280, 349.33 y 439.33 respectivamente). Se denomina valor
esperado de la informacidn perfecta (expected value of perfect information EVPI)
o arrepentimiento a la diferencia entre ambas (280-262=18, 349.33-346.67=2.66,
439.33-437.33=2).

2.4 Caso espanol

Vamos a estimar a continuacion las dimensiones del problema estocéastico pre-
sentado previamente para un sistema eléctrico de tamano como el espanol. Su-
pongamos un alcance del estudio de 10 anos, 7' = 10. Cada afio la mondtona de
carga considera periodos de punta, llano y valle en laborable y festivo para cada
mes, siendo un total de 72 periodos en cada ano, P = 72. Suponemos 10 esce-
narios de demanda, S = 10, y un sistema de generacién con 80 grupos térmicos,
I =80.
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Las restricciones de la primera etapa (potencia minima a invertir en cada
ano y cada generador, presupuesto maximo anual disponible, margen de potencia
instalada con respecto a la demanda, mas las restricciones de calculo de la potencia
instalada acumulada) suman un total de TT+T+TIT+T = 2(T1+T) = 1620. Las
restricciones que acoplan decisiones de la primera y segunda etapa son STPI =
576000. Las restricciones de operacion de la segunda etapa son ST P = 7200.

Las decisiones de inversién de la primera etapa son 271 = 1600 variables ente-
ras mientras que las de la segunda etapa son ST PI = 576000 variables continuas.

Este tamano estd muy al limite o excede las capacidades actuales de los op-
timizadores lineales enteros mixtos, luego se necesitaria recurrir a métodos de
descomposicién para la resolucién del problema de planificaciéon de la expansion
del sistema eléctrico peninsular espanol.

3 Programacion semanal

El problema de la programacién semanal (unit commitment) consiste en de-
terminar el conjunto de grupos de generacion que se deben conectar y sus niveles
de operacién para minimizar el coste total de operacién sujeto a la satisfaccion
de la demanda y de una cierta reserva de generacién. Para la resolucién de este
problema, tradicionalmente se han utilizado técnicas de optimizacién ordinal asi
como técnicas basadas en programacion dindmica. Recientemente, debido a la
evolucién de los optimizadores para problemas lineales enteros mixtos, este pro-
blema es formulado y resuelto como un problema lineal entero mixto de gran
tamano. Sin embargo, esta mejora posibilita la exigencia de modelos de pro-
gramacién semanal mas complejos que incluyan incertidumbre en los parametros
modelados. Por otra parte, los nuevos entornos regulatorios modifican el plan-
teamiento de los problemas de programacién semanal como problemas de mini-
mizacién de costes. Ahora se plantea como un problema de determinacion de la
oferta 6ptima formulando un problema de maximizacién del beneficio obtenido.

Estas nuevas caracteristicas de los problemas de programacién semanal com-
plican el modelado tradicional de los mismos asi como su resolucién algoritmica.
En esta seccién se presenta el modelado tradicional de un problema de progra-
macién semanal y el planteamiento de la Relajacion Lagrangiana como método
de resolucion. Posteriormente se describe un problema estocédstico en el que la
estocasticidad en la demanda se introduce mediante un arbol de escenarios. La
siguiente seccion de este capitulo esta dedicada a los problemas de programacion
semanal en mercados eléctricos.

3.1 Formulacion determinista

Se considera un sistema generador puramente térmico. En la formulacién del
problema se consideran los siguientes conjuntos de indices, parametros, variables
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y ecuaciones.

Congjuntos
T Conjunto de periodos
1 Conjunto de grupos térmicos
Indices
t Indice de periodos
h Indice auxiliar de periodos
i Indice de grupos térmicos
Parametros
Dy Demanda del periodo ¢ [MW]
Ry Coeficiente de margen de reserva térmica

del periodo ¢ [p-u]
Dury Duracién del periodo ¢ [h]
pmax Potencia méxima del grupo i MW]
pmin Potencia minima del grupo i [MW]
L* Limite rampa subida del grupo ¢ [MW /h]
Ldown Limite rampa bajada del grupo i [MW /h]
F; Coste fijo del grupo 4 [€ /h]
Vi Coste variable de combustible del grupo i [€ /MWh]
ci? Coste de arranque del grupo 4 [€]
Cdown Coste de parada del grupo 4 [€]
T Tiempo minimo de parada del grupo i [h]
K Tiempo minimo de acoplamiento del grupo ¢ [h]
Variables
Pti Potencia producida por el grupo 7 en el periodo t [MW]
Ui Acoplamiento del grupo i en el periodo ¢ {0,1}
sy Arranque del grupo i en el periodo ¢ [0,1]
sdown Parada del grupo i en el periodo ¢ [0,1]

El problema de programacion semanal debe satisfacer la demanda de potencia
en cada uno de los periodos* del alcance temporal

I
> pu=Dy W (9.18)

i=1

imponiendo un margen de reserva que es modelado como

4Obsérvese que se utiliza el indice ¢ para la unidad temporal més relevante en este problema,
tipicamente una hora.
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I
Z(Pimmuti —pii) > ReDy Yt (9.19)
i=1
Para cada grupo térmico, los valores de potencia producida estdan acotados
entre su minimo técnico y su maxima capacidad disponible

Py < ey < Py Vit i (9.20)

Los cambios en la potencia producida por los grupos térmicos vienen limitados
por las ecuaciones de rampa’®

LI Dury < pyi — pe—1: < Ly? Dury v, (9-21)

Las decisiones de arranque y parada de los grupos son gestionadas mediante
el siguiente grupo de ecuaciones

_ Jup d :
U — U1 = S — Sgp " Vi, i (9.22)

Algunos modelos de programacion semanal méas avanzados incluyen requeri-
mientos de tiempo minimo para unidades que han sido acopladas o desacopladas.
En caso de que hayan sido acopladas, se exige un tiempo minimo de acoplamiento
y por el contrario, en caso de que hayan sido desacopladas, debe transcurrir un
cierto nimero de horas hasta que puedan ser acopladas de nuevo. Estas restric-
ciones de tiempo minimo de parada son modeladas mediante el siguiente conjunto
de ecuaciones

Upphy o ST+ ug —ug—14 Vi byt (9.23)
donde el conjunto de periodos desplazados, controlados por el indice h;, puede

ser restringido para valores de h; > 1 tales que

hy—1

7i < Z Duryqy (9.24)
1=0

De modo similar, las restricciones de minimo tiempo de funcionamiento son
modeladas como

Upthy i = Ui — Up—1 ¢ Vi, he, i (9.25)

limitando, en este caso, el conjunto de periodos desplazados a aquellos hy > 1
tales que

5La ecuacién siguiente aparece simplificada y supone que las duraciones de los periodos son
iguales. La ecuacion de rampa se deberia aplicar inicamente a la potencia producida por encima
del minimo técnico, aunque en la ecuacién 9.21 por simplicidad se aplica a la potencia producida
total.
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hy—1
K < Z Duryyy (9.26)
1=0
Dado el anterior conjunto de restricciones, el problema de programacién se-
manal minimiza el coste total de explotaciéon que viene dado como

T I
Z Z{DurtFiuti + DuriVipy; + O} 5P 4 Odown gdowny (9.27)
t=1 i=1
El problema de programacién semanal, formulado anteriormente, puede ser
resuelto mediante técnicas de programacién entera mixta como las técnicas de
ramificacién y acotamiento (branch and bound) o técnicas de ramificacién y corte
(branch and cut). En la literatura, también es comin encontrar el problema de la
programacion semanal resuelto mediante la técnica de la Relajacién Lagrangiana.
Esta técnica es revisada en la siguiente seccién, particularizada para el problema
de programacion semanal anteriormente descrito.

Relajacion Lagrangiana

La Relajacién Lagrangiana explota la estructura matricial de un problema
de optimizacién en el que un conjunto de ecuaciones complican la resolucion del
mismo. Para el problema de la programacién semanal, este conjunto de restric-
ciones son las ecuaciones de balance de potencia para cada uno de los periodos
del alcance temporal (tradicionalmente una semana).

La Relajacién Lagrangiana maximiza la funciéon dual obtenida al minimizar
la funcién objetivo dada por el lagrangiano sobre el conjunto de restricciones que
definen el problema de optimizacién.

Considérese el problema de programacién semanal descrito en la seccion an-
terior. Por simplicidad en la exposicién supongamos también que no se incluyen
las restricciones asociadas a la reserva de potencia ni las restricciones de minimo
tiempo de acoplamiento o parada. En este caso, el lagrangiano es formulado como

L(ptiv Ut S;fu;;p7 s;fiiowna )\f) ==
Zle Zle{DurtFZ-uti + DuryVipy + C{PsiP + Cdown gdowny 4 (9.28)
> o M(Xizy pri — Dy)

siendo A = A¢, t = 1,...,T el conjunto de multiplicadores de Lagrange. Esta
expresion, una vez reordenados los términos, se plantea como

L(pt’iv Uts s SZpa S;iiown’ )‘f) =

S S A Dur Fyug; + (DurV + M)py + CiPsi? + Covnsdownt—(9.29)
t=1 =1
T

Zt:l )\tDt
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La funcién dual w(\) se obtiene al evaluar el lagrangiano para un valor es-
pecifico A del multiplicador sobre el conjunto de restricciones que definen el pro-
blema salvo la ecuacién de complicacion.

W()\) - min L(ptia Ut Szpv s%iiown’ >\t)
PriyUti,syy sdown
P Mug < pri < PTw Vi (9.30)
LngnDurt <py—pe—1: < L?pDurt Vi, i

__ up down :
Upy — Ug—1§ = Sp; — iy Vi, i

El anterior problema de optimizacion, llamado subproblema de Lagrange, es
separable en I problemas de optimizacién, uno por cada grupo térmico conside-
rado, dados como

iSSP P (DunVict A+ G+ G
US55
Plinuy, < py < PPo%uy Ve
L Dury < pyi — pr—14 < Li¥ Dury Vit
Ugp — U1 i = Spf — siown Yt
(9.31)

Existen numerosas técnicas en la literatura orientadas a obtener el méximo
de la funcién dual. Se destacan las técnicas basadas en el subgradiente asi como
aquellas de aproximacion exterior. No es el objetivo de este capitulo presentar
una revision extensa de estos métodos. El lector interesado puede encontrar la
descripcién del método de aproximacion exterior de la funcién dual en el capitulo
de este libro titulado Modelado de algoritmos de descomposicion con GAMS.

El modelado presentado del problema de programacién semanal no incorpora
estocasticidad en ninguno de los pardmetros del problema. En la siguiente seccion
se presenta un modelado estocastico del problema de la programacién semanal
en el cual la estocasticidad ha sido introducida en el pardmetro de la demanda
a través de una distribucién de probabilidad discreta dada como un arbol de

escenarios.

3.2 Formulacidén estocastica

Consideremos el problema de programacién semanal en el que la variable
de demanda es introducida como un pardmetro aleatorio. Se considera que la
distribucién de dicho pardmetro tiene soporte finito (distribucion discreta) y viene
dada a través de un arbol de escenarios. En la figura 9.1 se muestra un ejemplo
de un arbol de cuatro escenarios para un caso realista en el que se considera una
ramificacién del arbol de escenarios en la hora 25 y otra en la hora 49.

Cuando se introducen parametros aleatorios en un problema de optimizacion,
normalmente se formula y resuelve el problema determinista equivalente. Este pro-
blema introduce copias de las variables para cada uno de los posibles escenarios
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E

rd

Figura 9.1: Arbol de 4 escenarios

que la realizacion del pardametro estocastico produce. Esto aumenta drasticamente
el tamano del problema complicando, por tanto, su resoluciéon. Esta represen-
tacion del problema equivalente puede formularse de modo compacto o mediante
la introduccién de restricciones de no anticipatividad. En el primero de los casos,
solo se generan variables para las ramas diferentes del arbol del escenarios. Para
el ejemplo de la figura, se genera una copia para cada una de las variables de las
primeras 24 horas, dos copias para cada una de las variables de las segundas 24
horas y cuatro copias para el resto de las variables. Por el contrario, una formu-
lacién no compacta genera una copia para cada uno de los escenarios® posibles.
Las restricciones de no anticipatividad se introducen para igualar los valores de
aquellas variables que comparten parte comtin del arbol.

Para mostrar el modelado de un problema de optimizacién introduciendo res-
tricciones de no anticipatividad se utiliza el problema de programacién semanal
anteriormente presentado. El conjunto de indices y pardametros es practicamente
el mismo que en el caso determinista y el conjunto de variables incorpora el su-
perindice escenario.

Conjuntos

T Conjunto de periodos

1 Conjunto de grupos térmicos
S Conjunto de escenarios

SEn optimizacién estocdstica un escenario se define como cualquiera de los caminos que van
desde el periodo inicial al final (de la raiz a las hojas).
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Indices
t Indice de periodos
h Indice auxiliar de periodos
i Indice de grupos térmicos
S Indice de escenarios
Pardmetros
D; Demanda del periodo ¢ en escenario s [MW]
R} Reserva térmica del periodo ¢ en escenario s [MW]
Dur, Duracién del periodo ¢ [h]
pmax Potencia méxima del grupo i [MW]
pmin Potencia minima del grupo ¢ [MW]
L Limite rampa subida del grupo i [MW /h]
Ldown Limite rampa bajada del grupo i [MW /h]
F; Coste fijo del grupo ¢ [€ /1]
Vi Coste variable de combustible del grupo ¢ [€ /MWh]
crr Coste de arranque del grupo i [€]
Cown Coste de parada del grupo 4 [€]
T Tiempo minimo de parada del grupo ¢ [h]
K Tiempo minimo de acoplamiento del grupo i [h]
Prob® Probabilidad del escenario s [p-u.]
Variables  para cada escenario s
D Potencia producida por el grupo i en el periodo ¢t [MW]
ug; Acoplamiento del grupo i en el periodo ¢ {0,1}
spl® Arranque del grupo i en el periodo ¢ [0,1]
siown s Parada del grupo i en el periodo t [0,1]

El conjunto de restricciones del problema estocéstico de programacion semanal
coincide con el del planteamiento determinista. Debe tenerse en cuenta que cada
ecuacion es duplicada tantas veces como nimero de escenarios tiene el problema.
Juntamente con estas restricciones, las de no anticipatividad son modeladas como

s _ 8 ; /

Pi; = Pt si 5,8 € N(t)

/ .
uf;, = uf; st s,s € N(t)

’

st =g b " si s,8 € N(t)

’ .
slown s — gdown s si s,8 € N(t)

(9.32)

donde N (t) representa los diferentes conjuntos de escenarios que comparten la
misma parte del arbol para el periodo t. En las ecuaciones anteriores es conve-
niente considerar s como el escenario de indice menor que pertenece a N(t) y
s < s’ de modo que el niimero de restricciones generadas sea el menor posible.
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La funcién objetivo minimiza el coste esperado de explotacién y es formulada
como

I
Z Prob® Z Z{DurtF ugi + DuryVipy + C;Ps)F + 4 Cdown gdowny (9.33)

t=1 =1
Para la resolucién del problema con restricciones de no anticipatividad una
alternativa muy popular en la literatura consiste en la relajacién de estas restric-
ciones, obteniendo para cada escenario un problema de programaciéon semanal
(modificando ligeramente su funcién objetivo). Esta idea, conocida como des-
composicién por escenarios (scenario decomposition), es presentada brevemente

en la préxima seccion.

Descomposicién por escenarios del problema estocastico

up s . down s
Considérese el problema anteriormente planteado y sean A, , 1i5;, v, 5 Vs

las variables duales de las restricciones de no anticipatividad presentadas en la
seccion anterior. La formulacién del lagrangiano para este problema tiene la
siguiente expresion

Zle Prob® ZtT L Z 1{DurtF u$; + DuryVips, + C{'PspF * 4 Cdown s gdowny
+)\t7, (ptz ptz/)
g (ug; — ug;)
_|_,ydown s( ;ilown s _ Stdiown s')
(9.34)
La reordenacién de los términos de la funcién objetivo anterior obtiene una
expresion del lagrangiano similar a la funcién objetivo del problema estocastico de
programacion semanal. La diferencia aparece en la modificacién de los coeficientes
que acompanan a las variables de decision. Esta modificaciéon queda reflejada en
la siguiente expresion, donde la notacién ha sido simplificada para facilitar su
comprensién”

S Prob Sy STy {(DundFy + g Ju + (DurcV + Mpit (g 359
(CZJP + ,.?Zp S)SZP s (Cvidown + ,—Y;ilown s) down s} .

El problema de minimizacién del lagrangiano sobre el conjunto de restricciones
del problema estocéstico semanal, es claramente separable en S problemas inde-
pendientes, una vez que se han relajado las restricciones de no anticipatividad.
Cada uno de estos problemas puede ser formulado como

"Los coeficientes fi, \, 7, 7 reflejan las manipulaciones realizadas para simplificar la expresién
de la funcién objetivo del subproblema lagrangiano.
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min Zthl ZLﬁ(DWtFi + i )uf; + (DurdVi + Aj)psi+

Py syl sl e

(G 472 *)si? * 4 (O  yowm 2} +)

Zi;l Pt = Df vt

Pinug, < pfy < PRotui; Vi

Liown Dury < pg; —p5_y; < L{"Dury, Vi

Upp — Up—14 = SZ?D i sfi"w” s Vit

(9.36)

con lo que se obtiene un problema similar al problema de programacién semanal.
Para cada valor del multiplicador propuesto, la resolucién del anterior problema
proporciona el valor de la funcién dual. Tal como se ha comentado anteriormente,
esta funcién dual es maximizada utilizando técnicas de optimizacién basadas en
el subgradiente o técnicas de aproximacién exterior. Para la posterior bisqueda
de una solucién factible (i.e., una que satisfaga las condiciones de no anticipa-
tividad relajadas), es necesario el uso de heuristicos basados en el conocimiento
del problema. Recientemente, se han utilizado técnicas basadas en ramificacién
y acotamiento para tal fin [18].

4 Programacién semanal en mercados eléctricos

La diferencia principal en un mercado eléctrico de cara a la planificacién se-
manal reside en que las empresas de generacién son responsables de su propia
produccién total. La demanda de potencia, que en los modelos tradicionales apa-
rece como un parametro, debe ser introducida como una variable de decisién que
un problema de maximizacién del beneficio debe optimizar. El beneficio obtenido
B(p) viene dado por el nivel de ingresos, que depende del precio de mercado 7, y
por el coste de generacién de la produccién total determinada c(p).

B(p) = mp —c(p) (9.37)

En un entorno de mercado, el precio viene determinado como funcién de la

demanda. Para una empresa estratégica (no tomadora de precio), la parte de

demanda que es capaz de cubrir viene dada por la curva de demanda residual®,

p = R(r), de modo que la funcién objetivo aparece como una funcién no lineal
de la cantidad de potencia producida.

B(p) = R (p)p — c(p) (9-38)
La funcién de demanda residual es una funcién escalonada que puede ser
aproximada como una funcién poligonal. Por otra parte, la funcién de ingresos es

8La funcién de demanda residual se define como el resultado de substraer de la funcién de
demanda agregada la produccién del resto de las empresas.
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Figura 9.2: Representacién poligonal de la curva de demanda residual y de la
curva de ingresos

en general una funcién no céncava [9] que puede ser modelada como una funcién
poligonal (figura 9.2). Para ello se utiliza una conjunto de variables binarias que
representa la cantidad producida como suma de las cantidades asociadas a los
tramos individuales. El precio, dado por la funcién de demanda residual asi como
la funcién de ingresos siguen el mismo patrén. Este modelado de la produccién,
precio y curva de ingresos, utilizando dicho conjunto de variables binarias es
presentado en la siguiente seccion.

En caso de que supongamos conocida la curva de demanda residual, el pro-
blema de determinacién de la cantidad de produccién 6ptima es un problema
determinista similar al problema de programacién semanal. Por el contrario, en
caso de que esta curva de demanda residual no sea conocida, su estimacién a
través de una distribuciéon de probabilidad discreta conduce a la formulacién de
un problema de optimizacion que lleva a la determinacion, en cada periodo, de una
curva de produccién dependiente del precio. Esta curva es exactamente la curva
o6ptima de oferta en el mercado. Estas dos situaciones, la situacion determinista
y la situacion estocdstica, son descritas en las siguientes secciones.

4.1 Situacion determinista: determinacién de la produccién
optima

Supongamos un conjunto de periodos dado por el conjunto T' y una curva
conocida de demanda residual para cada periodo, t € T'. El siguiente conjunto
de indices, pardmetros y variables extienden la formulacién determinista del pro-
blema de la programacién semanal para el caso de maximizacién del beneficio.
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Conjuntos
J Conjunto de tramos para representar
la curva de demanda residual

Indices
j Indice de tramos
Pardmetros
0tj Pendiente del tramo j de la curva de demanda

residual en el periodo ¢ [€/MW]
Otj Pendiente del tramo j de la curva de beneficio

en el periodo ¢ [€/MW]
Tt Precio asociado al tramo j de la curva

de demanda residual en el periodo ¢ [€ /MWHh]
Dtj Cantidad asociada al tramo j de la curva

de demanda residual en el periodo ¢ [MW]
Btj Beneficio asociado al tramo j de la curva

de beneficio en el periodo t [€]
Variables
o Variable binaria asociada al tramo j en el periodo ¢t {0,1}
Dtj Produccién total asociada al tramo j en el periodo t [MW]
T Precio en el periodo ¢ [€]
by Beneficio en el periodo ¢ [€]

El problema de maximizacién del beneficio para un conjunto 7' de periodos
considera una funcién objetivo que viene dada como

T
méx Y by — c(py) (9.39)
t=1
considerando que el beneficio estd modelado como
J-1
by = byo + Z V5Pt (9.40)
j=1
y que la produccion viene dada como
J-1
Pt = Pro + Zptj (9.41)
j=1

Las producciones totales asociadas a cada uno de los tramos j estd acotada
de modo natural por
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(Dtj — Dtj—1)vis1j < Pej < (Dtj — Dtj—1)0; (9.42)
imponiendo una condicién de monotonia al conjunto de variables representativas
de los tramos que puede ser modelada como

Uty thjJrl j: ].,...,J—]. (943)

En esta formulacién, la ecuacién de balance de potencia en cada periodo im-
pone que la suma de las producciones de los grupos sea la produccion total. La
introduccién de la variable de produccién total reemplaza el pardmetro D; del
modelo tradicional de programacién semanal (o programacién multiperiodo en
un caso general).

I
Zpti =Dt vt (9.44)
i=1

El resto de restricciones del problema de maximizacién, como las restricciones
de potencia maxima y minima, ecuaciones de rampa y ecuaciones de gestién de
arranques y paradas son aquéllas del problema de programacién semanal (pre-
sentadas en la seccién 3 de este capitulo) son introducidas en el problema de
maximizacién del beneficio.

4.2 Situacion estocastica: determinacién de la curva de
oferta

En caso de que la curva de demanda residual sea desconocida, o exista una
cierta incertidumbre en torno a su realizacion, el modelado determinista de la
seccion anterior no es suficientemente vélido. La empresa generadora debe tener
en cuenta este abanico de posibilidades y su decision de generacion se transforma
en una curva de produccién dependiente del precio resultante en el mercado.
En cada periodo, la decisiéon de producciéon de una empresa no se limita a un
valor fijo de cantidad producida. Por cada realizacién de la curva de demanda
residual (que ahora se considera como una variable aleatoria), existe una variable
de decisién (produccién en dicho periodo) que determina un precio éptimo para
dicha decisiéon de produccion. Este conjunto de parejas de cantidades y precios
constituye la curva de oferta, (figura 9.3).

Al introducir estocasticidad en la representacion de la curva de demanda re-
sidual, se deben tener en cuenta dos caracteristicas de modelado. Por una parte,
la funcion objetivo pasa a ser considerada como la maximizacién del beneficio es-
perado. El modo de interpretar la incertidumbre asi como la manera de modelar
la funcién objetivo se comentara mas adelante. Por otra parte, la curva de oferta
debe ser una funcién mondtona creciente, y se debe introducir especificamente en
el modelo de maximizacién tal cualidad.
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Figura 9.3: Demanda residual estocéstica y curva de oferta para una hora par-
ticular

En los problemas de generaciéon en mercado eléctricos, es posible identificar
dias tipo en funcién de la forma de las funciones de demanda residual de las 24
horas del dia [2]. Esto es, al identificar que la curva de demanda residual para
una hora particular ¢ se comporta segin un determinado patrén, la colecciéon de
demandas residuales para el resto de las horas se comporta de modo similar al
patrén de dia en que se encuentra incluida esa hora ¢t. Esto lleva a considerar una
representacién de la incertidumbre identificando escenarios compuestos por dias
tipo.

En las figuras 9.4 y 9.5 esta representada la interpretacion del modelado de la
incertidumbre. Un escenario o situacién determinista consiste en un conjunto de
funciones de demanda residual desde el primero de los periodos hasta el ultimo.
Por el contrario, en una situacion estocastica son considerados una coleccion de
escenarios que no comparten parte comin en ningin momento. Debe observarse
el diferente tratamiento de la incertidumbre en este problema con respecto al
tratamiento de la incertidumbre dada en modo de arbol de escenarios, mas ade-
cuada para otros modelos. Esta diferencia es trasladada al modelado utilizando
el subindice k para representar cada una de las realizaciones de la incertidumbre
asociada a la demanda residual (en lugar de utilizar el subindice s).

Dada esta representacion, consideremos el siguiente conjunto de indices, parametros
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Figura 9.4: 1 escenario de curvas de demanda residual
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Figura 9.5: K escenarios de curvas de demanda residual

y variables que es posteriormente utilizado para la representacion estocastica del
problema de maximizacién.

Conjuntos

T Conjunto de periodos

1 Conjunto de grupos térmicos

J Conjunto de tramos para representar la curva
de demanda residual

K Conjunto de escenarios

Indices

t Indice de periodos

Indice de grupos térmicos
Indice de tramos
Indice de escenarios

= . S
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Parametros  deterministas
Dury Duracién del periodo ¢ [h]
pmaw Potencia méxima del grupo i [MW]
pmin Potencia minima del grupo i [MW]
L* Limite rampa subida del grupo ¢ [MW /h]
Ldewn Limite rampa bajada del grupo ¢ [MW /h]
F; Coste fijo del grupo 4 [€ /1]
Vi Coste variable de combustible del grupo ¢ [€ /MWh]
cr Coste de arranque del grupo 4 [€]
Cdown Coste de parada del grupo i [€]
Parametros  estocdsticos
5fj Pendiente del tramo j de la curva de demanda
residual en el periodo ¢ y escenario k [€/MW]
5fj Pendiente del tramo j de la curva de beneficio
en el periodo t y escenario k [€/MW]
w,{?j Precio asociado al tramo j de la curva
de demanda residual en el periodo ¢ y escenario k [€]
ﬁfj Cantidad asociada al tramo j de la curva
de demanda residual en el periodo t y escenario k [MW]
Efj Beneficio asociado al tramo j de la curva
de beneficio en el periodo t y escenario k [€]
Prob* Probabilidad del escenario k
Variables
Ufj Variable binaria asociada al tramo j
en el periodo t y escenario k {0,1}
P Produccién total en el periodo ¢ y escenario k [MW]
pfj Produccién total asociada al tramo j
en el periodo t y escenario k [MW]
k. Potencia producida por el grupo ¢ en el periodo ¢
y escenario k [MW]
Tk Precio en el periodo ¢ y escenario k [€]
b¥ Beneficio en el periodo ¢ y escenario k [€]
uk, Acoplamiento del grupo i en el periodo ¢ y escenario &  {0,1}
5.7 k Arranque del grupo i en el periodo ¢ y escenario k [0,1]
sff”’” k Parada del grupo 7 en el periodo t y escenario k [0,1]
x,’fk/ Variable binaria asociada a la monotonia de la oferta

en el periodo t y escenarios k y k'

{0.1}

La ecuacién de balance de potencia es pues modelada como
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I
Sovk=pf  Vtk (9.45)
=1

siendo modelada la cantidad total pff producida en un periodo t para una reali-
zacién k de la incertidumbre como

J—1
pE =Dl + > vl (9.46)
j=1

La curva de ingresos es modelada a tramos de igual modo que en la situacién
determinista

J—1
bf = by + > Vit (9.47)
j=1

extendiendo las cotas de las variables de la produccién por tramo t a la situacion
estocéstica

Lk k k ko ok k
(P; — Pij—1)vit1 5 < iy < (Di; — Dij—1)vi; (9.48)
e imponiendo la condicién de monotonia del conjunto de variables binarias re-

presentativas de los tramos, que ahora en la situacién estocastica depende del
escenario k

of >y j=1...,J-1 (9.49)

Dada la representacién de la incertidumbre considerada, las restricciones de
potencia méxima y minima, las restricciones de rampa y las restricciones de
gestion de arranques y paradas son introducidas de modo independiente para
cada escenario k.

PtTmufi < Pfy < PtTMufi Vi, k (9.50)
Lfow”Durt < pfi — pﬁl ; < Li* Dury Vt, k (9.51)
ub, —uf =8P k_ glown k Vt, k (9.52)

El conjunto de restricciones anterior forman el bloque principal de ecuaciones
del modelo de determinacién de la produccién éptima bajo incertidumbre (curva
de oferta). La curva de oferta debe ser monétona creciente y por ello el siguiente
conjunto de ecuaciones es introducido en el modelo con tal propdsito.
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El precio obtenido al considerar la produccién éptima p¥ de un periodo t y
una realizacién k de la incertidumbre dada por la demanda residual, es modelada
mediante tramos utilizando la siguiente representacion.

J—1
mf =7+ > 05k (9.53)
j=1

Con esta formulacién, debe imponerse la condiciéon de que el conjunto de
parejas (pF,nF),k € K, formen una curva monétona creciente. Esta condicién,
que puede ser modelada mediante una restriccién no lineal, admite la siguiente
formulacion lineal entera mixta, mediante la introduccién de un conjunto auxiliar
de variables binarias [1]

pE—pf > M ek K K >k (9.54)
L Ll VT N N U (9.55)
pE—pf > —(1 =2\ MP vk K K >k (9.56)
o > =Y MT vk K K >k (9.57)

Una vez determinado el conjunto de restricciones que dan forma a la curva
de oferta y determinan el sistema generador, resta introducir la funcién objetivo
que el problema estocdstico de maximizacién del beneficio considera. Para el
problema presentado, se considera la funcién objetivo que maximiza el beneficio
esperado, modelada como

T K
max Z Z Prob®[bF — c(ph)] (9.58)

t=1 k=1

Este conjunto de restricciones modela la toma de decision de un problema
de programacién multiperiodo cuando se considera incertidumbre en la curva de
demanda residual. El conjunto final de decisién es una curva de oferta para
cada uno de los periodos considerados en el alcance temporal. Este problema ha
sido modelado como un problema de programacién entera mixta de gran tamano,
pudiendo ser resuelto por optimizadores comerciales para tamanos intermedios del
mismo. Por simplicidad en la exposicién ha sido considerado un parque generador
compuesto tnicamente por grupos térmicos, si bien la formulacién anterior es
extensible a sistemas generadores mas complejos que incluyan grupos hidraulicos
asi como contratos de medio y largo plazo y opciones de compra [2].
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Esta seccién finaliza con una breve indicacién sobre la posibilidad de descom-
poner el problema anteriormente propuesto. Entre las posibilidades de descom-
posicién del problema anterior figuran la Relajacién Lagrangiana (mediante la
relajacién de la ecuacién de balance de potencia) o descomposicién bietapa en
un problema maestro que genera la oferta y un subproblema que determina la
factibilidad de la oferta propuesta dado un sistema generador existente.

Descomposicion bietapa del problema estocastico

El modelado anterior presenta dos bloques bien diferenciados de restricciones.
Aquéllas dirigidas a la construccién de la curva de oferta y las representativas
del sistema generador. Entre el primer conjunto de restricciones figuran aquéllas
de representacién a tramos de la variable de produccién total por periodo, de la
variable de ingresos y de la variable precio. También figuran aquellas restricciones
de monotonia de las variables binarias de representacién de los tramos y mono-
tonia de la curva de oferta. Un segundo grupo de ecuaciones son aquéllas que,
dada una produccién pf por periodo t y escenario k, determinan el conjunto de
grupos y niveles de operacion para satisfacer ese requerimiento de potencia. Esta
diferenciacién entre los dos tipos de restricciones da lugar a la descomposiciéon del
problema en un problema maestro que determina y propone una curva de oferta
para cada periodo ¢ y un subproblema que evalia la factibilidad del conjunto de
soluciones propuestas.

De este modo, se considera un problema maestro dado como

max ZtT 1 ZkK 1 Probk(bf) +0(pf)
PE=ph+ Y =1 pt]

bf = b Z] 1 'Ytgptg

= 7Tt0 + ZJ ] 51’53 tj

(P — Pl 1)Ut+1g pt] < (PF; — Prj—1)vE (9.59)
thquéf]H j=1...,J-1

Do S e kK K>k

wf—wf Ty R VR VI

pE—pt > (l—xkk )Mp Vi kKK >k

o s (- )M kR K >k

y un subproblema que evaltia el coste de esa decisién

Opf) = mix =35, Prob"e(Xiy pf)
2= 1ptz pt vt k

Pt;?mutz <pk Sk Ptrinamufl Z/t, k (9.60)
LéownDury < pF —pk |, <L Dury  Vt,k
uzﬁ ’u’fﬁc 1é — Szp b Stdioum b Vt’ k
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La funcién de coste, ¢(p), sintetiza de modo general la suma de los costes
asociados a cada grupo: coste variable de combustible, coste de acoplamiento y
coste de arranque. Es inmediato observar que el problema anterior es separable
en K subproblemas independientes, uno por cada escenario de demanda residual
considerado para representar la incertidumbre, dados como

O(pF) = max —Prob"“c(ZL1 p,’fi)

Siph=pf
Py, < pfy < PPtuy; vt (9.61)
Ldown Dury < pk, — p¥ |, < LY Dury vt
ufz - Uf—l i stuip b S?iown b vt
debido a que todas las restricciones que ligan los escenarios han sido incorporadas
en el problema maestro.

Esta descomposicion en dos etapas es caracteristica de los algoritmos de des-
composicion de Benders. La diferencia esencial radica en que en este caso en el
cardcter entero de alguna de las variables que aparecen en el subproblema (o en
los subproblemas). Bajo ciertas hipé6tesis de modelado es posible relajar esta con-
dicién de integralidad impuesta sobre las variables de acoplamiento de los grupos
térmicos. Otra posibilidad consiste en la generalizacién de los algoritmos de des-
composicién de dos etapas (para problemas lineales) a algoritmos enteros mixtos.
Se estén realizando avances en este campo, como puede observarse en [6].
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1 Introduccion

Los problemas discretos de localizacion tratan de seleccionar las ubicaciones
6ptimas para un conjunto de centros de servicios (plantas) entre un conjunto de
ubicaciones potenciales que es conocido a priori. Desde las plantas seleccionadas
deberd satisfacerse la demanda de un conjunto de clientes conocido. Por tanto,
la decision a tomar es doble y requiere identificar cudl es el conjunto de plantas
que se debe abrir y cémo se debe satisfacer la demanda de los clientes.

Hay distintos factores que pueden intervenir en un problema discreto de loca-
lizaciéon y que dan lugar a una gran variedad de problemas de este tipo. Los mas
relevantes estdn relacionados con la forma en la que se dotard el servicio a los
clientes y con la existencia o no de una capacidad limitada en los centros de servi-
cio. En algunas situaciones, el servicio se realiza en las propias plantas, de manera
que los clientes deben acudir a ellas. Esto ocurre cuando los centros de servicio
son hospitales, escuelas, oficinas de correo, etc. En estos casos la decisién sobre
el servicio a clientes da lugar a problemas de localizacién-asignacién (LA) que
se han estudiado en numerosos contextos (ver, por ejemplo, [23]). Sin embargo,
en otras situaciones el servicio se realiza donde se sitiian los clientes. En estos
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casos, cuando la naturaleza de los servicios admite que se realice una secuencia
de ellos sin volver a la planta, la decisién sobre el servicio a los clientes da lugar a
problemas combinados de localizacién-rutas (LR). Hay que senalar que en el caso
de los problemas LR también es necesario realizar una asignacién de clientes a
plantas abiertas previa al propio diseno de la ruta, para saber desde qué planta
se realizard la ruta que atienda a cada cliente. Tradicionalmente los problemas
LR han sido menos estudiados que los problemas LA, aunque recientemente han
recibido mayor atencién (ver p.ej. [15, 21]).

Dada la naturaleza discreta tanto de los problemas LR como de los problemas
LA normalmente éstos se estudian en el d&mbito de la Programaciéon Entera. En
ambos casos a menudo se supone que los problemas son deterministas. Es decir,
que todos los datos que intervienen son conocidos a priori. Sin embargo, con
frecuencia estos problemas son en la practica de naturaleza estocéstica y en el
momento de tomar las decisiones hay elementos de incertidumbre. Una alterna-
tiva clasica es utilizar estimaciones de los datos aleatorios y resolver el problema
estocéstico como en el caso determinista. Otra alternativa consiste en incorporar
explicitamente la incertidumbre a los modelos dando lugar a problemas de Pro-
gramacion Estocéstica. El aumento en la literatura de Programacion Estocéstica
([13, 25, 6]) ilustra el interés de tales modelos.

Dentro de los elementos aleatorios que suelen presentarse en problemas LA y
LR cabe resaltar la demanda de los clientes, ya que ésta no suele ser conocida en
el momento de decidir las ubicaciones de las plantas y la forma de servicio de los
clientes. En estos casos podemos modelar la demanda mediante variables alea-
torias y considerar los problemas en el contexto de la Programacién Estocéstica
Entera ([27, 14, 17, 19]).

En este capitulo abordamos el estudio de algunos problemas discretos de lo-
calizacion en los que supondremos que las plantas en caso de abrirse tendran una
capacidad limitada conocida. Para los problemas LR supondremos ademaés que
desde cada planta abierta se realiza una unica ruta para atender a los clientes
asignados a la planta. Finalmente, supondremos que la demanda de cada cliente
se ajusta a una variable aleatoria Bernouilli, que tiene el mismo pardmetro (p)
para todos los clientes. Es decir, supondremos que los clientes requieren o no
servicio con una determinada probabilidad p, pero que cuando existe demanda
la cantidad de servicio requerido es irrelevante para el problema (o, equivalen-
temente, que todos los clientes que solicitan servicio tienen la misma cantidad
de demanda). En este contexto la capacidad de una planta representa una limi-
tacion sobre el nimero méaximo de clientes que pueden servirse desde ella en caso
de abrirse. Este tipo de demanda ha sido considerada en problemas estocasticos
de rutas [5, 16] asi como en problemas estocdsticos de asignacién generalizada
[22, 1, 3]. Conocemos un unico trabajo donde se haya abordado un problema
estocdstico LA (ELA) [24], donde se usa un problema ELA sin capacidades como
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ejemplo ilustrativo y muy pocos trabajos sobre problemas estocdsticos LR (ELR)
(algunos ejemplos son [7, 10, 18]). Que nosotras sepamos, el tinico trabajo sobre
SLR en el que se considera el tipo de demanda descrito anteriormente es [2].

En el tratamiento de problemas estocasticos de programacién matemética
existen distintas alternativas: el uso de restricciones probabilisticas, el estudio
de escenarios, y la programacién con recurso. En este trabajo, trataremos tanto
los problemas ELA como los ELR siguiendo este ultimo enfoque. En la progra-
macién con recurso los problemas se estructuran segiin un esquema binivel que
distingue las decisiones que se toman antes de conocer los valores de los elementos
estocdsticos del problema (solucidn a priori) de aquellas que se toman a posteriori
para adaptar la solucion a priori al escenario que tiene lugar. En los dos casos,
la solucién a priori consistird en un conjunto de plantas a abrir junto con una
asignacién de los clientes a las plantas abiertas. Una vez conocidas las deman-
das, si para la instancia en cuestiéon la demanda total asignada a alguna planta
abierta excede su capacidad la solucién a priori no serd factible para esa instancia
concreta y aplicaremos la acciéon de recurso.

Para los problemas ELA la acciéon de recurso consiste en reasignar algunos
clientes asignados a una planta violada a otra planta abierta con capacidad dis-
ponible a un coste prefijado. Para una instancia dada puede ocurrir que la de-
manda total supere la capacidad total de las plantas abiertas. En ese caso parte
de los clientes se perderdn (no serdn servidos) y se generard un coste adicional,
que puede entenderse como la penalizacion por perder al cliente o como el coste
de adquisicién de recursos adicionales para poder proporcionar el servicio.

Por el contrario, la asignacion de los clientes no cambia en la accién de recurso
para los problemas ELR, aunque la capacidad de alguna planta esté violada por
la solucién a priori. Para definir la accién de recurso, suponemos que cuando
el nimero de clientes asignados a una planta que solicitan servicio supera su
capacidad, alguno de ellos se perderd (no serd servido) generdndose un coste
adicional que se intrerpreta de forma analoga al caso de los problemas ELA. Los
clientes no servidos se eligen aleatoriamente para no priorizar aquellos clientes
con una posicién privilegiada en la ruta a priori. Una vez se haya establecido el
conjunto de clientes que recibirdn servicio, éstos son visitados en el orden definido
por las rutas a a priori como se muestra en la Figura 1(b).

En ambos casos el objetivo es minimizar el coste total, que se define como la
suma de los costes fijos de apertura de las plantas mas el coste esperado de la
accion de recurso. A su vez, el coste esperado de la accién de recurso consta de
dos términos: el coste esperado de la solucién a posteriori mas el coste esperado
de las penalizaciones debidas a los clientes no atendidos.
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Fig 1: Accién de recurso

En la siguiente seccién presentamos la notaciéon que usaremos a lo largo del
capitulo, y los elementos comunes de los modelos ELD. El modelado y las pro-
piedades de las distintas funciones de recurso para problemas ELA y probemas
ELR se tratan en las Secciones 3 y 4, respectivamente, mientras que en las Sec-
ciones 5 y 6 describimos los algoritmos que se han desarrollado para los dos
tipos de problemas. Para los problemas ELA (Seccién 5) describimos dos algo-
ritmos de solucién, uno heuristico y uno exacto, mientras que para problemas
ELR (Seccién 6) proponemos una heuristica y una cota inferior. Finalizamos el
capitulo con una seccién de conclusiones donde, ademads, se presentan algunas
lineas de investigacién futura.

2 Modelos de recurso para Problemas Estocasti-
cos de Localizaciéon Discreta

En esta seccién formulamos un Problema Estocéstico de Localizacién Discreta
(PELD) mediante un modelo de recurso. El modelo considerado permite dar un
tratamiento unificado para problemas ELA y ELR. Una instancia de un PELD
viene dada por los siguientes datos:

e Los conjuntos de indices de plantas y clientes: I y J, respectivamente. Sean
m=|Ilyn=]|J|

e El coste no negativo de viaje entre pares de clientes o entre clientes y plantas:
cij. Para los problemas ELA supondremos que c;; representa el coste de
asignacion del cliente j a la planta ;

e El coste fijo de apertura para la planta i € I: f;;
e Capacidad de la planta i € I en caso de ser abierta: b;;

e La probabilidad de que un cliente dado solicite servicio y su complementario:
py q=1—p, respectivamente. Suponemos que las peticiones de servicio
de los clientes son independientes y todos con la misma probabilidad p;
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o El vector que representa la demanda de los clientes: (§;,j € J). Puede
modelarse mediante variables aleatorias Bernouilli de pardmetro comun p;

o [l coste de reasignacién del cliente j € J: r; > 0;

e La penalizacién en la que se incurre cuando se rechaza la peticién de servicio
de un cliente: g > 0. Suponemos que esta penalizacion es la misma para
todos los clientes.

Las soluciones a priori para un PELD se caracterizan por:

e Unas variables binarias y;,¢ € I que representan si la planta ¢ estd o no
abierta;

e Para cada i € I con y; = 1:

- J(i) C J, conjunto de clientes asignados a la planta i;
- d; = |J(i)|, nimero de clientes asignados a la planta i;

- x;, vector de incidencias que representa la asignacion a priori para la
planta i.

Dada una realizacién ¢ del vector de demandas, para cada ¢ € I con y; = 1,
sea 1; = ZjeJ(i) &, la demanda total asignada a la planta i. Puesto que las
peticiones de servicio son variables aleatorias Bernouilli i.i.d., tenemos que

n; ~ Binomial(d;, p). (10.1)

El objetivo que se plantea en un PELD es encontrar el conjunto de plantas a
abrir y la asignacién de los clientes a las plantas abiertas que minimice el coste
total esperado. Con la notacién anterior podemos modelar la funcién objetivo
como:

D fiyi+Qy, ),

iel

donde la funcién de recurso Q(y, z) estd definida por

Uy, ) = E¢ [v(y, z,§)] (10.2)

siendo Eg¢ [v(y, z,£)] el valor esperado de la solucién a posteriori para la solucién
a priori (y,z) y el vector de demandas &.

Por tanto, un problema ELD puede formularse utilizando el siguiente modelo
de recurso en dos etapas:
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(PDE1) Min 2fz‘yi +Q(y, z) (10.3)
1€
>owi =1 jed (10.4)
icl
Tij < Yi icl,jel (10.5)
z;; € {0,1} iel,jeJ (10.6
y; € {0,1} iel (10.7

Las ecuaciones (10.4) garantizan que cada cliente es asignado a una tnica
planta, mientras que las restricciones (10.5) aseguran que ningin cliente estd
asignado a una planta que no esté abierta. Nétese que la solucion a prior: permite
que haya mads clientes asignados a una determinada planta que su capacidad. Si
esto no fuese asi, todas las soluciones de la primera etapa serian factibles para
cualquier realizacién del vector de demandas con lo que nunca se realizaria la
accién de recurso.

