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RESUMEN: En este trabajo se resuelve el problema de Programación por Metas cuando dichas metas adoptan 
una formulación fraccional lineal. La gran dificultad de este tipo de problemas radica en las restricciones no 
lineales que aparecen al resolver el correspondiente problema de programación asociado al problema de metas. 
Cuando existen soluciones alcanzando todas las metas, el problema es fácil de resolver a través de la resolución 
de un problema lineal asociado. En este trabajo nos centramos en el caso en el que no todas las metas se 
consiguen satisfacer. En dicho caso, encontramos la solución que más se acerca a los niveles de aspiración 
establecidos por el decisor desde todas las aproximaciones del problema de metas que se contemplan en la 
literatura: Ponderadas, Minimax y Lexicográficas.  Cada sección se termina con un análisis de sensibilidad de 
dichos niveles de aspiración. 
Palabras claves: Programación Matemática No Lineal, Programación Fraccional, Programación Multiobjetivo, 
Programación por Metas. 

 
ABSTRACT: This work deals with the resolution of the goal programming problem with linear fractional 
criteria. The main difficulty of these problems is the non-linear constraints of the mathematical programming 
models that have to be solved. When there exist solutions satisfying all target values, the problem is easy to 
solve by solving a linear problem. So, in this paper we deal with those instances where there is no guarantee 
such solutions exist, and therefore we look for those points in the opportunity set closest to the target values. 
This study has been done taking into account all the different approaches available for solving a goal 
programming problem, creating solution-search algorithms based on these approaches, and performing a 
sensitivity analysis of the target values. 
Keywords: Non Linear Programming, Fractional Programming, Multi-objective Programming, Goal 
programming. 
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1. Introduction 
 

The main interest in fractional programming was generated by the fact that a lot 
of optimization problems from engineering, natural resources and economics require the 
optimization of a ratio between physical and/or economic functions. Such problems, 
where the objective functions appear as a ratio or quotient of other functions, constitute a 
fractional programming problem. When these quotients have to verify certain target 
values, we would have a set of fractional goals. In goal programming (GP) problems it is 
assumed that the decision-maker gives up optimization while he/she establishes target 
values for each objective. When the levels are verified, the expectations or desires of the 
decision-maker are satisfied. In addition, the decision-maker usually sets a series of 
preferences regarding the objectives and orders them according to their relative 
importance.  

In GP problems, when the objectives are linear fractional functions, the 
formulation of the corresponding goal problem to be solved is rather complex due to its 
nonlinear constraints. The resolution of this type of problems by direct linearization is not 
feasible [1]. In [2], Hannan presents a characterization of the conditions for the linear 
problem such that it is equivalent to the original fractional problem. However, Soyster 
and Lev [3] argued that Hannan's result was erroneous by using a counterexample. These 
authors developed a test problem which, once solved, could be used to find out whether 
we are dealing with equivalent problems or not. See [4] for further information and 
references about this issue. After these studies, and with the exception of the work of 
Kornbluth and Steuer [5], there have been very few references of goal programming with 
fractional goals. Finally, Audet et al [6] have used global optimization techniques to 
solve this problem. 

In this paper, we propose solution algorithms for the goal programming problem 
where the goals take a linear fractional form under all goal programming formulations. 
Practical examples of fractional goal programming problems occur in many decision 
problems where the criteria are expressed as a ratio of two given functions such as 
profit/capital, cost/time