La estructura de (10.3) permite abordarlo mediante algoritmos del tipo L-sha-
ped en los que aprovechando las buenas propiedades de la funcién de recurso, ésta
se aproxima inferiormente de forma lineal mediante cortes de optimalidad. Este
método, que estd basado en la descomposicién de Benders ([4]), fue inicialmente
propuesto por Van Slyke y R. Wets [26] para problemas estocésticos con variables
continuas y es también valido para problemas en los que inicamente las variables
de la primera etapa tengan limitaciones de integridad. Sin embargo, cuando la
funcién de recurso esta definida por problemas enteros, sus buenas propiedades
se pierden. A pesar de ello, en problemas como los que nos ocupan, es posible ex-
tender la funcién de recurso a una funcién convexa de forma que la aproximacion
inferior por una funcién lineal a trozos es de nuevo un enfoque viable. En esta
direccién, Laporte y Louveaux ([17]) desarrollaron una nueva familia de cortes
para problemas con variables binarias en el primer nivel. Las primeras aplica-
ciones para el caso de variables binarias tanto en la primera como en segunda
etapa se deben a Wollmer [27] y Laporte y Louveaux ([17]). En particular, sea
F = {(y,z) : que satisfacen (10.4) — (10.7)} el conjunto de soluciones posibles
para el modelo (PDE1) que suponemos indexadas en un con junto K. Entonces,
(PDE1) es equivalente al modelo

el
i€l
Tij < Y iel,jeJ(10.10)

0> QF, 2"+ (VQWF k), (y—yF,z—ak))  keK  (10.11)
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zi; € {0,1} i€l jeJ(10.12)
yi €{0,1} i€l (10.13)

donde (-,-) denota el producto escalar y VQ(y"*,2*) es un subgradiente de la
funcién de recurso en el punto (y*, 2%).

Hay que resaltar que dado el gran ntimero de restricciones (10.11) es inviable
incorporarlas inicialmente a la formulacién de (10.8). Por el contrario, los métodos
L-shaped son métodos iterativos en los que en cada iteracién se identifica una
nueva solucién a priori (y*,z¥) € F a partir de la cual se genera una nueva
desigualdad (10.11) que se incorpora a la formulacién del problema. La eficiencia
de estos métodos depende de la capacidad que se tenga de generar desigualdades
(10.11) que acoten de manera eficaz el espacio de busqueda. La expresién concreta
de tales desigualdades depende de la funcién de recurso que se haya definido. En
las préximas secciones veremos la expresion especifica para los problemas ELA y
ELR.

3 Funcién de recurso para Problemas Estocasti-
cos de localizacién-asignacién (ELA)

Dada una solucién a priori (y,z) € F, la accién de recurso para un problema
ELA consiste en reasignar algunos clientes asignados a una planta violada a otra
planta abierta con capacidad disponible a un coste prefijado, ;,j € J. Adicional-
mente, para una instancia dada puede ocurrir que la demanda agregada supere
la capacidad total de las plantas abiertas. En ese caso parte de los clientes se
perderdn (no seran servidos) y se incurrird en una penalizacién g por cada cliente
no atendido. Por tanto, en la funcién de recurso Q¥4(y, z) 1= ¢ [vF4(y, 2, )], el
valor de vLA(y7 x, &) viene dado por:

Ay, 2, &) =Min - Y 3w + X 2 (10.14)
el jed jeJ
Wi + 25 > &T45 iel,jeld (10.15)
dwij > & jed (10.16)
el
Z Wij < bzyl 1el (1017)
jeJ
Wi € {0, 1} iel,jed (1018)
2 €{0,1} jeJ (10.19)

El problema de la segunda etapa (10.14)-(10.19) establece la solucién a poste-
riori una vez conocidas las demandas. Las variables binarias w;; ((¢,4) € I x J)
determinan las asignaciones finales, es decir, w;; = 1 si el cliente j se asigna a

Rect@ Monogréfico 2 (2004)



246 Algunos problemas estocdsticos de localizacion discreta

la planta i. Por otro lado, las variables z; (j € J) indican aquellos clientes con
demanda no nula que se han reasignado. El primer grupo de restricciones (10.15)
fijan z; a 1 si el cliente j tiene demanda no nula y se reasigna a una planta diferente
de la que estaba asignado. Las restricciones (10.16) imponen que todos los clien-
tes con demanda no nula estén asignados a alguna planta abierta, mientras que
las restricciones (10.17) garantizan que no se violen las capacidades de las plantas.

Observaciones

e En general, para el programa (PDE1) de un problema ELA no podré garan-
tizarse recurso relativamente completo, puesto que puede haber soluciones
a priori (y,xz) € F tales que

n> Zie] biyi. (10.20)

Sin embargo, es posible obtener recurso relativamente completo, incluyendo
una planta ficticia 0 € I con suficiente capacidad como para absorber cual-
quier exceso de demanda con un coste fijo de apertura fo = 0 y con un
coste unitario de asignacién que refleje la penalizacién por cliente no aten-
dido g. Es decir, dado que cualquier asignacién a posteriori a esta planta
también producira el correspondiente coste de reasignacion r;, los costes de
asignacién de la planta ficticia serdn co; = g — r;, j € J, para no pagar
ambas penalizaciones simultaneamente.

e Para una solucién a priori (y,x) la evaluacién de la funcién de recurso
requiere la resolucién de muchos problemas de segunda etapa, que en este
caso son problemas con variables binarias. Por tanto, desde el punto de
vista computacional la evaluacién de la funcién de recurso es costosa, puesto
que estos problemas no son sencillos de resolver. En este contexto resulta
especialmente importante estudiar propiedades de v (y, z, &) que permitan
su evaluacién de forma més eficiente.

En este punto debemos notar que la funcién de recurso aqui definida para
un problema ELA es similar a la funcién de recurso tratada en [3] para un
problema estocdstico de asignacién generalizada (PEAG) en el que, como
en el problema ELA que ahora estudiamos, las demandas de los clientes
son variables aleatorias de Bernouilli, con un parametro comtn p. Teniendo
en cuenta que una vez que se selecciona un conjunto de plantas a abrir
en un problema ELA, el subproblema de asignacién correspondiente es un
PEAG, podemos observar que la funcién de recurso Q¥4 (y, x) coincide con
la estudiada en [3] puesto que la estructura del problema de segunda etapa
vEA(y, 2,€) es la misma en ambos casos. Por tanto, podemos aplicar los
resultados de [3] y sustituir (10.14)-(10.19) por su relajacién lineal, puesto
que para todos los vectores de términos independientes correspondientes a
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soluciones factibles de la primera etapa, ambos problemas tienen la misma
solucién.

Por tanto, para una solucién a priori (y,z) el valor de QX4 (y,z) puede
obtenerse mediante la resoluciéon de una serie de problemas continuos de
segunda etapa de la forma

vEA(y, 2, &) = Min - 3 Y cjwig + Y 152 (10.21)
i€l jeJ jeJ
wij + 25 > Xy iel,jeJ (10.22)
> wij > jeJ (10.23)
el
> wij < by iel (10.24)
j€T
2 >0 jed (10.26)

Proposicion 4 Sea S el conjunto de indices de realizaciones para la demanda.
Para s € S, sean £° el correspondiente vector de demandas y p® la probabilidad
de tal realizacion de forma que

QA (y,z) = > p iy, 2., (y,2) ER™ xR™™ (10.27)
seS

Sea Ay, x, &%) un vector de variables duales asociadas a las restricciones (10.24)
y a las restricciones (10.22)para el vector (y,x,£%). Entonces u(y,x),

u(y,z) = > p My, », ) diag(h, &5, ..., &), (10.28)
seS

es un subgradiente de Q en (y,x). Aquy, 5; es un vector de m componentes,
todas iguales a la demanda del cliente j en el la realizacion s y b es el vector de
capacidades.

4 Funcién de recurso para Problemas Estocasticos
de localizacién-rutas (ELR)

Para los problemas ELR una solucién a priori (y,z) € F define no sélo un
conjunto de plantas a abrir y una asignacién de clientes a plantas abiertas, sino
también un conjunto de rutas desde las plantas abiertas que visitan cada cliente
exactamente una vez. Estas rutas estan bien definidas puesto que son las rutas de
coste esperado minimo que visitan todos los clientes asignados a una determinada
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planta y pueden identificarse resolviendo para cada una de las plantas abiertas un
Problema Probabilista del Viajante de Comercio (PPVC) (ver, p.ej. [11]) sobre
el conjunto de nodos V* = {i} U J(i). Por tanto, para cada planta abierta en la
solucion a priori, su ruta a priori es la solucion del correspondiente PPVC. Sea
2% el vector de incidencias de la ruta a priori para una planta i.

En la acciéon de recurso que consideramos para los problemas ELR la asig-
nacion de los clientes no cambia aunque la capacidad de alguna planta esté violada
por la solucién a priori (haya més clientes con demanda asignados a una determi-
nada planta que su capacidad). Para definir la accién de recurso, suponemos que
cuando el nimero de clientes asignados a una planta que solicitan servicio supera
su capacidad, alguno de ellos se perderd (no serd servido) generdndose un coste
adicional g por cliente no atendido. Los clientes no servidos se eligen aleatoria-
mente para no priorizar aquellos clientes con una posicién privilegiada en la ruta
a priori. Una vez establecido el conjunto de clientes que recibiran servicio, éstos
son visitados en el orden definido por las rutas a a priori z*, como se muestra en
la Figura 1(b).

Para una solucién a priori (y, x) € F, y una realizacién del vector de demandas
&, sea J'(i) C J(i) el conjunto de clientes atendidos en la ruta a posteriori de la
planta i. Podemos distinguir dos casos: si n; < b;, entonces J'(i) = {j € J(7) :
& = 1}; en otro caso, si n; > b;, entonces J'(i) es un subconjunto aleatorio de
{j € J(i) : & = 1}, de cardinalidad b;. Sea 27, el vector de incidencias de los
arcos de la ruta obtenida a partir de z* pero que sélo visita los clientes que estén
en J'(i). Utilizando la notacién anterior, la funcién de recurso QX% (y, x) para un
problema ELR puede expresarse como:

Ay, ) =Fe | D g-(m—b)" + Epl D 2], (10.29)

ilyi=1 ilyi=1

con ()7 = méx{-,0}. Puesto que la funcién esperanza es lineal, (10.29) puede
expresarse Como

QM (y, ) = 8(y,2) + Y T(y, =), (10.30)

i)yi=1

donde 8(y,z) =E¢[ Y. g-(m —bi)T ] es la penalizacién esperada y T'(y,z) =
ily;=1
Ee [E/(i)[c£"]] es el coste esperado de la ruta asociada a la planta i € 1.

Hay que notar que 8(y, z) tiene la estructura de una funcién de recurso aso-
ciada a un problema estocédstico con recurso simple, que ha sido ampliamente
tratada en la literatura (ver p.ej. [6]). Por el contrario, las funciones T%(y,x)
no tienen una estructura sencilla. En [2] se obtiene la siguiente expresion exacta
para Ti(y, x):

Rect@ Monogréfico 2 (2004)



M. Albareda, E. Ferndndez 249

ZRh 1Cij, + Z 27 Pi__ 1thJt+ZRd —hCjni- (10.31)

h=1 t=h+1

donde

. t (10.32)
55 ot ()4 5)&;:2)/(;)],
k=b;+1 =
' k
Re=p [i (d'k%l l)pk Lgdi=k 4
. (10.33)
k:b»+1pk e ktzgo ( )(kif 11) (kbtll)/(f)l .

Tanto en (10.32) como en (10.33), k1 = min{b;, d; — £}, to = méx{k — d; + ¢,0},
y tl = min{k — bl,g}

5 Algoritmos para ELA

En esta seccién presentamos dos algoritmos para resolver problemas ELA. El
primero de ellos es una heuristica, mientras que el segundo es un método exacto.

5.1 Heuristica para ELA

La heuristica que presentamos a continuacién estd basada en una de las
heuristicas propuestas en [1] para PEAG. Resolveremos dos problemas auxiliares
deterministas cuya solucién nos proporcione una aproximaciéon de (PDE1). Ini-
cialmente, para elegir un conjunto adecuado de plantas para abrir resolvemos el
siguiente problema de la mochila:

(PM)  Min > fiy: (10.34)
el
Sbiyi > (1+a)pn (10.35)
el
yi € {0,1} iel (10.36)

En las restricciones (10.35), « € [0, %} es un parametro prefijado. Por tanto,
las restricciones (10.35) garantizan que el conjunto de plantas seleccionado tiene
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una capacidad total mayor que un valor que oscila entre la demanda esperada
(a =0) y la demanda conjunta de todos los clientes (a = %).

Sea I* = {i € I : y; = 1 en la solucién éptima de (10.34) — (10.36)} el con-
junto de plantas a abrir. Ahora obtenemos una asignacién a priori resolviendo el
siguiente problema de transporte restringido al conjunto de plantas I*:

iel* jed

Sz >1 jed (10.38)
iel*

S <b i€l (10.39)
jEJ

zi; €{0,1} itel*jeJ (10.40)

donde b; = [bi n (ZZ el bi)_l—‘ . Es decir, escalamos las capacidades de las plantas

abiertas de forma que en el problema auxiliar pueda satisfacerse la demanda de
todos los clientes.

Cabe resaltar que dada la estructura de (PT), éste puede resolverse de forma
optima como un problema continuo, eliminando las condiciones de integridad
sobre las variables.

5.2 Algoritmo exacto para ELA

El algoritmo que describimos a continuacién es del tipo branch-and-cut. Uti-
liza dos tipos de planos secantes que son cortes de optimalidad y que se basan,
respectivamente, en la convexidad de la funcién de recurso Q¥4 y en el hecho que
las variables son binarias.

Cortes de optimalidad

La primera familia de cortes que utilizamos son los cortes de optimalidad
(10.11) definidos en la Seccién 2, que se utilizan en los algoritmos del tipo
L-shaped [26] para problemas continuos con recurso en dos etapas. En nues-
tro caso, podemos utilizarlos considerando la aproximacién convexa de la funcion
de recurso estudiada en la Seccién 3. Para obtenerlos basta con aplicar la Propo-
sicién 4. Nos referiremos a estos cortes como de d-optimalidad para distinguirlos
de los de L-L-optimalidad que describimos a continuacién.

Los cortes de L-L-optimalidad fueron introducidos por Laporte and Louveaux
[17] y son vélidos para todas las soluciones binarias de primera etapa, para varia-
bles de segunda etapa generales. Dado un vector binario (7, ), la estructura de
estos cortes en nuestro caso es
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0> (9% ((y,z)) - L) (Z Yit D mii— X ¥i— X Iij) -
gi=1 1 §i=0 (10.41)

Zij= Zi;=0

(Q"4(g,7) ~ L)(X 0 + X — 1) + L,

donde L es una cota inferior del valor de Q4. Este corte se cumple como igualdad
en (g, Z), mientras que estd dominado por QLA(y,x) > L para otras soluciones
binarias.

Algoritmo de branch-and-cut (BC)

El algoritmo trata la integridad de las variables de la primera etapa mediante
el esquema enumerativo y aproxima la funcién de recurso incorporando cortes
de optimalidad de forma sucesiva. Por tanto, dado un problema actual definido
por una serie de cortes de optimalidad y un subconjunto de variables de decisién
fijadas a 0 6 a 1, el algoritmo BC procede i) resolviendo la relajacién lineal del
problema actual, i7) anadiendo cuando los haya cortes de optimalidad violados,
y 44t) ramificando cuando la solucién actual sea no entera.

Dada una coleccién de cortes de optimalidad & = 1,..., K, y dos pares de
subconjuntos disjuntos de I x I e I x .J, respectivamente, Y = (Y°, Y1) y X =
(X9 X1) definimos el problema Py x como:

(Pryx)Min 9 (10.42)
Sry=1 iel (10.43)
el

aFrphr<o k=1,... K (10.44)
yi =0 ieY"?, (10.45)

yi =1 icY?, (10.46)

2 =0 (i,7) € X°, (10.47)

zi =1 (i,7) € X*, (10.48)

y; € 0,1],z;; € [0,1] enotrocaso. (10.49)

El algoritmo BC es esencialmente una combinacién de técnicas estandar de
branch-and-bound y planos secantes. Sin embargo aprovecha la propiedades es-
pecificas de ELA ya que utiliza la aproximacién convexa de la funcién de recurso
Q%4 de la Seccién 3 que permite tratar ELA como un problema binario con
funcién objetivo convexa. Esto permite generar cortes de d-optimalidad en las
soluciones fraccionales de cada problema actual, que pueden utilizarse en un al-
goritmo estdndar de branch-and-bound. Hay que resaltar que tales cortes son
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en general muy eficientes para obtener una mejor aproximacién de QX4 en un
entorno de la solucién éptima fraccional del problema relajado, pero que esto
no suele ser cierto para la soluciéon éptima binaria del problema actual. Para

[nicializacidn: ¥ = +oo,
K=0 §=0 L= {5}

[Eh-.-;-r (V. X) e £ — Pryx :
'
Hamalver P g
- [y, =" )

Anudir by, 5 0 L

K LAy K K Adisdir L-L-corte
| Evabuar ¥ = @E4(y", %) | Ly [Ramificar — 51, 5
Adindir Secorte
Kiom K 41

Fig 2: Algoritmo BC.

reducir este inconveniente, cuando la solucién del problema actual sea binaria
nuestro algoritmo BC utiliza la interpretacién alternativa de ELA como un pro-
blema con recurso en dos etapas con variables binarias en la primera etapa y
siguiendo el algoritmo entero L-shaped de [17] disefiado para esta clase de pro-
blemas, generamos un corte de L-L-optimalidad (en vez de generar un corte de
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O-optimalidad). En definitiva, el algoritmo BC puede verse como una variante del
algoritmo entero L-shaped, del que también se utilizan las reglas de ramificacién
y eliminacién, combinado con una cota inferior y cortes de J-optimalidad que
se generan en soluciones fraccionales de los problemas actuales. Los detalles del
algoritmo se presentan en la Figura 2. El algoritmo selecciona el problema actual
de la lista de subproblemas pendientes de evaluacién (que se denota L), con una
politica last-in-first-out. Puesto que los cortes de optimalidad £ = 1,..., K son
vélidos para todos los subproblemas, basta con indicar los conjuntos de indices
S=(Y,X),conY = (YO YY) y X = (X% X1') para identificar los subproblemas
de la lista Pk g.

El algoritmo BC converge puesto que se trata de una modificacién del algo-
ritmo entero L-shaped [17], que encuentra una solucién éptima en un nimero
finito de iteraciones, en la que se anaden cortes violados de d-optimalidad en la
soluciones fracionales de los problemas actuales, de los que hay un nimero finito.

6 Algoritmos para ELR

En esta seccién describimos una heuristica para obtener soluciones posibles
para ELR asi como una cota inferior valida, que permite contrastar la calidad
de las soluciones obtenidas con la heuristica, que han sido propuestas en [2]. La
heuristica utiliza una aproximacién de la funcién de recurso QL% definida en la
Seccién 4. Esto se debe a que la evaluacién de la funcién de recurso Q% cuya
expresién analitica viene dada por (10.30) es muy costosa puesto que requiere la
evaluacién de la expresién (10.31) para conocer el valor de la funcién T lo cual, a
su vez, requiere el cdlculo de las probabilidades (10.32) y (10.33), que implican el
célculo de ntimeros combinatorios. Por tanto, utilizaremos una aproximacién de
la funcién T¢ que puede evaluarse de forma mucho més réapida. Existen algunos
algoritmos para problemas estocésticos que han utilizado de forma satisfactoria
aproximaciones de la funcién objetivo, cuando su evaluacién requiere un esfuerzo
de célculo importante (ver p.ej. [9]). En nuestro caso, la dificultad de la evaluacién
del coste de la funcion de recurso se debe en gran medida al hecho de que las visitas
a distintos clientes en la misma ruta a priori no son independientes debido a la
restriccién de capacidad de la planta. Para superar esta dificultad construimos
una aproximacién T¢ en la que las probabilidades (10.31) y (10.33) se sustituyen
por las que resultarian si los servicios a los clientes fuesen independientes. De
hecho este es el caso cuando d; < b;. Sea p la probabilidad de visitar un cliente
dado, calculada como p veces la probabilidad condicional de visitar el cliente dado
que tiene demanda. Si en la solucién a priori el cliente estd asignado a planta i,
esta probabilidad condicional puede expresarse como (ver [2]):
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) o1\ T
p=p<z<k_1>p’“ 1—p)"F+
b

k=1

(L)t

Sustituyendo en (10.31) las probabilidades Py y Ry por

k=b;+1

Pr=p*(1-p) and Re=p(1l-p)

obtenemos la siguiente aproximacién de T*:

- d; di—1 d;
Ty, x) = pl—p) e+ X Y PPA-p)" e
k=1 k=1 t=k+1
d;
+ > p(1 —p)hi=Fej,,.
k=1

Esta expresién coincide con la funcién objetivo propuesta en [12] para el PPVC
en el caso particular en que la probabilidad de presencia de todos los clientes sea
la misma. En adelante nos referimos a esta aproximacién de la funcién de recurso
como QFF(y, z).

6.1 Heuristica para ELR

En [2] se propone una heuristica en dos fases para ELR. En la fase constructiva
se obtiene una solucién inicial que se mejora de forma iterativa en la fase de
busqueda local.

Fase constructiva

Para obtener la solucién inicial, se descompone el problema ELR en una se-
cuencia de tres subproblemas: 1) seleccién del conjunto de plantas a abrir, 2)
asignacion de clientes a plantas abiertas, y 3) disefio de una ruta para cada planta
abierta.

Seleccion del conjunto de plantas abiertas.

El conjunto de plantas abiertas O se elige de forma que la capacidad total sea
suficiente como para atender todas las solicitudes de demanda con una determi-
nada probabilidad «, es decir:

PId>g <Y bl >a (10.50)

JjeJ €0
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La menor capacidad conjunta b, que satisface (10.50) puede obtenerse ficilmente
de la distribucién de probabilidad binomial del niimero total de solicitudes de ser-
vicio. Una vez calculado b,, el conjunto O se determina resolviendo el siguiente
Problema de la Mochila:

(PMa) min > fiy: (10.51)
iel
> biyi > ba (10.52)
i€l
y; € {0,1} Viel. (10.53)

Cabe observar que, por construccién de by, las restricciones (10.50) y (10.52) son
equivalentes. Por tanto, el conjunto O = {i € I : y; = 1 en la solucién de PM, }
tiene coste minimo entre los que satisfacen (10.50).

Asignacién de clientes a plantas abiertas

Una vez que el conjunto de plantas abiertas esta fijo, se identifica una asig-
nacién de clientes a las plantas abiertas. Para ello, resolvemos un PEAG en el
que la funcién de coste viene dada por las distancias entre las plantas y los clien-
tes. Como en el caso de la heuristica para ELA, en esta fase podemos utilizar
una de las heuristicas de [1] y resolvemos un problema de transporte similar a
(10.37)-(10.40). Ahora, debemos tener en cuenta que la funcién que deseamos
optimizar es el valor de la funcién de recurso Q*%(y,x) (10.30) y que en ELR
no permitimos reasignaciones de clientes. Por tanto, en la funcién objtivo del
problema de transporte, establecemos todos los costes de reasignaciéon a un valor
superior al de la penalizacion por no atenderlos cuando tienen demanda.
Construccién del conjunto de rutas a priori

Comenzando con las rutas vacias, los clientes se insertan sucesivamente en la
ruta de la planta a la que ha sido asignado, utilizando el criterio de insercion del
mas prozimo respecto a la funcién objetivo del problema determinista. Una vez
que cada cliente se ha insertado en su correspondiente ruta, se realizan intercam-
bios sucesivos de dos arcos en la misma ruta, hasta que todas las rutas sean 2-opt
respecto a la funcién objetivo T

Fase de mejora

Una vez obtenida una solucién inicial, ésta se mejora utilizando busqueda
local. Todos los movimientos se realizan utilizando el criterio de insercion del
mds prozimo respecto a T. Se exploran cuatro entornos:

e Ni(x): Reasignacién de un cliente. Ni(x) contiene todas las soluciones que
pueden obtenerse a partir de x quitando un cliente de su ruta e insertandolo
en otra diferente.

Rect@ Monogréfico 2 (2004)



256 Algunos problemas estocdsticos de localizacion discreta

e Ny(z): Intercambio de dos clientes. No(x) contiene todas las soluciones
que pueden obtenerse a partir de x seleccionando un par de clientes j; y jo
que estén en rutas diferentes i1 e is, respectivamente, elimindndolos de sus
correspondientes rutas, e insertando j; en la ruta de la planta is y js en la
ruta de la planta i;.

e N3(z): Intercambio de plantas. Las soluciones de N3(x) son las que pueden
obtenerse a partir de x cerrando una planta abierta i;, abriendo una planta
cerrada 19, y asignando la ruta de 71 a io.

® No_gpt(2): Intercambio de arcos. Las soluciones de No_qyt(2) se obtienen
a partir de x intercambiando pares de arcos en la misma ruta.

La Figura 3 muestra un esquema de la heuristica, en el que se indica el orden
de exploracion de los distintos entornos.

Heuristica para ELR

Fase constructiva

Seleccionar «, determinar b, y resolver (KP,) — O.
Asignar clientes a O utilizando heuristica — {J () : i € O}.
Para (i € O) hacer

Para (j € J(i)) Insertar j en la ruta de la planta i.
Explorar NQ_opt(x).

FinPara

Fase de mejora

Crriterio Terminacion «— falso.

Mientras( Criterio Terminacion falso) hacer

Repetir

Explorar Ny(z) y actualizar z.
Explorar N;(z) y actualizar z.

Hasta que (no se encuentren movimientos de mejora)

Repetir
Explorar No_q;¢ () y actualizar x.

Hasta que (no se encuentren movimientos de mejora)
Explorar Ns(z) y actualizar x.

Actualizar CriterioTerminacion.

FinMientras
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Fig. 3. Esquema de la heuristica para ELR

6.2 Cota inferior para ELR

Para obtener cotas inferiores validas para ELR podemos descomponer la
funcién objetivo en dos partes y obtener una cota separada para cada una de
ellas. Estas dos partes son 1) los costes asociados con las plantas (costes fijos de
apertura mds penalizaciones), y 2) los costes de las propias rutas.

Costes fijos de apertura de las plantas mas penalizaciones esperadas
por clientes no servidos: zgxp

Es importante acotar conjuntamente la penalizacién esperada mds los costes
fijos de apertura puesto que estos dos términos son contradictorios entre ellos.
Abrir una planta aumenta los costes fijos pero disminuye las penalizaciones. La
penalizacién esperada asociada a una solucién con un conjunto de plantas abiertas
O, no serd menor que

Ee lg- O & =D b)T|,

jeJ i€o

independientemente de la asignacion de los clientes a las plantas. Por tanto, una
cota inferior de la suma de los costes fijos més las penalizaciones esperadas viene
dada por la solucién del siguiente Problema Estocéastico de la Mochila.

Este problema es un problema en dos etapas con recurso simple. Puede verse
que un modelo determinista equivalente para este problema es

min, Y fiyi + S0 6% ub
i€l

Zie[ bi yi —Z::é u® =np

uogl—np

0<utl <1 1=0,...,n
y; € {0,1} 1€l

(0JO) donde §° = —g, y 'l =g <_1 +P

Z§j<zD, 1=0,...,n.

jeJ
Se trata de un problema de programacion entera mixta que puede resolverse
de forma eficiente utilizando cualquier software de propdsito general.
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Coste esperado de las rutas a posteriori

Para calcular una cota inferior del coste de las rutas a posteriori utilizamos
un procedimiento similar al propuesto en [16] para el PPVC. Es decir, calculamos
una cota inferior del coste Zrg de las rutas a priori y restamos una cota superior
de los ahorros esperados por saltarse los clientes.

Cota inferior zpy ¢, del coste de una ruta a priori

Para acotar el coste de una ruta a priori utilizamos la soluciéon de un PVC
definido como sigue. Consideramos un grafo dirigido completo con conjunto de
vértices V = ITUI'UJ, donde I’ es una copia del conjunto de plantas. El vértice i
representa la planta como punto inicial de la ruta, e i’ representa la misma planta,
como punto final de la ruta. Definimos los siguientes costes para los arcos:

ce sieeJxJeelxJoeedxI
Ce=4¢ 0 siecl'’xToe=(ii),iel
oo en otro caso.

Con estos costes, en la solucién éptima de PVC los vértices que representan
las plantas estardan conectados solamente en dos casos: 1) un arco de un planta-
terminal a un nodo planta-inicial, que se corresponde con una ruta que termina
en una planta seguida de otra ruta que comienza en la otra planta, y 2) un arco de
un nodo planta-inicial a su correspondiente nodo planta-terminal, que representa
una ruta vacia. La Figura 7?7 ilustra cémo puede obtenerse una solucién factible
para este PVC a partir de cualquier conjunto de rutas a priori para ELR.

—0 —0O
. O

Q = Q :
({ O& ; ST
O O— O Cliente O O
= = Plantacerrada 3 O\ _.._ Coste0
(®) Plantaabierta -7 ___ Costeorigina

) Solucién a priori (b) Solucién para PVC

O~

-

Fig 4: Cota del coste de la ruta a priori, zpy o

Para resolver este PVC puede utilizarse el modelo propuesto en [20] y reforzado
posteriormente en [8]:

zpye = Min %ceme (10.54)
ec
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S oz =1 i€V (10.55)

e€d (i)
S oz =1 i€V (10.56)

e€dt ()
wi —uj + (0 — Dy + (A —3)ay; <n—2 iij Y10.57)
z. € {0,1} e A (10.58)
1<u; <n-—1 i>1, (10.59)

donde n = |V| = 2m+mn, A es el conjunto de arcos del grafo y, dado un vértice j,
57 (4) (resp. %(4)) es el conjunto de arcos que entran en (resp. salen de) j. Las
variables x. indican si el arco e se utiliza en la solucién, y cada variable u; da la
posicién del vértice ¢ en el circuito. En [2] se mejora el valor de la cota inferior
Zpoy, reforzando el modelo anterior (10.54)-(10.59) mediante la incorporacién de
algunas restricciones adicionales.

Cota superior Zgrg, de los ahorros esperados por “saltar” clientes

Para acotar los costes esperados de las rutas a posteriori en [2] se utiliza una
extensién del modelo propuesto en [16] para el PTSP. La idea del modelo es
encontrar una familia adecuada de atajos con un valor total maximo. Un atajo
representa la sustitucién de un camino (i, k, j) en la solucién a priori por el arco
(¢,7) (ver Figura 1(b). En nuestro caso, para cada cliente k se definen conjuntos
de tripletas para todos los posibles atajos como sigue:

1) A(k) = {(i,k,i):i eI}

2) B(k) ={(i,k,j):iel,jeJ j#k}

3) C(k) = {(j1,k.jz) : Jrodz € Jojndo # kujn # G}y
4) D(k) = A(k) U B(k) U C(k).

Para cada tripleta (i, k, j) se define una variable y;x;. Adicionalmente se incluyen
variables binarias w;, ¢ € I, que indican si la planta i estd o no abierta. Los
coeficientes de la funcién objetivo se corresponden con los valores de los atajos.
Dada una tripleta (i,k, ), el correspondiente coeficiente viene dado por d;i; =
g(cik + cxj — ¢ij), donde loa indices 4, j, se refieren a clientes o plantas. Nétese
que si ¢ = j € I (variable de tipo A), entonces el dltimo término ¢;; es cero. Con
esta notacién el modelo resultante es:

max Z Z dikj Yikj (10.60)

keJ (i,k,j)eD(k)
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s.a > yai=1, kelJ (10.61)
(i,kd)ED (k)
Zym <1, i€l (10.62)
keJ
S oy <2ieljel (10.63)
ke\ {5}
Y Uik <1 i#jaed (10.64)

keJ\{j1.,52}

YD vkt D, ymm<2 jeJ (10.65)

keJ\{j} i€l kg2 €I\ {5}
Kt io
2 Zyiki + Z Yikj <2w; i€l (10.66)
keJ kjed
Z fiwi <npg (10.67)
iel
23 it DY vt Y. Ui <2 j€J  (10.68)
i€l el kEJ k,jo€J
JFkFio#]
yikj,w; € {0,1}, ke J (i,k,j) € D(k),i e I. (10.69)

Las restricciones (10.61) garantizan que para cada cliente se elige exactamente
un atajo y las restricciones (10.62)-(10.65) sirven para controlar la utilizacién de
cualquier vértice como nodo terminal de un atajo. En general, cualquier vértice
puede ser nodo terminal de dos atajos diferentes, excepto las plantas con atajos
de tipo A, que pueden serlo de un unico atajo. Las restricciones (10.66) impiden
realizar atajos en plantas que no estén abiertas. La restriccién (10.67) establece
una cota superior pata los costes fijos totales de las plantas abiertas. Dado que el
término independiente npg es el coste de una solucién que no abre ninguna planta
y esa decision se corresponde con una solucién posible para ELR, se trata de una
cota superior del coste de cualquier solucién 6ptima y, en particular, de los costes
fijos de apertura asociados con ella. Finalmente, las restricciones (10.68) evitan
que clientes asociados con un atajo de tipo A sean nodos terminales de cualquier
otro atajo. La solucién 6ptima de este modelo proporciona una cota superior Zrg
de los ahorros esperados por “saltarse” clientes en cualquier conjunto factible de
rutas.

7 Conclusiones

En este capitulo hemos estudiado algunos problemas estocésticos de locali-
zacion discreta. En concreto, hemos considerado problemas con un factor aleato-
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rio determinado por el hecho de que la demanda de los clientes no es conocida a
priori. Sin embargo, hemos asumido que conocemos la probabilidad con la que
cada cliente tiene demanda, que es la misma para todos los clientes. En este
contexto hemos planteado dos problemas discretos que difieren entre ellos en la
forma en la que se proporciona el servicio a los clientes. En el primer caso, hemos
supuesto que los clientes se desplazan hasta la planta para recibir servicio, dando
lugar a problemas estocésticos de localizacién-asignacién (ELA). En el segundo
caso hemos supuesto que el servicio a los clientes se realiza donde se sitian los
clientes y que la naturaleza de los servicios permite que se realice una secuencia
de ellos sin volver a la planta, dando lugar a problemas estocésticos de loca-
lizacién-rutas (ELR). Hemos abordado ambos problemas desde una perspectiva
unificadora de programacion con recurso. En cada caso hemos definido la solucién
a priort y la funcién de recurso para obtener la solucién a posteriori que resulta
al adaptar la solucién a priori a cada posible escenario. Para el caso de los pro-
blemas ELA hemos presentado una heuristica para obtener soluciones posibles,
asi como un algoritmo exacto de tipo L-shaped que aprovecha las propiedades de
la funcién de recurso. Para los problemas de localizacién-rutas hemos obtenido
la expresién analitica de la funcién de recurso, pero hemos sugerido una aproxi-
macién de la misma, dado que computacionalmente la evaluacién de esta funcién
resulta costosa. También hemos presentado una cota superior obtenida mediante
una heuristica y una cota inferior que consta de dos términos, uno asociado a las
plantas abiertas y otro a las propias rutas. El estudio realizado permite concluir
que las técnicas utilizadas son adecuadas para el tratamiento de estos problemas.
Sin embargo, cabe resaltar que dada la complejidad de los problemas estudiados,
desde el punto de vista computacional es necesario realizar un esfuerzo adicio-
nal que permita abordar problemas de mayores dimensiones. Desde el punto de
vista tedrico, pueden plantearse diversas extensiones del problema, entre las que
cabe resaltar el estudio de otro tipo de distribuciones de probabilidad para las
demandas de los clientes.
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1 Introduccion

Una decisiéon importante que hay que tomar al establecer un nuevo centro de
servicio o actividad econdémica, tanto en el sector publico como en el privado |,
es donde localizarlo. Esto sucede por ejemplo con un hospital, un colegio, un
restaurante, un almacén para servir a consumidores o detallistas, una maquina
en una planta de produccién, o un punto de venta de una franquicia. Una buena
localizacion esté ligada, entre otros factores, con una mayor eficacia, una mayor
utilizacién y una disminucién en los costes operativos del centro correspondiente.
Existen una gran cantidad de modelos matemdticos que permiten estudiar los
aspectos cuantitativos de estos problemas, conocidos con el nombre de Modelos
de Localizacion. En situacién de monopolio, el objetivo més frecuente es optimizar
alguna funcién de los costes de instalacién y de transporte, mientras que en un
oligopolio el objetivo suele ser maximizar el beneficio del centro, o bien su cuota de
mercado. Excelentes estudios y revisiones sobre estos modelos pueden consultarse
en [3,4, 5,7, 45, 1, 8, 2].

En monopolio, cada modelo se suele formular como un problema de optimi-
zacion, donde la funcién objetivo depende de la distancia entre los puntos de
demanda y los centros que los sirven. Ejemplos de tales funciones son el coste
total de transporte, la distancia méaxima entre puntos de demanda y centros, y
la distancia minima entre dichos puntos. En particular, hablaremos de Modelos
de Localizacion Minimaasi el problema consiste en minimizar el maximo de una
serie de funciones, cada una de las cuales es a su vez una funcién de la distancia
entre un punto de demanda y un centro. Los modelos difieren unos de otros de-
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pendiendo del espacio de localizacién , de las funciones que se utilicen para medir
la distancia, y de la funcién objetivo. Si el espacio es el Plano, cada centro y cada
punto de demanda vienen representados por dos componentes (sus coordenadas
geogréficas) y la distancia entre dos puntos se mide mediante alguna funcién de
sus coordenadas, normalmente usando una norma /,,1 < p < 00,0 23,0 > 0
[34, 42]). Si el espacio es una Red de Transporte, los puntos de demanda suelen
estar en los nodos. Los centros estan en los nodos, o en los tramos, midiéndose
la distancia entre pares de puntos por la longitud del camino més corto que los
une [11].

Cuando las funciones de la distancia son lineales, este tipo de problema se co-
noce con el nombre de Problema del p-centro, donde p hace referencia al niimero
de centros a localizar, que ha sido ampliamente estudiado en ambiente de certi-
dumbre. En el plano, para p = 1, tiene su origen en Silvester [19], quién en 1987
planteé el problema de encontrar el circulo de menor radio que contuviera a un
conjunto de puntos dado (lo que equivale a encontrar un punto que minimice su
distancia mdxima a tales puntos). Sin embargo, este problema no se resolvié de
forma eficiente hasta 1972, fecha que se publicé el algoritmo de Elzinga y Hearn
[27], que mds tarde fue generalizado al caso de funciones lineales de la distan-
cia [31, 32]. En una red lo encontramos en 1964 con Hakimi [43], quién planted
y resolvid el problema cuando el candidato es cualquier punto. En ambos es-
pacios, plano y red, el problema fue estudiado més adelante para funciones no
lineales de la distancia [44, 38]. Para p > 1 ha sido extensamente estudiado,
utilizdndose distintas medidas de la distancia en el caso del plano. Debido a que
es un problema NP-duro, sélo se han utilizado algoritmos de tipo heuristico para
encontrar soluciones a problemas con un elevado ntimero de puntos de demanda
[30, 20, 41, 39]. No obstante, existen algoritmos exactos que permiten resolver
problemas con hasta una o dos centenas de puntos [29, 33, 20, 18, 25, 24, 14, 23].
Su extension al espacio euclideo de dimensiéon n > 2 puede verse en

Los modelos minimax han sido aplicados a problemas de localizacién de servi-
cios de emergencia, como bomberos y ambulancias; de centros multimedia, como
emisoras y antenas de telefonfa; y de servicios de mensajerfa urgente [46, 35]. Su
estudio en el espacio euclideo con dimension n > 2 es de interés en Clasificacion y
Analisis de Datos [9, 13], donde se utilizan para la determinacién de representantes
de grupos. Como cabe esperar, en numerosas situaciones se presenta incertidum-
bre. Esto sucede en particular en la localizacién de servicios de emergencia, donde
se deberd atender cualquier incidente en una determinada regién, o en conjunto
de puntos de riesgo. Si el criterio de decisién es minimizar el tiempo maximo de
desplazamiento desde el centro a los puntos de demanda, el tiempo de viaje se
puede considerar como una variable aleatoria. Ello conduce a considerar que el
factor que pondera la distancia es una variable aleatoria. En esta direccion,los
primeros estudios en una red fueron realizados por Frank [49, 50], y en el plano
(con los puntos de demanda alineados) por Wesolowsky [48], ambos considerando
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una distribucién de probabilidad Normal para las variables aleatorias. Este tipo
de incertidumbre ha sido extendido a otros modelos de localizacién [16, 51, 47, 17],
pero sélo muy recientemente ha sido estudiado para el problema del 1-centro con
otras distribuciones de probabilidad, como la distribucién de Bernouwilli ([52] y
la Uniforme ([53, 54], y ha sido reconsiderado en una red usando la distribucién
Normal en [55].

En este trabajo presentamos un modelo general en el plano, donde la distancia
viene medida por cualquier norma y se presenta incertidumbre en los coeficientes
de la distancia, que vienen dados por variables aleatorias con distribuciones de
probabilidad arbitrarias. Se consideran tres criterios de decision, se analizan las
propiedades basicas de los correspondientes modelos de optimizacién y se plantean
procedimientos para su resolucion.

2 El modelo

Sean p; = (pi1,pi2), ¢ = 1,...,n, un conjunto de puntos del plano cuyas
coordenadas son conocidas. Cada punto p; tiene asociada una cantidad w; > 0y
va a ser servido desde un punto z = (x1,x2), cuyas coordenadas se desconocen.
El objetivo es encontrar las coordenadas del punto x, con objeto de minimizar
la distancia maxima de dicho punto a los n puntos dados, ponderada por las
cantidades indicadas. Es decir, se pretende resolver el siguiente problemas:

(P) min F(z) = méax {w;d;(z)}. (11.1)
z€R2 1<i<n

Dependiendo de la situacién que se estudie, los puntos p; representan lugares
donde tiene que llegar un determinado servicio, como una senal de TV, telefonia
movil,etc.; pueden ser puntos de riesgo de un determinado incidente, como un
incendio, una explosién, una colision de vehiculos,etc.; puntos de venta a los
que hay que entregar un producto perecedero , etc. La cantidad w; asociada
a cada punto mide su importancia en relacién a los demas puntos, debido al
tamano de la poblacién existente, grado de riesgo del posible incidente, cantidad
de demanda,etc.; o bien representa el inverso de la velocidad media en desplazarse
desde z al punto p;, si se trata de un servicio de emergencia. La distancia d;(x) se
suele medir con la norma euclidea, o con la norma rectangular, segiin se consideren
grandes zonas geogréficas , o zonas urbanas. Como ya se ha indicado en la seccién
1, existen otras normas que proporcionan una mejor estimacién de la distancia
recorrida en los desplazamientos, por lo que vamos a considerar d;(x) = ||x — p;|,

donde || - || es una norma arbitraria, que especificaremos cuando sea necesario.
Si no se presenta incertidumbre, es bien conocido que el problema (P) tiene
siempre solucion éptima y al menos existe una solucién 6ptima en la envolvente
convexa de los puntos p;. Su resolucién pude hacerse por diferentes procedimien-
tos, que dependen principalmente de la norma elegida y de si las ponderaciones
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son iguales o distintas. Denotaremos por f* al valor éptimo y por z* a una so-
lucién éptima. A continuacién vamos a describir los algoritmos de resolucién que
se utilizan con mayor frecuencia.

2.1 Puntos colineales

Si los puntos p; estdn alineados, podemos representarlos de la forma p; =
po + Ajv, donde py es un punto de la linea elegido de forma arbitraria y v es la
direccién de alineaciéon. Cualquiera que sea la norma, una solucién éptima del
problema viene determinada por el algoritmo siguiente.

Algoritmo 1

1. Calcular la cantidad:
wiwj |/\1 — )‘Jl

F\, = méx
i#] { w; + W;

}

2. Determinar dos indices ¢t y s para los cuales se alcanza el valor méximo
anterior.

3. Calcular el siguiente valor:

)\* - wt)\t + ws)\s

Wy + Wy
4. La solucién 6ptima y el valor éptimo son:

¥ =po+ A\*v

[*=F)\

2.2 Puntos no colineales y norma /,

Si los puntos se encuentran en una zona urbana y los desplazamientos se
realizan a través de sus calles, puede resultar apropiado estimar la distancia por
la norma ¢, conocida también por norma rectangular o métrica de Manhatan.
En este caso tenemos que :

di(z) = |1 — pin| + |x2 — pi2l

Para resolver el problema con esta métrica se usa la transformacién u; =
X1 + T2, ug = x1 — x2. Los puntos p; = (pi1,piz) se transforman en los puntos
u; = (ui1,u:2) y la distancia viene dada por:

dZ(LL') = HlEiX{|’LL1 — ui1|, |UQ — ’U412|}
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Reemplazando la expresién anterior en la funcién objetivo se obtiene que el
problema es separable en las nuevas variables. Cada uno de los dos subproble-
mas resultantes es del tipo visto para puntos colineales. Entonces se obtiene el
siguiente procedimiento de resolucién [7].

Algoritmo 2

1. Calcular las cantidades:
. wiwj|ui1 - Ujl\
F,=mix{———————
ul = 5y { w; + W, }
wiw;|ui — uj2\}
W; + ’U.)j
Fu = I’l’léX{Ful, Fug}

F,» = max
uz = mdx{

2. Determinar dos indices ¢ y s para los cuales se alcanza el valor méaximo Fy.

Determinar dos indices h y k para los cuales se alcanza el valor maximo
F,5. Calcular los siguientes valores:

U* o WU + WsUs1

=
Wt + Wy

o = Whth2 + Wi Uk2

§=—"c
wp, + Wk

3. i) Si Fy1 = F,2 sélo hay una solucién éptima z* cuyas coordenadas son:

* *
R + Uy

172
Tk = uik - U‘;
2 2
ii) Si Fy1 < Fyo las soluciones éptimas son los puntos z = (z1,x2) del

segmento:
1 F, 1 . F,
S (us + mazi<icn{un — —}) < @1 < S (uz + minicicn{uin + —1})
2 w; 2 w;
T1 — To = U5

i11) Si Fy1 > Fy2 las soluciones 6ptimas son los puntos & = (z1,z9)del

segmento:
1 F, 1 . F,
S(ui +mazi<icn{uie — —}) < o1 < S(uf + mini<icn{uig + —})

£L'1+£L‘2:7,LT

4. El valor éptimo es: f* = F,
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2.3 Puntos no colineales y norma /¢,

En ocasiones los puntos de demanda estan dispersos en grandes areas y resulta
mas conveniente usar la norma euclidea. Entonces se tiene:

di(z) = /(x1 — pir)? + (T2 — piz)?

Como esta métrica es una S-norma, el problema (P) tiene solucién tnica y
viene dada por la solucién éptima de un problema similar con sélo dos o tres
puntos de demanda [38]. Si tenemos en cuenta que dos puntos p;,p;, con w; #
w;, determinan una circunferencia formada por todos los puntos que cumplen
w;di(x) = wjd;(x), vamos a ver como se obtendria la solucién éptima.

Para n = 2 la solucién es el punto z* = W

Para n = 3 la solucién estd determinada por dos de los tres puntos, o por los
tres. En el primer caso, hay que obtener las soluciones 6ptimas para los tres pares
de puntos, segiin acabamos de indicar. En el segundo caso, la solucién 6ptima
se encuentra de la siguiente forma: Si w; = ws = ws es la interseccion de las
mediatrices del tridngulo determinado por los tres puntos. Si w; = ws # ws
es la interseccién de la mediatriz del segmento [p1,p2] con las circunferencias
determinadas por los pares de puntos pi,ps y pe2,p3. Los casos wi; = ws # ws
y we = ws # wp son similares al anterior. Si wy; # wq # w3 es la interseccién
de las tres circunferencias determinadas por los pares p1,p2, p1,P3 ¥ P2,P3- Un
algoritmo muy eficiente para resolver el problema es el siguiente [31].

Algoritmo 3

1 Elegir dos puntos cualesquiera, que notamos por p; y p2. Obtener la solucién
optima x* para estos dos puntos. Hacer N = 2 e ir al paso 2.

2 Si widy(z*) = F(a*) , PARAR. De lo contrario ir al paso 3 si N = 2 y al
paso 4 si N = 3.

3 Denotemos por ps a un punto tal que wsdz(x*) = F(x*). Encontrar la
solucién x* para p; , p2 vy ps. Tomar N igual al nimero de puntos que
determinan z*. Si N = 2 denominar a los puntos correspondientes por p;
y p2. Ir al paso 2.

4 Denotemos por py a un punto tal que wydy(z*) = F(z*).Encontrar la so-
lucién z* para estos cuatro puntos explorando los pares p1,p4 ; P2, P4 ; P3, Pa
y los trios p1, p2, P4 ; P1,P3,P4 ; P2, P3, Pa-Tomar N igual al nimero de pun-
tos que determinan z*. Si N = 2 denominar a los puntos correspondientes
por p1 y pe. Si N = 3 denominarlos por p; , p2 ¥ ps. Ir al paso 2.

En las secciones siguientes vamos a analizar este modelo cuando se presenta
incertidumbre en los coeficientes de la distancia. Esto suele pasar cuando el pro-
ducto w;d;(x) representa el tiempo de viaje entre los puntos p; y . En este caso
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w; es el inverso de la velocidad media y puede considerarse una variable aleato-
ria, ya que la velocidad media es mayor o menor, dependiendo de la circulaciéon
existente. También puede haber incertidumbre si el riesgo de incidente en cada
punto no es fijo, sino que varia dependiendo de las condiciones atmosféricas, del
trafico , o cualquier otro factor, segtiin el problema objeto de estudio. Vamos a
suponer entonces que los coeficientes de la distancia en el modelo son wvariables
aleatorias independientes con distribuciones de probabilidad arbitrarias. Al vector
n-dimensional aleatorio determinado por estas variables lo denotaremos por w,
de manera que w = (wi,wa, ..., w,) representard un posible valor de w. A la
funcién objetivo la denotaremos por F'(x, w), que es una variable aleatoria que
tomard el valor maxi<;<,{w;d;(z)} si w = w. Supondremos que la distribucién
de probabilidad de w es discreta, o absolutamente continua, y que cada una de las
variables aleatorias w; toma valores dentro de un intervalo [a;, b;], donde a; > 0.

3 El criterio del valor esperado

Si aplicamos el criterio del valor esperado en el modelo anterior, tendremos
que resolver el problema:

(E) min E(z) = Ew[F(z,w)] (11.2)
z€R?
donde Ew denota el valor esperado utilizando la correspondiente distribucion
de probabilidad del vector aleatorio w . Vamos a ver que (E) es un problema
de Programacion Convera con algunas caracteristicas particulares. Sea H la
envolvente convexa de los puntos p;.

Teorema 2 La funcion E(x) es convexa en R? y siempre se puede encontrar una
solucion optima en H.

Demostracion: Para cada valor de la variable w, la funcién F(x,w) es convexa en
la variable z, ya que estd definida como el mdximo de n funciones convexas (la
distancia viene dada por una norma y puede comprobarse facilmente que es una
funcién convexa). Por consiguiente,si x = Ay + (1 — A)z, 0 < XA < 1, resulta que:

E(r) = Bw[F(r,w)] < Ew[AF(y, w) + (1 = A)F(z,w)]
= ABw([F(y,w)] + (1 = M) Ew[F(z, w)| = AE(y) + (1 = ) E(2).

Como E(z) es convexa en R?, tiene que ser continua. Si 2’ ¢ H, cualquiera
que sea la norma que se utilice debe existir un punto = € H tal que d;(x) < d;(z')
(véase [56]). Por lo tanto:

E(x) = Ew[F(z,w)] < Ew[F(2',w)] = E(z2')
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Por ser E(x) continua y la envolvente convexa un conjunto compacto, de la desi-
gualdad anterior se desprende que su valor minimo se alcanza en algin punto de
H.

A los valores de toma la variable F'(x,w) los denotaremos por la letra f y a
su funcién de distribucién de probabilidad por G, (f). Esta funcién viene dada
por:

- f - f
G (f) =P Flz,w) < fl=|| B [w; < ——] = | | Gi(——
donde G; es la funcién de distribucién de probabilidad de la variable w;. Una vez
determinada G, (f) se obtendrd su valor esperado E(z).

Del teorema anterior se desprende que cualquier minimo local de la funcién
E(x) es un minimo global, por lo que se pueden utilizar los algoritmos usuales
de descenso de la Programacion no Lineal para encontrar una solucién 6ptima
del problema (E). Como punto inicial para comenzar las iteraciones puede to-

marse ¥ = %21 <i<n Pi, que pertenece a H. Una gran dificultad en el uso de

)

estos algoritmos reside en la evaluacién de la funcién E(2*) en cada una de las
iteraciones , ya que la funcién de distribucién de F(x, w), aunque conocida, es en
general complicada. El uso eficiente de un algoritmo determinado va a depender
de cada situacion, es decir de cuales sean las funciones G; . El caso mas sencillo
es cuando las variables w; son binarias y ha sido recientemente estudiado en [52].
Dada la gran dificultad computacional para resolver este problema , se describen
a continuacion algunas alternativas para obtener una localizaciéon adecuada del
centro en la situacion de incertidumbre que estamos considerando.

Si los valores de cada variable w; estan muy agrupados entorno a su valor
esperado, que denotaremos por p;, una buena localizacion seria la solucion éptima
del problema (P), tomando el valor p; como coeficiente de d;(x) . Si el problema
es localizar un servicio de emergencia, ello supondria minimizar el mdzrimo de
las tiempos de viaje esperados, en lugar del valor esperado del tiempo maximo de
viaje . Con este criterio alternativo habria entonces que resolver el problema:

(P,) min Fy (@) = mix {judi(z)} (11.3)

Su solucién 6ptima la denotaremos por zj, y su valor 6ptimo por fj, los
cuales pueden obtenerse segin se ha indicado en la seccién 2. La bondad de esta
propuesta se debe a que la solucién éptima de (P,) estd determinada por a lo
sumo tres de los puntos de demanda, los cuales estdn a una distancia (ponderada)
del punto z}, igual a f;; (véase [38]). Para los otros puntos p;, lo mds normal es
que p;d;(z},) sea bastante menor que f;;. Por lo que para esos puntos w;d;(z)
no va a superar nunca f;, cualquiera que sea el valor que tome la variable w; ,
siempre que haya suficiente concentracion entorno a su media.

Otra alternativa consiste en elegir como localizacién del centro una solucién
del problema (P) tomando el valor b; como coeficiente de d;(x) . Con este criterio
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habria que resolver el problema:

(P) min Fy(x) = max {bidi(x)} (11.4)
Su solucién éptima la denotaremos por x} y su valor éptimo por f;. Con esta
localizacion se garantiza que para cualquier realizacion de las variables aleatorias
la funcién objetivo no sobrepase el valor f;, ya que cada variable w; estd acotada
superiormente por b;.

Sea v(E) el valor 6ptimo del problema (F). Con las dos alternativas anteriores
se obtienen cotas para este valor, segin se indica a continuacién.

Teorema 3 Se verifica que:
fu <o(E) < fy

Demostracion: Como w;d;(x) < F(x,w), resulta que u;d;(z) < Ew|[F(z,w)].
Por lo tanto Fy,(x) < E(x), de donde se desprende que F}; < E(z) ,Yz. Por otra
parte F(xz,w) < méxi<;<,{bid;(z)}, Vz, de donde resulta que

Ewl[F(z,w)] < 1%?;{n{bidi(z)}’vx'

Al minimizar en las expresiones anteriores se obtienen las desigualdades propues-
tas.

4 El criterio de maximo cubrimiento en probabi-
lidad

En ocasiones, fijar un valor f y localizar el centro en un punto con probabilidad
méxima de que la variable F(x, w) no sobrepase dicho valor sea , puede resultar
mas interesante que usar el criterio del valor esperado. Para encontrar ese punto
habria que resolver el problema:

(Cp) mibs P(z) = Po[F(z,w) < f] (11.5)

La funcién objetivo de este problema se puede evaluar muy facilmente, al contrario
de lo que sucedia con la del problema (E), ya que viene dada por:

Pla) = Go(f) = [[ Gl 1)

Como ya se ha indicado, G; es la funcién de distribucién de la variable w;,
que suponemos conocida. Sin embargo, estd funcién no es céncava (los méximos
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locales no son globales), por lo que para resolver el problema (C) no se puede
usar el mismo tipo de algoritmos que para el problema (E). Denotemos por v(C)
y X(Cf) respectivamente al valor 6ptimo y al conjunto de soluciones éptimas del
problema (Cy). Vamos a ver en primer lugar sus propiedades mas notables.

Teorema 4 Para cualquier valor f > 0, el problema (C )tiene solucion y siempre
se puede encontrar una solucion optima en H.

Demostracion: Segin se ha visto en el teorema 2,si 2’ ¢ H, entonces existe un
punto z € H tal que d;(z) < d;(2’). Por lo tanto:

n n
_ . f oy o
Entonces al menos una solucién éptima se encuentra en H , si existe alguna.
Veamos que el valor 6ptimo se alcanza y por consiguiente el problema tiene so-
lucién. Si w es de tipo discreto, es evidente que la funcién objetivo P(x) toma
un numero finito de valores y en consecuencia se alcanza un valor méaximo. Si w
fuese absolutamente continua, las funciones G; serfan continuas y por lo tanto se
alcanzaria un valor maximo en H, que es un conjunto compacto.

Sea ) el espacio muestral de la variable aleatoria w. Por A denotaremos un
suceso en dicho espacio. A cada punto x € R? le asociaremos el suceso A(z, f) =
{w = (wy,wa,...,wy) € Q : wid;(x) < f,i = 1,2,...,n} (ver figura ?7?). Si
definimos la familia de sucesos Q¢ = {A(z, f) : * € R?}, el problema (Cf) equivale
a encontrar un suceso en dicha familia que tenga probabilidad méxima. Para
buscar tal suceso, podemos descartar aquellos que no sean maximales respecto de
la relacién de inclusion.

Sea A € Qy, definimos los valores w;(A) = sup{w; : w = (w1, ..,w;, .., w,) €
A}, i=1,2,...,n,y el conjunto X(A, f) = {x € R?: A(z, f) = A}. Denotemos
por B(p;, r) la bola de centro p; y radio r, es decir B(p;,r) = {y € R? : d;(y) < r}.
Entonces, tenemos la siguiente caracterizacion de suceso maximal.

Fid)

Fig 1: Sucesos A(z, f) en Q
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Teorema 5 Sea A € Q, entonces:
i) X(A,f) C ﬂi:l,n B(pi, ﬁ)
ii) A es mazimal si y sélo si X(A, f) ==y, B(pi, ﬁ)

Demostracion:
i)Si x € X (A, f), entonces w;d;(x) < f,i = 1,2,....,n,Vw € A, por lo tanto
w;(A)d;(x) < f,i = 1,...,n, lo que implica que = € (,_, ,, B(p;, ﬁA)) Por

consiguiente : X (4, f) C (,_, ,, B(p:, ﬁ)

it)Sea A maximal. Siz € (,_;, B(p: ﬁ), entonces w;(A)d;(z) < f,i =
1,2,...,n, de donde se deduce que w;d;(x) < f,i = 1,2,...,n,Yw € Ay por
consiguiente A C A(z, f). Como A es maximal, resulta que A = A(z, f) , por lo
tanto x € X (4, f). En consecuencia, (,_, ,, B(pi, ﬁ) C X (A, f). Si tenemos
en cuenta i) , resulta que la inclusién anterior es una igualdad . Reciprocamente,
supongamos que se da la igualdad. Si A C A’ € Q, tomemos un punto z tal que
Az, f) = A’ | entonces tiene que cumplirse que w;d;(z) < f,i =1,2,...,n,Yw €
A’ y en particular Vw € A. Por lo tanto z € (,_; _,, B(p:, ﬁ) =X(A4,f),lo
que significa que A(z, f) = A. Por consiguiente A = A’, es decir A es maximal.

Teorema 6 Si la variable aleatoria w es discreta, X(Cy) es la unidn de un
numero finito de conjuntos que son intersecciones de bolas centradas en los puntos
de demanda.

Demostracion:

Si w es discreta, habrd un ntimero finito de sucesos maximales con probabili-
dad maxima. Las localizaciones correspondientes a dichos sucesos son las éptimas.
Por el teorema anterior, dichas localizaciones son los puntos interseccién de bolas
centradas en los puntos de demanda.

Como vemos, los conjuntos de soluciones éptimas del problema (Cy) son de
la forma X (4, f) = ;= ,, B(p:, #A)) , donde A es algiin suceso maximal. Los
sucesos maximales en {2 vienen determinados por puntos de §2 que son maximales
en el orden natural de R™ (los puntos w(A) = (wy(4),...,wp(A))). El elemento
maximal correspondiente al suceso Q es w(Q) = b = (b1, ba, ..., b,. Resolviendo
el problema(P;) de la seccién 3, se obtiene que si ff < f entonces v(Cy) =1y
X(Cy) = ﬂizl,nB(pi, bi) Para valores de f menores que f; , el valor 6ptimo
de (Cf) es menor que la unidad, siempre que la variable w tenga probabilidad
positiva en un entorno del punto b. Por otro lado, si tomamos el elemento minimal
del espacio muestral a = (a1, as, ..., a5, podemos resolver el siguiente problema:

(P.) min Fy(x) = 1?%Xn{aidi(x)} (11.6)

Su solucién 6ptima la denotaremos por x) y su valor éptimo por fr. El valor
éptimo de (Cy) es positivo si fi < f, mientras que v(Cy) =0si f < f, en cuyo
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caso todos los puntos del plano son soluciones éptimas. Asi pues, si descartamos
los dos casos anteriores, queda por resolver (Cy) para fi < f < f7.

Si la variable w es discreta, para resolverlo se puede realizar un proceso de
exploracién de sucesos maximales segtn se indica a continuacién. Para valores de
f proximos a f;, los sucesos maximales de €2y corresponden a los elementos de
) que preceden en el orden natural de R™ al punto b . Estos elementos son los
puntos pb(i) = (b1, .., pbi, .., byn), i = 1,...,n, donde pb; es el valor inmediatamente
anterior a b; que toma la variable w; . Para cada uno de ellos se resuelve el
problema (P) tomando w = pb;. Sea Jpp; su valor optimo. Si f, < f, entonces
el suceso 4; = {w € Q: w < pb;ind;} y es maximal. Entre los sucesos maximales
de Q¢ seleccionaremos los de probabilidad méxima, a los que nos referiremos por
Aj,. Entonces el conjunto de soluciones éptimas de (Cf) vendra dado por la unién
de los conjuntos X (Ag, f). Si f < ob;» nabra que seguir el proceso de busqueda
con los siguientes elementos de €2 que preceden a pb;. . Mediante este proceso de
inspeccion, podemos encontrar todas las soluciones éptimas, como se ilustra con
el siguiente ejemplo.

Ejemplo 1: Sean p; = (2,1), po = (3 — %,3 + %) y ps = (5,2). Supon-
gamos que las variables aleatorias wi,wo y w3 tienen una distribucién de pro-
babilidad de Bernouilli, con pardmetros % ,g y % respectivamente. La distancia
viene medida por la norma elly. El espacio muestral es Q = {w! = (0,0,0), w? =
(1,0,0),103 = (Oa 1,0),11)4 = (07 0, 1),11)5 = (17 1, O)a w® = (17()’ 1),’([)7 = <Oa 1, 1)>w8 =
(1,1,1)}.

Comenzamos resolviendo el problema (P;), donde ahora b es w®. La solucién
se obtiene mediante el Algoritmo 3 y viene dada por 7 s = (3, 3), que corresponde
al circuncentro del tridangulo que determinan los puntos p;. El valor éptimo es
frs = 2,2361. Por consiguiente, para f > 2,2361, el conjunto de soluciones
optimas es X(Cy) = (V;2y 05 B(pi, f) y v(Cy) = 1.

Para f < fs, los sucesos maximales de {0y corresponden a los puntos : pb; =
w’, pby = w® y pbs = w°. Las soluciones 6ptimas de los problemas (P,y,),
1 =1,2,3, son respectivamente:

3
22

) 1 3

1 5 3 - 51,8
N 2 22 2v/2

_—7_+—7xw
22 2 2\/5) ¢

y sus valores optimos son:

.= (4

w? )>$Z)5 :(

)

fre =2,0659, frs = 1.5811, frs = 2,0659
Las probabilidades de los correspondientes sucesos maximales son:
PT(Al) = PT(Wl = 0) = 0757PT(A2) = Pr(w2 = 0) = 0747PT(A3) = P’I”(W3 = 0) = 036

Si frs < f < frs, el suceso de maxima probabilidad es Az, por lo tanto el

conjunto de soluciones éptimas es X(Cy) =(,_; , B(pi, f) y v(Cy) = 0,6.
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Para f < fr 5, los sucesos maximales de {2y corresponden a los puntos w® y w?,
que son los que dominan a los otros predecesores de w® y w” en el orden natural
de R? . El suceso que corresponde a w® es Ay , que ya ha sido considerado. El que
corresponde a w? lo denotamos por A4 y su probabilidad es P.(A4) = P.(wy =
0,wz = 0) = 0,3. La solucién éptima de (P,3) es x}; = pp y su valor éptimo es
frs=0.81 fre < f < f¥s, el suceso de maxima probabilidad es A , por lo que
el conjunto de soluciones éptimas es X (Cy) = (\;,_; 3 B(ps, ) y v(Cy) = 0,4.

Para f < frs los sucesos maximales de {2y corresponden a los puntos w?, w?
y w?. La solucién éptima de (P,) es @¥, = pg y su valor éptimo es f*, = 0. El
correspondiente suceso maximal es Az y su probabilidad es P.(45) = P.(w; =
0,wy = 0) = 0,2. Para w? se obtiene z'. =p1y fr. = 0. El correspondiente
suceso maximal es Ag y su probabilidad es P,.(Ag) = P.(wg =0,w3 = 0) = 0,24.
Como vemos el suceso de maxima probabilidad es Ay , por lo tantosi 0 < f < frs
entonces X (Cy) = B(ps, f) y v(Cf) =0, 3.

Si la variable w es absolutamente continua, no se puede aplicar el proceso
de enumeracién antes descrito. La funcién objetivo P(x) es continua, pero no
es concava (ni convexa) , por lo que en este caso habrd que utilizar éTécnicas
de Optimizacién Global para resolver (C). Algunos algoritmos basados en estas
técnicas que pueden usarse para su resolucién pueden verse en [21, 22, 6, 10,
12] Ilustraremos este caso con un ejemplo sencillo.

Ejemplo 2 : Sean p; = (0,0), p2 = (7,0). Supongamos que las variables
aleatorias wi y wy toman valores en el intervalo (0,1) con las funciones de dis-
tribucién : G1(w1) = w} y Go(ws) = wy. Por el teorema 4, una solucién éptima
se encuentra en H = [py,pz]. Los puntos de este segmento son de la forma
z = (a,0), 0 < a < 7, por lo que la funcién objetivo de (Cy) en tales puntos
podemos expresarla tomando a como argumento . Dicha funcién es:

(f/a)?(f/(T=a)) si f<a<T—f
Pla) = (f/a)? si f<a,7—f<a

(f/(7 = a)) si.a<fa<T—f

1 st T—f<a<f

Estd claro que P(a) puede tomar el valor 1 si 7 — f < f . Esto sucede si
% < f, en cuyo caso el subintervalo de [py, pa] correspondiente a los valores de a

en [7 — f, f] es un conjunto de localizaciones 6ptimas. Si f < %, resulta sencillo

comprobar que el valor méximo de P(a) es % y se alcanza para a = f.

5 El criterio de la restriccion de incertidumbre

Cuando se trata de servicios de emergencia, es importante que el valor f, que
se fija para usar el criterio de la seccién anterior, sea lo méas pequeno posible.
En tal caso, como la probabilidad méxima de cubrimiento es no decreciente con
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f , podria ocurrir que dicha probabilidad fuese muy pequena. Ello nos lleva a
fijar una probabilidad minima « para cubrimiento y buscar una localizacién que
minimice el valor f condicionado a la misma. Es decir, habria que resolver el
siguiente problema:

(Ry)min{f : P.[F(z,w) < f] > a,z € R?, f >0} (11.7)

Denotemos por v(R,) y X (R, ) respectivamente al valor 6ptimo y al conjunto
de localizaciones éptimas del problema (R,)

Teorema 7 v(Ry) = fo si y solo si v(Cy) < a,Vf < fo" yv(Cy) > a,Vf >
fo™

Demostracion:

Sea v(Ry) = fo©- Si f < faf, entonces P.[F(x,w) < f] < a,Vz € R2.
Como el valor mdzimo del problema (Cy) se alcanza , resulta que v(Cy) < o . Si
> fa", debe haber algin punto & tal que P.[F(Z,w) < f] > a, por consiguiente
v(Cf) > a.

Reciprocamente, supongamos que para un valor fo* se verifican las desigual-
dades. Entonces no existe ningin x € R? tal que P.[F(z,w) < f] > a si f < fo,
mientras que ocurre lo contrario si f > f,*. por lo tanto v(E,) = fa".

Si definamos la funcién ¢(f) = v(Cf), del teorema anterior resulta que el
problema (R,) lo podemos expresar de la siguiente forma:

(Ro)min{f : o(f) = a, f > 0} (11.8)

Este es un problema de optimizacién unidimensional sencillo de resolver si se
conociese la funcién ¢(f). En efecto, el valor éptimo f* es el menor valor de
f para el que p(f) > « y el conjunto de localizaciones 6ptimas viene dado por
X(Ry) =z € R?: P.[A(x, )] > . Vamos a ver que propiedades tiene la funcién
©(f) y la relacién entre las soluciones éptimas de (Ra) y (Cy).

Teorema 8 Si w es discreta, entonces:
i) Eziste un ndmero finito de valores fo =0 < fi1 < fa < ... < fi tales que:

o(f) = @(fn)s si fn < f < for1

donde p(fi) =1y frr1 = oo.
i) X(Ra) O X(Cy,) sio(fn-1) < a < o(fn) y X(Ra) = X(Cp,) siy estos
conguntos son iguales si o = o(fr).

Demostracion:

i)Para cada valor f, denotemos por Q" a la familia formada por los sucesos de
Q¢ que tienen probabilidad maxima. Si A € Q*, entonces X (A, f) es un conjunto
de soluciones 6ptimas del problema (Cf). Sea Q" = {A: A € Q4" f > 0}, este
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conjunto estd formado por un nimero finito de sucesos. Sean oy < a1 < ag <
... < ay, las diferentes probabilidades de realizacién de tales sucesos. Si A € Q%
el conjunto X (A, f) es no vacio si f > f4, donde por simplicidad denotamos por
fa al valor éptimo del problema (P) tomando como coeficientes de las distancias
los valores w;(A), i = 1,..,n. Sea f5, = min{fs : A € Q*,P.(A) = ap},h =
0,1,2,....,k , donde P.(A) es la probabilidad del suceso A. Como la probabilidad es
no decreciente con f se verifica que fo =0 < f1 < fo < ... < fr. Si frn < f < fra1
, tendremos que X (A, f) es no vacio para algin suceso A tal que P.(4) = ap
y X (A, f) es vaclo para cualquier suceso con probabilidad mayor, por lo que
o(f) = ap. Como € es maximal para valores de f suficientemente grandes resulta
que o(f) =1si f > fi.

#W)Si x € X(Cy,) entonces P.[F(z,w) < fi] = ¢(fn) > «, por lo tanto
x € X(Ry). Sia=¢(fr) , resulta que x € X(Ry) si P.[F(z,w) < fa] > ¢(fn) -
Como esta desigualdad no puede ser estricta, el suceso A(z, f) tiene probabilidad
méxima y z € X(Cy,).

Un procedimiento de resolver R,,, cualquiera que sea el valor de « , consiste
en resolver previamente los problemas (C), con objeto de determinar la funcién
©(f) = v(Cy). Una vez obtenida esta funcién, podemos encontrar el valor éptimo
fr segun se ha indicado. Las localizaciones 6ptimas las encontraremos a partir
de los sucesos A(z, f%) con probabilidad mayor o igual que a. Vamos a resolver
R, para el ejemplo 1 .

Segiin se vio en la seccién 3, la funcién o(f) viene dada por la siguiente
expresion:

si 0<f<15811

si 1.5811 < f < 2,0659
si 2,0659 < f < 2,2361
si 2,2361 < f

o(f) =

RO oo
oA W

Los valores 6ptimos de los problemas (R, ) vienen reflejados en la Tabla 11.1.
Las localizaciones éptimas para los diferentes valores de «, las obtendremos si-
guiendo un orden de probabilidad descendente . Para 0,6 < a < 1, inicamente el
suceso A = () tiene una probabilidad superior a igual a «a, por lo que la solucién
es el punto x5 . Para 0,5 < a < 0,6, sélo el suceso A tal que w(A) = w®
tiene probabilidad superior, o igual, a igual a «, por lo que la solucién es x ;.
Para 0.4 < a < 0,5, los sucesos correspondientes a w(A) = w® y w(A4) = w” son
los tnicos con probabilidad superior o igual a «, por lo que hay dos soluciones
6ptimas x7 s y x ;. Siguiendo este proceso se obtiene la Tabla 11.2 que muestra
los resultados para todos los valores de . Obsérvese que para resolver (R,)no
es necesario resolver (Cy) para todos los valores de f, sino sélo para aquellos que
verifican o(f) > a.

Teorema 9 Si w es absolutamente continua, entonces:
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Tabla 11.1: Valores éptimos para (R,) en el ejemplo 1
a v(Re)

0,6<a<1l 22361
0,4<a<0,6 2 0659
0,3<a<0,4 15811
0<a<0,3 0

Tabla 11.2: Localizaciones éptimas para (R,,) en el ejemplo 1

o X(R,)
0,6 <a<l1 Trs
0,5 <a<0,6 1':}5
0,4<a<0,5 ais,at;
0,3<a<0,4 s

0,24 <a<0,3 D2
0,2<a<0,24 P1,D2
0,12<a<0,2 pi,p2,p3
0<a<0,12 R?

i) o(f) es continua.
i) X(Rq) = X(Cy.).

Demostracion:

i) Sea fr, — f. Por el teorema 4, para cada f, existird un punto = en H que
es solucién 6ptima de Cy,. Como H es compacto, la sucesién x; contendrd una
subsucesién xj convergente a un punto x € H. Entonces:

limg,—pp(fr) = limp s Go, (fir) = Go(f) < @(f)

Por otra parte, si * es una solucién 6ptima de Cy se verifica que G- (fx) < ¢(fx),
por lo que:

limp,—po(fx) = limg,—yGo (fi) = Ga (f) = o(f)

Por consiguiente limy, —, o (fi) = @(f) , y como la funcién ¢ es mondtona también

se verifica que limy, . ro(fn) = ¢(f).
i) Como ¢(f) es continua se verifica que ¢(f;) = a. Entonces z € X(C7 )

equivale a que P.[F(z,w) < f,*] > a y esto a su vez equivale a que = € X(R,,).
Para el ejemplo 2 la funcién ¢(f) viene dada por:

L si 0<f<3,5
= 77][ 5t - ’
w(f) {1 si 3,5<f

Rect@ Monogréfico 2 (2004)



B. Pelegrin 279

T

115 ¥ que este valor se alcanza en z* = ( To ).

Es facil comprobar que v(R,,) = T,

6 Conclusiones y lineas futuras de investigaciéon

Se ha presentado y analizado un modelo general para la localizacién de un
centro con criterio minimax cuando se presenta incertidumbre en los coeficientes
de las distancias. En lugar de tratar algin caso concreto, como en la mayoria de las
referencias citadas, se han considerado variables aleatorias con distribuciones de
probabilidad arbitrarias, lo que permite abordar un gran nimero de situaciones.

El modelo se ha analizado para tres criterios de decisién en situacién de in-
certidumbre. Para cada uno de ellos se han obtenido propiedades fundamentales,
en base a las cuales es posible desarrollar distintos procedimientos de resolucion.
Para el criterio del valor esperado, su resolucién es posible mediante técnicas de
Programacion Conveza , si bien el calculo de la funcién objetivo requiere una gran
cantidad de recursos computacionales. Para el criterio del maximo cubrimiento
en probabilidad, en general es necesario usar técnicas de Optimizacion Global,
pero también se pueden desarrollar procedimientos de enumeracién si las varia-
bles aleatorias son discretas. El criterio de la restriccién de incertidumbre se basa
en el anterior y precisa por tanto de los mismos procedimientos. El desarrollo de
algoritmos eficientes que permitan resolver problemas de tamano real constituye
la principal linea de investigacién en el estudio de cada uno de los problemas
que se han presentado. Esto conduce a tener que especificar las distribuciones de
probabilidad de las mencionadas variables, de manera que tales algoritmos habra
que disenarlos de forma adecuada para cada caso concreto.
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1 Introduccion

Uno de los problemas a los que se enfrentan las empresas es decidir donde ubi-
car sus instalaciones de modo que sus costes de aprovisionamiento y distribucion
sean minimos. Existen numerosos modelos que tratan de resolver estos proble-
mas de localizaciéon. Los més bésicos s6lo necesitan la demanda y una funcién de
distancia que permita determinar el coste de satisfacer dicha demanda.

El problema de la p-mediana es un modelo basico de localizacién cuando la
estructura topolégica subyacente del problema es una red en la que las longitudes
de las aristas (distancias) y los pesos de los vértices (demandas) son conocidos.
Consiste en encontrar p puntos de la red de modo que se minimice la distancia
total (o media) ponderada entre estos puntos y los vértices. Fue introducido
por Hakimi [9, 10] quien demostré la propiedad de optimalidad en los vértices,
a saber, que siempre existe una p-mediana en los vértices de la red. Suponer
que los datos son deterministas y estaticos, sin embargo, es poco realista, pues la
mayoria proviene de estimaciones sobre hechos que todavia no se han producido
y de los cuales, en muchos casos, no hay informacién histérica. Ademads, estas

1Este trabajo ha sido parcialmente subvencionado por por TIC 2002-04242-C03
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aproximaciones inexactas deben proyectarse hacia el futuro para un largo periodo
de tiempo en el cual los cambios en el entorno son muy dificiles, sino imposibles,
de predecir. Asi, surgen de forma natural los modelos y métodos que aceptan
incertidumbre en los datos, como el anédlisis de sensibilidad, analisis paramétrico,
modelos dindmicos y modelos estocasticos. Un resumen de ellos aparece en el
articulo de Owen y Daskin [14]. M4s recientemente se han aplicado también
técnicas borrosas [3, 4, 5] y técnicas de optimizacién robusta [12, 6, 15, 2, 1].

Las técnicas de optimizacién robusta, al contrario que el andlisis de sensibi-
lidad o el andlisis paramétrico, consideran que la incertidumbre es una carac-
teristica inherente al sistema y que, en lugar de eliminarla, es mucho méas prove-
choso hacer un esfuerzo para estructurarla hasta donde sea posible, entenderla y
manejarla. La optimizacién robusta no necesita que la incertidumbre esté pro-
vocada por un solo pardmetro (el tiempo), como la optimizacién dindmica, ni
tampoco que exista una distribucién de probabilidad asociada, como la optimi-
zacion estocdstica, requisito no trivial en problemas que, como los de localizacion,
estudian fenémenos tinicos con poca o ninguna informacién histérica. Cualquier
técnica robusta ha de seguir tres pasos [12]:

1. Planificaciéon de los escenarios. Un escenario es una realizacién potencial
de los datos inciertos del problema. La filosofia de la optimizacién robusta
es la de estar preparados para enfrentarse a (casi) cualquier suceso futuro.
Por tanto, del buen diseno de los escenarios depende el éxito o el fracaso de
todo el proceso posterior.

2. Eleccién de un criterio de robustez. Puesto que es imposible que sepamos
que va a ocurrir en el futuro, el criterio de robustez debe llevarnos a una
solucién del problema que se porte bien bajo cualquier escenario.

3. Planteamiento de un modelo coordinado. El modelo coordinado recoge el
criterio de robustez, la informacién proporcionada por todos los escenarios
y, una vez planteado, puede resolverse por técnicas conocidas.

Cuando el decisor obtiene una solucién para el modelo coordinado desea que esté
lo mas cerca posible de la factibilidad y de la optimalidad para todos y cada uno
de los escenarios. Para ello, se admiten desviaciones respecto de la factibilidad
y la optimalidad y se intenta minimizar ambas [13]; o bien se supone que los
escenarios tienen soluciones factibles en comin y sélo se permiten desviaciones
respecto a la optimalidad [12].

Todos los trabajos que aplican técnicas robustas al problema de la p-mediana,
excepto el de Cands y Mocholi [2], trabajan bajo la tltima hipétesis; es decir,
suponen que todas las restricciones de todos los escenarios deben cumplirse. En
particular, suponen que toda la demanda debe ser atendida. Sin embargo, en al-
gunos casos podria interesar dejar una pequena parte de la demanda insatisfecha
a cambio de otras compensaciones. Este tltimo caso es el que planteamos. En
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este trabajo consideramos el problema de la mediana sobre un arbol en el que la
incertidumbre viene reflejada por el hecho de que cada demanda puede variar en
un rango de valores. El calculo de estos intervalos puede realizarse por el método
propuesto por Cands y Mocholi [2]. Nuestro objetivo es conseguir una solucién
que, cuando los datos tomen algiin valor en el futuro, minimice la demanda insa-
tisfecha y cuyo coste no esté muy lejos del minimo coste que hubiésemos obtenido
de haber conocido con antelacién dicho valor. Puesto que la forma de plantear
matematicamente este objetivo no es tnica, presentamos y comparamos varias
opciones entre las que puede elegir el decisor.

2 Calculo de los escenarios

Consideremos un drbol T' = (V, E), donde V = {v1,...,v,} es el conjunto
de vértices y E el de aristas. Cada arista tiene asociada una longitud positiva
conocida. Supongamos que cada vértice tiene una demanda incierta asociada
representada por un intervalo. Asi, w; = [w;,w;] es la demanda del vértice vy,
para j = 1,...,n. Es evidente que tenemos infinitos escenarios. Al conjunto de
todos los escenarios lo llamaremos S. Dado un escenario s € S, denotamos por
w; el valor de la demanda de v; en dicho escenario. Obviamente, se cumplird que
wj < w; <w; . Para todo par de puntos z e y de T, d(x,y) es la distancia entre
x e y, calculada como la longitud del tinico camino entre z e y.

Definiciéon 10 Diremos que un punto m?® es una mediana de T bajo el escenario
s st para todo x de T se cumple que

Definiciéon 11 Diremos que un punto x de T es una mediana de escenario Si
existe algun s de S tal que x es una mediana de T bajo el escenario s.

Puesto que en cada uno de los escenarios tenemos un problema con datos cono-
cidos y constantes, se puede aplicar la propiedad de optimalidad en los vértices.
Por tanto, podemos suponer que las medianas de escenario son vértices de T.
Ademsds, una mediana de escenario cumplird cualquier propiedad conocida para
las medianas. En particular cumplird la propiedad de la semisuma.

Teorema 10 (Propiedad de la semisuma. Kariv y Hakimi [11]) Un vértice
v; es una mediana de un drbol si, y solo si, cada subdrbol con raiz en v; tiene
un peso total (excluyendo vj) menor o igual que la mitad de la suma de todos los
pesos del drbol.
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Como consecuencia, los siguientes teoremas, cuya demostracién se basa en la
anterior propiedad y cuya redacciéon hemos modificado ligeramente para adaptar-
los a nuestro problema particular, son ciertos independientemente del criterio de
robustez elegido.

Teorema 11 (Chen y Lin [6]) Sean v;, v; y vy tres vértices de T tales que
v estd en el unico camino que une v; con v;. Siv; y v; son dos medianas de
escenario entonces vy también es una mediana de escenario.

Como corolario, todas las medianas de escenario estdn conectadas y podemos
hablar del camino de las medianas, cuyos vértices seran medianas bajo algin
escenario.

Definicién 12 Consideremos v; € V.. Sean T4, T3, ..., T}, los k subdrboles cuya
raiz es vj. El drbol resultante de convertir cada uno de estos subdrboles en un
vértice cuya peso es la suma, con la aritmética habitual de intervalos, de los pesos
de todos los vértices del subdrbol se denomina drbol agregado de T’ con raiz en v;

Es evidente, por la propiedad de la semisuma, que v; es una mediana de 1" si, y
sélo si, es una mediana del arbol agregado de 1’ con raiz en v;.

Teorema 12 (Chen y Lin [6]) Consideremos el drbol agregado con raiz en v;.
Entonces v; es una mediana de escenario si, y sélo si, es una mediana del esce-
nario agregado c; , cuyos pesos vienen dados por:
cj _ — cj s _ . .
wi! =05, w’ =min{wy, O} Vi#j
siendo
W), = Max w;
R g
Con el teorema anterior podemos calcular si un vértice determinado es o no una
mediana de escenario. Si lo es, conocemos un escenario agregado asociado. Para
calcular un escenario de S, basta asignar a cada vértice de T un valor factible
y que cumpla la propiedad de que al sumar los pesos de los vértices de cada
subdrbol el resultado sea el peso correspondiente del escenario agregado. A cada
escenario que cumpla esta propiedad lo llamaremos desagregado.
Algoritmo ESCEGEN.

INPUT. Introducir como datos el drbol T y las demandas w; , j =1,...,n.
INICIALIZACION. Hacer i = 1.

PASO 1. Tomar el vértice v; y crear el drbol agregado de T' con raiz en v;.
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PASO 2. Comprobar si v; es una mediana del arbol agregado bajo el escenario
ci . En caso afirmativo, es una mediana de escenario en 7. Calcular un
escenario desagregado dci. En caso negativo, no existe ninguin escenario en
T para el que v; sea éptimo.

PASO 3. Comprobar si © = n. En caso afirmativo, parar. En caso negativo,
hacer i =4+ 1 e ir al paso 1.

OUTPUT. Obtener como resultado M = {v(;) : (i) = 1,...,k} el conjunto de
las medianas de escenario, y SD = {dc(i) : (i) = 1,...,k}, el conjunto de
los escenarios desagregados calculados.

Este algoritmo permite calcular todas las medianas del problema y un escenario,
al menos, para cada una de ellas.
Ejemplo 2.1. Consideremos el siguiente arbol T" con 12 vértices.

Figura 12.1: Arbol T

Las demandas de cada vértice son

wy =[0,9] wo = [15,18] w3 = [16,30] w4 = [5,20]
ws = [225,250] wg = [50,85] wr = [65,90] ws = [150,350]
W9 = [45, 70] w10 = [15, 20] w11 = [31,40] w1 = [23, 26]

Vamos a ilustrar los pasos del algoritmo tomando como v; el vértice 2.
El arbol agregado para el vértice 2 es
cuyas demandas seran:

wie = [0,9] we =[15,18] w3, =[16,30] wae = [315,615] w5, = [294, 336]
El escenario ¢2 tiene los pesos

(W2, WS W WP, W) =(9, 18, 30, 315, 315)
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Figura 12.2: Arbol agregado

Puesto que se cumple que cada uno de ellos es menor que la semisuma total, de-
ducimos que el vértice 2 es una mediana bajo el escenario ¢2 en el arbol agregado.
Por tanto, el vértice 2 es una mediana de escenario para el arbol T.

Ahora debemos calcular un escenario desagregado al que llamaremos dc2.
Nuestro procedimiento ha sido el siguiente:

1. Si el vértice agregado coincide con un unico vértice del arbol T', a dicho
vértice le asignamos el peso que le corresponde en el arbol agregado. Asi,
puesto que el vértice 1la coincide con el vértice 1, habrd un escenario dc2 en
T de forma que el vértice 2 serd una mediana bajo dc2 y wi? = w§2 = 9.
En el caso particular del vértice que hemos tomado como raiz, vértice 2 en

nuestro ejemplo, esto siempre sera cierto.

2. Si el vértice agregado ha sido creado a partir de un subarbol de 7' con mas
de un vértice, hemos asignado a cada uno de ellos su cota inferior. Si la
suma coincide con el peso del vértice agregado bajo el escenario agregado,
estos valores son los pesos del escenario desagregado asociado. Asi ocurre
con el vértice 4a. En caso contrario, empezamos anadiendo la diferencia al
vértice del subarbol con intervalo de mayor longitud, hasta su cota superior;
continuamos por el de mayor longitud de los restantes, y asi sucesivamente
hasta que la suma coincida con el peso del escenario agregado. Esto ocurre
en el vértice ba donde hemos necesitado aumentar la cota inferior del vértice
5 en 21 unidades.

Aplicando este procedimiento al vértice 2 obtenemos un escenario desagregado
donde los pesos de los vértices son

(9,18,30, 5,246, 50, 65, 150, 45, 15, 31, 23).
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Al ejecutar el algoritmo ESCEGEN para el drbol T', obtenemos el conjunto
M ={2,4,7}

y el conjunto SD compuesto por los escenarios dados por los siguientes pesos:

Wi |wi w3 |wi| ws |wg|wr| ws |wg|wip| Wi |WwWis
s=dc2| 9 |18 30| 5 [ 246 | 50 | 65 | 150 | 45| 15 | 31 | 23
s=dc4d| 0 |15|16|20|225|85 |65 |215|45| 15 | 31 | 23
s=de7| 0 | 15|16 | 5 [ 225 |50 |90 |350| 70| 15 | 31 | 23

y su correspondiente demanda total atendida y coste total

demanda total atendida | coste total
s = dc2 687 7294
s = dc4 755 7884
s = de7 890 8794

El algoritmo ESCEGEN nos da una caracterizacion de los 6ptimos bajo cualquier
escenario, pero no de todos los escenarios asociados a cada éptimo. Veremos en la
seccién 4 que, en el caso particular en que todas las demandas recorran su intervalo
dependiendo de un unico pardmetro (por ejemplo, si suponemos que la fuente de
la incertidumbre es el tiempo), podemos refinar el algoritmo obteneniendo una
caracterizacién de todos los escenarios.

3 Planteamiento del modelo coordinado

Nuestro criterio de robustez estda perfectamente definido. Es un criterio en
esencia biobjetivo puesto que trata de minimizar la demanda no atendida por la
solucién robusta al mismo tiempo que obtiene un coste cercano al coste minimo
que se hubiera obtenido de saber con antelaciéon que escenario se iba a realizar.
La forma de plantear matematicamente este criterio en un modelo coordinado no
es Unica.

Bajo la hipétesis de que las distancias son conocidas, planteamos tres modelos
coordinados:

Modelo 1: su objetivo consiste en la minimizacién de las desviaciones res-
pecto de la demanda no atendida en cada uno de los escenarios desagregados
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calculados y el coste asociado a la soluciéon robusta.

Min C Z DD2) + Z dijzi;

(i)=1 4,j=1

Zyi =1 (1.1)

wyl<x”<wjy, ,j=1,...,n (1.2)

dec(l) + DDy = Z Tij =1,....k (13)
4,j=1
€ {0,1}

En este modelo, ademéas de los parametros definidos anteriormente, aparecen
d;j = d(vi,vj) y C que es una constante de escala. Puesto que las desviaciones
vienen expresadas en unidades de producto y el coste en unidades monetarias se
hace necesario utilizar un coeficiente de ponderaciéon. En el ejemplo 3.1 hemos
utilizado

n
> di
1,j=1
C = —
n

Las variables de localizacién y; son variables binarias que valen 1 si localizamos un
centro de servicio en el vértice 7 y 0 en caso contrario.Las variables de asignacion
x;; representan la demanda del vértice j atendida desde el vértice 7. Las varia-
bles DD;y son las desviaciones respecto de la demanda atendida en el escenario
desagregado para los que el éptimo es el vértice (i).

Por tltimo, la ecuacién (1.1) indica el nimero de centros de servicio que hay
que localizar, las ecuaciones (1.2) indican que la demanda total del vértice j que
puede ser atendida desde el centro de servicio debe estar comprendida entre el
valor de su demanda minima y méaxima. Ademaés, aseguran que el vértice ¢ no
atenderd demanda si no hay ningin centro de servicio ubicado en él asi como la
no negatividad de las variables de asignacién. Por tltimo, la ecuacién (1.3) recoge
la desviaciéon DD(;) de la demanda total atendida por el modelo coordinado con
respecto a cada escenario desagregado calculado en el que el 6ptimo es el vértice

(4).
Modelo 2: su objetivo es la minimizacién de las desviaciones del coste de
la solucién robusta respecto de los costes de cada escenario.
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k
Min Y DCE,

(i)=1
n

s.a. Zyz =1 (2.1)
i=1

Wiy < Tij < WY ,j=1,...,n (2.2)
de(i .

ijc(z)d(i)j —+ DC(z) = Z dl-j:cij (Z) = ]., ey k (23)

i=1 ij=1

y; € {0,1}

En este modelo, las variables DC(;) representan la desviacién del coste total del
modelo coordinado respecto del coste del escenario desagregado cuyo éptimo es
el vértice (7) y las ecuaciones (2.3)recogen las desviaciones respecto del coste.
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Modelo 3: su objetivo es una combinacién de los objetivos de los dos mo-
delos anteriores.

k k
Min CY» DD} + > DCP,

(i)=1 ()=1

s.a. Zyl =1 (3.1)
i=1

Wil Sxij Sw_]y’b L,j=1...,n (32)
S w4 Doy =3 (i)=1,....k (3.3)
Jj=1 i,j=1

. de(i) . .
ij d(i)j + DC(i) = Z dijzi; (i)=1,...,k (34)
Jj=1 i,j=1
Yi € {07 1}

Ejemplo 3.1. Consideremos el arbol T' del ejemplo 2.1 cuya matriz de dis-
tancias es la siguiente:

0 4 8 10 12 14 15 20 19 18 15 17
4 0 4 6 8 10 11 16 15 14 11 13
8§ 4 0 10 12 14 15 20 19 18 15 17
10 6 10 0 14 4 5 10 9 20 17 19

12 8 12 14 0 18 19 24 23 6 3 5
14 10 14 4 18 0 9 14 13 24 21 23
15 11 15 5 19 9 0 &5 4 25 22 24
20 16 20 10 24 14 5 0 9 30 27 29
19 15 19 9 23 13 4 9 0 29 26 28

18 14 18 20 6 24 25 30 29 0 9 11
15 11 15 17 3 21 22 27 26 9 O 8
17 13 17 19 5 23 24 29 28 11 8 O

Con esta tabla de distancias, las soluciones obtenidas para cada uno de los
modelos anteriores estan recogidas en las tablas 12.1, 12.2 y 12.3, las cuales de-
muestran que cada uno de los modelos corresponde a una actitud diferente del
decisor. El modelo 1 trata de ajustar la demanda atendida respecto de cualquier
realizacién futura obteniendo como resultado la menor desviacién posible respecto
de cada uno de los escenarios, teniendo en cuenta ademas el coste para que éste
no sea excesivo, aunque las desviaciones en coste respecto a realizaciones futuras
puede llegar a ser grande.

El modelo 2 es conservador respecto al coste, minimizando las desviaciones
respecto de cualquier realizacién futura pero a costa de dejar mucha demanda
sin atender, en las desviaciones de la tabla 12.3 se aprecia que no llega a cubrir
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Demanda | Demanda | Demanda | Demanda | Demanda
Minima, atendida | atendida | atendida Maxima
Modelo 1 | Modelo 2 | Modelo 3
Vértice 1 0 9 9 0 9
Vértice 2 15 18 15 18 18
Vértice 3 16 30 16 16 30
Vértice 4 5 20 5 20 20
Vértice 5 225 225 225 230,083 250
Vértice 6 50 85 50 85 85
Vértice 7 65 90 65 90 90
Vértice 8 150 161,212 168,028 204,25 350
Vértice 9 45 70 45 45 70
Vértice 10 15 15 15 15 20
Vértice 11 31 31 31 31 40
Vértice 12 23 23 23 23 26

Tabla 12.1: Tabla de demanda atendida

Modelo 1 | Modelo 2 | Modelo 3
Localizacién 6ptima 4 5 4
Coste 6ptimo 7944,116 | 7990,667 | 7990,667
Demanda total atendida | 777,212 667,028 777,333
Tabla 12.2: Tabla de soluciones
Modelo 1 | Modelo 2 | Modelo 3
DD(2) 90,212 -19,972 90,233
DD(4) 22,212 -879,72 22,333
DD(7) | -112,788 | -222,972 | -112,667
DC(2) 700,116 696,667 696,667
DC(4) 110,116 106,667 106,667
DC(7) | -799,884 | -803,333 | -803,333

Tabla 12.3: Tabla de desviaciones
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la demanda de ninguno de los escenarios. En este sentido, podemos afirmar que
el modelo 1 resultarda méas adecuado para la localizaciéon de centros de servicio
publicos, mientras que el modelo 2 lo serd para centros de servicio privados.

Por dltimo, el modelo 3 intenta cubrir ambas posibilidades simultdneamente.
Desde este punto de vista, es el mejor de los modelos. Sin embargo, el esfuerzo
computacional que requiere es mucho mayor que el de los modelos 1 y 2. Por ello,
en cada caso en concreto, el decisor deberd valorar el binomio eficiencia-coste
computacional, eligiendo el modelo méas adecuado para su problema real.

Puesto que la funcién de demanda total y la funcién de coste son crecientes en
la demanda, es logico que cada uno de los modelos intente ajustar las desviaciones
a la desviacion “central” correspondiente al vértice central del camino de las
medianas dptimas, en este caso, el vértice 4. Ello no implica, como se demuestra
en el modelo 2, que dicho vértice central sea siempre la ubicaciéon 6ptima para el
modelo coordinado.

4 Cuando la demanda depende de un tnico pa-
rametro

Supongamos ahora que todos los pesos pueden ser escritos como una funcién
lineal de un unico pardmetro t € [L,U] y denotemos por my, a la mediana co-
rrespondiente al escenario obtenido para el valor ty. Vamos a ver que, en este
caso, podemos obtener una caracterizacion completa de los infinitos escenarios
asociados con cada mediana de escenario.

Teorema 13 (Erkut y Tansel [7]) . Para todo t € [L,U] existe una mediana
my en el camino que une myp, y my.

Ademsés, Erkut y Tansel (1992) demostraron que se podian calcular los subinter-

valos de [L,U] para los que era éptima cada una de las medianas de escenario.

Aplicando su método a nuestro problema, obtenemos el siguiente algoritmo:
Algoritmo ESCEPAR

INPUT. Introducir como datos el 4rbol Ty las demandas w; , j =1,...,n.

INICIALIZACION. Parametrizar las demandas, haciendo

w;(t) =a; +bjt, cont € 0,1, aj=w; vy b; =w; —wj.

PASO 1. Calcular el vértice inicial del camino de las medianas 6ptimas, myg,
correspondiente al escenario con pesos w;(0) para j = 1,...,n, y el vértice
final, m; correspondiente al escenario con pesos w;(1) para j = 1,...,n,
mediante algin algoritmo conocido.
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PASO 2. Calcular el camino desde mg hasta m; , renumerar los vértices del

camino como {mgy = V(1) V(2)5 -+ - T = V() } y asignar a cada vértice del
camino el peso del subdrbol del cual es raiz wc () = ac(;y 4 beg)t, para (i)
=1,..., k.
PASO 3. Calcular los puntos de ruptura del pardmetro mediante la siguiente

expresion:

oo —lacqy 4ot ac) + (acy) oo F ac)

(®)(+1) (bC(l) +--F bC(i)) — (bC(iJrl) + -+ bC(k)) ’
para (i) = 1,...,k — 1, donde (;)(;41) representa el valor de ¢ para el cual

toda la arista (v(;),v(i4+1)) son medianas.

OUTPUT. Obtener como resultado M, el conjunto de las medianas de escena-
rio; ST, el conjunto de los subintervalos del pardmetro ¢ y SP, el conjunto
de los escenarios definidos por subintervalos de las demandas.

Ejemplo 4.1. Consideremos el arbol T" del ejemplo 2.1.

Para calcular los vértices inicial (vértice 2) y final (vértice 7) del camino de
las medianas hemos utilizado el algoritmo de Goldman (1971) cuya complejidad
algoritmica es O(n). El camino de las medianas es M = {(1),(2),(3)} = {2,4,7}
con pesos

wea(t) = 3254 68t,  weq(t) =554 50t, wer(t) = 260 4 250t

y el conjunto ST viene dado por:

Mediana Valores de t
Vértice 2 [0, 5/116]
Arista (2, 4) 5/116
Vértice 4 | ]5/116, 10/11]
Arista (4, 7) 10/11
Vértice 7 J10/11, 1]

A partir de ST, el calculo de SP es inmediato.

En este caso, los modelos coordinados pueden afinar maés la solucién que en los
ejemplos anteriores puesto que no conocemos sélo un escenario para cada éptimo,
sino el conjunto de los infinitos asociados a cada mediana. Con esto, y con los
mismos objetivos que en la seccién 3, proponemos:

Modelo 4: su objetivo consiste en la minimizacién de las desviaciones res-
pecto de la demanda no atendida en cada uno de los escenarios y el coste asociado
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a la solucion robusta.

k n
Min  C Y (ki) — ti—@)DDGy + > dija;
(i)=1 ij=1
> yi=1 (4.1)
=1
Tij < W;Y; ihj=1,...,n (4.2)
D mij=w+ (@, —w))t j=1,...,n  (43)
0<t<1 (4.4)
>l W)@ + DDy = Z vy ()=1,....k (45)
j=1 i,j=1
t( 1)(4) < t(l) < t( )(i+1) i=1,...,k (4.6)
;i >0,y €{0,1}

Con la misma notacién que en los modelos de la seccién 3, la ecuacién (4.1)
indica el ntmero de centros de servicio que hay que localizar, las ecuaciones (4.2)
representan que el vértice ¢ no atenderd demanda si no hay ningin centro de
servicio ubicado en él, la ecuacién (4.3) indica que la demanda total del vértice j
que puede ser atendida desde todos los centros de servicio debe estar comprendida
entre el valor de su demanda minima y mdxima y la ecuacién (4.5) recoge la
desviaciéon DD;) de la demanda total atendida por el modelo coordinado con
respecto a cada escenario particular en el que el éptimo es el vértice (7).

Modelo 5: su objetivo es la minimizacién de las desviaciones del coste de la
solucion robusta respecto de los costes de cada escenario.

k

Min Y~ (et — tien) DCG)
(=1

s.a. Zyl =1 (5.1)

ij < Wiy iwj=1,...,n (5.2)
D wij=w; + (@ —w))t j=1,....n (5.3)
1=
0<t<1 (5.4)
Z[d(i)j@j + (W —w;)t@)] + DCu = Z dijei; () =1,....k (5.5)
Jj=1 i,5=1
ti—1)a) < ta) < tiyr) i=1,...,k (5.6)

Tij Z anl S {Oa 1}
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En este modelo, las variables DC(;) representan la desviacién del coste total del
modelo coordinado respecto del coste de los escenarios cuyo 6ptimo es el vértice
(1) y la ecuacién (5.5) recoge las desviaciones respecto del coste.

Modelo 6: su objetivo es una combinacion de los objetivos de los dos modelos
anteriores.

Min

k
C Y (tayasn) — ta-1)) DDGy +
(i)=1
k
> (et — ta-16) DCG
3 1

—
s

=
Il

INgE
S
I
-

=1
Tij < WY
Zl‘ij =w; + (wj — gj)t
i=1
<t<1
> ldeiyi(w; + @5 — wy)t@)] + DCy = Y dijmi
=1 ij=1
n n
D lw, + @ —w)t@) + DDy = > @
=1 ij—1

a1y < ta) < teytn)
xi; > 0,y; € {0,1}

Ejemplo 4.2.

Za]:L y T
j:l,. 7n
() =1,k
())=1,....k
i=1,...,k

Consideremos el arbol T del ejemplo 2.1 cuya matriz de distancias viene dada
en el ejemplo 3.1, y las soluciones obtenidas estan consignadas en las tablas 12.4,
12.5 y 12.6. Vemos que el comportamiento de los modelos 4, 5 y 6 responde a la
misma actitud del decisor que los modelos 1, 2 y 3 respectivamente. No obstante,
la informacion que el decisor tiene en este caso es mucho mayor que en el caso
anterior y puede utilizarse para elegir adecuadamente uno de los modelos.

Modelo 4 | Modelo 5 | Modelo 6

Localizacién 6ptima Vértice 4 | Vértice 7 | Vértice 4
Coste 6ptimo 9213,403 | 9236,632 | 9236,632
Demanda total atendida | 869,529 847,337 872,045

Tabla 12.4: Tabla de demanda atendida
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Demanda | Demanda | Demanda | Demanda | Demanda
Minima, atendida | atendida | atendida | Méaxima
Modelo 4 | Modelo 5 | Modelo 6
Vértice 1 0 5,613 5,071 5,675 9
Vértice 2 15 16,871 16,690 16,892 18
Vértice 3 16 24,732 23,888 24,828 30
Vértice 4 5 14,356 13,451 14,458 20
Vértice 5 225 240,593 239,085 240,764 250
Vértice 6 50 71,830 69,720 72,069 85
Vértice 7 65 80,593 79,085 80,764 90
Vértice 8 150 274,744 262,683 276,111 350
Vértice 9 45 60,593 59,085 60,764 70
Vértice 10 15 18,119 17,817 18,153 20
Vértice 11 31 36,613 36,071 36,675 40
Vértice 12 23 24,871 24,690 24,892 26
Tabla 12.5: Tabla soluciones
Modelo 4 | Modelo 5 | Modelo 6
DD(2) | 213,667 - 216,183
DD(4) 0 - 0
DD(7) | -105,016 - -102,501
DC(2) - 1996,167 | 1996,167
DC(4) - 0 0
DC(7) - -946,458 | -946,458
Tabla 12.6: Tabla de desviaciones
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5 Conclusiones

En este trabajo hemos presentado el problema de la mediana sobre un arbol
con incertidumbre en las demandas resuelto mediante técnicas de optimizacion
robusta. Esta incertidumbre viene dada por intervalos, esto es, hemos establecido
la hipotesis de que la demanda de cada vértice varia en un rango conocido de
valores. Presentamos dos procedimientos para manejar los infinitos escenarios
que aparecen. Cuando no conocemos cual es el comportamiento de cada demanda
dentro de su rango posible de valores, el algoritmo ESCEGEN nos permite calcular
todos los Optimos posibles y al menos un escenario asociado a cada uno. Si
sabemos que el comportamiento de todas las demandas viene determinado por
un unico pardmetro, podemos utilizar el algoritmo ESCEPAR para calcular todas
las medianas y todos los escenarios asociados a cada una de ellas. En ambos casos
los calculos no dependen de las distancias.

Con estos datos hemos planteado tres modelos coordinados para cada caso.
Nuestro criterio de robustez estd perfectamente definido. Es un criterio en esencia
biobjetivo puesto que trata de minimizar la demanda no atendida por la solucién
robusta al mismo tiempo que obtiene un coste cercano al coste minimo que se
hubiera obtenido de saber con antelacidon que escenario se iba a realizar. La forma
de plantear mateméaticamente este criterio en un modelo coordinado no es unica.
Los objetivos de cada modelo son, respectivamente, cubrirse respecto a todas las
posibles demandas futuras, cubrirse respecto a todos los posibles costes futuros
o cubrirse respecto a ambas situaciones. Por supuesto, el esfuerzo computacional
asociado a cada uno de los modelos no es el mismo. Por ello, el decisor debe
valorar su objetivo preferente frente al coste computacional para elegir el mejor
modelo en cada caso concreto.
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1 Introduccion

En los tltimos anos se ha venido adoptando como norma la especificacién de
modelos econémicos en los que los distintos agentes econémicos derivan sus reglas
de comportamiento como solucién a la optimizacién de una determinada funcién
objetivo sujeta a unas restricciones. Tanto las funciones objetivo como el conjunto
de restricciones son especificas de cada uno de los distintos agentes. Esta corriente
trata de aportar mayor rigor formal a un concepto que siempre ha estado presente
en la especificacion de modelos de economias agregadas. Las distintas ecuaciones
que integran estos modelos, denominadas funcién de consumo, inversion, etc,
determinan los niveles de dichas variables como funcién de los valores numéricos
de sus determinantes, que pueden ser variables como los precios, tipos de interés,
etc.. Supuestamente, esto era consecuencia de un comportamiento optimizador
por parte de los agentes econémicos, aunque dicho comportamiento no se hacia
explicito en el modelo. En el lenguaje de la teoria de optimizacién, los modelos

Los autores agradecen la financiacién recibida del Ministerio de Ciencia y Tecnologia a
través del proyecto BEC2003-03965.
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econdémicos constaban de ecuaciones que no eran sino el resultado de agregar las
reglas de decisién de agentes analogos, como consumidores, empresas, etc., pero
dejando implicita la especificacion de sus funciones objetivo o de las restricciones
a que estos agentes se enfrentan.

Cuando, por el contrario, se hace explicito el problema de optimizacién que
resuelve cada unidad de decisién que constituye una economia, se distingue entre
distintos tipos de agentes: consumidores/trabajadores, empresas y gobierno, cada
uno de ellos con una funcién objetivo diferente, y sujeto a distintas restricciones.
Cada agente decide los valores numeéricos de sus variables de control, tomando sus
variables de estado como dadas. Las variables de estado de un agente son variables
que toma como dadas cuando toma sus decisiones. Las variables de decisiéon o
de control de un agente pueden ser variables de estado para otro agente distinto:
el gobierno puede decidir sobre la tasa de crecimiento de la oferta monetaria de
manera que minimice una funcién objetivo que penaliza un nivel elevado de la
tasa de inflacién. Ese crecimiento monetario serd una variable de estado para un
consumidor o una empresa en la misma economia. Asi, las variables de estado
de un agente pueden ser variables exdgenas para toda la economia, como seria
en el caso espafiol el nivel de los tipos de interés fijado por la Reserva Federal de
EEUU. Pueden ser también variables de decisién de otros agentes de la misma
economia, como ocurriria con la produccién de un determinado bien, cuya cuantia
es decidida por la empresa productora, y los consumidores toman como dada,
siendo, por tanto, una variable de estado para ellos. Finalmente, las variables de
estado pueden ser también sus propias decisiones pasadas.

A lo largo de este articulo, y exclusivamente por razones de simplicidad, vamos
a centrarnos en una economia sencilla, en la que ignoraremos el efecto que sobre
la economia puede tener la actividad del gobierno, a través de su politica fiscal:
tipos impositivos, emisién de deuda, etc., su politica monetaria: tipos de interés,
crecimiento de la cantidad de dinero en circulacion, etc., y a través de su actividad
como agente econdmico: gasto publico, inversién publica, etc.. Ademds, supone-
mos, como es habitual, que los consumidores son propietarios de las empresas, de
modo que las decisiones de consumo y las decisiones de inversion y produccién
se toman simultaneamente por parte del mismo agente. Todos los consumidores
son idénticos, por lo que nos basta con considerar las decisiones que toma un
consumidor representativo.

Dicho consumidor tratard de maximizar su nivel de utilidad agregada en el
tiempo, que deriva del consumo de los distintos bienes, asi como del nivel de ocio
de que disfruta en cada periodo. Las restricciones a que se enfrenta este decisor,
una para cada instante de tiempo, especificaran que la cantidad que paga por
los bienes que consume no puede exceder de la renta de que dispone. En un
contexto mas amplio, los mercados de capitales existen para que el consumidor
pueda reservar parte de su renta cada periodo en la forma de ahorro. De ese
modo, un periodo puede decidir llevar a cabo un consumo cuyo valor de mercado
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es inferior a la renta del periodo, ahorrando la renta no gastada. En otro periodo,
podria suceder lo contrario, utilizando la renta de dicho instante, junto con parte
del ahorro que arrastra de periodos anteriores, para financiar su nivel de consumo.

Problemas como los descritos tienen una estructura que no es lineal-cuadrética.
Si lo fuese, la aplicacién del principio de equivalencia cierta, que permite separar
el problema de estimacién del problema de control, facilitaria el calculo de la
solucién de dicho problema, en sus versiones estocdsticas. Al ser su estructura
més compleja,? el problema carece de solucién analitica incluso en su versién de-
terminista. Es decir, es imposible encontrar reglas de decisién que resuelvan el
problema, especificando el valor 6ptimo en cada periodo de cada una de las varia-
bles de decisiéon, en funcién de los valores que en dicho periodo toman las variables
de estado (variables exdgenas, y variables de control de perfodos anteriores).

Al no existir solucién analitica, en los ultimos anos se ha propuesto una varie-
dad de procedimientos alternativos para obtener soluciones numéricas a este tipo
de problemas de control. En este trabajo revisamos, a modo de introduccién, las
principales caracteristicas de uno de dichos métodos,® que se basa en la caracte-
rizacion de las condiciones de estabilidad del sistema, es decir, de las ecuaciones
que definen el subespacio de convergencia a un equilibrio estacionario o punto de
reposo del mismo. El método, introducido por Sims (2001) basidndose en trabajo
previo de Blanchard y Kahn (1980) y extendido al caso no lineal cuadratico por
Novales et al. (1999), caracteriza las condiciones de estabilidad de la aproximacién
lineal del modelo, puesto que se carece de procedimientos generales para carac-
terizar dichas condiciones en modelos no lineales. Posteriormente, la solucién al
modelo, en la forma de una serie temporal para cada una de las variables del
mismo, se obtiene combinando las condiciones de estabilidad estimadas con la
estructura analitica no lineal del modelo original. La imposiciéon de condiciones
de estabilidad para obtener soluciones numéricas no explosivas es precisa incluso
en problemas deterministas. En problemas estocasticos es ain mé&s necesaria,
para garantizar que las perturbaciones estocasticas que afectan cada periodo al
sistema no lo sitien en una trayectoria divergente.

Por 1ltimo, hay que recordar que un modelo de control estocastico no esta
completamente definido hasta que se establece un supuesto acerca del mecanismo
de formacion de expectativas utilizado por los agentes. Distintos supuestos acerca
de estos mecanismos conducen a problemas de control diferentes, con soluciones
que pueden tener caracteristicas muy distintas. Aunque la tradicién acerca de la

2Generalmente las funciones objetivo son més complejas que una funcién cuadrética. Sin em-
bargo, el problema mas importante es que, en los problemas mas intreresantes, en los que tanto el
comportamiento de las variables cantidad como de los precios es determinado simultaneamente,
las restricciones del problema no son lineales.

3El lector interesado puede consultar el volumen 8 de la revista Journal of Business and
Economic Statistics (1990) dedicado especialmente a la descripcién de estos métodos, o el libro
Computational Methods for the Study of Dynamic Economies, de Oxford University Press,
editado por A. Marimén y A. Scott.
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manera en que los agentes econémicos procesan la informacién disponible para
formar sus expectativas es muy extensa, consideramos aqui unicamente el su-
puesto de racionalidad de expectativas, en el sentido de que los agentes utilizan
eficientemente en todo momento la informacién de que disponen al formar sus ex-
pectativas. Ante la ambigiiedad que implica suponer lo contrario, el supuesto de
racionalidad de expectativas se ha convertido asimismo en el estandar a utilizar en
el analisis de modelos econdémicos en los que se hace explicito el comportamiento
optimizador de agentes que se enfrentan a situaciones de incertidumbre.

En la seccién 2 describimos con todo detalle el modelo de crecimiento neocla-
sico més simple. En la seccion 3 detallamos la caracterizacién de las condiciones
de estabilidad en un contexto determinista, dejando para la seccién 4 la carac-
terizacion de las condiciones de estabilidad en un contexto estocéstico y bajo el
supuesto de formacién de expectativas racional. El procedimiento de solucién es
ilustrado en la seccién 5 utilizando el modelo de crecimiento estocéstico bésico.
Por tdltimo, el trabajo se cierra con un resumen.

2 Un modelo de crecimiento sencillo

Consideremos un consumidor en una economia simple, con un tunico bien. Las
unidades de dicho bien disponibles en cada instante pueden consumirse o pueden
ahorrarse. Las unidades que se ahorren contribuyen a incrementar el stock de
capital de cada periodo. Este experimenta una depreciacién a una tasa igual a
6 por lo que, incluso si el ahorro de cada periodo es positivo, el stock de capital
puede disminuir si el nivel de ahorro no es suficientemente elevado como para
compensar la pérdida por depreciacion. El consumidor resuelve el problema de
maximizacion de su utilidad agregada a través del tiempo,

rcnziXZﬁtU(ct) (13.1)
B

sujeto a la sucesién de restricciones,

ct + 8¢ = Ye, t=1,2,...
" = fkioy), t=1,2,...
ky = (1 =0) ki1 + s, t=1,2,...
Ct, St > 0,t=1,2,..
y dado kg

siendo ¢, s¢ los niveles de consumo y ahorro de cada instante, y f(.) la funcién de
produccién que representa la tecnologia disponible en cada instante, que genera en
el periodo t unidades del bien de consumo a partir del stock de capital disponible

Rect@ Monogréfico 2 (2004)



E. Dominguez et al. 307

al inicio de dicho periodo, k;_1. Aunque la decisién sobre el valor numérico de
k¢_1 se toma en el periodo t—1, a través de la decisiéon de ahorro de dicho periodo,
s¢—1, el stock de capital k;_1 no es productivo hasta el periodo siguiente, t. Este
supuesto es crucial, pues genera toda la dindmica del modelo. Este modelo, es
conocido como el modelo de Cass-Koopmans, y en su versién estocéstica, como
modelo de Brock-Mirman.

Suponemos que la funcién de utilidad es mondtona creciente y céncava, con:
U’ >0,U"<0,U'(0) =0, (,li{rolo U’'(c) = 0. En cuanto a la funcién de produccién,
suponemos asimismo monotonia y concavidad, con f’ > 0, f”/ < 0, lll’n}) flk) =00
y kh'm f(k) = 0. Un supuesto habitual sobre la forma funcional, que adoptamos

— 00

en lo sucesivo es, f(k:) = AkY, 0 < o < 1, que satisface las condiciones descri-
tas, donde A es un parametro que representa el nivel de la tecnologia y a es la
elasticidad de la produccién respecto del stock de capital . Puesto que o < 1,
un incremento en k; en un factor u genera un incremento en la producciéon en un
factor inferior a u, por lo que se dice que este tipo de funciones de produccién
presenta rendimientos decrecientes.

Sustituyendo la segunda restriccién en la primera, tenemos, el Lagrangiano

L= ZﬁtU(Ct) + >\t [f (kt—l) — Ct — kt + (1 - 5) kt—l] s
t=1

cuyas condiciones de optimalidad son,

ﬂtU/(Ct) = )\t, t= 1,2, ceuy
Mirf (k) = M—(Q=0) Ng1, t=1,2,...,

de las que, eliminado el multiplicador de Lagrange, tenemos la conocida regla
de Keynes-Ramsey,

Uler)
U ct+1)

que, junto con la secuencia de restricciones presupuestarias,

=f'(k)+ (1—06), t=1,2,...,

flhio1) —ce—ke+(1—=0)kyy, t=1,2,...

debe darnos las sucesiones {c,s;},-; que resuelven el problema de maximi-
zacion de utilidad a lo largo del tiempo, a partir del stock de capital inicial, kq.

Una condicién adicional es la llamada condicién de transversalidad, que en
este problema adopta la forma,

lim 6t+TU,(Ct+T)kt+T =0. (132)

T—00
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Esta condicién se obtiene considerando la versién en tiempo finito (7' perio-
dos) del problema de optimizacién (13.1) y maximizando con respecto al ultimo
valor observado de la variable de estado, kr. Al ser una condicién del tipo Kuhn-
Tucker, especifica que el producto del valor la variable de estado en dicho instante
terminal, multiplicado por el valor de la derivada parcial correspondiente del
Lagrangiano en dicho instante debe ser igual a cero,

OLr
STy
akT T 07

donde L7 denota el Lagrangiano de dicho problema en horizonite finito, 7.
Puesto que gi—; = Ar, utilizando la primera condicién de optimalidad y pasando
al limite, se obtiene (13.2) . En un problema més general, habria tantas condicio-

nes de transversalidad como variables de estado.

2.1 Estado estacionario y estabilidad

La solucién al problema anterior consiste en un conjunto de trayectorias tem-
porales que se reflejarfan en un conjunto de series temporales, una para cada
variable relevante del modelo, que evolucionan a partir de unas condiciones ini-
ciales. En realidad, existe una condicién inicial para cada variable de estado,
que en el problema anterior es inicamente el stock de capital. Como tendremos
ocasion de discutir posteriormente, lo que resulta verdaderamente importante es
determinar los valores 6ptimos iniciales de las variables de control.

Dichas trayectorias temporales pueden converger a un punto estable, diverger
hacia infinito, con signo positivo o negativo, o bien oscilar alrededor de un punto
que nunca se alcanza. Para caracterizar las propiedades de estabilidad de un sis-
tema, es conveniente introducir antes la nocién de estado estacionario. Definimos
estado estacionario como un conjunto de valores numéricos para las tasas de creci-
miento de las variables del modelo en términos per capita tales que, si alguna vez
se alcanzase, entonces el sistema ya nunca lo abandonaria. Puede probarse que,
bajo el supuesto de rendimientos decrecientes en cada input de la funcién de pro-
duccién, las dnicas tasas de crecimeinto que pueden mantenerse indefinidamente
en una economia como la descrita son iguales a cero. En este caso particular, el
estado estacionario se convierte en unos niveles para las variables per cépita del
modelo tales que, una vez alcanzados, ya nunca se abandonarian.

Las cuestiones relevantes se refieren entonces al nimero de estados estaciona-
rios posibles, y a sus caracteristicas de estabilidad. De acuerdo con la definicién,
los estados estacionarios del modelo anterior se caracterizarian re-escribiendo el
modelo sin subindices temporales, es decir, ¢; = c;—1 =c* y ks = ki1 = k¥,

% — )+ (1= 0), (13.3)
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FE) = — k" + (1—08) k.

La primera ecuacién, que proviene de la igualdad entre la relacién marginal
de sustitucion y la productividad marginal del capital, nos proporciona el nivel
de estado estacionario del stock de capital y, una vez conocido éste, la segunda
ecuacién, que proviene de la restriccién de recursos, nos proporciona el nivel
de estado estacionario del consumo. Pueden existir multiples estados estaciona-
rios (indeterminacidon global del equilibrio), dependiendo de las propiedades de la
funcién de produccién. Sin embargo, es ficil ver que las condiciones antes des-
critas acerca de la funcién f garantizan que la solucién a (13.3) existe siempre
y es unica. Por tanto, bajo tales supuestos existe un unico estado estacionario.
Pero, por supuesto, podria darse el caso de que existe un estado estacionario
y sin embargo, la economia evoluciona en el tiempo sin dirigirse hacia él o que
exista un estado estacionario y que se converja hacia él a través de infinitas sendas
de equilibrio (indeterminacion local del equilibrio). Que ocurra alguna de estas
circunstancias o no dependerd de las condiciones de estabilidad.

En problemas localmente estables, las condiciones de transversalidad ayudan
a seleccionar, de entre todas las trayectorias temporales que satisfacen las condi-
ciones de optimalidad, aquella que constituye el punto de silla. La medida en que
las condiciones de trasnversalidad son restrictivas determina las caracteristicas
de estabilidad del problema. En problemas localmente estables, las condiciones
de transversalidad no eliminan trayectorias, por lo que existen multiples, quiza
infinitas, trayectorias, que satisfacen las condiciones de optimalidad. En proble-
mas localmente inestables, las condiciones de transversalidad eliminan todas las
trayectorias que satisfacen las condiciones de optimalidad, por lo que no existe
ninguna trayectoria éptima; en particular, no se produce la convergencia a ningin
estado estacionario.

3 Condiciones de estabilidad: caso determinista

Contrariamente a lo que suele pensarse frecuentemente, incluso en modelos
deterministas es preciso imponer condiciones de estabilidad adecuadas para ga-
rantizar que las condiciones de transversalidad se cumplan, como ilustramos en
esta seccion. Al igual que ocurre en los problemas de control estocastico, dichas
condiciones estan determinadas por los autovectores por la izquierda asociados
a autovalores inestables de la matriz de transicion en la aproximacién lineal del
modelo.

El problema de crecimiento econémico de Brock-Mirman antes descrito tiene
estructura de punto de silla. Como ya hemos visto, presenta un tnico estado
estacionario (c¢*, k*), y hay un subespacio bien determinado en el plano (¢, k)
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desde el que la ecomia converge a (c*,k*), divergiendo hacia valores negativos
(no admisibles) de alguno de los inputs en caso contrario.* Ello significa que,
dado kg, una eleccién inicial de ¢y distinta de la que corresponde a kg sobre el
subespacio estable, hara que la economia se aleje del estado estacionario. Pero,
ademds, como muestra la condiciéon de estabilidad, la optimalidad de la trayectoria
requiere que la economia converja a su estado estacionario, por lo que estabilidad
y optimalidad son dos caras de la misma moneda en este tipo de problemas.

En el caso del modelo mas sencillo, sin considerar el ocio como un argu-
mento en la funcién de utilidad, supongamos que ésta adopta la forma,® U(c;) =
S|

-——, 0 > 0, por lo que las condiciones de optimalidad son:

L= Bl + (-0, (13.4)
t+1
kt = (1 — 6)]%71 + f(ktfl) — Cy, (135)
lim ﬁt+7—c;f7.kt+7— = 0.

T—00

Las dos primeras ecuaciones pueden aproximarse linealmente alrededor de los
valores de estado estacionario del consumo y el stock de capital, ¢*, k*, obteniendo
el siguiente sistema de ecuaciones en diferencias lineal:

ke—k\ ([ % -1 ks =k _ (ke — K
c —c* - féM 1+ M i1 —c* - ci_1—c* )’
(13.6)
donde

1
M = —=BAa(a—1) k™2 >0,
g

A= ai; Q2 _ % -1
a1 Q22 —%M 1+ M ’
Utilizando la descomposicién espectral de la matriz A, A = TAT'"!, donde
I'~! tiene por filas los autovectores por la izquierda de A,° podemos representar

4La discusién de este punto, que queda lejos del dmbito de este articulo puede verse en
cualquier libro de crecimiento, como Novales y Sebastidn (1999).

5Esta es la funcién de utilidad de elasticidad de sustitucién intertemporal del consumo cons-
tante (1/0).

6Los autovectores por la derecha son: (1, z2) = (17 M;—l‘;“) y (y1, y2) = (1, /\2;—1;11), y
la matriz inversa:

-1
(m v1 >:<x1 1 ) _ 1 ( Y2 —u )
uz U2 T2 Y2 Tiy2 —Tsyr \ ~T2 21
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la dindmica de la solucién al problema de control a partir de valores iniciales
Co, /ﬂo:

kt — k* o 1 Y1 Al 0 u;y U1 kt—l — k*
¢ —c* o To Yo 0 X Uy Vo i1 —C*
o 1 Y /\ﬁ 0 uy V1 ko —k*
o ( To Yo ) ( 0 A Uy Vo co— C* (13.7)

Que este modelo tiene estructura de punto de silla es consecuencia de que una
de las raices de la ecuacion, digamos que A1, es mayor que 1 en valor absoluto,
mientras que la otra raiz,\s, es inferior” a 18.

La matriz producto en la expresién anterior es:

(528)-
_ < 21 A1 [ur (ko — k%) + v1(co — ¢*)] + y1 s [ua (ko — k) + v2(co — ¢*)] )
o l‘g)\’i [u1 (k‘o — k‘*) + 1]1(60 — C*)] + yg)\é [UQ(kQ — k‘*) + ’UQ(CQ — C*)] ’

por lo que la condicién de transversalidad en el stock de capital se cumplird sélo
si el coeficiente asociado a A\; es igual a cero. Pero x; depende de los valores de los
pardmetros estructurales, de modo que es el término en paréntesis que acompana
a Al quien ha de ser igual a cero. Dicha condicién es la misma para la ecuacién del
stock de capital que para la ecuacién del consumo: uq (ko — k*) + v1(co — ¢*) = 0,
de modo que estabilidad requiere que el consumo inicial se escoja de modo que:

7Un sistema 2 x 2 con ecuacién caracteristica,
1 1
>\2—(1+—+M)/\+—:0
8 B

tiene estructura de punto de silla puesto que esta ecuacién tiene un valor propio mayor que
1/8, y otro menor que 1. Dichas raices han de satisfacer,

>\1-&->\2=1+%+M7 >\1>\2=%
de modo que,
A1+ L =1+ 1 + M
BA1 B
La funcién f (A1) = A1 + ﬁ—il tiene un minimo en A\; = \/l/_ﬁ, y toma valor f (A1) =1+ %
en \1 =1yen A = % Comol + % + M >1+ %, entonces los dos posibles valores para A\;

estan no por debajo de 1, y el otro por encima de %

8La tasa de crecimiento critica, por debajo de la cual la solucién es estable, es especifica de
cada modelo. El requisito para la existencia de una solucién bien definida es que la funcién
objetivo sea acotada, lo que requiere imponer cotas superiores sobre la velocidad de crecimiento
de sus argumentos. Dichas cotas dependeran de la forma funcional de la funcién objetivo.
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* %y U1 w\ Y2 * Az_all
co—c" =—(ko—k)— = (ko —k")= = (kg — k") ————,
) (ko = )22 = (hy — k)2 = (ko — ) 2
lo que implica, a partir de dicho instante:
ktfk* = ylAtz(UQ(kofk*)+?)2(Cofc*)),
Ao —a
c— ¢ = yaM(ualko — k) +valco — ) = 2k — k) = 2T (k, — k),
Y1 ai2

de modo que en cada periodo a partir de t = 0 se cumplira la misma condicién
entre las desviaciones respecto de los valores de estado estacionario del stock de
capital y el consumo. Esta es la representacién lineal aproximada del subespacio
estable del problema propuesto. Es precisamente el hecho de que la condicién de
estabilidad se cumplird en cada periodo t, lo que permite que el modelo pueda
resolverse utilizando dicha condicién y una de las condiciones de primer orden del
problema de optimizacién (13.4), (13.5).

3.1 Eleccidn inicial de variables de control

La condicién de estabilidad anterior puede escribirse como el producto in-
terior: (y2, —y1) (ko — k*,co — ¢*)’ = 0, donde (ya,—y1) es el autovector porla
izquierda asociado a la raiz inestable,\;, de A. Por tanto, en modelos deter-
ministas, las condiciones de estabilidad seleccionan los valores iniciales de las
variables de decision, dados los valores iniciales de las variables de estado. Un
ndmero menor de condiciones de estabilidad que de variables de decisién® llevars
a resolver numéricamente el modelo como funcién de un valor inicial arbitrario
de una o mé&s variables de decisién, obteniendo asi un continuo de trayectorias
todas convergiendo al estado estacionario, por lo que la solucién es loacalmente
indeterminada, en el sentido de Benhabib y Perli (1994) y Xie (1994).

El sistema carece de solucién cuando hay mas condiciones de estabilidad in-
dependientes que variables de control. El subespacio estable se reduce entonces
al estado estacionario, por lo que la economia sera globalmente inestable, in-
ciando trayectorias divergentes tan pronto como experimente cualquier minima
desviacion del estado estacionario. Finalmente, la solucién serd dnica cuando
el conjunto de condiciones de estabilidad pueda utilizarse para representar las
variables de control de forma tnica como funcién de las variables de estado.

El andlisis de las condicioens de estabilidad en el caso estocédstico es muy
similar, como vamos a ver en la seccion siguiente.

9Después de utilizar las ecuaciones que contienen sélo variables de control contemporaneas
para eliminar algunas variables de control del problema.
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4 Condiciones de estabilidad: el caso estocastico

Sims (2001) generalizé el trabajo de Blanchard and Kahn (1980) en varias
direcciones, proponiendo una discusién general acerca del célculo de la solucién a
un modelo lineal, estocastico bajo expectativas racionales. Dicho modelo puede
expresarse:

Loy = Diye—1 + C + Yz + Iy, (13.8)

donde C' es un vector de constantes. y; es un vector que incluye:

e las variables determinadas por el modelo, denominadas variables endégenas,
como el consumo, la produccion, el stock de capital, etc.; incluye las espe-
ranzas condicionales que aparecen en el modelo, redefinidas como nuevas
variables, pero no los errores de expectativas asociados. Se incluyen en y;
las variables con subindice méas adelantado, mientras que las que tengan
subindices anteriores se incluirdn en y;_1,

e las variables que son exdgenas a los agentes pero siguen leyes de movimiento
conocidas; ejemplos de este tltimo tipo serian algunas variables de politica,
como el crecimiento monetario o los tipos impositivos, o también algunas
perturbaciones exdgenas, como la perturbacién que introduciremos en la
seccién siguiente en la productividad de los factores.'©

El vector z; contiene las innovaciones que aparecen en las leyes de evolucién
temporal de las variables exdgenas. Por ejemplo, el supuesto habitual acerca de
la ley de movimiento de una posible perturbacién en productividad: log(6;) =
p log(0:—1) + €, conducird a que un componente de y; sea log(6;), mientras que
€; sea un componente de z;. Finalmente, el vector 7; contiene los errores de
expectativas racionales, que satisfacen E;(n;41) = 0, y cuyo valor numérico se
obtendra, junto con el de las dema&s variables, como parte de la solucién del
modelo.

Modelos que incluyen mas de un retardo temporal pueden incluirse en la for-
mulacién anterior anadiendo como nuevas variables dentro del vector y algunos
retardos de variables ya incluidas en el modelo. También pueden incorporarse
variables de expectativas adicionales de modo que todos los errores de expec-
tativas que resulten correspondan a previsiones un periodo hacia el futuro. Lo
mismo puede hacerse si el modelo incluye expectativas a horizontes superiores a
un periodo.

Tomando condiciones iniciales arbitrarias yo y realizaciones muestrales para
las variables z; en (13.8), es inmediato obtener trayectorias para y;. Sin embargo,

10Las variables en z; son independientes: si dos perturbaciones exégenas estén correlaciona-
das, la aproximacién lineal a su relacién ha de anadirse al sistema. Una de las variables formaria
parte del vector z; , mientras que la otra entraria a formar parte del vector y¢.
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tales trayectorias incumpliran las condiciones de transversalidad, a menos de que
se incorporen al sistema las condiciones de estabilidad apropiadas, que estan de-
finidas mediante los autovectores asociados a los autovalores inestables de las
matrices en la representacién (13.8). Cuando I'y es invertible, son los autovalores
inestables de la matriz I'y Iy quienes caracterizan las condiciones de estabili-
dad, mientras que cuando I'y es singular, hemos de caracterizar los autovalores
generalizados inestables del par (I'g,I'1).

Novales et al. (1999) extienden el procedimiento anterior a la solucién de
problemas de control no lineales. Para ello, proponen calcular la aproximacion
lineal alrededor del estado estacionario del conjunto de ecuaciones no lineales que
componen el modelo. Como consecuencia, el vector de constantes C resulta ser
cero. Después de redefinir variables de modo adecuado, las matrices I'g y 'y que
aparecen en la aproximacion lineal al modelo original, contienen: i) las derivadas
parciales de cada ecuacién del sistema con respecto a cada una de las variables en
Y, evaluadas en estado estacionario, y ii) filas de unos y ceros, correspondiendo
a variables intermedias que se han anadido al sistema para dotarle de una estruc-
tura autorregresiva de primer orden en presencia de retardos de orden superior
0 expectativas a mas de un periodo hacia el futuro, o expectativas formadas en
periodos distintos de ¢. En definitiva, (13.8) es la aproximacién lineal al sistema
formado por las condiciones de optimalidad del problema de control, las restriccio-
nes del mismo, las reglas de politica econémica exdégenas al modelo, asi como las
leyes de movimiento de las perturbaciones también exdgenas al modelo, estando
todas las variables en desviaciones respecto de sus valores de estado estacionario.

Las condiciones de estabilidad se obtienen a partir de esta aproximacion lineal,
pero es la estructura original, no lineal del modelo la que es finalmente utilizada
en el célculo de la solucién numérica. Con ello, se obtiene una realizacién de serie
temporal para cada una de las variables del modelo, incluidas cada una de las
expectativas condicionales que en él aparecen, y cada uno de los errores de expec-
tativas asociados, por lo que es posible estimar cualquier propiedad estadistica de
este amplio vector de variables.

Conviene puntualizar que aunque estamos describiendo el procedimiento de
solucion dentro del marco de un modelo econémico en que los agentes resuelven
problemas de control explicitos, conviene poner énfasis en que el mismo procedi-
miento puede utilizarse para obtener soluciones aproximadas a cualquier conjunto
de ecuaciones en diferencia estocasticas no lineales.

5 Solucidon del modelo de crecimiento estocastico
basico

Tlustramos en esta seccién el procedimiento general descrito en la seccién pre-
via mediante una aplicacién al modelo estocastico mas basico de crecimiento,
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propuesto por Brock y Mirman (1972). La matriz Iy que aparece en la apro-
ximacion lineal a este modelo resulta ser invertible, por lo que el calculo de la
solucién numérica es bastante sencilla. El modelo supone que el consumidor de-
riva utilidad tnicamente del nivel de consumo que realiza. Incorpora asimismo
una perturbacion aleatoria en la funcién de produccién,

yr = [0, ke—1) = 0. Ak, 0 < a <1,

donde la perturbacién aleatoria 6; toma valores de acuerdo con una distri-
bucién de probabilidad centrada alrededor de 1. Valores por encima de dicha
referencia hacen que la cantidad de producto exceda de lo que cabria esperar, en
ausencia de incertidumbre, de las cantidades utilizadas de los inputs, mientras
que valores de 0; por debajo de 1 hacen que la cantidad de producto sea inferior a
lo esperado. Se dice que 6; afecta a la productividad de los factores productivos.
De hecho, la productividad es la contribucion al nivel de producto de una unidad
adicional del input, k;, por lo que se mide por la derivada parcial de la funcién f
en la que #; aparece como una factor de escala. Nétese que, si bien k; es conocido
en t, f (ki) = 0:11k no se conoce hasta el perfodo ¢ + 1.

Dado ko, el consumidor representativo escoge sucesiones {ki,¢;},o, que re-
suelvan el problema,

s l—0o 1

ix B BT 550 13.9
e O;ﬁ -0 ' ° (139)

sujeto a las restricciones
—Ct — kt + (1 - (S)k't_l + etkta_l = 0, (1310)
—log(6;) + plog(b;—1) +e: = 0, eii.d~ N(0,0.), |p| <1,(13.11)

y dadas las condiciones iniciales, kg, 0y. La primera es la restricciéon global
de recursos en la economia, que estipula que la suma del consumo y la inversion
bruta es igual a los recursos disponibles mediante la actividad de produccién del
periodo. La segunda especifica una evolucién temporal para la perturbacién en
la funcién habitualmente aceptada, y es que la perturbacion de productividad
evoluciona suavemente, es decir, con alta autocorrelacién positiva, a lo largo del
tiempo.

Después de formar el Lagrangiano, tomar derivadas parciales respecto a las va-
riables de decisién y los multiplicadores, y eliminar estos tltimos, las condiciones
de optimalidad resultan,

Ct = thﬁl - kt + (]. - 6)]{7571, (1312)
G = BE e (- 8) +abaki )], (13.13)
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junto con la ley de movimiento de la perturbacién estocdstica del modelo log(8;) =
plog(6;—1) + €, € 4.i.d.~N(0,02), la condicién de transversalidad

Mm By (e ke f7] =0,

y las condiciones iniciales kg, 6.

En este punto es donde se hace preciso incorporar al modelo algin supuesto
especifico acerca del modo en que los agentes forman sus expectativas. Vamos a
considerar en lo sucesivo que dichas expectativas son racionales, lo que equivale
a afirmar que, al formar expectativas, los agentes hacen uso eficiente de la infor-
macion de que disponen. Ello significa que los errores de expectativas no tienen
nada en comun con informacién que era disponible en el momento de construir la
expectativa, lo que en términos estadisticos, se traduce en ausencia de correlacion
entre el error de expectativas y cualquier variable conocida al formar la expec-
tativa. Si denotamos por W; la esperanza condicional que aparece en (13.13),
W, = E, [c;fl(l —9)+ a9t+1k?71] , e introducimos el correspondiente error de
expectativas, ng, n: = ¢; ° [(1 —9)+ a@tkffll] — W;_1, deberemos tener, una vez
resuelto numéricamente el modelo, F (7, X;) = 0, siendo X; cualquier variable
medible respecto al sigma-algebra sobre el cual se define el operador esperanza
condicional E,.'t

Con esta notacién podemos escribir el sistema anterior como:

0 —Wi+ Ey [e;71(1 = 0) + a1k '] (13.14)
0 = —¢; 7 +pW;, (13.15)
0 = —Wii+¢ 7 [(1=20)+abk?3'] —ne, (13.16)

donde Ei[n:11] = 0, junto con (13.12).
Las condiciones que caracterizan el estado estacionario son:

¢ = R =R (L= O W = (1= 0) +af” (k)]
0 = —c"748W™
donde 0* = 1, lo que conduce a, k* = (%) e , =k =0k, W*=

()77, g =k,

El sistema que hemos de aproximar linealmente consiste en las ecuaciones
13.11), (13.15), (13.12) y (13.16). Las variables de estado son: k;—1 y log(6:),
mientras que las variables de decisién son: ¢; y k;. Para linealizar, consideramos

@l=

—~

1INétese que nuestra notacién Ej (zt+1) es equivalente a E (z¢+1/€) siendo Q¢, t = 1,2, ...
una sucesién de sigma-algebras con €2y C Q441 Vt. Puede interpretarse que cada sigma-algebra
Q) es la generada por el espacio de sucesos observables hasta el instante ¢.
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cada ecuacién como una funcién: f (¢, ke, Wy, log(6;),mi,€¢:) = 0y, en linea con
la notacién de la seccién anterior, definimos los vectores y; = (¢; — ¢*, ky — k¥,
Wy — W=, log(6:)), e = (), 2t = (€), siendo estos dos tltimos de dimensién
1 x 1. La aproximacién de primer orden alrededor del estado estacionario es:

of of of

|ssyt71 + _‘ss Mt + _|ss €t = 07

_‘SS vt 0Yyr—1 oy Oey

Oyt

donde los valores de estado estacionario de 7; y €; son cero. Alineando verti-
calmente estas aproximaciones, podemos escribir el sistema linearizado como:

Poyr = I'iye—1 + Wz + Iy, (13.17)
donde:
—o () 0 -8 0
r,=| ° ()7t (a (k) 41— 5) 0 0 —ac* (k)"
1 1 0 ke ’
0 0 0 1
0 0 0 0 0 0
0 ale—1)c 7 (k)*? -1 0 0 -1
Iy = _ 7\Il = 71_[ —
! 0 ak)*'+1-6 0 0 0 0
0 0 0 p 1 0

5.1 Caracterizacion de las condiciones de estabilidad

El término constante en (13.17) es cero, puesto que las variables recogidas
en y; estan expresadas en desviaciones respecto de sus valores de estado estacio-
nario. Ademds, para valores paramétricos razonables, I'g resulta ser invertible.
Multiplicando por la izquierda por la inversa de I'g, obtenemos un sistema trans-
formado en el que la matriz de coeficientes y; es la identidad y, después de redefinir
adecuadamente las matrices (I'y = Ty 'T'y; @ = Ty W IT = T'; '), tenemos:

Yt = Fglflyt_l + Fallllzt + F0_1H7’]t = flyt—l + \I/Zt + ﬁ’l]t (1318)

La matriz I'; admite una descomposicién de Jordan!?: Ty = PAP~!, donde
P es la matriz que tiene por columnas los autovectores por la derecha de Ty, y
A tiene los valores propios de Ty en su diagonal principal, y ceros en el resto de
coordenadas'®. La matriz inversa de P, P!, tiene por filas los vectores propios

12Para, cuyo célculo existe una funcién o rutina en casi todo programa de célculo numérico.
13Consideramos tinicamente el caso en que todos los valores propios son distintos entre si.
Sims (2001) discute la extensién al caso de autovalores multiples, en modelos lineales.
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por la izquierda de T'y. Multiplicando este sistema por P! y definiendo w; =
P~ 1y, tenemos:

we = Awy_y + P! (xi/zt + ﬁm) : (13.19)

que es un sistema en combinaciones lineales de las variables que componen el
vector original y;. Tendremos una ecuacién correspondiendo a cada valor propio

/\j de Flt
Wit = )\jjwj,t—l + Pj. (\i/Zt + ﬁ’r]f) s (1320)

donde P’* denota la fila j—ésima de P~!.
Es ficil ver que autovalores \;; mayores que uno en valor absoluto generaran
un comportamiento explosivo en la variable w;; excepto si:

wjr = PPy, =0, Vt, (13.21)

lo que genera una condicién de estabilidad en la forma de una condicién de
ortogonalidad entre el autovalor por la izquierda asociado a un autovalor inestable
de la matriz T'; = r'y 'y y el vector de variables y;, en desviaciones respecto de
los valores de estado estacionario.

5.2 Cadalculo de la solucién numérica

Para valores paramétricos como los habitualmente utilizados en modelos econémicos,
o=1.5,6=0.025 a =0.36, B =0.99, p = 0.95, tenemos el estado estacionario:

y* = 3.7041; ¢* = 2.7543; k* = 37.9893

y las matrices:

—0.1191 0 —0.99 0 0 0 0 0

ro_| 01203 0 0 -00077 | | 0 -0.0001 -1 0
0= 1 1 0 -37041 [t~ | 0 10101 0 0
0 0 0 1 0 0 0 0.95

La matriz fl = I‘glI‘l admite una descomposicién f‘l = PAP~!, con matrices
P,A, P

1 -0.0277 —-0.0388 —0.0318 0 0 0 0

p_ 0 0.9996 —0.9992 —0.9995 A 0 1.0388 0 0
0 0.0033  0.0047  0.0038 ’ 0 0 09723 0 ’
0 0 0 0.0085 0 0 0 0.95
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0 8.3097 0
0.5842  124.9696  12.4795
—0.4163 125.0167 —105.3230

0 0 117.7817

Pl=

oo o=

La condicién de estabilidad viene dada por la fila de la matriz P~!, asociada al
Unico autovalor mayor que 1:

wor = P2y, =0 Vt = W,—W*+0.00467(k; —k*)+0.09986 log(6;) = 0. (13.22)

Una dnica condicién de estabilidad es, de hecho, lo que cabia esperar de la
discusién tedrica que llevamos a cabo en la seccién 3 al haber una tnica variable
de control en el modelo. Ademds, hay una tnica esperanza condicional en el
modelo, por lo que una condicién de estabilidad es suficiente para identificarla.

La diferencia con el caso determinista es que la condiciéon de estabilidad no
garantiza que la condicién estocastica de optimalidad en la que aparece dicha
expectativa, (13.13) se satisfaga en todos los perfodos, debido a la existencia del
error de expectativas. El papel de esta ecuacién, una vez que la escribimos en
la forma (13.15-13.16), es precisamente proporcionar la realizacién del error de
expectativas!®. La condicién de estabilidad impone una relacién exacta entre el
error de expectativas racionales 7; y la innovacién en la perturbacién de producti-
vidad, ¢;. La tnica razén por la que los agentes cometen errores de prediccién es
porque el sistema estd sujeto a dichas perturbaciones, y la relaciéon entre ambos
tipos de variables es una caracteristica importante del modelo que no se obtiene
con otros procedimientos de solucién numérica.

Para calcular soluciones estables, se aniade la condicién de estabilidad estimada
(13.22) al modelo no lineal original, lo que permite resolver valores numéricos para
las variables endégenas, asi como para los errores de expectativas. El procedi-
miento de soluciéon comienza utilizando la ley de movimiento de la perturbacion
en productividad (13.11) para generar una serie temporal para dicha variable 6,
de la longitud muestral deseada, a partir de realizaciones independientes de la
innovacién €; y de un valor inicial 6y. Este puede tomarse igual a su esperanza
matemaética, cero, o puede escogerse arbitrariamente. Al ser esta variable exdgena
respecto a todas las demads variables del modelo, puede simularse su realizacion
temporal sin necesidad de conocer la evolucién temporal de ninguna otra variable.
A partir de la condicién inicial sobre kg, utilizamos la restriccién presupuestaria
para expresar ki como funciéon de c¢;. Llevando esta funcién a la condicién de
estabilidad, junto con (13.15) y el valor numérico obtenido previamente para 61,
tenemos una unica ecuacion no lineal en ¢;. Una vez calculado ¢y, invertimos
la funcién anterior para obtener k;. Se repite el mismo proceso en cada periodo,

14Cuyo valor numérico no serd sino una aproximacién al verdadero error de expectativas,
puesto que incorporard el error numérico derivado de haber estimado el subespacio estable en
la aproximacién lineal del modelo.

Rect@ Monogréfico 2 (2004)



320 Control estocdstico en economiae

hasta cubrir la longitud muestral deseada. Una vez que tengamos series tempo-
rales para el consumo y el stock de capital, podemos generar la serie temporal de
W, de (13.15), y la correspondiente al error de expectativas 7, a partir de (13.16).

A partir de (13.20), es claro que imponer la condicién de estabilidad: w;; =0
Vt es equivalente a:

pi* (\Ifzt n ﬁnt) —0 Vi, (13.23)

que ilustra cémo la estabilidad de la solucién requiere que los errores de expecta-
tivas fluctien en respuesta a los valores observados de la perturbacién estructural
en productividad. Con la parametrizacion descrita, se tiene:

p2e (‘ilzt n ﬁnt) —0 ¥t = 0.105le, +1 =0 Vi, (13.24)

que es una relacién exacta entre el error de expectativas del modelo y la innovacion
en la perturbacién de productividad. El error de expectativas que calculemos a
partir de (13.16) depende de modo no lineal de las variables de decisién y de
estado y, por tanto, de las perturbaciones exégenas del modelo. En consecuencia,
no satisfard la relacién (13.24) exactamente, que es una aproximacién lineal a la
verdadera relacion no lineal que existe entre estas variables.

Una vez generada una realizacién de la solucién numérica, en la forma de una
serie temporal para cada una de las variables del modelo, volvemos a generar por
simulacion una serie temporal diferente para la perturbacién de productividad 6
y, a partir de ella, obtendremos otra realizaciéon de series temporales para todas
las variables del modelo. De este modo, obtenemos un conjunto numeroso de
realizaciones para cada variable, que nos permitira calcular asimismo una amplio
niumero de realizaciones de cualquier estadistico: volatilidad de la produccién y;,
coeficiente de correlacién entre ésta y el consumo ¢;, funciones de autocorrelacién
simple y parcial de la productividad f’(ki—1), etc.. Las estimaciones de las ma-
trices P, A, asi como la condicién de estabilidad (13.21) o la relacién (13.24) son
comunes a todas las simulaciones, al ser funcién tunicamente de los parametros
del modelo, pero no de los valores numéricos de las perturbaciones 6.

5.3 Existencia de solucién

Por supuesto que nada garantiza que un problema de control estocéstico tenga
solucién. Siguiendo la metodologia de soluciéon numérica que hemos descrito, la
existencia de un numero mayor de condiciones de estabilidad que de expectati-
vas condicionales que aparecen en el modelo, haria imposible que el vector de
esperanzas condicionales pudiera ajustarse en cada periodo de manera que com-
pensara los valores tomados por las perturbaciones exégenas del modelo, que en
nuestro caso es la perturbacién de productividad. En consecuencia, no existiria
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una relacién bien definida entre los errores de expectativas y las innovaciones
estructurales, no existiendo una solucién al modelo.'®

Un nuimero de condiciones de estabilidad igual al de expectativas condiciona-
les del modelo, sin ser ninguna de ellas redundante hard, generalmente, que el
modelo tenga una solucién unica que puede obtenerse combinando condiciones
de estabilidad con las ecuaciones no lineales del modelo, obteniendo un conjunto
de series temporales, una para cada una de las variables del modelo, més las va-
riables que hemos definido como expectativas condicionales, mas los errores de
expectativas.

Un ndmero de condiciones de estabilidad inferior al de expectativas condi-
cionales del modelo generara lo que conocemos habtitualmente como equilibrios
sunspot, en los que podemos fijar arbitrariamente los valores numéricos de alguna
de las expectativas y resolver el sistema de modo que se cumplan todas las ecua-
ciones del modelo. Por tanto, tenemos en general todo un continuo de soluciones
(indeterminacidn local estocdstica).

Otro sentido importante en que debe valorarse la existencia de soluciones es
desde el punto de vista de la racionalidad de expectativas. Como hemos explicado
anteriormente, el método propuesto incorpora el supuesto de racionalidad, lo que
hace que los errores de expectativas tengan determinadas propiedades: media
cero, ausencia de correlacion serial, y correlaciéon nula con las variables que eran
conocidas en el momento de formar las expectativas. Todas estas caracteristicas
son contrastables estadisticamente!® y es, de hecho, una importante laguna en la
investigacién actual en este campo, el que habitualmente no se contrasten una vez
generada la solucién numérica. El incumplimiento de las propiedades estadisticas
citadas implicaria rechazar el supuesto de racionalidad de expectativas que su-
puestamente se ha utilizado en la generacion de la solucion numérica. Ello podria
deberse a los errores numéricos generados por utilizar una aproximacion lineal al
modelo para generar las condiciones de estabilidad, parte integral en la soluciéon
del mismo. Dichos errores numéricos se acumulan a los errores de expectativas,
por lo que estos pudieran incumplir las propiedades mencionadas, invalidando la
solucién obtenida.

6 Resumen
Hemos descrito un método para la solucién de problemas de control estocastico

como los habitualmente propuestos en economia. El procedimiento incorpora y
utiliza en su diseno el supuesto de racionalidad de expectativas, consistente en

15Salvo en el caso, muy infrecuente en aplicaciones de interés, en que alguna condicién de
estabilidad fuese redundante con el resto del sistema de tal modo que (13.23) pudiera cumplirse
incluso si el ntimero de filas en P7® excede de la dimensién del vector .

16Véase Den Haan y Marcet (1994) para un contraste acerca de la incorrelacién entre errores
de expectativas y el conjunto de informacién utilizado en la formacién de las mismas.
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cada agente decisor utiliza eficientemente toda la informacién de que dispone
cuando toma sus decisiones. Las condicioens de estabilidad del sistema de ecua-
ciones de primer orden del problema de optimizacién juega un papel fundamental
en el método de solucién, informando acerca de la posible multiplicidad de solu-
ciones, asi como de la posible inexistencia de las mismas. La solucién numérica
toma la forma de una serie temporal, de la longitud deseada, para cada una de
las variables del modelo. Mediante un experimento Monte Carlo, puede obtenerse
un alto nimero de tales soluciones y caracterizar la densidad empirica de frecuen-
cias de cualquier estadistico, a la luz de la cual puede evaluarse la verosimilitud
del estadistico andlogo calculado a partir de datos de economias reales. De este
modo, el modelo econémico puede entenderse como una funcién que convierte la
distribucién de probabilidad de las innovaciones estocasticas del modelo, en una
distribucién de probabilidad para cada uno de los estadisticos de interés relativo a
una o varias variables del modelo: varianzas, coeficientes de correlacion, etc.. La
solucién numérica precisa de una determinada parametrizacion del modelo, por
lo que puede disenarse un procedimiento de estimacién consistente en hallar los
valores de los pardametros que minimizan el valor numérico de una determinada
funcién distancia entre los valores numeéricos obtenidos por simulacién para un
determinado vector de estadisticos, y sus valores numéricos en una economia real.
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1 Introduccion

En un trabajo pionero, Wright (1936) encontré evidencia empirica de que el
tiempo requerido para construir un avién decrecia a medida que aumentaba el
numero de aviones que ya se habian fabricado. Este fenémeno, que ha recibido el
nombre de learning by doing, ha sido -a partir del trabajo de Wright- encontrado
en diferentes industrias y en diferentes periodos de tiempo.

La literatura que analiza las implicaciones de dicho efecto en un marco téorico
comenzé algunos anos mas tarde, con el trabajo de Arrow (1962). Al igual que
ocurrio con su vertiente empirica, el trabajo de Arrow ha dado paso a una enorme
cantidad de trabajos tedricos posteriores.

El learning by doing es un fenémeno naturalmente dindmico: las decisién de
hoy de la empresa (jcudntos aviones producir hoy?) afecta a sus posibilidades
de manana (horas de trabajo que serdn necesarias mafiana para producir un
avién). Ello da lugar a modelizar el problema de decisién de la empresa desde un
punto de vista tedrico como un problema de optimizacién dindmica. Si ademas

1 Agradezco los comentarios de E. Cerd4. Cualquier error es responsbilidad mia.

Rect@ Monogréfico 2 (2004)



326 Learning by Doing e incertidumbre aditiva

suponemos, como parece natural, que en el momento de decidir hoy, la empresa
no conoce con exactitud los efectos que sus decisiones presentes tendréan sobre
sus posibilidades futuras, el problema anterior es esencialmente un problema de
programacion estocastica. En dicho problema, la incertidumbre aparece recogida
por la presencia de shocks aleatorios.

En este trabajo se aborda el problema tedrico de una empresa que tiene lear-
ning by doing e incertidumbre sobre como sus decisiones presentes afectan a sus
posibilidades futuras. El principal resultado es la obtencién andlitica de la so-
lucién de dicho problema, para una modelizacién especifica, mediante técnicas
de programacion dindmica. Esta obtencién analitica de la solucién permite es-
tudiar propiedades de la misma que de otra forma involucran un andlisis mucho
mas complejo. Como ejemplo de propiedad a estudiar a partir de la solucién
analitica, en este trabajo comparamos la solucién del problema abordado con la
de el problema andlogo deterministico.

La estructura general del trabajo es la siguiente. Tras esta seccién introduc-
toria, la seccion 2 contiene una breve revisién de la literatura. La seccién 3 sitia
el problema abordado en el marco de la literatura previa. Las tres siguientes sec-
ciones contienen, respectivamente, la presentaciéon formal del modelo (seccién 4),
la solucién (seccién 5) y algunas implicaciones econdmicas (seccién 6). La seccién
7 presenta algunas ideas para futuras investigaciones.

2 Revision de la literatura

Hay una enorme literatura dentro de tedria econémica y la literatura de in-
vestigacién operativa posterior a los trabajos de Wright y Arrow. Esta revision
no pretende -ni mucho menos- ser exhaustiva, si no solamente destacar algunos
trabajos que ha su vez han generado una literatura posterior que se basa en ellos.
Dividimos los trabajos en empiricos y tedricos.

2.1 Evidencia empirica

Como hemos indicado, Wright (1936) comprobo empiricamente que el tiempo
requerido para la construccién de un avién decrecia a medida que aumentaba
el ntimero de aviones fabricados. A partir de este trabajo los estudios se han
extendido a diferentes sectores industriales, periodos de tiempo y formas de mo-
delizacién.

De manera general, los trabajos empiricos usan datos de una industria o del
sector industrial en su conjunto para ajustar lo que se conoce como curva de
aprendizaje. Una curva de aprendizaje es una representacién grafica que relaciona
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la cantidad producida acumulada, variable independiente, con alguna medida
de la productividad (por ejemplo horas-trabajador necesarias para construir un
avién), que es la variable independiente. La forma funcional més utilizada es la
funcién de potencia:

z=aQ"

donde z mide las horas-trabajo de la ultima unidad producida, @ es la produccién
acumulada (a lo largo del tiempo) y a y b son los pardmetros que se estiman a
partir de los datos. Es importante notar que hemos definido learning by doing
como una reduccién de costes, que no tiene por que ser equivalente a un aumento
de productividad, si bien todos los trabajos empiricos toman ambos conceptos
como equivalentes.

Los trabajos empiricos extienden el esquema anterior en alguna de las si-
guientes lineas: (a) estiman la curva de aprendizaje para diferentes industrias,
(b) estudian posibles factores adicionales para explicar la mejora de productivi-
dad; (c) sugieren formas funcionales alternativas. Comentamos brevemente cada
una de estas extensiones.

Se ha encontrado evidencia empirica de existencia de una curva de aprendizaje
en la produccién de energia eléctrica en centrales nucleares de EE.UU. (Joskov et
al. (1979)) y de Francia (Lester et al. (1993)), en la produccién de microconduc-
tores en Japén (Dick (1991)), en las industrias quimicas de EE.UU. (Lieberman
(1984)), en la produccién de rayén? en EE.UU. (Jarmin (1994)), en la industria
farmacettica (Lieberman (1987)) y construccién de barcos (Argote et al. (1990)).

A un nivel de agregaciéon del sector industrial mayor que el anterior, Jefferson
(1988) encuentra evidencia de curvas aprendizaje en el sector manufacturero de
EE.UU, y Backus et al. (1992) extienden posteriormente este estudio a mas
de sesenta paises. Mitra (1992) encuentra también evidencia de una curva de
aprendizaje en el sector manufacturero de la India. Webb et al. (1993) sefialan que
las exportaciones de determinados sectores dentro de las manufacturas de Costa
Rica (maquinaria y manufacturas intermedias) generan mejoras de productividad
en los mismos sectores de otros paises que participan en el mercado comun de
América Central.

Pueden existir diversos factores que explican las mejoras de productividad,
ademds de la produccién acumulada. En este sentido, Fellner (1969) propone
la inclusion del tiempo como variable relevante en un modelo en el que estudia
la mejora en el rendimineto de los atletas. Moreh (1985) senala como variable

2Fibra sintética compuesta fundamentalmente por celulosa.
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relevante el esfuerzo invertido en formacién dentro de la empresa. Resultados
similares aparecen en Shaw (1989). En el trabajo antes citado de Lieberman
(1984) se seniala la influencia de los gastos en I+D. El tamafio de la empresa
y el reparto de mercado (cudntas empresas y que poder de mercado tiene cada
una) es senialado también en Lieberman (1987). Argote et al. (1990) sefialan un
conjunto de factores que pueden dar lugar a que el aprendizaje se deprecie, por
lo que deberian entrar en la curva de aprendizaje afectando negativamente a la
productividad. Estos factores son, por ejemplo: diferentes turnos de empleados
o interrupciones de la produccién debidas a huelgas,...

Béasicamente, se han propuesto tres alternativas a la forma mas habitual de
curva de aprendizaje, indicada anteriormente, y que como puede verse es lineal
en logartimos.

Conway et al. (1959) sugieren que, en una escala logaritmica, la relacién
debe ser una linea recta con pendiente decreciente para valores iniciales de la
produccién acumulada y una recta horizontal (por tanto, sin mejoras adicionales
de productividad) a partir de cierto valor critico de ésta. Este modelo se conoce
como el modelo plateau. Bahk et al. (1993) sefialan tambien la importancia de
permitir que el aprendizaje tenga una duracién finita en el tiempo.

Como segunda alternativa estd el modelo S, introducido por Cochran (1960),
que es una version suavizada del anterior: la curva de aprendizaje no llega a ser
absolutamente horizontal, aunque si disminuye el valor absoluto de su pendiente
con el paso del tiempo.

Finalmente el modelo Standford B, introducido por Garg et al. (1961), pro-
pone exactamente lo contrario: a partir de una etapa de aprendizaje relativamente
lento, este se acelera. Este tltimo modelo parece representar adecuadamente la
evolucién de la productividad en sectores con mucho cambio técnico en periodos
muestrales relativamente cortos.

2.2 Estudios tedricos

En este apartado se presentan, casi a modo de enumeracién, diferentes lineas
de investigacion tedricas que se han seguido a partir del trabajo pionero de Arrow
(1962).

Una de las cuestiones que més atencién ha recibido en la literatura teérica de
learning by doing es la que relaciona dicho fendmeno con el crecimiento econémico.
Esencialmente, se ha introducido este efecto en las funciones de produccién de
modelos de crecimiento neoclasico para probar como el learning by doing puede
generar crecimiento endégeno, o como puede explicar diferencias persistentes entre
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las tasas de crecimiento de diferentes paises. Ademds, un conjunto de trabajos
estudia cuestiones relativas a ineficiencias dindmicas en la solucién de mercado
cuando existe learning by doing. Sin entrar en los aspectos concretos que aborda
cada trabajo, en esta linea tenemos: Cigno (1984), Chamley (1993), d’Autume et
al. (1993), Ishikawa (1992), King et al. (1993), Lucas (1988) y (1993), Matsuyama
(1992), Parente (1994), Simon et al. (1984), Torvik (1993) y Young (1991).

Otro conjunto de trabajos analiza el fenémeno a un nivel industrial. Por
ejemplo, jdebe protegerse a una industria que actualmente es ineficiente pero que
tiene potencial para mejorar su eficiencia porque se espera que tenga un efecto
learning by doing? De forma algo sorprendente, el interés por esta cuestion ha
descencido en los tltimos afos (al menos lo han hecho el nimero de publicaciones)
a pesar de que la literatura disponible estd lejos de agotar la cuestién. Articulos
clasicos dentro de esta linea son: Clemhout et al. (1970), Chen et al. (1994),
Feder et al. (1976), Kohn et al. (1992) y Succar (1987).

Otro tipo de trabajos dentro de economia industrial son aquellos que relacio-
nan learning by doing y temas clasicos dentro de esta literatura. Ejemplo de ello
es learning by doing en un modelo de diferenciacién vertical de producto (Goe-
ring (1993), Grubber (1992) y Stokey (1986)), learning by doing en un modelo de
bienes duraderos (Olsen (1992)) o como el learning by doing puede determinar la
propia estructura industrial (Agliardi (1990), Jovanovic et al. (1989), Mookherjee
et al. (1991) y Spence (1981)).

3 Discusion sobre el problema abordado

La pregunta que abordamos en este trabajo es tedrica. Desde un punto de vista
matematico, la decision de cuanto debe producir una empresa que en su estructura
productiva tiene learning by doing puede representarse mediante un problema
de optimizacién dindmica, lo que puede a su vez verse como un problema de
programacion matematica. Por otra parte, parece natural pensar que la empresa
no tiene capacidad para predecir sin error alguno la evoluciéon que va a tener en el
futuro su estructura de costes, lo que afiadido a lo anterior da lugar a un problema
de programacién (dindmica) estocéstica.

La aportaciéon fundamental de este trabajo es encontrar de manera analitica
la politica éptima de producciéon de una empresa que en su estructura produc-
tiva tiene learning by doing y dentro del cual existen elementos aleatorios que
le impiden a la empresa predecir sin error su estructura de costes futura. La
obtencion de dicha solucién andlitica permite obtener propiedades de la misma
que de otra manera son dificiles de conocer. Como ilustracién de este punto,
en este trabajo presentamos una comparacion de la solucién obtenida con la del
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problema andlogo deterministico, de modo que podemos medir cudl es el impacto
de introducir incertidumbre en el proceso de aprendizaje.

Hemos elegido un modelo con una estructura industrial sencilla: un monopolio
sin amenazas de entrada. Por otra parte, el modelo recoge la idea de que el learing
by doing tiene una duracion esencialmente finita en el tiempo. Concretamente,
utilizamos una extensiéon natural al caso estocastico del modelo deterministico
que se presenta en Dasgupta et al. (1988). Es un modelo formulado en tiempo
discreto, con un horizonte temporal de dos periodos. El coste en el segundo
periédo es una funcién de la producciéon del primer periodo. Dicha funcion es lineal
definida en dos tramos: el primer tramo es decreciente y el segundo es horizontal
(recogiendo la idea esencial del modelo de plateau, comentado anteriormente).

Cosiderar un modelo de dos periodos implica concentrar la fase de aprendizaje
(de learning by doing) en un solo perfodo y la fase de madurez de la industria (en
la que ya no hay learning by doing) en otro. En una generalizacién a un modelo
de T periodos la fase de aprendizaje dura varios periodos, por lo que la politica
optima de la empresa indicaria como se reparte la produccion a dentro de los
periodos de aprendizaje.

Una cuestion de interés es cémo introducir incertidumbre en un modelo deter-
ministico. En particular, en un modelo de learning by doing puede haber varias
fuentes de incertidumbre.

Una primera distincién clara es si hay incertidumbre que disminuye en el
tiempo o no. Por ejemplo, si la incertidumbre radica en que algunos pardmetros
del proceso de aprendizaje son desconocidos, cabe esperar que la empresa mejore
las estimaciones de dichos pardmetros -y por tanto la incertidumbre disminuya- a
medida que pase el tiempo y haya datos disponibles. Como caso contrario, si hay
una perturbacién aleatoria de varianza estable en el tiempo, dicha incertidumbre
no va disminuir: la empresa tendra la misma capacidad predictiva al prinicipio
que la final de su vida activa. En este articulo nos centramos en este segundo
tipo de incertidumbre. El primero ha sido estudiado en Alvarez et al. (1999a).

Aun dentro de la incertidumbre que no disminuye en el tiempo, podemos
considerar dos tipos, que, usando una notacién propia del control éptimo, deno-
minaremos incertidumbre multiplicativa y aditiva, respectivamente. Imaginemos
que la perturbacion aleatoria entra en la curva de aprendizaje multiplicada por la
produccién presente (caso multiplicativo). Ello quiere decir que si la produccién
presente es cero no hay incertidumbre alguna. Un efecto diferente se tiene si la
perturbacién aparece sumada a la produccién presente (caso aditivo). A un nivel
mas intuititivo, el grado de incertidumbre sobre los costes futuros puede depender
o no de la produccién presente (multiplicativo y aditivo, respectivamente). Como
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su titulo indica, en este trabajo nos centramos en el caso aditivo. El multiplicativo
ha sido estudiado en Alvarez et al. (1999b).

4 Modelo

Consideramos un monopolio neutral ante el riesgo sin amenazas de entrada y
que tiene efecto de learning by doing en su estructura productiva. El horizonte
temporal es dos periodos, 0 y 1, genéricamente denotados por ¢. El monopolista
elige las cantidades (no negativas) a producir en cada periodo, siendo ¢ () la
cantidad elegida en el periodo t. La funcién inversa de demanda es estacionaria
en el tiempo, en el periodo t su inversa es:

p(t) = a—bq(t) (14.1)
donde a y b son parametros estrictamente positivos. En el periodo t, la funcién
de costes es lineal, siendo ¢ (¢) el coste unitario en dicho perfodo, de modo que el
coste total de producir ¢ (t) es ¢(t) g (t). El efecto de learning by doing estd en
que el coste unitario cambia en el tiempo. En concreto, suponemos que:

¢(1) = méx {r,¢c(0) — 3¢ (0) + £ (0)} (14.2)
en donde 7 y 3 son pardmetros estrictamente positivos y € (0) es una variable alea-
toria cuya distribucién de probabilidad es Pr (¢ (0) = —0) = Pr (e (0) = 0) = 1/2,
con 6 > 0. Todos los pardmetros son conocidos y ¢ (0) estd dado. Interpretamos
7 como el menor coste unitario posible y 8 como el efecto que la produccién pre-
sente tiene sobre coste unitario futuro. En nuestro modelo, el monopolista conoce
ambas magnitudes, pero ello -junto con su decisién de produccién presente- no le
permite conocer con exactitud el coste futuro, eventualmente ni siquiera estara
seguro de que vaya a haber reduccién de coste unitario.

El objetivo del monopolista es maximizar el flujo esperado y descontado de
beneficios, siendo A € (0,1) su factor de descuento®. A partir de (14.1) y de la
expresion para los costes totales, es sencillo ver que los beneficios del monopolista
en el perido ¢ son (a — bq (t) — ¢ (¢)) q (t), por lo que su objetivo es:

mix I {EA (a—bq (1) - (1)) q<t>} (14.3)

donde la esperanza es condicional en ¢ (0) y ademds ¢ (1) viene dado por (14.2).
Otros supuestos adicionales del modelo son:

3El supuesto de que el factor de descuento esta en (0, 1) es habitual en la literatura econémica
y juega un papel esencial en problemas de optimizacién dindmica de horizonte temporal infinito
(Kamien et al. (1991)). En nuestro modelo mantenemos dicho supuesto por analogia con la
literatura.
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c(0)>T1a>c(0)+0 (14.4)

La primera de las desigualdades en (14.4) indica que en nuestro modelo puede
haber reduccion de costes. La segunda desigualdad asegura que la produccién
Optima es estrictamente positiva en cada periodo.

Cuatro comentarios finales sobre el modelo pueden ser de interés. En primer
lugar, este modelo es una generalizacion a un caso de incertidumbre del propuesto
por Dasgupta et al. (1988), que es deterministico (§ = 0). En segundo lugar,
es sencillo generalizar el método de solucién que presentaremos posteriomente
al caso en que € (0) tiene un soporte discreto y finito arbitrario, sin que dicha
generalizacién modifique las principales implicaciones ecénomicas de introducir
incertidumbre. En tercer lugar, hemos de recordar que en nuestra modelizacién,
el coste unitario puede aumentar de un periodo a otro. En cuarto lugar, debemos
indicar que la generalizaciéon a un caso de T periodos es mas compleja.

5 Solucion

El problema planteado es de optimizaciéon dinamica estocéstica con obser-
vacién completa, tiene un horizonte temporal finito y estd formulado en tiempo
discreto. La variable de estado es el coste unitario y la variable de control es
la cantidad producida. Lo resolveremos usando la metodologia de programacion
dindmica propuesta por Bellman. La dificultad en resolver de modo analitico
la ecuacion funcional de Bellman asocida al problema planteado es identificar la
probabilidad con que se alcanza 7 en el periodo 1.

Para la presentacion formal del método de solucién introducimos la siguiente
notacién. Sea m = {¢(0),q (1)} en donde ¢ (¢) > 0 para ¢ € {1,2}, decimos que
7 es una politica factible. El conjunto de las politicas factibles lo denotamos por
S. Dado m € S y ¢(0), el flujo esperado y descontado de beneficios asociados
lo denotamos por V (m,¢(0)). Decimos que 7* = {¢* (0),4¢* (1)} € S soluciona
el problema planteado si V' (7*,¢(0)) > V (m,¢(0)) para todo m € S. Ademas
definimos V* (¢ (0)) = V (7*,¢(0)) y lo denominamos funcidn valor.

Hemos de notar que la segunda desigualdad en (14.4) garantiza que a > ¢(1),
a partir de lo cual es sencillo ver que ¢* (1) = (2b)""' (a — ¢ (1)), de modo que
en lo sucesivo nos centramos en la obtencién de ¢* (0) y V*(c(0)). A lo largo
de los resultados que siguen definimos un conjunto de valores umbrales, sea
{R1, Rs, R3, R4}, que define una particién en subintervalos del intervalo de po-
sibles valores de ¢(0), a partir de (14.4) es sencillo ver que dicho intervalo es
(1,a — 0) y los umbrales satisfacen a—6 > Ry > Ry > R3 > R4 > 7, de modo que
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q* (0) y V*(c(0)) son funciones de ¢ (0) definidas por tramos, correspondiendo los
tramos con los subintervalos de dicha particion. Ademds, los diferentes resultados
muestran que, como es natural, la probabilidad de alcanzar 7 bajo 7* disminuye
con ¢ (0). Las demostraciones estan en el apéndice. Previamente a cada resultado
se define la notacién nueva utilizada en el mismo.

Notacién para el teorema 1. Sean: K = (4b)71, ¢ =2K, 91 = (1 +2)0K) (2b — 2)\52K)71,
Kio=AK 4+ 1 (14 2)\8K)¢1, K19 = MN?K, Ry = (1 + 0+ B¢1a) (1 + Be1) "

Teorema 1. Si se verifica: (a) ¢(0) > Ry, (b) b > A3%K, entonces: (i)
g (0) = ¢1(a—c(0)) y V*(c(0)) = K19+ K15(a—c(0)*, (ii) bajo 7" es
Pr(c(1)>7)=1.

Notacién para el teorema 2. Sean: ¢o = (1+ AGK) (2b - )\BQK)_I, y =

ANBOK (2b — ABQK)A, Koo = /\K+% (14 2)\BK) 2, K31 = —2aK22+M0 (1 + Bo2) K,
Ky = 1AK ((a ~7)%+ (a— 9)2) + 3 ((1+ABK) a — ABOK) (¢2a — ), Ry =
(T4 0+ B ($oa—2)) (14 Bda) ™", Ry = (1 — 0+ B(¢2a — a2)) (1 + Be) .

Teorema 2. Si se verifica: (a) Ry > ¢(0) > Rj, (b) 2b > A3?K, entonces: (i)
7" (0) = g2 (a—c(0) — az y V*(c(0)) = Ka9 + K2,1¢(0) + Ka2¢(0)*, (ii) bajo
7™ es Pr(c(l)=71)=1/2.

Notacién para el teorema 3. Sean: K3 o = AK (a — 7')27 Ry = (1 —0+ B¢a) (1+ ﬁ¢)_1.

Teorema 3. Si se verifica: (a) Ry > ¢(0), entonces: (i) ¢* (0) = ¢ (a — ¢(0))
y V*(c(0)) = K30 + K (a—c(0))? (i) bajo 7 es Pr(c(1) =17) = 1.

Proposicion 1. Se verifica: a —0 > Ry > Ry > R3 > Ry > 7.

La prueba de todos los teoremas se basa en definir un problema que bajo
las hipétesis (y s6lo bajo éstas) es equivalente al original. Las hipétesis (b) de
los teoremas 1 y 2 son requerimientos de concavidad de la funcién objetivo de
cada problema equivalente. Es sencillo ver que la condicion del teorema 1 es mas
restrictiva que la del teorema 2. Por otra parte, en virtud de la proposicién 1,
hay dos subintervalos de posibles valores de ¢(0), (Rz, R1) v (R4, R3), para los
que los teoremas anteriores no dan la solucién. Dicha solucién se presenta en
los dos préximos teoremas. La diferencia entre los teoremas anteriores y los dos
siguientes es que en los primeros el problema equivalente tiene solucién anterior,
mientras que en los ultimos la solucién es de esquina.
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Notacién para el teorema 4. Sean: Kyo = —0"" (a+b37' (1 +0)) (r +6) +
LKA ((a 4 (a—7— 29)2), Kip =31 (a+b571 (r+0)+871 (1+b87Y) (7 + ),
Kyo=—-371(14+0871).

Teorema 4. Si se verifica: (a) Ry > ¢(0) > Ry, (b) 2b > A3?K, entonces: (i)
¢ (0)=8"1(c(0)—7—0)y V*(c(0)) = K40+ Ks1¢(0) + K4726(0)2, (ii) bajo
™ es Pr(c(l)=71)=1/2.

Notacién para el teorema 5. Sean: K = AK (a — 1)~ (a + 0371 (1 — 0)) (1 — 0),
K571 = ﬂil (CL + bﬂil (T — 9)) + ﬂil (1 + bﬂil) (T — 9), K572 = K472.

Teorema 5. Si se verifica: (a) R3 > ¢(0) > Ry, (b) 2b > \3?K, entonces: (i)
¢ (0) = B (c(0) =7 +60) y V" (c(0)) = K50 + K5,1¢(0) + K5,2¢(0)?, (ii) bajo
™ esPr(c(l)=71)=1

Esto conluye la presentacion de la solucién del problema planteado. Como caso
particular, los resultados anteriores presentan también la solucién del problema
deterministico (0 = 0).

6 Implicaciones Econémicas

En esta seccién analizamos las implicaciones sobre la politica 6ptima del
periodo 0, ¢* (0), de introducir incertidumbre en el proceso de reduccién de cos-
tes. Hay dos formas de hacer este andlisis. La primera, que llamaremos impacto
marginal, es considerar pequenas variaciones en la incertidumbre una vez que
ésta existe, lo que en nuestro modelo puede hacerse estudiando cémo varia la
solucién ante pequenas variaciones del parametro 6. La segunda, que llamaremos
impacto general, es estudiar la diferencia entre que haya o no incertidumbre, lo
que en nuestro modelo equivale a estudiar la diferencia entre la politica 6ptima
del perfodo 0 para el caso deterministico (8 = 0) y estocdstico (6 > 0).

El analisis del impacto marginal es directo a partir de la solucién presentada en
la seccién anterior, por lo que omitimos aqui una presentacion rigurosa del mismo.
Basicamente, ante pequenos aumentos de 6, si ¢* (0) varia, lo hace de manera
continua, aumentando o disminuyendo dependiendo del valor de ¢ (0). Hemos de
notar que aumentar 6 implica hacer mean-preserving spread de la distribucién de
€(0), es decir, aumentar la varianza sin alterar la media. En un contexto como
el considerado aqui, en el que el tomador de decisiones (monopolista), es neutral
ante el riesgo, es de esperar que, tal como indicamos, el efecto que dicha variacién
sea ambigiio.
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El analisis del impacto general estd en linea con el marginal, que acabamos de
comentar. Queda recogido en la siguiente proposicién.

Proposicién 1. Sea ¢} (0) la politica éptima en el periodo 0 del problema
deterministico. Entonces: (i) si ¢(0) > Ry o bien ¢(0) < R4, ¢ (0) = ¢*(0);
(ii) existen valores ¢, y ¢ satisfaciendo Ry > ¢, > ¢, > Ry tales que ¢(0) = ¢,
implica que ¢} (0) < ¢* (0) y ¢(0) = ¢, implica que ¢} (0) > ¢* (0).

7 Futuras investigaciones

En este trabajo hemos obtenido, usando programacién dindmica, la solucién
para un modelo de learning by doing en el que hay incertidumbre aditiva. A pesar
de la simplicidad del modelo elegido, su solucién analitica pone de manifiesto que
algunas de las propiedades de la politica éptima de la empresa bajo learning by
doing en el caso deterministico no se mantienen al introducir shocks aleatorios.
Profundizar en el estudio del efecto de estos shocks es, a nuestro juicio, el campo
de trabajo mas prometedor.

A modo puramente de ejemplo, en trabajos previos de la literatura se ha estu-
diado en un contexto deterministico como el learning by doing puede determinar
la estructura de la industria. La intuicién subyacente es sencilla: empresas con
una ventaja relativa inicial (digamos en términos de poder de mercado) agrandan
esa ventaja a lo largo del tiempo debido a que ellas aprenden a reducir costes mas
rapido que sus rivales (dado que producen més). Ello implica que la existencia
de learning by doing puede inducir a la disminucién del nimero de empresas a
lo largo del tiempo, lo que tiene conocidos efectos sobre la eficiencia social de la
asignacién de mercado. Ahora bien, el razonamiento anterior podria ser comple-
tamente distinto si las empresas con una ventaja inicial tienen que enfrentarse
antes que las demds (y quizéds por hacerlo antes lo hagan en mayor medida) a la
incertidumbre inherente a sus procesos de aprendizaje.

Apendice: demostraciones.

Demostracion del Teorema 1. Sea el problema auxiliar siguiente: la
funcién objetivo es la dada por (14.3) s.a.: ¢(1) = ¢(0) + Bq(0) + £ (0) con
¢(0) dado. Si la politica éptima del problema auxiliar, sea 7 = {¢% (0), ¢} (1)},
satisface la restriccién adicional siguiente ¢ (1) > 7, entonces es también la politica
Optima del problema original. La demostracién del teorema se hace en dos pasos.
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en el primer paso se demuestra que 7} es la que aparece en el enunciado del teo-
rema. En el segundo paso se muestra que bajo 7 se verifica Pr(c(1) > 7) = 1.
Primer paso. Para t = 0,1, denotamos por V* (c(t),t) la funcién valor del pro-
blema auxiliar en el perfodo ¢, donde ¢ € {0,1,2}. La ecuacién funcional de
Bellman asociada al problema auxiliar es:

Vi(c(t),t) = maxgpy>o{(a—bg(t) —c(t)q(t) + AE{V (c(t+1),t+1)}}
parat=0,1

con V' (¢(2),2) = 0 dado. Resolvemos recursivamente la anterior ecuacion,
primero para t = 1 y después para t = 0. Para t = 1 se obtiene V* (¢(1),1) =
K (a —¢(1))?, mientras que para t = 0, bajo (b), se obtiene ¢* (0) = ¢* (0) y
V) (c(0)) = V*(c(0)) donde ¢* (0) y V* (c(0)) estan dados en el enunciado del
teorema. Segundo paso. Bajo 7, se tiene que ¢ (1) > 7 c.p.1. < ¢(0) —Bq (0) —
0>71<c(0)>Ry. QE.D.

A partir de la demostracién anterior, el siguiente Corolario, que sera utilizado
posteriormente, es trivial.

Corolario 1. Si se verifica: (a) ¢(0) < Ry, (b) 2b > A\32K, entonces: bajo
7™ es Pr(c(1l)=7) > 0.

La demostracion del Teorema 2 es totalmente andloga a la del Teorema 1 uti-
lizando el siguiente problema auxiliar: la funcién objetivo es la dada por (14.3)
s.a.: ¢(1) condicionado a ¢(0) y ¢ (0) tiene la siguiente distribucién de probabili-
dad: Pr(c(1) =7) =Pr(c(1) =c(0) — Bg(0) +6) = %, con ¢(0) dado, y donde
la politica éptima del problema adicional debe satisfacer la restriccién adicional
siguiente: ¢(0) — B¢ (0) — 0 <7 < ¢(0) — Bq(0) + 0. A partir de éste andlisis, se
obtiene ademas el siguiente Corolario, que serd utilizado posteriormente.

Corolario 2. Si bajo 7* es Pr(c(1) =7) > 0 y ademés (a) ¢(0) < Rz y (b)
2b > \3?K, entonces bajo 7 es Pr(c(1) =7) > 1/2.

La demostracion del Teorema 3 es totalmente andloga a la del Teorema 1
utilizando el siguiente problema auxiliar: la funcién objetivo es la dada por (14.3)
s.a.: ¢(1) = 7, y donde la politica 6ptima del problema adicional debe satisfacer
la restriccién adicional siguiente: ¢ (0) — ¢ (0) +6 < 7.

La demostracién de la proposicién 1 es sencilla mediante algebra.

Demostracién del teorema 4. Teniendo en cuenta el Corolario 1, Ry > ¢ (0)
y (b), ha de ser Pr(c(1) =7) > 0 bajo n#*. Pero Pr(c(1)=7) > 0 < ¢(0) >
B~ (c(0) — 7 — 6), por tanto en cualquier problema cuya solucién sea la éptima
del problema inicial estda debe satisfacer la restriccién anterior. En el problema
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auxiliar de la demostracion del Teorema 2 se toma el problema inicial considerando
la menor de las probabilidades posibles de que ¢ (1) = 7 sin imponer la restriccién
anterior, y se obtiene que bajo la politica 6ptima de dicho problema auxiliar
restriccidn se satisface si 'y solo si ¢ (0) < Rg, lo cual no sucede bajo las hipStesis de
este teorema. Ademds, por verificarse (b), la funcién objetivo del citado problema
auxiliar es globalmente céncava, por lo que el mejor ¢ (0) es el que satisface
exactamente la restriccién, es decir, ¢* (0) = 87! (¢ (0) — 7 — 6). De sustituir en
dicha funcién objetivo este valor de ¢ (0) se obtiene V* (¢ (0)). Q.E.D.

Demostracién del teorema 5. Teniendo en cuenta el Corolario 2, ¢ (0) <
Rs3 y (b), ha de ser Pr(c(1) =7) > 1/2 bajo 7*, y la siguiente probabilidad
posible mayor a 1/2 es 1, verificandose ademds Pr(c(1)=7) = 1 & ¢(0) >
B~ (c(0) — 7+ ), por tanto en cualquier problema cuya solucién sea la éptima
del problema inicial estd debe satisfacer la restriccién anterior. En el problema
auxiliar de la demostracién del Teorema 3 se toma el problema inicial considerando
¢(1) = 7 sin imponer la restriccién anterior, y se obtiene que bajo la politica
6ptima de dicho problema auxiliar restriccion se satisface si y solo si ¢ (0) < Ry, lo
cual no sucede bajo las hipdtesis de este teorema. Dado que la funcién objetivo del
citado problema auxiliar es globalmente céncava, el mejor ¢ (0) es el que satisface
exactamente la restriccién, es decir, ¢* (0) = 371 (c(0) — 7 + ). De sustituir en
dicha funcién objetivo este valor de ¢ (0) se obtiene V* (¢ (0)). Q.E.D.

Demostracion de la proposicion 1. La politica éptima del problema de-
terministico se obtiene al particularizar los resultados de la seccién 3 para el
caso § = 0. A partir de ahi, la prueba de (i) es trivial. Veamos (ii). Sea
la funcién auxiliar g (z,y,2) = (14+ x4 6 (ya—2))(1+By)~". O bien ocu-
rre (a) g (—0,¢2,a2) < g(0,4,0) o bien ocurre (b) g (—6,¢2,a2) > g(0,¢,0).
Si ocurre (a), existe ¢, € (g(—0,¢P2,a2),9(0,¢,0)) tal que si ¢(0) = ¢, es
23 (0) = ¢(a—ca) y ¢ (0) = ¢2(a—ca) = a2, por lo que ¢;(0) < ¢*(0) <
a>2b0 (2b+ B)"", y la tltima desigualdad se verifica bajo (14.4). Si ocurre (b),
existe ¢, € [9(0,9,0),9(—0,d2, a2)] tal que si c(0) =c, es ¢ (0) =37 (ca — 7)
vy ¢ (0) = 87 (ca —T+0), por lo que ¢;(0) < ¢*(0) se verifica. Ademds,
o bien ocurre (¢) g (6, ¢2,a2) < ¢(0,¢1,0) o bien ocurre (d) g¢(0, pa2,2) >
g(0,¢1,0). Si ocurre (c), existe ¢, € (g (0, ¢2,a2),9(0,¢1,0)) tal que ¢, es ma-
yor que cualquiera de los ¢, seleccionados anteriormente y ademds si ¢(0) = ¢
es q;(0) = 51 (e —7) ¥ 4" (0) = B (e — 7 — 0) por 1o que g} (0) > ¢ (0)
se verifica. Si ocurre (d), existe ¢, € [g(0,$1,0),9 (0, P2, az)] tal que ¢, es ma-
yor que cualquiera de los ¢, seleccionados anteriormente y ademés si ¢ (0) = ¢
es q;(0) = d1(a—c) y ¢*(0) = ¢2(a—cp) — az, por lo que g;(0) > ¢*(0)
se verifica. Para ver que cualesquiera de los ¢, y ¢, seleccionados pertenecen a
(R4, Ry) basta notar que: ¢, > min{g(—0,¢2,a2),9(0,4,0)} > g(—0,¢,0) y
¢y <min{g(0,¢1,0),9(0,d2,2)}. Q.E.D.
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1 Introduccion

Como es bien conocido, los problemas de decision en ambiente de certeza a me-
nudo se convierten en problemas de optimizacién matematica. La Programacién
Multiobjetivo se ocupa de resolver algunos de dichos problemas, a saber, aquellos
en los cuales se trata de optimizar a la vez varias funciones objetivo. Dentro
de los métodos de resolucién de problemas multiobjetivo, la denominada Progra-
macién por Metas ocupa un lugar destacado. Posiblemente se deba, al menos en
parte, a que los decisores, en palabras de Herbert Simon (1957), frecuentemente
no actian conforme a un paradigma ”optimizador” sino que lo hacen de acuerdo
con un paradigma ”satisfaciente”. En efecto, en los problemas multiobjetivo rea-
les es muy comun que los decisores no aspiren a la optimizacién (en el sentido
paretiano) de todas las funciones objetivo involucradas, sino que se conformen
con la consecucién de un conjunto de objetivos o metas definidas previamente y
que se conocen como niveles de aspiracién. Cuando los costes de no consecucion
de los niveles de aspiracién (bien por defecto o por exceso) se pueden agregar, por
ejemplo, cuando tales costes se pueden agregar monetariamente, las técnicas de
Programacién por Metas son de gran utilidad en los procesos de ayuda a la toma
de decisiones (véanse, por ejemplo, Romero (1991, 1993 y 2002)).
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Por otra parte, a menudo algunas de las variables que intervienen en los pro-
blemas reales no toman valores de forma determinista sino que tienen naturaleza
estocdstica. Esto ha motivado el desarrollo de una rama de la Programacion
Matematica, conocida como Programacion Estocastica, que se ocupa de la reso-
lucién de programas matematicos en los cuales algunos pardmetros se modelizan
matemédticamente como variables aleatorias (véanse, por ejemplo, Kall y Wallace
(1994), Kibzun y Kan (1996), Birge y Louveaux (1997); para el caso multiob-
jetivo, véase Stancu-Minasian (1984)). Un caso especialmente interesante de la
Programacién Estocastica Multiobjetivo es el de la Programacion por Metas Es-
tocdstica (Heras y G. Aguado (1998 y 1999)), que estudia aquellos problemas de
Programacion por Metas en los que los niveles de aspiracién no son conocidos de
antemano con certidumbre, aunque se pueden asignar probabilidades a sus dis-
tintos valores (en otras palabras, los niveles de aspiracién constituyen variables
aleatorias). Numerosos problemas de la vida real se pueden en principio modelizar
matematicamente mediante programas en los que se trata de encontrar los valo-
res de las variables de decisiéon que hacen que ciertas funciones objetivo tomen
valores cercanos a unas metas que no son conocidas con precisién. Pensemos,
por ejemplo, en una empresa cuyo objetivo fundamental consiste en satisfacer
la demanda futura de los bienes que produce, demanda cuyo valor exacto evi-
dentemente desconoce. Muchos problemas de la Matematica Actuarial podrian,
asimismo, encuadrarse dentro de esta categoria. Asi, por ejemplo, en un pro-
blema de tarificacién se pretende calcular, a partir de las caracteristicas de cada
asegurado, una prima que sea lo mas cercana posible al verdadero valor de su
siniestralidad, el cual es evidentemente desconocido de antemano. En el presente
articulo expondremos algunos resultados importantes sobre la Programacion por
Metas Estocastica. En el apartado segundo recordaremos los conceptos més im-
portantes referentes a la Programacion por Metas determinista. En el apartado
tercero expondremos la formulacién y algunas propiedades importantes de los
programas estocasticos por metas. En los apartados siguientes estudiaremos con
cierto detalle una aplicacién de lo anterior al diseno de Sistemas de Tarificacion
Bonus-Malus, un problema clasico de tarificacion en el seguro del automovil.
Veremos que la aplicacién de técnicas de Programacion por Metas Estocéastica
permite obtener algunas caracteristicas deseables de las soluciones que no eran
tenidas en cuenta por los métodos clasicos de resolucién de tales problemas

2 Programacion por metas determinista

El propdsito del decisor en un problema de Programacién por Metas es hallar
una solucion factible lo més cercana posible a una meta dada que, habitualmente,
es inalcanzable. Los problemas de Programacién por Metas se pueden resolver por
varios métodos, entre los que destacan los métodos gréfico, secuencial, multifase
y de Arthur y Ravindran para la resolucién de programas lexicog raficos, y el
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método de programacion por metas ponderadas. Este ultimo es probablemente
el mas utilizado en la literatura del tema, y se formula mediante el siguiente
programa:

_=m (1)
gy =20
TeX
w,w; >0
donde f la funcién objetivo, es decir f(Z) = (f1(Z), ..., [p(T)), M = (Mm1,...,mp)
el vector de los “niveles de aspiracién”, T = (x1,...,2,) es el vector de varia-

bles de decisién, X C R" el conjunto factible y los pesos w; ,w; representan

las tasas de intercambio (trade-offs) o coeficientes que se asocian a las variables
de desviacion, y;r ,¥; , por exceso y por defecto, respectivamente. Cuando estas
ponderaciones representan los costes monetarios de sobrepasar y de no alcanzar
las metas, la solucién éptima del programa (1) minimiza el coste global de todas
las desviaciones. El programa (1) es un programa lineal siempre que las funciones
objetivo sean lineales, ( f(Z) = AT donde A es una matriz de orden p X n), y
el conjunto factible, X, esté definido mediante restricciones lineales. Otra formu-
lacién equivalente, aunque menos utilizada, de este problema es la siguiente: Para
cada T € X definimos
Q@) = min L, (wfy! +wiy;)

sa 2)

AT+y" -y =m,y ",y >0

Los valores 6ptimos de las variables y;" ,y; verifican que yj' .y; = 0 paratodo iy
representan el exceso y el defecto del i-ésimo objetivo, respectivamente, asociado
con la solucién factible T.

La solucion éptima del problema de Programacion por Metas es la solucién
factible que minimiza la desviacién global de los p objetivos, es decir, la soluciéon
del programa

min Q)
sa. TeX (3)

Esta no es la formulacién usual para la Programacién por Metas porque, en
lugar del programa lineal (1), se tienen dos programas, el (2), que también es un
programa lineal, y el (3), que es un programa convexo. Pero incluimos aqui esta
formulacién alternativa porque es similar a la soluciéon que propondremos, en el

apartado siguiente, para resolver el problema de Programacion Estocéastica por
Metas.
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El origen de la metodologia de la Programacién por Metas se debe a Charnes,
Cooper y Ferguson (1955). A partir de entonces son numerosisimos los trabajos
publicados desarrollando aspectos tedricos, aplicaciones practicas y posibles ex-
tensiones de la Programacién por Metas. Como ya hemos comentado en la Intro-
duccidén, debido a que los problemas de decisién reales frecuentemente dependen
de parametros desconocidos de naturaleza estocéstica, una de las extensiones na-
turales de la Programacion por Metas es la denominada Programacién Estocéstica
por Metas. En la seccion siguiente estudiamos este problema cuando la aleatorie-
dad esta unicamente en los "niveles de aspiracion”, es decir, cuando el vector de
metas, 7 , es un vector aleatorio que representaremos por & = (£, ...,&,).

3 Programacién por metas estocastica

Por analogfa con la Programacién por Metas Determinista, los problemas de
Programacion Estocastica por Metas se pueden representar asi:

min - Y0 (wiyl +w;y;)

s.a. f(y)_-i- ?_t— g =&

cuyos términos tienen la misma interpretacién que en el problema (1).

Supongamos que el programa (4) es un programa lineal , es decir, que las
funciones objetivo son lineales, (f(Z) = AT donde A es una matriz de orden p x n)
y el conjunto factible, X , estd definido mediante restricciones lineales. Bajo estas
condiciones, (4) es la expresién matemadtica de un problema de Programacion
Lineal Estocdstica, ya que se trata de un programa lineal que contiene algunos
parametros que son variables aleatorias. Por lo tanto, se podria intentar resolver
mediante alguno de los procedimientos utilizados en la resolucién de este tipo de
problemas. Por otro lado, el problema también se puede considerar como un caso
de decisién en ambiente de riesgo, por lo que para su resolucién también se podria
recurrir a técnicas de la Teoria Bayesiana de la Decision.

Comencemos por esta ultima. Como es bien sabido, si las preferencias del
decisor sobre las posibles consecuencias de sus decisiones son consistentes con
ciertos axiomas de comportamiento racional (véase, por ejemplo, DeGroot (1970),
capitulo 7), entonces es posible definir una funcién sobre dichas consecuencias
(la funcién de utilidad) que representa numéricamente dichas preferencias, en el
sentido de que una decisién es preferida a otra si, y solamente si, la utilidad
esperada de las consecuencias es mayor para la primera decisién que para la
segunda. En muchos problemas de decisién es habitual considerar la funcién
opuesta de la utilidad, denominada funcién de desutilidad o de pérdida. En tales
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casos, el decisor escoge como decisiéon éptima aquella que minimiza la pérdida
esperada de sus consecuencias. Mas detalladamente, el decisor debe proceder de
la siguiente manera: en primer lugar, debe definir una consecuencia para cada
decision factible y cada posible realizacién del pardametro aleatorio; en segundo
lugar, debe especificar la funcién de pérdida utilizada; finalmente, debe calcular la
pérdida esperada de cada decision factible, y elegir como éptima aquella decision
que tenga asociada una pérdida esperada minima.

Si aplicamos este procedimiento a nuestro problema, deberiamos comenzar
preguntandonos por la apropiada definicién de las consecuencias de la eleccién
de una decisién factible Z y una realizacién del vector aleatorio €. Es evidente
que la Programacién por Metas estocastica debe ser una generalizacién de la de-
terminista, y que para cada realizacién del vector aleatorio tenemos un problema
determinista. Por tanto, puede parecer razonable definir la consecuencia asociada
con Ty & como el resultado 6ptimo del programa (2) cuando m = &, al que de-
notaremos como Q(7, £). La solucién del programa (4) que buscamos consiste, de
acuerdo con la metodologia bayesiana, en minimizar la pérdida esperada de las
consecuencias Q(Z, £). Debemos, pues, definir una funcién de pérdida. Si el rango
de variacion de la expresion anterior no es demasiado grande, o si la decisién debe
repetirse un gran nimero de veces, parece razonable asumir la indiferencia ante
el riesgo del decisor y por tanto elegir una funcién de pérdida lineal. La solucién
del problema (4) que proponemos en estas condiciones es, pues, el resultado de
resolver el programa

min  B[Q(z. )]
S. a. Te X

(5)
donde

P
Q@5 = min {Z(wiyﬁ +wyy ), [ @ +yT -y =6y > 0} (6)
' i=1
Por otro lado, los expertos en Programacién Lineal Estocéastica no tendran
dificultad en reconocer a los programas (5) y (6) como los resultantes de la apli-
caciéon de la metodologia de la Programacién Estocastica con Recursos al pro-
grama (4). De hecho, se trata del caso particular de la Programacién Estocéstica
con Recursos Simples (véanse Kall y Wallace (1994), Birge y Louveaux (1997)).
A continuacién estudiaremos algunas propiedades de interés de los programas

(5) v (6).
3. 1. El programa (6)
Q@.§) = min {(wf)'y +(wi)y, | ¥ -7 =~ /@), 20,7 >0}

al que, por analogfa con el Problema de Recursos Simples, podemos denominar
Programa de Segunda Fase, es evidentemente factible VZ € X y V¢ € Z fijos.
Ademis es acotado inferiormente, por lo tanto siempre tiene solucién.
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Ademas la solucién 6ptima verifica que y;r -y, =0, ¢=1,...,p, porlo que
al menos uno de estos dos términos yj, Yy, =0,esceroi=1,...,p. En efecto:
T*, ¥, 7 * sean los vectores 6ptimos del programa (6). Supongamos que Jj €
{1,2,...,p}/y;-'* > 0,y; " > 0. Definamos y; —yj T=6>0,y, " =y; —6>0,
para un J suficientemente pequeno.

Sean

4 yi* Vi # j — oyt Vi#]
Yi yj para ¢ =7 v y; para 1=]
entonces, puesto que w > 0 , es decir, w;",wi_ >0,Vi=1,...,p, siendo al

menos una de las desigualdades estricta, se verifica que

TG +7 ) <WFTAT) y @) -G +7 )=¢

*

en contradiccién con que ¥, 7* son éptimos.

3.2. Si X es un conjunto convexo, para cada & € Z fijo, la funcién Q(o,£) es
convexa. En efecto: sean 7', 7% € X , 7% = A\T' + (1 — A\)Z? con A € 0. 1] Si las

soluciones del problema de segunda fase son (7'7,7'7) paraz =z' y (7°F,7%°")
para T = 72 , tenemos que:
Q' &) = (@h)y' + (w )y~
Q@ &) = @)yt + (w )y
Entonces
W+ A=NFH AT+ (- N7)
es factible para T = Z° . En efecto, es obvio que
M+ (1 -Ng*T >0
N4+ (1= N2 >0.
Ademss
f@E)+ A7+ (1 - Ny? — AyH + (1 =Nyt
=fT + (1= NZ) + A7 + (1= N7 = Ayt + (1= Np*"
=AfE +7 -7+ (- A)[f(# +7° -]
=N+ (1-NE=€

Por otro lado

Q(fgvg) = Q(//\fl + (1 - /\)_275)
< (wh) Pyt + (1 - ) T+ () g+ (- N7 =
= AM(w )’ o (w) g+ (L= N[ )P+ ()] =
- /\Q( ?6) ( - )Q(EQ7§)
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3.3. Si el dominio = de £ es un conjunto convexo, entonces para cada T € X fijo,
la funcién Q(Z, o), es convexa.

En efecto, sean 51,52 € =, con 53 = )\El + (1 - )\)EQ con A € [0,1]. Si las
soluciones del problema de segunda fase son (7', 7' ~) para £ = El y @, 75%7)

para £ = Z2 , se debe verificar:

1

_ = . r_ 1 1 _ —1 -

QEE) =@y +@)y .7 -7 =¢ — @

—\'—2— 2  _ =2 _

QE.E)= @) P + @ )P . -7 =€ — f(@)

Entonces (A\g*T + (1 — \)7?+H, A\gt™ + (1 — \)7?7) ,es factible para ¢ = E3 En
efecto, es evidente queAy'™ + (1 — \)g*T >0y Ayl— + (1= XA)y*~ > 0. Ademés

AT 4+ (L= N7 AT - (1= N
AT ~7 )+ A= NEFT - y*)
\E 1) 40~ NE 1) =
A (1= NE - FOT+ (1= 7 =
& - @)

Finalmente,

€)= Q@ +(1-NE) <

< () 07 + (1= V7)) + () (W + (1= N7 =
= M@ )g" + (w7 ]+ (= N7+ () =
=AQET.E) +(1-NQE.E)

3.4. Si X es un conjunto convexo, el programa (5):

s.a. Te X

también es convexo. ~
_ En efecto, X es un conjunto convexo por hipétesis. Ademds para cada ¢ € E,
¢ fijo, se verifica que Q(AT' + (1 — N7, &) = AQ(T4, &) + (1 — V) Q(T?, ). Luego

ElQOT" + (1 - \N7*),¢] < _
< ERPQE' )+ (1-NQ(@*¢) =
= AB[Q(E", &)] + (1 - N E[Q(T*,©)]

Como consecuencia, un modo de resolver el problema (5) es utilizar los algoritmos

de programacién convexa.
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3.5. Es evidente que la funcién

Q(@,¢) = min {w™'yr+w 'y / y -y"=¢-f(@), 5" 20, y 20} =
Yoy
P

min Y (WGt +wTy)/ 7 -y =& - fi(@), 7" 20,5 20,i=1,....p
ARt

se puede obtener a partir de las soluciones de los p programas asociados en los
que solamente se considera un objetivo en cada programa

ot

min wtyt +w 'y
sa. y -yt =¢&—fi(m), i=1,...,p (7)
7t >0 >0

Veamos qué forma tiene dicha solucién. Por la teorfa de la dualidad de la
programacién lineal (véase Balbés y Gil (1990)), sabemos que, dado un programa
en la forma estandar

min &%
s.a. AT =0
>0
su dual es
, ~'T
max Ab

s.a. MNA<GE

Nuestro programa es

_min wiyf +wiyr +. .+ wiyl +w iy,
vty
sa. Yy —y =& - @)

Por lo tanto su dual es

max  Ai(§1 = [1(T) + -+ Ap(§p — fp(T))

S.a.
wy
1 -1 0 0 0 wy
Ay Ap) <
00 0 1 -1 w
-
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siendo las restricciones equivalentes a

wy <A < wy

— +
w, S)\pgwp

Sea
La solucién Af,i=1,2,...,p, de estos p programas (8) es, obviamente
(& — fi(@) <0, A (&, fi(@) = —w;
o (&—fi@) >0, XN(& fi(T) =w
e (&~ fi(@) =0, X\(&,fi(T)
toma cualquier valor en el intervalo [—w;, —w;].
Por lo tanto las soluciones de (8) son parai=1,2,...,p

o {wl st G fi(@ =0
| —w; st & — fi(@) <0

7

Es decir, parai=1,2,...,p,

— wi (& — fi(@) si &> fi(T)
i\JilT),Gi) = v — . P _
Qulfs(@). &) { —w; (& — fi(T)) st & < fi(@)
Finalmente, como consecuencia de las propiedades de la dualidad, podemos
concluir que la solucién buscada es

Q@) =) Qifi®@) &)

i=1

Como habiamos observado anteriormente, la funcién Q(Z, &) resulta ser la
suma de las soluciones de los p programas asociados (8) en los que tinicamente se
considera un objetivo cada vez. Asi, si denominamos

p

=1

podemos escribir que

EQ@,9) = Q@) = Q@) = ElQ(f(@),9)

Rect@ Monogréfico 2 (2004)



352 Programacion estocastica por metas

Consecuentemente la funcién objetivo del problema (5)

min  Fg[Q(T,€)]
s.a. TeX

se puede escribir con cualquiera de las expresiones de la dltima igualdad. (Ob-
servacién: no se deben confundir Q(Z) y Q(f(Z)) ya que sus dominios son R" y
RP respectivamente).

Hemos demostrado anteriormente que la funcién objetivo del problema (5)
es convexa. A continuacién vamos a comprobar que, cuando la distribucién de
probabilidad de la variable aleatoria & es discreta, el problema (5) es equivalente
a un problema de programacién lineal. Lo haremos en la siguiente propiedad.

3.6. Si la distribucién de probabilidad conjunta de la variable aleatoria
§ es una distribucién discreta finita, es decir, { toma los valores &;,...,&,,
con probabilidades p1, ..., p,, entonces el problema (5)

min  Fg[Q(T,€)]
s.aa. TEX

tiene la forma:

min - EQ(T,6)] = mQ(T, &) + ... + ppQ(T, E,)
T

S. a.

donde, parai=1,...,p,

QE,&) = min {(wiyf +wyy;)/f@ +y; —vF =&, y .,y >0}.

Uit g

Problema que denotaremos como (9).
Este problema es equivalente al programa lineal

min YV pi(w] Y +w; 7;)

[ERTRRR Tra _

s. a. f@+7 —¥ =& (9)
.y >0
TeX

Demostracién
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a) Toda solucién de (10) lo es de (9)
L...,p. Sean@jjji_,vz' =1,.
_+:+ =
wY; +wy;

. En efecto, supongamos que p; > 0,Vi =
.., psoluciones de (10). Entonces,Vi = 1,...,pQ(T;,&;) =
~+

, es decir, no existen §j jj > 0 para algtn tales que

porque si para algin j existieran tales yjjj , entonces la solucién de (10)

seria . N
$1ay17-~~7yp»§17~-~>§p
sino
~t ~+ =t 4 ~ ~— ~ = ~—
zlayla"'ay] 1ay]7yj+17 "7yp7y17"'7y] 17y]ay]+17'-'7ypa

o =t == .y
Luego si , T1,%; ,,91 ,4 = 1,...,p es la solucién de (10), entonces

p p
Zpi(@+§j +w Y ) = Y piQE1,E))
1=1

i=1
y T resulta ser solucién de (9), ya que si existe Tp € X , tal que
mQ(To,&) + ...+ poQ(To, &) <
nQT, &) + .. +poQ(T1,E,)

NS sy .
entonces, existiran y, ,7; > 0,i=1,...,p, tales que

p p
I .y T
S pi@ty 4wy ) <Y pi@ Y +woy;)
i=1

i=1

y por lo tanto Eljjji,i =1,...,p, no serfa solucién de (10).
b) Toda solucién de (9)lo es de (10). En efecto, sea Ty solucién de (9) y sea

_ = I
QTo, &) =w'y, +W ;).

Entonces,

p
sz (0, &;) SZ Q@.§), VreX,

Rect@
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lo que significa que se verifica que
S opi@ty +w Ty ) <Y p@ Y +w ),  VFEX,

siendo 7, 7; > 0 tales que f(To) +§; — @:r =¢, Vi =1,...,p. Pero esto es

equivalente a decir que Eo,ﬁj@j,w =1,...,p, es la solucién de (10).

4 Una aplicacién al diseno de sistemas Bonus-
Malus

En este apartado aplicaremos los resultados anteriores a la resolucién de un
problema de tarificacién en el marco de la Matematica Actuarial, el problema del
diseno de Sistemas Bonus-Malus éptimos. Como es bien sabido, las companias
de seguros a menudo incorporan en sus sistemas de tarificacién algunas reglas
que modifican las primas de acuerdo con la experiencia de siniestros de los ase-
gurados, de forma que los asegurados que tienen un mayor numero de siniestros
paguen asimismo una prima mayor. Una forma muy habitual de llevar a cabo
estas penalizaciones consiste en establecer un nimero finito de posibles tipos o
clases de asegurados asociados con diferentes tarifas, de forma que los asegura-
dos con més siniestros tiendan a permanecer en las clases con mayores primas, y
viceversa. En tal caso, se dice que la compania ha establecido un Sistema de ta-
rificacién Bonus-Malus. Evidentemente, los asegurados pueden cambiar de clase
de acuerdo con ciertas reglas de transicién. El disefio de un Sistema Bonus-Malus
requiere establecer el nimero de clases, las reglas de transicion entre ellas, la
clase inicial y la escala de primas. En este articulo solamente nos referiremos
a la eleccion de una escala de primas que sea éptima respecto de algiin criterio.
Este problema ha recibido mucha atencién en la literatura, siendo Norberg (1976)
quien establecié el método més importante para el cdlculo de una escala de primas
Optima, la denominada escala de Bayes. La importancia de la escala de Bayes
se basa fundamentalmente en que garantiza que el sistema Bonus-Malus tenga la
importante propiedad de equilibrio financiero, es decir, garantiza que la cuantia
total de los ingresos por primas de la compaiiia sea suficiente para hacer frente a
los siniestros, en términos de esperanza matemadtica, lo cual resulta esencial para
la supervivencia de la empresa en el largo plazo. Se trata, sin duda, de una pro-
piedad importantisima. Sin embargo, en la practica pueden resultar interesantes
otras propiedades adicionales que ya no estan garantizadas en la escala de Bayes.
Por ejemplo, la compania de seguros puede desear suavizar el sistema de penaliza-
ciones, en el caso de que el sistema original resulte excesivamente duro y muchos
asegurados prefieran cambiar de compania. En los siguientes apartados veremos
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que la metodologia de Programacién Estocastica por Metas permite disenar esca-
las de primas 6ptimas que pueden tener en cuenta propiedades interesantes como
la que acabamos de comentar, siempre que se representen matematicamente me-
diante restricciones lineales. Por supuesto, si el decisor impone un gran nimero
de tales propiedades, el programa matematico resultante puede ser infactible, por
lo cual el decisor debera eliminar algunas de ellas o al menos suavizarlas. El
proceso de diseno de un Sistema Bonus-Malus se convierte asi en un proceso inte-
ractivo, con el objetivo de alcanzar un grado razonable de compromiso entre un
gran numero de propiedades que probablemente sean incompatibles entre si.

5 Definicion de un sistema Bonus-Malus

Consideremos una cartera de pdlizas en la que existe heterogeneidad debido a
ciertas caracteristicas inobservables de las polizas. Como es usual en la literatura
actuarial, supondremos que las caracteristicas respecto al riesgo de cada pdliza
estan resumidas en el valor de cierto parametro , que habitualmente se identifica
con la frecuencia media de siniestros. Supondremos asimismo que este nimero
medio de siniestros se mantiene constante a lo largo del tiempo, y que es inde-
pendiente de la cuantia de los mismos. Si tomamos como unidad monetaria la
cuantia media de un siniestro, nuestro objetivo consistira en disefiar un sistema
para calcular una prima (pura) para cada asegurado lo mds cercana posible al
verdadero valor de su pardmetro (que es evidentemente desconocido). Intenta-
remos conseguir este objetivo mediante el diseno de un Sistema de Tarificacién
Bonus-Malus (en adelante, SBM). Tales sistemas son habitualmente utilizados
por las companias para la tarificacion en el seguro del automovil, dependiendo en
la gran mayoria de los casos del niimero de siniestros de cada asegurado y no de su
cuantia ( Lemaire (1985 y 1995)). Supondremos, finalmente, que el pardmetro de
riesgo A es una variable aleatoria cuya funcién de distribucién U(X) (denominada
funcidn de estructura) es conocida.

Siguiendo a Lemaire (1995, p. 6), diremos que una compaiia de seguros utiliza
un SBM cuando se verifican las siguientes condiciones:

e Existe un niimero finito de clases {C1, ..., Cy, } tales que cada pdliza perma-
nece en una clase durante todo el periodo asegurado (usualmente un ano).

e La prima calculada para cada pdliza depende unicamente de la clase en la
que permanece.

e La clase para cada periodo estd determinada por la clase en el periodo
anterior y el nimero de siniestros durante dicho periodo.

Cada SBM esta definido por tres elementos:

e La clase inicial, donde son asignadas las nuevas poélizas.
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e La escala de primas (P, ..., P,), donde P; es la prima asignada a las pélizas
de la clase C;.

e Las reglas de transicion, es decir, las reglas que establecen las condiciones
bajo las cuales las pdlizas de la clase C; se transfieren a la clase C; durante
el siguiente periodo.

Las reglas de transicion se definen habitualmente mediante transformaciones Tj
tales que Ty (i) = j cuando las pdlizas de la clase C; que declaran k siniestros son
transferidas a la clase C; durante el siguiente periodo. Las transformaciones T},

se definen mediante matrices,
Ty = (tfj)

tales que
=1 si Ty(i)=3j

th=0 si Tu(i)#j

La probabilidad condicional de transicion de la clase C; a la Cj en un periodo,
supuesto que A = A, se calcula como

pii(N) =D oMt
k=0

donde pg () es la probabilidad de declarar k siniestros en un periodo, condi-
cionada a que A = \. Es decir,

Pr(N) = Pr[N = k/A = A
La matriz de probabilidades condicionadas, supuesto que, se define como

P(A) = (pi; (V)

Estas definiciones permiten considerar al SBM como una cadena de Markov.
La cadena serd homogénea, ya que hemos supuesto que cada frecuencia media A
es estacionaria respecto al tiempo. La matriz de transicién P(\) que acabamos
de definir, serd la matriz de transicién de la correspondiente cadena de Markov.

Si suponemos ademds que la cadena es regular, entonces es posible asegurar
(véase, por ejemplo, Kemeny y Snell (1976)) que existe una distribucién estacio-
naria de probabilidades condicionales ( 71 (A),...,m(N\)), donde m;(A\) se define
como el valor limite (cuando el ntimero de periodos tiende a infinito) de la pro-
babilidad de que una pdliza pertenezca a la clase , condicionada a que . Se puede
demostrar que la distribucién estacionaria de probabilidad coincide con el auto-
vector por la izquierda asociado con el autovalor 1 de la correspondiente matriz
de transicién, cuyas componentes suman la unidad.
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Se puede definir también la distribucién estacionaria de probabilidades (no

condicionadas) (71, ..., T,) para una poéliza arbitraria, como el valor medio de las
correspondientes distribuciones estacionarias condicionadas (71 (), ..., mp(A)). Es
decir,
Evidentemente, pi; y pi1(A) pueden interpretarse como las probabilidades de que
una poliza arbitraria y una péliza condicionada a que A = )\, respectivamente,
pertenezcan a la clase C; cuando se alcanza la estacionariedad. El conocimiento
de estas distribuciones estacionarias resulta muy 1util a la hora de disenar un
SBM, ya que nos informa del comportamiento a largo plazo de las poélizas. De
esta forma, anadiremos a nuestras hipétesis anteriores el supuesto de que el SBM
ha alcanzado, o al menos se ha aproximado, a su estado estacionario.

5.1 Calculo de la escala de primas mediante criterios asin-
toticos

El método estandar para calcular la escala de primas de un SBM, para un
nimero de clases y reglas de transicién dadas, es conocido como la escala de Bayes
(Norberg (1976)). Dicha escala surge como solucién de un problema de decisién
bayesiano, en el que las decisiones factibles coinciden con las posibles escalas de
primas (P, ..., P,), los pardmetros aleatorios son el verdadero valor del parametro
A y la clase C; a la que pertenece la péliza al alcanzar el estado estacionario, y la
funcién de pérdida es una funcién cuadrética del error de tarificacion, de la forma
(P; — )\)%. La escala 6ptima o escala de Bayes minimiza entonces el llamado error
cuadrdtico de tarificacion esperado,

| @ - apmar
0 =1
siendo la solucién de la forma
1 o0
p—t / AU (N)
T 0

Como hemos comentado anteriormente, la escala de Bayes constituye el método
bésico para la construccién de un SBM o6ptimo: se trata de una escala de primas
fundamentada tedricamente, facilmente calculable y con la importante propiedad
de equilibrio financiero. Sin embargo, puede dar lugar a sorpresas desagradables:
por ejemplo, a veces las primas resultantes no forman una secuencia mondtona,
lo que impide totalmente su implementacién practica; o, aiin siendo mondtonas,
las bonificaciones o penalizaciones entre clases consecutivas pueden variar brus-
camente o tomar valores excesivamente grandes o pequenos, lo que dificulta asi-
mismo su uso en un problema real. Por supuesto, todas estas propiedades in-
teresantes (y otras que no mencionamos aqui: véase Heras, Vilar y Gil (2002))
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podrian incluirse como restricciones adicionales del problema de minimizacion
que da lugar a la escala de Bayes, pero esto exigiria la resolucién de un programa
cuadratico con un gran numero de restricciones. Y, lo que es mdas importante, la
introduccién de nuevas restricciones impedira en general que el SBM resultante
esté financieramente equilibrado, lo que elimina la principal razén esgrimida en
la literatura en defensa de la escala de Bayes.

Como exponen Heras, Vilar y Gil (2002), la mayor parte de las propieda-
des razonables que deberia cumplir la escala de primas de un SBM (incluida la
propiedad de equilibrio financiero) se pueden representar matemdticamente por
medio de restricciones lineales. Seria interesante, por tanto, que el programa
matematico que origina la escala de primas fuese asimismo un programa lineal.
Como veremos a continuacion, esto se puede conseguir mediante las técnicas de
Programacién Estocastica por Metas expuestas en los apartados anteriores.

En efecto, en ultima instancia el problema de tarificaciéon que estamos estu-
diando consiste en definir un conjunto de primas para las clases del SBM que estén
lo més cerca posible del verdadero valor del pardmetro A de cada asegurado, lo
cual no tendria ninguna dificultad si conociéramos exactamente el valor de di-
cho parametro. El problema radica, obviamente, en que no conocemos su valor,
debiendo contentarnos con una distribucién de probabilidad. En otras palabras,
debemos elegir el valor de ciertas variables de decisién (las primas) de forma que
nos acerquemos lo mas posible al valor de un objetivo que varia aleatoriamente
(el pardmetro). Esto es, evidentemente, un problema que puede modelizarse me-
diante Programacion Estocéastica por Metas, siendo los valores de las variables
de decisién T iguales a las posibles escalas de primas P = (P, ..., P,), y siendo
asimismo los valores aleatorios de los objetivos £ iguales a los posibles valores del
pardmetro A. La escala 6ptima deberia, segiin lo que hemos visto en apartados
anteriores, minimizar la funcién (11)

ming{ Ex(Q(P, \)}

siendo la funcién Q(P, \) el resultado de resolver el programa de segunda fase
(12):
QPN = min 3T (y" +y;)m(N)

y w7 >0
sujeto a :
Pityl —yr =

PnJFvaLr*y;:)‘

No es dificil darse cuenta que los programas (11) y (12) también podrian
haberse obtenido como solucién de un programa bayesiano de decisién totalmente
analogo al que da lugar a la escala de Bayes, con la unica diferencia de que la
funcién de pérdida no estaria definida como el cuadrado del error de tarificacién,
sino como su valor absoluto |P; — A|. La escala de primas que es solucién éptima
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de (11) y (12) minimiza, pues, el error absoluto de tarificacion esperado, definido

como n
JADSILERELY
0 =1

Como sabemos, la resolucién de los programas (11) y (12) puede ser un pro-
ceso complicado. Ahora bien, en la literatura actuarial es habitual trabajar con
aproximaciones discretas de la funcién de estructura U(A) . En tal caso, sabe-
mos por la propiedad 3.9 que los programas (11) y (12) son equivalentes a un
programa lineal. En efecto, si el pardmetro A puede tomar Unicamente los va-
lores (A1, , Am) con probabilidades (q1,,¢m), entonces los programas (11) y (12)
equivalen al programa lineal (13):

m n

min > > (yf +yi)mi(Nag
j=1i=1

sujeto a :

Pi+yn+uh) =M
R L
P1+y1m+y1m)*)‘m
P, + ’.—S.—'+):)\
n ynl ynl 1

CPn =+ yr:m + y;;m) = >\m
Py, yi; >0

La resolucién del programa (13) se puede llevar a cabo ficilmente en un or-
denador personal, aniadiendo todas las restricciones (lineales) que el decisor con-
sidere conveniente.

Veamos un ejemplo sencillo. Supongamos que el pardmetro A puede tomar
Unicamente tres valores, Ay = 0.5, Ao = 1, A3 = 1.5, todos ellos con probabilidad
1/3, y que solamente existen tres clases de bonus-malus.

Supongamos asimismo que las reglas de transicién implican las siguientes dis-
tribuciones condicionales estacionarias:

771(>\1)=%; 71'2()\1):%; 773(/\1):%
771()\2)=§; Wz(/\z)z?; 7T3(/\2)=§
m1(A3) = 35 m2(A3) =51 m3(A3) =3
La distribucion estacionaria incondicional sera:
_ /3,1, 1\1 _ 711
m=(5+3+1)35= 63
m=(i+i+Di=
_ /1,1, 1\1 _ 131
m=(5+5+T3)3= 153
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Supongamos que, por razones comerciales, deseamos obtener una escala de primas
que penalice a los malos conductores con una prima cuya cuantia sea el doble que
la de los buenos. Es decir, tal que P3 = 2P,. En tal caso deberiamos resolver el
programa lineal (13), afiadiendo la restriccién anterior y, por supuesto, la referente
al equilibrio financiero:

Py + Pomrg 4+ Pymg = E(A) =1

La escala de primas 6ptima, obtenida de la resolucion del programa estocéastico
por metas (13) junto con las dos nuevas restricciones adicionales, resulta ser

P, =0.7031
P, =1.0
Ps; =1.4062

La metodologia expuesta permitiria la introducciéon de todas las restricciones
lineales adicionales que sean necesarias, con la inica limitacién de que el programa
lineal resultante siga siendo factible.
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1 Introduccion

Las listas de espera sanitarias representan un grave problema que ha sido
desde los anos setenta objeto de debate entre los profesionales de la salud. La
existencia de listas de espera puso en duda la correcta gestién de la sanidad
espafiola y moviliz6 a las Administraciones Sanitarias para solventar la situacién
lo antes posible. En la actualidad, la situacion es lo suficientemente grave como
para justificar la busqueda conjunta de soluciones en todos los &mbitos: el politico,
el de los profesionales de la salud y el académico.

La existencia de listas de espera en la atencién sanitaria es un problema que
afecta al derecho de los ciudadanos a la proteccién de la salud reflejando un
desajuste entre la demanda y la oferta de asistencia sanitaria, que implica una
necesidad sanitaria no cubierta en el momento en que se solicita. Esta situacion
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supone un deterioro de la calidad asistencial que percibe el paciente que siente
angustia ante el desconocimiento del tiempo de espera en la lista; pudiendo llegar
a suponer, incluso, un detrimento de su salud.

Los factores que pueden influir en la generacién y persistencia de las listas de
espera son diversos: los avances en medicina e investigacién médica que generan
demanda de atencién, el incremento en la esperanza de vida y la mayor disponibi-
lidad de informacién que tienen los pacientes que hace mas dificil en la actualidad
que acepten demoras.

Los gobiernos de diferentes paises han llevado a cabo actuaciones dirigidas
a paliar las implicaciones sanitarias y sociales que comportan las listas de es-
pera. Inicialmente los esfuerzos se centraron en reducir el volumen de las listas,
entendiendo por volumen el ntimero de pacientes en espera; sin embargo, en la
actualidad la atencién se centra en la disminucién del tiempo de espera més que
en su volumen, que en si mismo no posee significado alguno.

Aunque son diversas las lineas de actuacién propuestas para abordar el pro-
blema de la existencia de listas de espera, todas parten de la idea comtn de que
el problema es de asignacion de recursos y de su correcta gestion. La literatura
en el ambito de la sanidad, encaminada a la propuesta de soluciones, es escasa en
relacion a la magnitud del problema planteado. No existen practicamente traba-
jos que afronten el tema desde una perspectiva cuantitativa, por ello es necesario
disponer de instrumentos que permitan conocer, ordenar, gestionar, analizar, de-
cidir y evaluar con fiabilidad, en tiempo real y segtin los requerimientos de cada
momento, las formas de organizacion y funcionamiento de los hospitales piiblicos.

El problema de la reduccién de las listas de espera no es estrictamente de
financiacién econdémica, sino principalmente, como ya hemos senalado, de gestion
eficiente, lo entendemos como un problema de decisién con criterios multiples. En
este trabajo exponemos un instrumento de gestién de listas de espera quirdrgicas
desarrollado con metodologia multicriterio difusa y con los datos de un hospital de
agudos del tipo IT del INSALUD, extensible a cualquier otro hospital de similares
caracteristicas.

2 Metodologia

Es habitual que el ser humano deba tomar decisiones sobre problemas de cierta
complejidad que incluyen varios objetivos, que pueden ser total o parcialmente
conflictivos entre si, de manera que la mejora en cualquiera de ellos puede empeo-
rar el valor de otros objetivos que son evaluados de acuerdo a multiples criterios
y donde no es evidente la mejor u 6ptima alternativa.

Hoy en dia, superando los procesos clasicos de analisis que atienden a un solo
criterio econémico, se consideran miltiples criterios u objetivos en los procesos de
planificacién de entidades o empresas de interés publico. Este tipo de andlisis se
recomienda, y a veces se impone por ley en algunos paises, como obligatorio para
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analizar problemas de aprovechamiento de recursos naturales como el agua, las
minas o cualquier otro, respecto del que la poblacién tenga expectativas explicitas;
entre estos problemas estd la provision de los servicios sanitarios que constituye
el nucleo de este trabajo.

Son muchos los problemas de naturaleza econémica que se caracterizan porque
en la eleccién de la mejor decisién se han de tener en cuenta varios criterios vy,
por tanto, se desea alcanzar mas de un objetivo. La Programaciéon Multiobjetivo
y, en general, la teoria de la decisién multicriterio, se encarga de la resolucion
de problemas de este tipo y, por tanto, su aplicacién a problemas econémicos es
clara.

La formalizacién, que normalmente implica una simplificacién de la realidad,
obliga al investigador a “elegir entre realizar desde el inicio una seleccién de
elementos a considerar, para poder operar después con un instrumental preciso, o
bien captar la realidad con toda su imprecisién y operar con estas informaciones
borrosas, aun sabiendo que los resultados vendran dados de manera imprecisa”
(Kaufmann y Gil Aluja, (1986)). Al final la duda que como modelizadores se nos
plantea, es elegir, como senalan estos autores “entre un modelo preciso pero que
no refleja la realidad y un modelo vago pero méas adecuado a la realidad”.

La Teoria de los Subconjuntos Difusos, debida a por Lofti A. Zadeh (1965) y
la Teoria de la Posibilidad asociada a ella, nacen como una solucién matemaética a
la multitud de problemas y situaciones de la vida real a los que las teorias clésicas
-conjuntista o probabilistica- no podian dar soluciéon. Los subconjuntos difusos
tienen la capacidad de modelizar modos de razonamiento no preciso, que juegan
un papel esencial en la toma de decisiones racionales en entornos de incertidumbre
e imprecision. La Teoria de los Subconjuntos Difusos proporciona herramientas
adecuadas para representar un problema de Programacion Multiobjetivo Lineal
con datos vagos/ imprecisos.

Hasta hace pocos anos, se han utilizado herramientas de la Teoria de la Pro-
babilidad para modelizar la incertidumbre que surge en los procesos de decision.
Sin embargo, en muchas ocasiones el Decisor no puede comportarse de una forma
que pueda ser descrita mediante los axiomas de las probabilidades subjetivas. Es
necesario hacer una distincién entre la incertidumbre que corresponde a hechos
frecuencialmente estables, y que por tanto estdn sujetos a leyes del azar (con lo
que admiten un tratamiento probabilistico) y la incertidumbre inherente a aque-
llos fenémenos a los que tienen que enfrentarse las ciencias sociales, en los que
ademés de los hechos inciertos de la naturaleza surgen los que introduce el ser
humano producto de su libertad y poder de imaginacién. Aparece entonces la
necesidad de recurrir a nuevas herramientas para modelizar la imprecisién.

Mediante el presente trabajo proponemos un instrumento de gestién de listas
de espera quirtrgicas basandonos en los datos de un hospital piblico. El problema
de las listas de espera es como ya hemos dicho, un problema de toma de decisiones
racionales con presencia de criterios multiples en un entorno de incertidumbre e
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imprecisiéon . Se trata por tanto de un problema de Programacién Multiobjetivo
Lineal con datos vagos/imprecisos.

Para su resolucién aplicaremos una metodologia basada en la Programacién
Compromiso y en la Teoria de los Subconjuntos Difusos, la Programacién Compro-
miso Posibilistica (Arenas et al. (2004)) que nos permitird manejar la imprecision
de los datos del modelo y obtener un compromiso entre los logros de eficiencia y
la equidad.

2.1 Programacién Compromiso Posibilistica

Sea el siguiente problema de Programacién Multiobjetivo Lineal con pardame-
tros difusos:

min Z = (21, 22, ey, Zk) = (51.13, 62.2?, teey 61@37)
s [ am<b, i=1,---,m
sa. z€(Ab) = { £>0 } (FP-MOLP)
donde z = (x1,x2, -, xx) es el vector de variables decisién (no difusas), Ef =
(€1,€2,-++,C) son los pardmetros difusos de los & objetivos considerados, A =
[@ij]lmxn es la matriz de coeficientes tecnoldgicos difusos y b* = (by,ba, -+, by,)

son los términos independientes de las restricciones, también pardmetros difusos.

Supondremos que los parametros anteriores estan descritos por numeros difu-
sos representados por sus distribuciones de posibilidad, que el analista matematico
estima a partir de la informacién que le proporciona el Decisor (Tanaka, (1987)).

El desconocimiento o imprecision de los parametros de las restricciones del mo-
delo implican la necesidad de definir en este contexto el concepto de factibilidad de
un vector de decisién x. Esta cuestién conlleva la necesidad de comparar ntiimeros
difusos. En este trabajo utilizaremos el método de ordenacién de ntimeros difusos
desarrollado por Jiménez (1996) manipulando los ntimeros difusos a través de sus
intervalos y valores esperados, definidos por Heilpern (1992)!.

El intervalo esperado de un vector difuso a; = (@1, @2, -+, Gin) €S un vector
cuyas componentes son los intervalos esperados de cada nimero difuso del vector
gli, es decir: El(dl) = (EI(&H), El(d22)7 Ty, EI(&WL))

Definicién 13 Dados dos niimeros difusos a y b, definimos la relacion difusa de
preferencia ppr(a,b), a es preferido a b (@ es menor que b) mediante la siguiente

1Dado un ndmero difuso triangular & = (aL,ac,aR), obtendremos su intervalo esperado
(EI(a)) y su valor esperado (EV(a)) de la manera siguiente:

aL—l-aC ac—l-aR

:Ef-s-Eg
2 2 ’

B1() = (B}, Bf] = 5

, EV(a)
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funcion de pertenencia:

0o si E¢ > Eb
ab)y={ — BBl G cpb_pa gb_ pa 16.1
par(a,b) = Fi—Ei Bl si € [EY 2, Ly i) (16.1)
1 si Ed> EP

Si pa(a, I~)) < B3, con 8 € [0, 1] diremos que a es preferido a b al menos en un
grado igual a 3 denotdndolo por @ <gb. Si § = % los valores esperados de a y b
son iguales y por ello diremos que a y b son indiferentes. Teniendo en cuenta la
definicién 1 tenemos que:

(1— B)E: + BES < EP + (1 — B)EL (16.2)

La consideracién de la relacién de preferencia difusa de Jiménez (1996) da
lugar a la siguiente definicién:

Definiciéon 14 Un vector de decision x € R™, diremos que es B-factible para el
problema (FP-MOLP) si verifica las restricciones al menos en un grado 3. Es
decir,

a;ix<gb;, i=1,...,m. (16.3)

Las definiciones anteriores nos permiten plantear el siguiente problema (-
paramétrico mediante el que resolveremos el problema inicial FP-MOLP:

min 2:(21,22,~~~,2k):(611‘,62x,---,5ka})
n . < ~, ] — e
sa. e x(B)= { TER" | WI—Q %“ 1=1---m } (B-FP-MOLP)

Teniendo en cuenta la definicién 1, este problema es equivalente a:

min  Z = (21,22, -+, 2k) = (G1z, G2z, - -+, Cp)
a; @i bi _ bi 1 ...
s.a. (1=PB)E" + BEY < E1$J;% BEy, i=1,-,m } = x(3)

Para poder aplicar la Programacién Compromiso a la resolucion del problema,
necesitamos obtener en primer lugar la solucién ideal difusa del problema G-FP-
MOLP. Nos basaremos para ello en el método de resolucién de un problema
mono-objetivo lineal con pardmetros difusos ( 8-FLP), propuesto por Arenas et
al. (1998):
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Este método proporciona una solucién difusa, en el espacio de objetivos defi-
nida por su distribucién de posibilidad; estd basado en el principio de extension
(Zadeh, (1975)) y en la distribucién de posibilidad conjunta de los pardmetros
difusos del modelo y se basa en los a-cortes de la solucién para la obtencién de su
distribucién de posibilidad (Arenas et al. (1998), (1999a), (1999b)). En el citado
trabajo se ha probado que la solucién 2*(3) del problema ( S-FLP) es un ndmero
difuso. Basdndonos en estos resultados definimos a continuacién el concepto de
solucién -ideal difusa del problema FP-MOLP:

Definicién 15 Una solucion B-ideal difusa del problema FP-MOLP en el espacio
de objetivos, Z*(B) = (27(8), 25 (08), ..., Z;(B)) , es un vector cuyas componentes
son numeros difusos obtenidos resolviendo k (B-FLP problemas.

Una vez obtenida la solucién ideal difusa, trataremos de encontrar un vector
de decisién z, con un grado de factibilidad fijado por el Decisor, que determine
una solucién difusa é.x lo méds préxima posible a la solucién ideal difusa z:(03).
El problema a resolver sera por lo tanto el siguiente:

Hallar un z € x(0) tal que:

EI(Ga2)—>EI(zX(3), r=1,...,k (16.4)

siendo BI(é,x) = [Ef"*, By y E1(z:(9)) = [E7 7, 557,

Definicién 16 (Arenas et al. (2004)). Dados dos nimeros difusos éx y z5(5)
representados por sus intervalos esperados, llamaremos conjunto discrepancia en-
tre ambos y lo denotaremos por CD,.(¢.x, 2X(5)), al siguiente conjunto de nimeros
reales no negativos:

E;: B _ ESTI

)

Dy (e, 2(8)) = { | B0 — B

}, r=1,....k (16.5)

por tanto, los elementos del conjunto discrepancia son las diferencias en valor
absoluto entre los extremos correspondientes de los intervalos esperados.

Definicién 17 (Arenas et al. (2004)). Llamaremos discrepancia entre los nimeros

difusos é,x y Z5(8) y lo denotaremos D, al elemento mdxzimo del conjunto dis-
crepancia:

llazlnéx{‘EfﬂB)—aE?z

, ‘Eg:(ﬁ) _ EQETI

} r=1,... k. (16.6)

Consideraremos preferible la obtencion de soluciones difusas menos imprecisas
(con menor amplitud) que sus correspondientes soluciones en el punto [-ideal
difuso: . .

Elérx _ Etlirm < E;T(ﬁ) _ Elzr(ﬁ) (167)
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lo cual permite definir la discrepancia entre cada objetivo difuso y su correspon-
diente componente en la solucién S-ideal difusa, Z:(3), de la siguiente manera:

D, = mix { By - By O By D - Epth v =1,k (16.8)

Con la definicién de discrepancia y la condicién de menor imprecisién, es
posible afirmar que:

El(éyx)—FEI(z(B)), r=1,...,k, siysbélosi D, —0 (16.9)

Es decir, consideramos que si la discrepancia es nula, el intervalo esperado de
cada objetivo difuso y el intervalo esperado de la correspondiente componente de
la solucién ideal difusa, son iguales. Por lo tanto, podemos concluir que alcanzar
la solucién ideal difusa es equivalente a alcanzar discrepancia nula para todos los
objetivos:

(D1, Ds,...,Dy) = (0,0,...,0) (16.10)

Abordaremos esta tarea mediante un problema de Programacién Compromiso
no difusa, cuyo objetivo es minimizar la discrepancia entre la solucién S-ideal
difusa y los objetivos difusos, siendo la solucion ideal de este nuevo problema no
difuso el vector nulo y definiéndose las soluciones (-compromiso de la siguiente
manera:

Definiciéon 6. Un vector de decisién x* es una solucién [-compromiso del
problema FP-MOLP, si es solucién compromiso del siguiente problema:

min (Dl,DQ,...,Dk)
s.a: zex(f)

El problema (16.11) no es difuso y el enfoque de Programacién Compromiso
que utilizaremos para resolverlo estard basado en la siguiente familia de problemas
basados en distancias Ly:

Problem Lp :

(16.11)

1
k P
min L, = min (Z waff) (16.12)
r=1
s.a: x € x(8)
donde w, > 0 es un coeficiente normalizador y que pondera la importancia relativa
que tiene la discrepancia entre cada funcién objetivo difusa y su correspondiente
componente en la solucion ideal difusa. Estos coeficiente son fijados por el Decisor
mediante un proceso interactivo con el analista matemaético.
Si consideramos la métrica p = 1 la correspondiente solucién compromiso se
obtiene resolviendo el siguiente problema de programacién lineal:
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Problem L :

k
min [ = man;err (16.13)

s.a: xe;(ﬁ)

La consideracién de la métrica L, conlleva la minimizacién de la maxima dis-
crepancia de entre las discrepancias individuales. Consecuentemente, la solucién
compromiso correspondiente a esta métrica se obtiene resolviendo el problemas:

Problem L :

min L, = minmaxw,D,
T (16.14)
s.a: z € x(B)

Este problema es un problema MIN-MAX que puede reformularse de la si-
guiente manera:
min DT

s.a: zex(p) (16.15)
DT >w.D,, r=1,...k

siendo DT = méxw, D,,, r=1,...,n.

Las soluciones correspondientes a los problemas (16.13) y (16.14) son las so-
luciones compromiso que se obtienen con mas frecuencia debido principalmente,
a que para métricas distintas a p = 1 y p = oo los problemas planteados no son
lineales y requieren para su resoluciéon de algoritmos de resolucién de programas
matemdticos no lineales. Ademds, Blasco et al. (1999) demuestran como bajo
ciertas condiciones, estas soluciones acotan el conjunto completo de soluciones
compromiso.

3 Presentacion del problema.

Descripcion del modelo: datos y variables.

Hemos trabajado, como ya hemos senalado, con seis servicios quirurgicos per-
tenecientes a un hospital tipo II del INSALUD. Sin embargo en este trabajo pre-
sentaremos los resultados correspondientes a un solo servicio, Cirugia General,
que consideramos suficientemente representativo del problema.

Denotaremos las variables del problema segun los servicios a los que pertene-
cen los procesos y a aquellos por su inicial; en nuestro caso Cirugia General que
serd denotado mediante una C. Si el proceso se realiza en forma horaria normal,
la variable que define el servicio carecera de prefijo; si se realiza en forma extraor-
dinaria, sea interna o externa, el prefijo serd una X. Cada proceso vendra definido
por dos subindices. Un primer indice i, hara referencia al proceso y un segundo
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indice j, nos informara del mes en que debe realizarse el proceso de referencia. Si
se trata de nombrar la lista de cualquiera de los procesos, se precedera la variable
representativa del servicio de la letra L.

Tabla 1. Formato de las variables de actividad o variables de decisién.

Modalidad Servicio Proceso Mes
--/X C i i

Tabla 2. Formato de las variables de lista de espera o variables de estado.

Lista Servicio Proceso Mes

L C i j

Consideraremos nueve procesos quirirgicos que representan aproximadamente
un 45% de la actividad total del servicio considerado:

Tabla 3. Servicio: Cirugia General.

CODIGO Nombre Proceso Variable
241 Bocio Multinodular co1
278 Obesidad Morbida Cc02
454 Varices Cco03
455 Hemorroides co4
550 Hernias Inguinales C05
553 Otras Hernias Cco6
565 Fisura/Fistula anal co7
574 Colelitiasis Cco08
685 Quiste Pilonidal C09

Trabajaremos con un periodo de planificacién actualizado que comprende los
meses desde abril a diciembre de 1999.

Restricciones.

Las restricciones del modelo que nos ocupa seran de cuatro tipos:

e Ecuaciones de estado.

Horas de quiréfanos por servicio.

e Limites superiores a la permanencia en lista de espera.

Cotas superiores de actividad extraordinaria.
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a) Ecuaciones de estado, j = 4,...,12.
z’\C/i(jJrl) = féij + ;vaij — XCij — Cyy (16.16)

donde LC” reﬂeJa el estado de la lista de espera para el proceso ¢ al principio
del mes j. AN, i = AU - S ij recoge el nimero de admisiones netas estimadas
(admisiones, A”, menos exclusiones, S”, sin haber sido sometidos a intervencién
quirtrgica) para el proceso i del servicio C' por mes j. Estas ecuaciones definen
el estado de la lista de espera para cada proceso y en cada mes. Determinada la
actividad quirirgica a llevar a cabo durante el periodo de planificacién, propor-
cionan informacién a cerca de la evolucién mensual de las listas de espera de los
procesos considerados.

Los datos sobre admisiones (A;; ) y exclusiones (S;;) para el afio 1999 seran
tratados como numeros difusos triangulares dado su cardcter incierto y tendran
la siguiente estructura:

Admisiones A;; = (ME#, PR PEA)

% 75 Y
Ezxclusiones Si; = (ME;?,PRZ?PES)

donde PRA y PR recogen los peores datos reales histéricos para las admisiones
y excluswneb respectlvamente, PEZ-]- y PEfj son las estimaciones pesimistas del
Decisor y ME Gy ME . son sus estimaciones optimistas.

Las tablas 4 y 5 recogen las estimaciones sobre admisiones y exclusiones que
se elaboran, considerando dichas admisiones y exclusiones como datos imprecisos
representados por nimeros difusos triangulares.
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Tabla 4. Admisiones estimadas.

COD. Ai)r May Jun Jul Ago Sep Oct Nov Dic

241 | (7, 8 10)|(5, 6 8) |4, 4 5|5, 5 7|5, 5 7) [14,15 20)|(7, 8 10)|(5 5 7) |8, 9 12)
278 |3, 3 4|4, 4 52 2 | 1 D@ 2 |5 5 |G 4 5|2 2 3|6, 5 7
454 (22, 24 31)[23, 25 33)[20, 22 29)|(15, 17 22)|(11, 12 16)[19, 21 27)|(22, 24 31)|(26,29 38)[14, 15 20)
455 |15, 17 22)[14, 15 20)[10, 11 14)|11, 12 16)|{(7, 8 10)|(7, 8 10)|12, 13 17)|(16, 18 23)[13, 14 18)
550 |(49, 54 70)[54, 60 78)[51, 57 74)|(42, 47 61)|(27,30 39)[46, 51 66)|(56, 62 81)|(65, 72 94)[37, 41 53)
553 |(23, 26 34)[19, 21 27)[23, 25 33)|(23, 25 33)|(14,15 20)[26, 29 38)|(31, 34 44)|(32,35 46)[18, 20 26)
565 |(16, 18 23)[14, 15 20)[14, 16 21)|(11, 12 16)[(9, 10 13)[(8, 9 12)}19, 21 27)|19, 21 27)[14, 16 21)
574 |21, 23 30)[27, 30 39)[22, 24 31)|(15, 17 22)|(13, 14 18)[19, 21 27)|(23, 25 33)|(21,23 30)[18, 20 26)
685 |(24, 27 35)[29, 32 42)[23, 25 33)|(17, 19 25)|(13, 14 18)[17, 19 25)|(35, 39 51)|(43, 48 62)[30, 33 43)

Tabla 5. Exclusiones estimadas.

CoD Abr May Jun Jul Ado Sep Qct Nov Dic

241 |0, 0 0O 0o 0@ 2 1] 0 0 |0, 0 0O 0 00O 0 00O 0 0]@O 0 0
2718 |1, 1 1|0, 0o 0|0 0 0]© 0 0 |0, 0 0O 0 00O 0 0 f0O 0 0] 0 0
454 12, 2 3|0 0o 0] 0 0@ 0 0o, 0 0@ 1 1@ 1 JO 0 0O 0 0
455 10, 0 0 |4, 1 1] 0 0@ 0 0O, 0 0@ 1 10O 0 02 2 3@ 1 1
550 (4, 4 5| 1 1|00 0 0@ 1 10O 0 0|5 5 7|4 4 5|5 5 7|0 0 0
553 |(, 1 DO, 0 0@ 1 nJO 0 0 |2 2 |G 5 NG 3 HfQ 1 @ 1 1
565 [0, 0 0|2, 1 1|0 0 0]© 0 0 |0, 0 0O, 0 00O 0 00O 0 0@ 1 1
574 |, 1 1|0, 0o 0|5, 6 8@ 1 10O 0 0|4 4 5|2 2 32 2 3)|@O 0 0
685 |G, 5 7L 1 @ 1 O 0 o 1 pnl@ 2 |2 2 yfe 2 3|a 1 1

b) Horas de quiréfano por servicio y mes.

Estas restricciones sélo afectan a la planificaciéon quirirgica que se lleva a cabo

en horario ordinario:
9

Zticij <CQ; (16.17)
i=1
donde CQ); indica en minutos el tiempo de quiréfano del que dispone este ser-
vicio para el mes j y donde t; es la estimacién hecha sobre la duracién de cada
intervencion quirdrgica.
Consideramos como dato difuso, la duracién de cada intervencién quirirgica
que representaremos mediante el siguiente niimero difuso triangular:

t; = (ME', DR!, PE!) (16.18)

donde DR! es el tiempo medio de duracién de una intervencién, que ha sido
determinado utilizando los datos procedentes de los partes de quiréfano, més
veinte minutos, que es el tiempo requerido para preparar los quiréfanos para la
siguiente intervencién; ME!, y PE! son la mejor y peor estimacion acerca de la
duracién de cada intervencién, proporcionadas por el Centro Decisor.
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Tabla 6. Estimacion de la duracién de las intervenciones quirurgicas.

COD. Nombre Proceso Variable Estimacion Tiempo
(minutos)

ME DR PE
241 Bocio Multinodular Cco1 151 151 182
278 Obesidad Mérbida Cc02 155 155 186
454 Varices Co03 135 135 162
455 Hemorroides Co4 74 74 89
550 Hernias Inguinales C05 114 114 137
553 Otras Hernias Abdominales C06 134 134 161
565 Fisura/ Fistula Anal co7 62 62 75
574 Colelitiasis Co08 135 135 162
685 Quiste Pilonidal C09 63 63 76

Los datos referentes a los tiempos de quiréfano asignados, en este caso, al
servicio de Cirugia General son los que se muestran en la tabla siguiente:

Tabla 7. Horas de quiréfano asignadas al servicio de Cirugfa.

Abr May Jun Jul Ago Sep Oct Nov Dic
Minutos 3955 4704 4976 3316 2997 2997 5183 4815 4385

¢) Limites superiores a la permanencia en lista de espera: no mas de
seis meses.

Con las siguientes ecuaciones reflejamos el hecho de que a lo largo del ano
1999 el tiempo méaximo que un paciente puede permanecer en lista de espera debe
ser de seis meses, para ello exigimos que la suma de las actividades ordinaria y
extraordinaria realizadas entre enero del ano en curso y el mes k-ésimo, supere al
nimero de paciente que llevarian seis o mas meses en lista de espera para cada
proceso i en el momento k:

k
Z [Cij + XCij] > Sik (16.19)
j=04

El célculo de las cotas minimas, que seran la parte derecha de las ecuaciones,
es sencillo, se realiza a partir del estado de la lista de espera al comienzo del
periodo de planificacién y a partir de ahi se van acumulando estos valores mes a
mes. El estado de la lista de espera al comienzo del periodo de planificacién (1
de abril de 1999) es el siguiente:

Tabla 8. Estado inicial de las listas de espera.

COD. 241 278 454 455 550 553 565 574 685
Lista 17 13 51 21 118 58 28 59 49
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Los pardametros de los términos independientes, por proceso y mes, calculados
de la forma descrita y para las previsiones llevadas a cabo, se recogen en la
siguiente tabla:

Tabla 9. Pardmetros s;; correspondientes a Cirugia General.

COD. Abr May Jun Jul Ago Sep Oct Nov Dic
241 5 8 11 21 23 28 32 40 40
278 2 3 6 7 9 19 22 26 28
454 13 13 16 27 39 67 91 102 139
455 9 10 10 11 19 31 46 52 67
550 21 39 48 62 103 166 199 258 346
553 15 25 29 46 64 85 125 143 183
565 5 8 9 11 19 37 53 69 93
574 4 13 26 42 57 85 95 123 141
685 13 14 16 16 27 65 90 102 122

d) Cotas al nimero de procesos realizables fuera de horario normal

Estas restricciones consistiran en desigualdades del tipo:
XCij > Tij (16.20)

El significado de estas ecuaciones no es otro que el de acotar la actividad
global minima que a priori se acuerda derivar en base a los datos historicos. Esta
actividad minima ha de indicarse por proceso y mes. Reflejan informacion de tipo
cualitativo: el Decisor conoce de antemano que algunos procesos, imposibles de
asumir, seran derivados en al menos ciertas cantidades, que a lo largo del ano se
irdn concretando. Igualmente conoce que algunos otros procesos no se derivaran,
salvo graves problemas. Este es el caso de las intervenciones de Hernias Inguinales
que es el proceso quirtrgico que mayores listas de espera presenta en el servicio de
Cirugia General; el Centro Hospitalario establece que para este proceso se derive
a otros centros al menos una intervencién al mes:

XCs; 21, j=4,...,12. (16.21)

También existen procesos quirirgicos que debido a su complejidad clinica el
Centro Hospitalario no desea derivar a otros centros. Este es el caso de tres
procesos: Bocio Multinodular, Obesidad Mdérbida y Colelitiasis:

12 12 12
D XCi=0; Y XCy=0; > XCs;=0. (16.22)
=4 j=4 j=4

e) No impondremos que las variables de este problema sean enteras por dos
razones: Una de ellas es que los tiempos estimados por proceso son tiempos
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medios, lo que imposibilita la exactitud de resultados, y la otra deriva de la
complejidad computacional asociada a un problema entero con tan gran nimero
de variables.

Objetivos.

Este problema, como ya hemos dicho, pretende determinar la actividad quirirgica
ordinaria y extraordinaria éptimas que es necesario planificar por parte de la ge-
rencia del Hospital para que, teniendo en cuenta el flujo de pacientes de las diver-
sas patologias que acuden al centro hospitalario, aquellos puedan ser atendidos
dentro del marco de excelencia que es exigible a un servicio publico de este tipo.

La disponibilidad de tiempo de quiréfano es la mas fuerte de las restricciones a
la actividad de cada servicio dado que, hoy en dia, como ya se ha senalado, muchos
procesos son susceptibles de ser realizados mediante Cirugia Mayor Ambulatoria
y por ello el niimero de camas instaladas en el centro limita poco o nada la
actividad.

La determinacion del niimero de procesos, por mes y servicio, que es necesario
realizar para mantener las listas de espera en los niveles deseados, nos lleva a
considerar dos objetivos.

El primero proporcionard la mdzrima capacidad operativa del centro en su
horario y configuracién ordinarios y el segundo determinara la actividad minima
indispensable que ha de realizarse de modo extraordinario, todo ello para verificar
el requisito marco de maxima permanencia en lista de espera. Estos objetivos se
expresan mediante las funciones objetivo que a continuacién detallamos:

La primera de las funciones objetivo se formulara simplemente como la maxi-
mizacion del total de la actividad a realizar de manera ordinaria por mes, proceso
y servicio, a lo largo del ano:

9 12
méx » Y [Cij] (16.23)

i=1 ;=04

La segunda funcién objetivo minimiza la suma de la actividad externa que
serd necesario llevar a cabo:

9 12
min» Y " [XC;] (16.24)

i=1 j=04

El Decisor hospitalario considera que los dos objetivos poseen la misma im-
portancia, por lo que fija los siguientes pesos Wp = Wy = 1.
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El problema que resolveremos serd por tanto:

9 12 9 12
méx(ﬁ‘l,—ﬁ‘g) = ZZEZCZJ’ZZElXCZJ
i=1 j=4 i=1 j=4
sujeto a:
LCi(jJrl) = LCij + ANij - XC;: — C;
9
Zficij < CQj

i=1

9 k

DD [Cij+ XCiy] = sin (P)
i=1 j=4

XCs;>1, j=4,...,12

12

12 12
ZXCU:O; ZXCQJ':O; ZXng:O
j=4 j=4 j=4

El problema (P) es un problema de Programacién Multiobjetivo Lineal Posi-
bilistica.

G i=1,...,9,j=4,...,12

Problemas resueltos

En ausencia de pesos subjetivos preferenciales asignaremos el mismo peso a
ambos objetivos (W, = Wy = 1). El problema Multiobjetivo Lineal -Paramétrico
mediante el que determinaremos las soluciones (-eficientes del problema (P) es el
siguiente:

9 12 9 12
méx(=Fy, Fy) = | =YY Gy, Y Y HXCy
i=1 j=4 =1 j=4
sujeto a:
LCij1y = LCy + (1= BB + BEMNY — XCyj — O
9
> (1= BB + BES]Cu < CQy,
l§1 k;
22 Ot Xy = s ()
=1 j=4

XCs;>1, j=4,...,12

12 12 12
ZXCU:O; ZXCQJ':O; ZXCstO
j=4 j=4 Jj=4

i=1,...,9,j=4,...,12

(16.25)
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Hemos resuelto el problema (16.25) de manera interactiva con el Decisor que
fija sucesivamente los distintos niveles de factibilidad que esta dispuesto a asumir.
Fijado el nivel en que se han de satisfacer las restricciones, hemos obtenido la
solucién (-ideal difusa mediante sus a-cortes. En la Tabla 10 se incluyen las
distribuciones de posibilidad del punto ideal (Fy,F,) formado por los valores
o6ptimos de cada objetivo para cada nivel de factibilidad fijado por el Decisor.

Como se puede observar en la Tabla 10, la solucién “empeora” a medida que el
Decisor establece factibilidades, 8 , mayores, es decir, a mayor nivel de factibilidad
menores niveles de actividad interna y mayores de actividad externa.

Tabla 10. Distribuciones de posibilidad de la soluciéon S-ideal difusa.

3=06

a Fy j25

0 30854, 43544] 80325, 113380]
0,2 31930, 42148] 82895, 109478]
0,4 33001, 40631] 85828, 105792]
0,6 34131, 39160] 88572, 101899]
0,8 35160, 37657] (91601, 98198)]

1 36244, 36244] (94312, 94312]

a Ey j25

0 20838, 42107] 81341, 114816]
0,2 30877, 40737] 83945, 110901]
0,4 31897, 39288] 86932, 107135]
0,6 32960, 37845] 89732, 103211]
0,8 33982, 36403] (92780, 99452]

1 35034, 35034] 95522, 95522]

a Ey j25

0 (28775, 40617] 82403, 116316]
0,2 20781, 39330] 85041, 112294]
0,4 30776, 37901] 88053, 108532]
0,6 31817, 36535] (90874, 104521]
0,8 32785, 35109] (93978, 100746]

1 33811, 33811] (96746, 96746]

La maximizacién de la actividad interna como tnico criterio, por ejemplo,
implicaria niveles de actividad externa muy elevados para poder mantener las
listas de espera en los niveles deseados (Tabla 11), por ello no parece aconsejable
la aplicacién de politicas que tengan en cuenta un solo criterio de decisién.
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Tabla 11. Actividad externa correspondiente a la solucién F; con nivel de

posibilidad « =1y 8 =0.8.

COD. Apr May Jun Jul Aug  Sep Oct Nov Dic
241 0 0 0 0 0 0 0 0 0
278 0 0 0 0 0 0 0 0 0
454 74 26 23 3 0 0 0 0 0
455 39 15 12 1 0 0 0 0 0
550 338 1 1 1 1 1 1 1 1
553 183 0 0 0 0 0 0 0 0
565 93 0 0 0 0 0 0 0 0
574 0 0 0 0 0 0 0 0 0
685 122 0 0 0 0 0 0 0 0

Una vez hallada la solucién ideal, determinamos las soluciones 3-compromiso
difusas, L1 y L. Utilizaremos para ello la siguiente notacién:

D, = max {Elf” B DR o EQI} . r=1,2 DT =méxD,

El(éx) = EI(Fy) = [EfEﬂ = [EfEé} >

Bl(ca) = BI(F) = [B B]| = B B} | 2

B1G3) = B1(67) = [B7 55

9 12
>c,

9 12

i=1 j=4

En la siguiente tabla aparecen recogidos los intervalos esperados de las solu-
ciones compromiso para los distintos niveles de factibilidad fijados por el Decisor.

Tabla 12. Soluciones compromiso §-difusas.

5=06
Fy Fy EI(FY) EI(FY)
L, | (30837,36214,43542) | (80341,94342,113381) | (33526,39878) | 87342,103862)
Lo | (30840, 36230,43540) | (80339, 94326,113384) | (33535,39885) | 87333, 103855)
8=08
L, | (29784,34976,42053) | (81395, 95580, 114870) | (32380, 38515) | 88488, 105225)
L | (29820,35018,42107) | (81358,95539,114816) | (32419, 38563) | 88449, 105178)
p=1
L, | (28771,33806,40602) | (82407,96750,116321) | (31289,37204) | 89579, 106536)
Lo | (28775,33810,40604) | (82403,96746,116319) | (31293,37207) | 89575, 106533)
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El problema A1 (ver apéndice) proporciona una solucién de maxima eficiencia
al minimizar la suma ponderada de las discrepancias, es decir, al maximizar el
nivel de logro agregado y ponderado de los objetivos. Esta soluciéon, sin embargo,
puede presentar un sesgo hacia el nivel de logro de algin objetivo en particular.
Por el contrario, el problema A2 (ver apéndice) proporciona una solucién de
maximo equilibrio entre los niveles de logro de los objetivos, al tener en cuenta
solo la minimizacién de la mayor de las discrepancias individuales. Resulta, por lo
tanto, interesante presentar al Decisor ambas soluciones y ofrecerle la posibilidad
de elegir o bien una planificacién quirirgica que maximice la eficiencia o bien una
planificacién quirdrgica que implique maximo equilibrio entre todos los criterios
considerados.

Si observamos las tablas 13, 14, 15 y 16 vemos como para ambas soluciones
compromiso la actividad interna total es practicamente la misma debido a las
restricciones en la disponibilidad de quiréfanos en el hospital; pese a ello, existen
diferencias en la distribucion de dicha actividad entre los distintos procesos a lo
largo del periodo de planificacién.

Tabla 13. Solucién compromiso Li: Actividad Interna. 8 = 0.8.

COD. Abr May  Jun Jul Ago Sep Oct Nov Dic
241 5 3 13 0 7 0 12 0 0
278 2 1 5 0 11 0 6 1 2
454 0 0 0 0 0 0 0 0 3
455 0 0 0 0 0 0 0 0 0
550 0 0 0 0 0 0 0 0 0
553 0 0 0 0 0 0 0 0 0
565 8 0 3 0 0 0 18 22 16
574 16 28 13 23 0 17 8 22 18
685 0 0 0 0 0 13 0 0 0

Tabla 14. Solucién compromiso L.: Actividad Interna. 5 = 0.8.

COD. Abr May  Jun Jul Ago Sep Oct Nov Dic
241 5 16 0 0 2 5 12 0 0
278 2 12 0 0 11 9 0 4 2
454 0 0 0 0 0 0 0 0 0
455 0 0 0 0 0 0 0 0 0
550 0 0 0 0 0 0 0 0 0
553 0 0 0 0 0 0 0 0 0
565 2 3 17 0 16 0 12 18 22
574 19 0 27 23 11 5 17 21 18
685 0 0 0 0 0 0 0 0 0

Rect@ Monogréfico 2 (2004)



J. Antomil et al. 381

Tabla 15. Solucién compromiso L;: Actividad Externa. 5 = 0.8.

COD. Abr May  Jun Jul Ago Sep Oct Nov Dic
241 0 0 0 0 0 0 0 0 0
278 0 0 0 0 0 0 0 0 0
454 74 26 23 13 0 0 0 0 0
455 39 3 0 25 0 0 0 0 0
550 338 1 1 1 1 1 1 1 1
553 183 0 0 0 0 0 0 0 0
565 0 0 0 9 0 0 0 0 0
574 0 0 0 0 0 0 0 0 0
685 122 0 0 0 0 0 0 0 0

Tabla 16. Soluciéon compromiso L.,: Actividad Externa. § = 0.8.

COD. Abr May Jun Jul Ago Sep Oct Nov Dic

241 0 0 0 0 0 0 0 0 0
278 0 0 0 0 0 0 0 0 0
454 74 26 0 39 0 0 0 0 0
455 39 15 12 1 0 0 0 0 0
550 338 1 1 1 1 1 1 1 1
553 183 0 0 0 0 0 0 0 0
565 3 0 0 0 0 0 0 0 0
574 0 0 0 0 0 0 0 0 0
685 122 0 0 0 0 0 0 0 0

Finalmente, podemos completar la informacion ofrecida al Decisor con la evo-
lucién mensual esperada de las listas de espera quirtrgicas, determinada por la
planificacién quirirgica elegida. ( Figura 1 y Figura 2).

Figura 1. Evolucion esperada de las listas de espera quirdrgicas. Solucién
Compromiso L para 8 = 0.8.
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Figura 2. Evolucién esperada de las listas de espera quirdrgicas. Solucién
Compromiso L., para = 0.8.
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La informacién a cerca de la evolucién esperada de las listas de espera puede
ser muy util para el Decisor a la hora de determinar si es o no posible lograr los
objetivos relativos a la maxima permanencia en lista de espera establecidos por
el Ministerio de Sanidad al principio de cada ano, por ello estos datos pueden ser
utilizados por el Decisor hospitalario a la hora de negociar con el Ministerio de
Sanidad las condiciones a firmar en los Contratos de Gestién.

4 Conclusiones

En este trabajo hemos presentado un modelo que permite planificar de manera
optima la actividad quirirgica de un hospital piiblico, con el propésito de propor-
cionar al Decisor hospitalario datos cuantitativos que le sirvieran de soporte para
analizar la coherencia de los objetivos relativos a las listas de espera quirirgicas,
planteados por las autoridades sanitarias.

El desconocimiento y/o imprecisién de algunos datos del problema implicé la
necesidad de considerarlos como numeros difusos. Las estimaciones sobre admi-
siones y exclusiones de pacientes, asi como las estimaciones sobre la duraciéon de
las intervenciones quirturgicas han sido establecidas por el Decisor en términos de
la 16gica difusa debido a la imposibilidad de obtener series temporales para esos
datos. Esta situacién nos ha llevado a resolver el problema mediante un enfoque
de Programacién Multiobjetivo Lineal Posibilistica. La aplicaciéon de la Progra-
maciéon Compromiso a la resolucién del problema nos proporcioné un conjunto de
soluciones compromiso dependientes del nivel de cumplimiento de las restriccio-
nes establecido por el Decisor. De entre estas soluciones son de especial interés la
solucién L1 y la solucién Lo, que implican planificaciones quirtrgicas de maxima
eficiencia y maximo equilibrio entre los objetivos, respectivamente.
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Creemos que el modelo propuesto es un instrumento 1til para la toma de
decisiones en problemas de gestién de listas de espera en hospitales publicos,
debido a la presencia de multiples criterios de decisién y a la imprecisién y/o
incertidumbre de los datos que se manejan en este tipo de problemas.

5
1]

8]

[9]
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Apéndice

Problema A1l: determinacién de la solucién S-compromiso Lj.

Min Dj + D3 + 01 + 02

sujetoa :
9 12 .
SN Ehcy - B - Dy < M6,
i=1 j=1
. 9 12
B =3NS ERCy - Dy < M(1-6y)
i=1j=1
9 12 .
SN EUXCy - B — Dy < M6,
i=1 j=1
. 9 12
B =3 3T EEXCij - Dy < M(1-6y)
i=1j=1
. 9 12
By =Y > EFXCi; - Dy < Méy
i=1 j=1
9 12 .
SN BYC; — By — Dy < M(1-4y)
i=1 j=1
. 9 12
Ey? =Y 3 EFXCij— Dy < M6,
i=1 j=1
9 12 .
S N ERCy - By - Dy < M(1-6y)
i=1 j=1
o 9 12 . .
By —B{| Y3y < [ - B+ May
) T =1 j=1
- 9 12 . .
By —EBF SN Cy+ MO -6) = [y — By |
) T i=1j=1

o 9 12 - -
EY - B Y X0y < (BT - B+ Mo,

T =1 j=1
o .9 12 .. _
By — BN SN XCy+ M- 8) = By - BF]
) T =1 j=1
5, €{0,1}, p=1,2.

x(B3)
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Problema A1l: determinacion de la solucién (-compromiso Lq

Min DT + 61 + 6o
sujetoa :

SN ElCy, - BT - DT < Ms,

i=1 j=1

BN =SS Bl - DT < M(1-6y)
=1 j=1
9 12 !

SN EiXCy - B - DT < M,

i=1 j=1
9 12

B =3 Bl XCy — DT < M(1—5y)

i=1 j=1
9 12

—ZZE;XCU - DT S M51

i=1 j=1

9 12 ~
S SN ERCy - By - DT < M(1-6)
i=1 j=1

9 12

By =SSN ERXCy, - DT < M,

ZZ;:—Ef DT < M(1- )

7 - HZZ@K[E?—E?MM&

By - HHJZICWMO&) (B~ 5%
-E
}

ZXCU < [Eff —Ef‘?} + M6,

Etb Et ZZXCU‘FM(I*(SQ) |: QFfiElﬁg}
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1 Introduccion

El Anélisis Envolvente de Datos, DEAZ, es una metodologia que permite ana-
lizar las fronteras de produccién y proporciona una medida de la eficiencia pro-
ductiva [11]. Aunque pueden encontrarse algunos antecedentes en la literatura
econdmica [28], sus origenes pueden establecerse en el trabajo de Charnes, Cooper
y Rhodes [8] y los de Banker, Charnes y Cooper [1] o Charnes et al. [9].

En esencia, los métodos DEA definen la frontera de produccién a partir de
dos ideas basicas:

1Este trabajo ha sido parcialmente subvencionado por por TIC 2002-04242-C03
2Son las siglas de Data Envelopment Analysis.
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a) La nocién de Pareto-Koopmans [12, 19] de eficiencia, dado que que una
unidad productiva, DMU?, es eficiente si y s6lo si, ninguno de sus inputs
o outputs puede mejorarse sin empeorar alguno de los restantes inputs o
outputs.

b) El concepto de eficiencia relativa, puesto que una unidad se evalia como
eficiente si, y solo si, el comportamiento del resto de DMUs no muestra que
alguno de sus inputs o outputs puede ser mejorado sin empeorar alguno de
los restantes inputs o outputs.

Se trata por tanto de identificar las unidades productivas que se muestran mejores
y éstas son las que definen la frontera de posibilidades de produccién. A conti-
nuacion la eficiencia del resto de DMUs se mide evaluando su desviacién respecto
de esta frontera. Precisamente esta medicién relativa es la que marca la impor-
tancia de la homogeneidad y tecnologia comin que debe exigirse a las diferentes
DMUs, puesto que de otro modo la comparacién podria carecer de sentido [19].

Los modelos DEA suponen una alternativa a los enfoques paramétricos clasicos
de anélisis de fronteras de produccion que precisan de una relacién funcional
explicita que relacione la variable dependiente con las variables independientes.
Ademais, en estos métodos suelen ser necesarias necesarias hipétesis relativas a la
distribucién del término asociado con la ineficiencia y del término de error, por
ejemplo que sean una muestra aleatoria de una distribucién normal.

Si bien es innegable que las técnicas DEA, se han convertido en algo més de
dos décadas en una herramienta imprescindible en muchos estudios de eficiencia,
lo cierto es que en los tltimos afios ha habido autores [2, 4, 16, 17] que han
advertido de las dificultades de utilizar directamente estas técnicas a problemas
reales. En estos modelos se asume que los inputs y los outputs utilizados son
datos precisos, sin embargo se sabe que a menudo los datos que se manejan estan
afectados de incertidumbre. Por lo tanto, es necesario extender estas técnicas de
manera que pueda incorporarse la incertidumbre al propio modelo. En nuestro
trabajo mostraremos algunas de las formas de conseguir este objetivo utilizando
subconjuntos borrosos [33]. No obstante, no ha sido nuestra intencién recoger de
forma exhaustiva todas las propuestas que existen en la literatura actual, sino
aquellas que, a nuestro juicio, tenfan una aplicacién mas directa al anélisis de la
eficiencia en las ligas de futbol profesional.

2 Analisis envolvente de datos clasico

El modelo matematico basico que formularon Charnes, Cooper y Rhodes
(CCR) [7, 8], para n DMUs con m inputs y s outputs, cada una, fue el siguiente
modelo de programacion matematica fraccional:

3Las siglas corresponden a Decision Making Units.
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S
E uroyro
r=1

Max w, =5
Zvioxio
i=1
S
Zuroyrj (171)
sa =L <1, 1<j<n
Zvioxij
i=1
Upo > 0, 1<r<s
Vio > 0, 1<i<m

donde el subindice 0 representa la DMU que se va a evaluar, z;; e y,; representan
las cantidades del input 7 y del output r de la DMU j-ésima, y u, y v;0 Son las
ponderaciones asignadas al input ¢ y al output r correspondientes a la DMU cuya
eficiencia se esta evaluando.

Posteriormente, Charnes, Cooper y Rhodes [9] exigieron que las poderaciones
fuesen estrictamente positivas, es decir, sustituyeron las restricciones de no nega-
tividad por u,, > €y v;, > € con € > 0. Por otro lado, como resolver el modelo
fraccional supone dificultades computacionales, los mismos autores propusieron
dos modelos lineales equivalentes conocidos como CCR lineal con orientacion
input (si minimizamos el denominador manteniendo fijo el numerador) y CCR
lineal con orientacidn output (si maximizamos el numerador manteniendo fijo el
denominador). Estos modelos son:

ORIENTACION OUTPUT ORIENTACION INPUT
n R
Max ¢, = Z UroYro Min ¢, = Zvjoa:jo
i=1 j=1
sujeto a sujeto a
s m s m

i=1

Zviowz‘j =1 iuroyrj =1
r=1

=1

D oy — > viowi; 0, 1< | Y oy — D viowi; <0, 1<j<n
r=1 r=1
m

Uro > €, 1<1r<s Uro > €, 1<r<s
Vio > €, 1<i<m Vio >2€, 1<i<m

En nuestra aplicaciéon, como ocurre en la mayoria de trabajos de analisis de
eficiencia se trabaja con los modelos duales de los anteriores, que son los siguientes:
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ORIENTACION OUTPUT ORIENTACION INPUT
m S m S
Min Qo—e<Zs:r+Zs:> Max 7]0+e<28j+25:>
i=1 r=1 =1 r=1
sujeto a sujeto a
n n
Z)\jxij+53—:901‘io7 1<i<m Z)\jmij—i—sj’:xim 1<i<m
j=1 j=1
n n
> Ny =i =yro, 1< <5 > Ny — 50 =oyre, 1<7 <
Jj=1 j=1
>0, 1<j<n A\ >0, 1<j<n
sf >0 sf >0
s, 20 s, 20

donde la variable 6, (6 1,) representa el ratio de eficiencia de la DMU que se esta
analizando, las variables \; son los pardmetros con los que se obtiene el grupo de
referencia de la DMU objeto de estudio y las variables sj y s, son variables de
holgura.

Suele preferirse el el enfoque dual, en lugar del primal, porque el dual tiene
m + s restricciones mientras que el primal n 4+ 1. Cooper et al. [10] establecieron
que para que el andlisis tenga sentido deberia verificarse n + 1 > m + s. En este
sentido, resulta mas eficiente resolver el dual, y determinar de forma mas directa
los pesos asociados a cada uno de los inputs y outputs.

3 Analisis envolvente de datos con incertidumbre
o datos imprecisos

En los procesos de toma de decisiones, cuando se utiliza un modelo matemético
éste puede verse afectado por los valores numéricos que han sido introducidos.
Conviene ser conscientes de que la validez de los resultados puede depender de la
asignacion numérica a pardmetros desconocidos, para los que sélo podemos tener
en cuenta estimaciones o conjeturas. En ocasiones no hay realmente ninguna base
fundada para suponer que el pardmetro en cuestién va a seguir una distribucién
de probabilidad concreta. Por tanto, no se trata de una incertidumbre estocdstica,
donde es posible un tratamiento probabilistico, sino de otro tipo de incertidumbre
para la que resulta muy 1til el uso de la teoria de conjuntos borrosos.

La teoria de conjuntos borrosos, concebida por Zadeh en la década de los se-
senta [33], incluye la incertidumbre en el propio formalismo. En esencia, consiste
en sustituir los conjuntos tradicionales, a los cuales un elemento dado puede per-
tenecer o no, por las funciones de pertenencia, que son aplicaciones de un conjunto
referencial dado X en el intervalo [0,1]. Es decir, un conjunto (o subconjunto)
borroso A de X es

flz{(w,ug(m» reX}
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donde 1 4(z) es una funcién que indica el grado de pertenencia a A de los ele-
mentos de X llamada funcién de pertenencia .

Por ejemplo, un conjunto borroso 5 podria representarse graficamente de la
forma siguiente:

HX)

5' }
s

Fig 1: Funcién de pertenencia para el nimero borroso 5.

Un grado de pertenencia nulo se interpreta como no pertenencia, el 1 como
pertenencia en el sentido booleano y los nimeros intermedios reflejan una perte-
nencia incierta, que serd interpretada de diversos modos segin cada aplicacion.
La potencia de esta teoria se debe a que a través de la pertenencia a un conjunto
se puede modelizar cualquier situacion.

A continuacién recordamos algunas definiciones basicas que permiten formular
esta teoria:

a) Un conjunto borroso A es normalizado si, y s6lo si, sup,¢x p(z) =1
b) Un a-corte de un conjunto A (ver Fig. 1) es el conjunto

So(A)y={z e X : puzz)>al

¢) Un conjunto borroso es convezo si cada a-corte es convexo.

d) Un nimero borroso es un conjunto borroso normal y convexo con funcién
de pertenencia una funcién real continua a trozos.

Entre todas las posibilidades de nimeros borrosos, los mas utilizados son los
que se conocen como numeros LR-borrosos:

Definiciéon 18 Un numero borroso M se dice que es un niumero LR-borroso,

M = (mL7 mR7 aL7 aR)L,R7
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st su funcion de pertenencia tiene la forma siguiente:

R(T_Z’%R> r>mb
> >

donde L y R son funciones referencia, es decir, L, R:[0,+oc[— [0,1] son estric-
tamente decrecientes en supp(M) = {r : py(r) > 0} y semicontinuas superior-
mente de modo que

L(0) = R(0) = 1.

Cuando el soporte de i y; estd acotado, las funciones L y R se definen en [0, 1]
y se verifica L(1) = R(1) = 0. Gréaficamente, serfa lo siguiente:

M
1

L L R

m--a m m mi+a R

Fig 2: Funcién de pertenencia para el nimero L R-borroso.
Cuando las funciones L y R son lineales, es decir

L(z) = R(z) = max{0,1 — z},

el ntimero borroso se denomina trapezoidal v si ademéas m” = m®f entonces se

tiene numero borroso triangular

Aunque hay diversas formas de evaluar una combinacion lineal de nimeros
borrosos, nosotros emplearemos una de las mas utilizadas en programacién lineal
borrosa: la T-norma minimo que, para nimeros LR-borrosos consiste en lo si-

guiente: Dados n nimeros LR-borrosos a; = (aJL, af', ajL, QF)L,R, j=1...,ny
n escalares r; >0, j=1,...,n, tenemos
n n n n n
5o — L. R L. R.
E a;x; = g ajj, E ajzy, E T, E ajz; , (17.2)
Jj=1 Jj=1 j=1 j=1 j=1

L,R

donde L y R son las funciones de referencia comunes a todos ellos.
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Ordenacién de numeros borrosos

La ordenacién de numeros borrosos ha sido, y es, un tema que ha ocupado
a muchos investigadores, puesto que en la practica puede depender mucho de la
situacién modelizada y del entorno al que se aplica. En muchas ocasiones, una
forma préctica de resolverlo ha sido comparar los niimeros mediante la compa-
racién de sus a-cortes. Aunque con este método no se maneja toda la informacién
que recogen los nimeros borrosos, lo cierto es que ha sido uno de los métodos
més utilizados en programacién matemética borrosa.

Para precisar las ordenaciones a la que nos estamos refiriendo, conviene pre-
cisar el concepto de maximo de dos ntimeros borrosos:

Definiciéon 19 Dados M y N dos nimeros borrosos, MV N representa el nimero
borroso cuya funcion de pertenencia viene dada por

tiry i (r) = Ts:ggt{w@) Apg ()} (17.3)

Dubois and Prade propusieron ordenar dos ntmeros borrosos M y N de la
forma siguiente [31]: o S
M >N+ MVN=M, (17.4)

Posteriormente, Ramik y Rimének [31] establecieron una caracterizacién més
operativa de este orden en términos de a-cortes:

Proposicion 5 Dados dos niumeros borrosos M y N, entonces

o inf{s : py(s) >h} >mf{t: pgy(t) > h}
M>Ne{y Vhel0,1]  (17.5)
sup{s: p;(s) > h} >sup{t: pugx(t) > h}
_ En particular, para ntimeros borrosos trapezoidales M = (m%,mB, ok af)
N = (nt,n® pL, BR), la expresién (17.5) es equivalente a

y

mE >nl, ml—al >nl— gL

mR > TLR, mR + OZR > TLR _|_5R (17'6)

A pesar de que esta ordenacion es muy clara desde el punto de vista tedrico,
lo cierto es que en la practica suele conducir a situaciones de indecisién. Para
evitar este inconveniente, Tanaka, Ichihasi y Asai propusieron una nocién menos
restrictiva de orden [31]:

Definicién 20 Sean M y N dos niimeros borrosos y un nimero real h € [0,1].
FEntonces,

3 } inf{s: py(s) >k} >if{t: pgy(t) >k}
M>'Nedy Vkeln1  (17.7)
sup{s : py;(s) =k} =sup{t: py(t) =k}
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Si los nimeros que se comparan son LR-borrosos con soporte acotado, para
un h dado, este método de ordenacién resulta

* Oé TL * L
M >"N « { ~ Lrhy o 2 nm = L7(h) 57, (17.8)
~ m® + R*(h) a® > n® + R*(h) BE,

donde L*(k) =sup{z : L(z) >k}, R*(k)=sup{z: R(z)>k}.

Este orden, al ser menos restrictivo que (17.6) permite abordar para cada
nivel i, muchas situaciones que en global no estaban representadas por numeros
borrosos ordenados, es decir de las que no se podia asegurarni M > N ni N > M.

4 Modelos de eficiencia con incertidumbre

En los ultimos anos han aparecido muchos modelos que permiten calcular la
eficiencia teniendo en cuenta la incertidumbre. Estos modelos no sélo difieren
desde el punto de vista técnico, sino que abordan la eficiencia desde enfoques
diferentes. En este trabajo presentamos ejemplos de dos enfoques que agrupan a
gran numero de ellos:

a) Dado un conjunto {DMU;}?_; de n DMUs, podemos definir el conjunto
borroso .
Ef = { (DMUZ-,/rEvf(DMUi)) = 1n}
de manera que serd mas eficiente aquella DMU que tenga un grado de
pertenencia mayor a Ef.

b) Para cada DMU se obtiene la eficiencia como un conjunto borroso. Por
lo tanto, disponemos de n conjuntos borrosos {E;}" ;. En este contexto,
analizar la eficiencia consiste en ordenar los nimeros borrosos Fj;.

Para mostrar algunos modelos de estos enfoques partimos de que la incerti-
dumbre en los inputs y los outputs estda expresada mediante nimeros borrosos
trapezoidales?, es decir

~ _ (. L R L R P
Tij = (w55, 25, 05, 055),  i=1,..
L 4R
(y'r]7yrj7 T30 r])

T

Yrj = r=1,...,8j7j=1,..,n.

Por tanto, sus a-cortes se puede escribir como

Ty = [.Z‘ZLJ —i—oziLj(oz — 1),1’5 — a};”(a —-1)], a€][0,1]

4En realidad los métodos que aqui se presentan son vélidos para nimeros LR-borrosos.
Sin embargo no creemos conveniente complicar la notacién y los célculos puesto que en las
aplicaciones que presentamos (y en la gran mayoria de las que aparecen en la literatura) suelen
usarse numeros trapezoidales o triangulares.
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yrj:[erj +ﬂf}'(a71)7y5‘7 7{?(0471)}’ O‘G[Oal]

4.1 Calculo de eficiencia con datos inciertos

Para ilustrar este método seguiremos la propuesta de Leén et al [17]. Partimos
del modelo

min 6y

s.a. : n
E )\jxij
j=1

Z)\j’ljm‘ 2 ’Ijro r= 1,...,5
j=1

A, >0 ji=1,..n

N

90{;}1’0 L= ].7 ey
(17.9)

Como los inputs y los outputs son nimeros LR-borrosos, las restricciones
pueden verse como desigualdades entre nimeros LR. Si en particular < se
interpreta como hemos dicho en (17.5) y las combinaciones lineales como (17.2),
el problema puede escribirse como

P" min 6

sujeto a:

ZijiLj S@OxiLO i=1,...m

j=1

Z)\jxﬁ < 90;31% i=1,...m

j=1

Z/\mLf(l—h)Z/\aL<9xL7(17h)90zL i=1,...,m
Jvig j g = Y0Le0 0450 )

j=1 j=1

ST nali+ 1 =h) > Nal <02l + (1 -n)boali i=1,...m

= ot (17.10)

> Nk =k r=1,..5

j=1

Z/\jyf?j > yf% r=1,..,s

j=1

j=1 j=1

SNl + =) Y NBE >yl (1 - h) pE, r=1,..5

j=1 j=1

Aj =0 j=1,..,n
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En este caso, para el conjunto {DMU; }?:1 de las n DMUs, podemos definir
un conjunto borroso de eficiencia como

Ef = { (DMUJ-,MEC(DMUJ-)) . = 1n}

donde la funcién de pertenencia estd dada por

0 si 03(h) £1 Vhe0,1],

NE‘(DMUj): sup{h : 03(h) =1 si 0%(h) =1 paraalgin h € [0,1].
J J

Y entonces, el grado de pertenencia ,uaf(DM U;) proporciona una medida de

la eficiencia de la j-ésima DMU.

4.2

Ordenacién de DMUs por eficiencias

Para este método seguiremos el enfoque de Kao y Liu [16]. El objetivo es or-
denar las DMUs por eficiencias suponiendo que tanto los inputs como los outputs
son numeros LR-borrosos. Para calcular la eficiencia de cada DMU y calculan la
eficiencia de cada DMU de la

a)

b)

Calcula la eficiencia de la j-ésima DMU en el caso mas desfavorable, es decir
se suponen los mayores inputs para ella y los menores para el resto, mientras
que se suponen los menores outpus para la unidad analizada y los mayores
para las restantes. El cédlculo se realiza a través de a-cortes, es decir, para

cada a € [0,1] se calcula el valor (E;)L a partir del modelo siguiente:

= méix ZUT yT] + r] 1))/UZ(‘T§ - O‘Z(O‘ - 1))
s.a Zuk(yfg +B5(a = 1)) /v —afi(a—1)) <1

Zuk yrj Tj —1))/vj(xfj+afj(a—1))§1, 1<i<n

Uk,UJ26>0

Calcula la eficiencia de la j-ésima DMU en el caso mas favorable, es decir
se suponen los menores inputs para ella y los mayores para el resto y por el
contrario se suponen los mayores outpus para la DMU que se estd analizando
y los menores para las restantes. Como en el caso anterior, para cada
a € [0,1] el valor (E;)E se obtiene como
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(B = méx Y u(yf+ B8 —1) /vl - afi(a-1)

r=1

i
sa S ul + Bl a - 1)/ —aba-1) <1
k=1

t
Zuk(yf’j— fj(a—l))/vj(xﬁ—&—af;(a—l))§1, 1<i<n
k=1

Uk, vj > € >0,
Podemos considerar (E;)L v (E;)Y
son invertibles tenemos

como funciones de « € [0,1], asf si ambas

L(z) = [(Ejsl™"  R(z) = [(Eja]™

Es decir, que para la j-ésima DMU tenemos un ntimero LR-borroso F;. Si re-
. 7 I n

petimos esto con cada DMU tenemos n niimeros borrosos {E,}"_; que, una vez

ordenados, nos proporcionan una ordenacién por eficiencias.

4.3 DEA con tolerancias

Con los métodos anteriores, puede ocurrir que al tratar con problemas reales
de grandes dimensiones, para cada « la eficiencia de cada DMU es un inter-
valo excesivamente grande, y con ello el andlisis de eficiencia o la ordenacién por
eficiciencias de las DMUs puede resultar complicado. Por otro lado, la propia
modelizaciéon o el cdlculo de la funcién de pertenencia para la eficiencia puede re-
sultar complejo e incluso tener que recurrir a métodos heuristicos. A continuacién
presentamos un modelo que intenta paliar estas dos dificultades.

Suponemos que los inputs y los outputs vienen dados con tolerancias. Es
decir, hay valores z;;, y,; que podemos considerar que son los que tienen mayores
posibilidades de ser ciertos, pero sobre los que tenemos alguna incertidumbre que
viene expresada por los intervalos siguientes®:

(2 — ol +all], i=1..,mj=1,..,n, (17.11)
[yrj - By%ayrj + ﬁg]a r= ]-a "'asaj = ]-a ey T (1712)
Nota: A los valores ok, oft, B~ BE les llamaremos tolerancias cuando no sea

150 “igr Mrgr Mryg
necesario hacer distinciones especificas.

Nuestra propuesta, que recoge en parte el esquema de las dos que hemos
presentado anteriormente, parte de un modelo de DEA clasico y consta de los
tres pasos siguientes:

5Nétese que no es més que un caso particular de los inputs y outputs dados como niimeros
LR-borrosos. Estos intervalos corresponden al a-corte de nimeros triangulares con o = 0.
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a) Calculamos la eficiencia de cada DMU con los datos ;;, yr;, a la que deno-
minaremos eficiencia original, y la denotaremos {E¢}7_,. Para ello, utiliza-
mos, por ejemplo, el modelo siguiente:

(EY) min 6

sujeto a:

n

Z)\j.’lﬁij—l— <borio i=1,....m

j=1 (17.13)
n

Z)‘jy” > Yro r=1,..,s

j=1

A >0 j=1,...n

b) Calculamos la eficiencia de la j-ésima DMU de forma desfavorable. Supo-
nemos los mayores inputs para ella, x;; + 045”», y el resto se suponen ciertos,
Tk, k # j, mientras que se suponen los menores outpus para la unidad

analizada, y,; — ﬁfj, y los de las restantes se suponen ciertos y,x, k # j.

Si ahora sustituimos estos valores de inputs y outputs en el modelo DEA

elegido, obtenemos las “eficiencias peores” de las n DMUs, {EJP i

(EJP) min 6y

sujeto a:

Z)\j.’lﬁij + )\jOéZ% < 90(.’1%0 + Oéfg) 1=1,....m

j=1 (17.14)
Z)‘jyrj — N;BE > yro — 8L r=1,..,s

j=1

A >0 j=1,..,n

¢) Calculamos la eficiencia de la j-ésima DMU de forma favorable. Suponemos

los mmenores inputs para ella, xg — aiLj, y el resto se suponen ciertos,
Tk, Kk # j, mientras que se suponen los mmayores outpus para la unidad
analizada, y,; + ﬁg-, y los de las restantes se suponen ciertos y,x, k # j.
Al sustituir en el modelo DEA obtenemos las “eficiencias mejores” de las n

DMUs, {EM}7_;:

(EJM) min 6
sujeto a:

Z)\j.%‘ij - /\jOéil(J S Ho(xio — Oéllb) 1= 1, ..,
j=1 (17.15)

n
> Ny + X8R = yro + B r=1,..s
j=1
Aj >0 j=1,...,n
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Como veremos en la aplicacién a las ligas de futbol profesional, el resultado
serd que la eficiencia de DMU viene expresada por un intervalo

[Ef,E)], 1<j<n,

que, nos permite analizar las posibilidades de variabilidad en la eficiencia de cada
DMU. Ademas, por propia construccién, se verifica

) P M .
E; € [E;,E;"], 1<j<n.

5 Aplicacion a las ligas de fiitbol profesionales

Las caracteristicas basicas de la competicién futbolistica hacen que ésta pueda
ser analizada como como cualquier actividad productiva. S. Rottenberg utilizé
por primera vez el concepto de “funcién de produccién deportiva” en 1956 para
el béisbol [22], aunque la primera aportacién empirica, en 1974, se debe a G. W.
Scully [25]. A estos trabajos pioneros les sucedieron varios articulos centréndose
en diferentes deportes: el baloncesto [34, 24], el cricket [23], el futbol [29, 30], o
bien centrandose en la funcién de produccién y el estudio de la eficiencia: en el
rugby [5] o en la liga de futbol inglesa [6, 13].

Formalmente, el proceso productivo del fitbol puede describirse mediante una
funcién de produccién

Y:RF —= R",

cuyas funciones coordenadas Y;(X;), 1 <4 <n, 1 < j < k representan la
medida del output del fitbol para el equipo i-ésimo (normalmente el porcentaje
de puntos o victorias sobre el total, o el ratio o la diferencia entre goles marcados
y encajados) y X; es un vector de inputs.

La préctica habitual es aproximar los inputs que entran en la funcién de
producién con variables que miden las habilidades técnicas de los jugadores. De
esta forma, en la literatura se han utilizado diferentes métodos de estimacion:
tomar como unidad cada partido de futbol de una liga [5], o el agregado a lo
largo de una o varias ligas [13], que tienen en comin el tratar de cuantificar la
importancia relativa de cada uno de los inputs en la obtencién de los outputs y
la intencion de explicar la razén por la que difiere la productividad aparente de
cada uno de los equipos.

Para abordar este tipo de cuestiones suele analizarse si algunas de estas em-
presas tienen acceso a tecnologias méas avanzadas, y en este caso las estimaciones
de funciones de produccion suele realizarse a través de técnicas paramétricas que
permiten recuperar elasticidades output homogéneas para todas las empresas y
controlar las diferencias por las diferencias de nivelk entre las distintas funcio-
nes de produccion individuales, que s einterpretan como indicadores del nivel de
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desarrollo tecnoldgico de cada empresa. Sin embargo, cuando el acceso a la tec-
nologias es similar para todas las empresas, las diferencias en la productividad
vienen determinadas por la gestién de los recursos o la eciciencia con la que estos
son organizados. Esta posibilidad, conocida como niveles de eficiencia X, serd el
que mas interese en el caso del futbol, puesto que podemos suponer que todos los
equipos de las ligas profesionales tienen acceso a una tecnologia comun [14]. Por
esta razén se utilizard el andlisis envolvente de datos para analizar la eficiencia
de los equipos.

El anélisis de la eficiencia que vamos a realizar tiene en cuenta explicitamente
algunas caracteristicas importantes del proceso productivo del futbol. Uno de los
problemas mas relevantes en la interpretacién de los resultados que se derivan de
las estimaciones paramétricas de las funciones de produccion es que las medidas
del output utilizadas combinan la productividad ofensiva (producir goles) con
la eficiencia defensiva (evitar recibirlos). Como consecuencia de ello los inputs
utilizados en las estimaciones son una combinacién de indicadores de capacidad
ofensiva y defensiva de los equipos, por lo que los signos esperados son para algu-
nos inputs positivos, para otros negativos y para otros indeterminados. En una
estimacién de funciones de produccién estandar para empresas los inputs siempre
deben presentar un signo positivo, ya que o aniaden output a las empresas, con lo
que su correlacion con éste debe de ser positiva, o las empresas no los utilizarian.
Con los modelos DEA, donde puede haber varios outputs, este problema queda
resuelto y, de hecho, en el analisis de eficiencia se ha separado siempre la eficiencia
ofensiva de la defensiva.

Como en cualquier problema econémico en el que se analizan funciones o fron-
teras de produccién, lo deseable es contar con indicadores lo mas fiables posibles
del flujo de servicios que proporcionan los distintos factores productivos. En el
caso del futbol el unico factor productivo son los propios jugadores, que orga-
nizados por un entrenador disputan los partidos. En consecuencia, lo deseable
seria contar con indicadores precisos que midieran las habilidades concretas de los
distintos jugadores que forman las plantillas o, lo que es lo mismo con indicadores
del capital humano especifico para jugar al fitbol de cada jugador. Aunque en
algunos trabajos se ha utilizado informacién referida al coste econémico de los
jugadores para aproximar sus habilidades, ésta informacién es dificil de conseguir,
ademas de presentar serias dudas en su interpretacién.

En este trabajo hemos optado por incluir como inputs, indicadores técnicos
del futbol que entendemos ofrecen una buena aproximacion a la calidad de las
plantillas, a la estructura del equipo o al sistema de juego empleado. Dado que
ambos niveles (ofensivo/defensivo, casa/fuera) son relevantes se ha procedido a
seleccionar, dentro de la base de datos, aquellos inputs que estuvieran disponibles
para las dos competiciones ligueras y en todas las combinaciones de anélisis de la
eficiencia que pretendemos abordar: defensiva general (casa y fuera), defensiva en
casa, defensiva fuera, ofensiva general (casa y fuera), ofensiva en casa y ofensiva
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fuera. Los datos utilizados han sido facilitados de forma desinteresada por la em-
presa GECA Sport, que posee una de las bases de datos mas extensas disponibles
referidas al futbol espanol e italiano. Aunque en esta base de datos se recoge
una gran variedad de aspectos del juego, con amplia informacién desglosada en
muy diferentes categorias, nosotros sélo hemos utilizado una parte pequena que,
a nuestro juicio, permite analizar la eficiencia técnica de los clubes.

De esta forma se han seleccionado cuatro inputs ofensivos y cuatro defensivos
elegidos que presentan correlaciones positivas con los distintos outpus, si bien
en alglin caso concreto podria ser nula®. En cuanto a los outputs ofensivos y
defensivos, hemos seleccionado dos: los puntos y el niimero de goles. De esta forma
estamos recogiendo el hecho de que a los equipos se les exige ganar (maximizar
los puntos conseguidos), pero valorando que se consigan muchos goles’.

En la tabla siguiente detallamos los inputs y outputs que emplearemos en
nuestro estudio:

Tabla 1: Inputs y outputs seleccionados.

Ofensivos Defensivos
Inputs Remates realizados Remates recibidos
Jugadas de ataque Jugadas del contrario en area propia
Centros al area realizados Centros al area recibidos
Minutos de posesién Minutos de posesién
Outputs Puntos No puntos*
Goles marcados Goles encajados

* El nimero de no puntos se ha calculado como:

No puntos = 3 x num. partidos - puntos

6 Resultados computacionales

A pesar de que, hemos analizado las eficiencias defensivas (general, en casa
y fuera) y ofensivas (general, en casa y fuera) de las ligas 2000/2001, 2001/2002
y 2002/2003 para la ligas profesionales espanola e italiana, pensamos que, para

6Téngase en cuenta, por ejemplo, que aunque la correlacién entre los minutos de posesién
de balén del adversario y los puntos dejados de obtener es claramente positiva en el total de la
liga, la misma correlacién no es distinta de cero en casa, aunque si que es claramente positiva
fuera de casa.

7 Aunque en el mundo del fiitbol lo mas importante es ganar, los aficionados prefieren hacerlo
por la méxima diferencia de goles posible por al menos dos razones. La primera es que un partido
con muchos goles a favor es un espectdculo mejor valorado. La segunda es que en caso de empate
a puntos en la clasificacién entre dos equipos en ligas como la espanola queda por delante aquel
que tiene la mayor diferencia de goles a favor.
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evitar un exceso de resultados computacionales, en esta secciéon sélo presentaremos
los datos ofensivos y defensivos de la liga 2002/2003.

Para utilizar la metodologia propuesta en la seccion 4.3, hemos dividido ambas
ligas en tres grupos formados por los 5 equipos que encabezan la clasificacién
(Grupol), los del centro de la tabla (Grupo 2), 10 equipos en Espana y 8 en
Ttalia, y los 5 equipos del final de la tabla (Grupo 3). Analizando las variaciones
conjuntas de las dos ligas durante tres temporadas, hemos asignado las siguientes
tolerancias a los diferentes grupos:

Tabla 2: Tolerancias para los inputs y outputs.

Casa Fuera General
Inputs  Outputs Inputs Outputs Inputs QOutputs
Grupo 1 3 1.5 5 2.5 4 2
Grupo 2 5 2.5 7 3.5 6 3
Grupo 3 7 3.5 9 4.5 8 4

Nota: Los datos de la tablan expresan porcentajes.

Esto significa que si, por ejemplo, estamos analizando la eficiencia en casa,
todos los equipos que pertenecen al Grupo 1, verifican
afs =afl =0.03z;, B =pE =0.015y,;
siendo «; ¥ Br; los expresados en (17.11) y (17.12) respectivamente. Entonces,
segun se propone en el modelo de la seccién 4.3, para calcular las eficiencias mejor

y peor de la k-ésima DMU (que pertenece al Grupo 1) utilizamos las tolerancias
siguientes:

ER 0 sij#k A

OZP _ OLRv _ 003.%” Sl] =k L R _ 00].51'74‘7 Sl] =k
0 sij#k

dondeie {1,....m}yre{l,... s}

En las tablas 3 y 4 mostramos los resultados para los diferentes escenarios del
andlisis de la eficiencia ofensiva y en las tablas 5 y 6 los de la eficiencia defensiva.
El orden en el que aparecen los equipos aparece
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Tabla 3: Célculo de eficiencia ofensiva en la liga italiana 2002-2003.

EQUIPO Peor  Original Mejor | Peor Original Mejor | Peor Original Mejor
GENERAL CASA FUERA

Juventus FC 1,0000 11,0000 1,0000 | 1,0000 1,0000 1,0000 | 0,9407 1,0000 1,0000
Inter 1,0000 11,0000 1,0000 | 0,9528 0,9964 1,0000 | 1,0000 1,0000 1,0000
Milan AC 0,8214 10,8721 10,9249 | 0,9356 0,9790 1,0000 | 0,7601 0,8183 0,8830
SS Lazio 0,8805 10,9356 0,9931 | 0,8825 0,9225 0,9637 | 1,0000 1,0000 1,0000
AC Parma 0,9376 10,9961 1,0000 | 0,9271 0,9687 1,0000 | 0,8086 0,8724 0,9395
Udinese 0,9092 10,9970 11,0000 | 0,9357 11,0000 1,0000 | 0,7099 0,7920 0,8801
Chievo 0,9484 11,0000 1,0000 | 1,0000 1,0000 1,0000|0,7150 0,7957 0,8822
AC Roma 0,7987 10,8752 10,9563 | 0,8804 0,9499 11,0000 | 0,6339 0,7065 0,7844
Brescia 0,6519 10,7139 0,7797 | 0,6269 0,6750 0,7283| 0,6162 0,6857 0,7603
Perugia 0,6772 10,7416 0,8100 | 0,8050 0,8670 0,9352| 0,6185 0,6902 0,7660
Bologna 0,6624 0,7265 0,7946 | 0,7709 0,8317 0,8957 | 0,5435 0,6058 0,6727
Modena 0,6330 0,6940 0,7587 | 0,6444 0,6953 0,7487|0,5354 0,5936 0,6601
Empoli 0,6802 0,7457 0,8152 | 0,5903 0,6352 0,6857 | 0,7327 0,8169 0,9072
Atalanta 0,5759 10,6503 0,7308 | 0,5547 0,6171 0,6840| 0,6644 0,7603 0,8706
Reggina 0,6069 0,6853 0,7702 | 0,6863 0,7631 0,8456 | 0,3993 0,4593 0,5250
Piacenza 0,6957 0,7861 0,8841 | 0,7758 0,8624 0,9553 | 0,5082 0,5815 0,6658
Como 0,5110 0,5773 10,6490 | 0,6258 0,6964 0,7722| 0,3520 0,4036 0,4602
Torino 04544 05126 05757 | 04289 04767 0528105685 0,6544 0,7484

Tabla 4: Célculo de eficiencia ofensiva en la liga espanola 2002-2003.

EQUIPO Peor Original Mejor | Peor Original Mejor | Peor Original Mejor
GENERAL CASA FUERA
Real Madrid 1,0000 1,0000 1,0000] 1,0000 1,0000 1,0000| 1,0000 1,0000  1,0000

Real Sociedad 1,0000 1,0000 1,0000|1,0000 1,0000 1,0000| 0,9600 1,0000 1,0000
Dep. A Corufia | 0,9149 0,9721 1,0000( 0,9429 0,9876 1,0000| 0,9428 1,0000  1,0000
R. C. Celta Vigo | 0,8686 0,9229 0,9794| 0,8132 0,8514 10,8908 | 0,9345 1,0000  1,0000
Valencia C.F. 0,7589 10,8063 0,8557]|0,7094 10,7425 0,7767| 0,7773 0,8371  0,9030
F.C. Barcelona 0,7659 10,7985 0,8726]0,8435 0,9109 0,9821| 0,5975 0,6659 0,7394

Ath. Bilbao 0,8102 0,8447 0,9231]0,8109 0,8749 0,9422| 0,9884 1,0000 1,0000
Real Betis 0,7334 10,7646 0,83560,7798 0,8399 0,9058 | 0,7340 0,8155  0,9059
R.C.D. Mallorca | 0,7128 0,7431 0,8120| 0,6061 0,6526 0,7039 | 0,8164 0,9080  1,0000
Sevilla F.C. 0,7289 10,7600 0,8305]0,7883 0,8491 0,9159| 0,6209 0,6898  0,7637
Osasuna 0,6256 0,6522 0,7127]0,5601 0,6032 0,6507| 0,6369 0,7089  0,7861
Atl. de Madrid 0,5990 10,6245 0,6824]0,6127 0,6600 0,7117| 0,6199 0,6898 0,7649
Mélaga C.F. 0,6822 10,7112 0,7772|0,7665 0,8256 0,8904 | 0,5087 0,5642 0,6275
Real Valladolid | 0,6932 0,7227 0,7898| 0,7406 0,7977 0,8603| 0,5420 0,6017  0,6692
Villarreal 0,5908 0,6160 0,6731]0,6311 10,6797 0,7332| 0,6227 0,6930 0,7684
RacingSantander| 0,6843 0,7587 0,8536| 0,7545 10,8387 10,9290 | 0,7428 0,8509  0,9731
Espanyol 0,6590 10,7306 0,8219]0,7909 0,8803 0,9762| 0,5742 0,6589 0,7515
Recreat. Huelva | 0,5054 0,5603 0,6303| 0,5412 0,6021 0,6674| 0,4281 0,4929  0,5637
Dep. Alavés 05225 10,5953 0,6517]0,4822 10,5364 0,5945| 0,6447 0,7404 0,8451

Rayo Vallecano | 04585 0,5083 0,5719] 04545 0,5057 0,5607 | 04772 0,5497  0,6290
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Tabla 5: Célculo de eficiencia defensiva en la liga italiana 2002-2003.

EQUIPO Peor Original Mejor | Peor Original Mejor | Peor Original Mejor
GENERAL CASA FUERA

Juventus FC 1,0000 1,0000 1,0000 | 1,0000 1,0000 1,0000 | 1,0000 1,0000 1,0000
Inter 0,7059 10,7194 10,7347 | 0,7372 0,7480 0,7597 | 0,8012 0,8202 0,8423
Milan AC 1,0000 11,0000 1,0000 | 1,0000 1,0000 1,0000 | 0,9992 1,0000 1,0000
SS Lazio 0,7898 0,8049 10,8218 | 0,6268 0,6360 0,6462 | 0,8060 0,8251 0,8474
AC Parma 0,7378 0,7519 10,7679 | 0,6498 0,6593 0,6696 | 0,8464 0,8471 0,8700
Udinese 0,7589 0,7803 10,8059 | 0,8334 10,8532 0,8762| 0,6128 0,6327 10,6574
Chievo 0,6575 0,6760 0,6982 | 0,6647 0,6805 0,6989| 0,7011 0,7239 0,7521
AC Roma 0,6716 0,6905 0,7132 | 0,5395 0,5523 0,5672| 0,5773 0,5961 0,6194
Brescia 0,6634 0,6821 10,7045 | 0,6356 0,6507 0,6683|0,6737 0,6956 0,7227
Perugia 0,5332 10,5483 10,5663 | 0,7772 0,7957 10,8172 0,4393 0,4536 0,4713
Bologna 0,5170 10,5316 0,5490 | 0,4960 0,5078 0,5215| 0,4662 0,4814 0,5002
Modena 0,5115 0,5259 10,5432 | 0,5187 0,5310 0,5453 | 0,4336 0,4477 0,4652
Empoli 0,5039 0,5181 10,5351 | 0,4416 0,4521 0,4643|0,4715 0,4868 0,5058
Atalanta 0,4946 10,5128 10,5359 | 0,4253 10,4392 0,4563 | 0,4646 0,4836 0,5085
Reggina 0,4931 10,5113 10,5343 | 0,4839 0,4997 10,5192 0,3871 0,4029 0,4237
Piacenza 0,3873 10,4016 10,4197 | 0,3185 0,3289 0,3417|0,3778 10,3933 0,4136
Como 0,4274 10,4432 10,4631 | 0,3708 0,3829 0,3978| 0,3969 0,4132 0,4345
Torino 04100 04251 10,4443 10,3622 0,3740 0,3885| 0,3860 0,4018 0,4225

Tabla 6: Célculo de eficiencia defensiva en la liga espanola 2002-2003.

EQUIPO Peor Original Mejor | Peor Original Mejor | Peor Original Mejor
GENERAL CASA FUERA
Real Madrid 1,0000 1,0000 1,0000]0,9031 0,9162 0,9306| 1,0000 1,0000 1,0000

Real Sociedad 1,0000 1,0000 1,0000{1,0000 1,0000 1,0000| 1,0000 1,0000  1,0000
Dep. A Corufia | 0,8992 0,9165 0,9359| 0,9187 0,9321 0,9467| 0,9332 0,9554  0,9812
R. C. Celta Vigo | 0,9697 0,9883 1,0000f 0,9992 1,0000 1,0000| 0,8871 0,9082  0,9326

Valencia C.F. 1,0000 1,0000 1,0000{1,0000 1,0000 1,0000| 1,0000 1,0000 1,0000
F.C. Barcelona | 0,8035 0,8261 0,8533| 0,7042 0,7209 0,7403| 0,8620 0,8901  0,9247
Ath. Bilbao 0,6550 0,6735 0,6957]|0,8282 0,8478 0,8706| 0,6036 0,6233 0,6475
Real Betis 0,7423 10,7632 0,7883|0,9117 10,9333 0,9584| 0,7295 0,7533  0,7826
R.C.D. Mallorca | 0,6334 0,6514 0,6728]0,4858 0,4973 0,5107 | 0,7911 0,8169  0,8487
Sevilla F.C. 0,9058 0,9313 0,9619]0,7516 0,7694 0,7901| 1,0000 1,0000 1,0000
Osasuna 0,8748 0,8995 0,9291]0,6881 0,7044 0,7234| 0,8803 0,9090 0,9443
Atl. de Madrid 0,6951 0,7147 0,7382]| 0,6474 10,6628 0,6806| 0,6715 0,6934 0,7203
Malaga C.F. 0,7399 10,7607 0,7857|0,7382 10,7557 0,7760| 0,6939 0,7165 0,7444
Real Valladolid | 0,8715 0,8960 0,9255| 0,8661 0,8866 0,9104 | 0,8173 0,8440 0,8769
Villarreal 0,6982 0,7180 0,7415]0,7816 0,8002 0,8218| 0,6062 0,6259  0,6502
RacingSantander| 0,6073 0,6296 0,6580| 0,7766 0,8019 0,8331| 0,6050 0,6298  0,6623
Espanyol 0,6454 0,6691 0,6993| 0,6560 0,6774 0,7038| 0,5920 0,6163  0,6481
Recreat. Huelva | 0,5643 0,5851 0,6114| 0,6129 0,6329 0,6575| 0,5170 0,5382  0,5660
Dep. Alavés 0,5424 0,5623 0,5877]0,7371 0,7611 0,7907| 0,5659 0,5891  0,6195

Rayo Vallecano | 0,5807 0,6020 0,6292] 0,6577 0,6791 0,7055] 05200 05413  0,5693
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Nota: Las columnas Peor, Original y Mejor representan, respectivamente, los
modelos EJ}»D s EYy EJM descritos en la seccién 4.3.

Adema&s de conocer los scores de eficiencia de cada DMU, los intervalos ex-
presados en las tablas anteriores informan a los directivos de los equipos acerca
de la estabilidad del andlisis de eficiencia. Piénsese que, en un analisis de eficien-
cia clasico, hay ocasiones en las que una DMU considerada eficiente dejaria de
serlo con ligerfsimas modificaciones en algin input u output [17], y en este caso
las conclusiones que podrian extraerse en las ligas de futbol podria estar muy
distorsionada.

Por otro lado, el analisis de eficiencia por intervalos permite conocer si los equi-
pos han aprovechado de forma adecuada sus posibilidades. Analicemos, por ejem-
plo, el gréfico de los intervalos de eficiencia ofensiva general en la liga espanola.

La posicién del score original en el intervalo nos informa de si la utilizacién de
los recursos ha sido adecuada. En concreto, cuanto mas préximo esté del extremo
superior del intervalo, podemos interpretar que mas la utilizacion de recursos ha
sido mas adecuada.
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Fig. 1 Intervalos de eficiencia ofensiva general en la liga espafiola 2002/2003.
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7 Conclusiones

El uso de modelos DEA en los que se puedan utilizar datos inciertos permite
ampliar el espectro de aplicacién del andlisis envolvente de datos tradicional.
En nuestro caso, hemos utilizado como DMUs los equipos de las ligas de fitbol
profesional espanola e italiana. En la préactica, estos modelos presentan dos tipos
de ventajas frente a los tradicionales: ofrecen mayor informacién de los resultados
(desde el punto de vista interno y externo) y tienen en cuenta la estabilidad de
los mismos.

Desde el punto de vista interno, el célculo de eficiencias por intervalos permite
conocer el campo de variacién de su score de eficiencia frente a la mejora (em-
poramiento) de cada uno de los inputs y/o outputs. Este andlisis, denominado
“andlisis de incidencia” [3], permite conocer el efecto que provocan las variaciones
de cada uno de los diferentes elementos sobre el resultados final.

Este analisis de incidencia puede servir de guia u orientaciéon para el director
deportivo y/o entrenador del equipo para conocer qué acciones deben mejorar
(aumentar o reducir) para conseguir un aumento en los outputs (goles y puntos).

En cuanto a la informacién externa, este anélisis puede servir para estudiar
el efeco de otros factores que afectan a los resultados del equipo. Ahora bien, en
este caso necesitamos contar con un referente externo para los outputs (o inputs,
en su caso).
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Una de las aplicaciones en este sentido es analizar la influencia que las ac-
tuaciones arbitrales han podido tener sobre los resultados de los partidos, y por
tanto en el total de la liga.

En una publicacién periddica, con soporte electronico, ha dedicado una seccién:
http://www.as.com/lectorarbitra/ incluye la posibilidad de decantarse y votar
por el resulatdo de una determinada acciéon que puede suscitar diferentes inter-
pretaciones. Con estos resultados, que carecen de base cientifica para considerarse
objetivos, puede reconstruirse la serie de outputs de los diferentes equipos. Con
esta serie "externa” se calcula el score de eficiencia (ofensiva, por ejemplo) S° con
los inputs originales y se compara con el intervalo de eficiencia:

a) Si el score esté incluido en el intervalo, i. e. S° € [EF, EM]  entendemos
que el equipo no ha sido inflido por factores externos, y su eficiencia es
aceptable.

b) Si el score es mayor que la cota superior del intervalo, es decir S° > EM|
interpretamos que ha obtenido mejores resultados que los realmente conse-
guidos, por tanto, se trataria de un equipo que ha sido “beneficiado” por
decisiones externas.

c) Si el score es menor que la cota inferior del intervalo, es decir S° < EF,
interpretamos que el equipo ha sido “perjudicado” por decisiones externas.

Sin embargo, no hemos hecho referencia a los resultados computacionales en este
sentido porque, a nuestro juicio, esto no contribuiria mas que a suscitar polémicas
innecesarias.

Por tltimo, en cuanto a la estabilidad de los resultados de los modelos DEA el
uso de datos inciertos, que sustituyen un score tinico por un intervalo, nos informa
acerca de la y seguridad a los resultados obtendios, ya que un pequeno cambio en
los datos puede afectar de forma importante al resultado global.
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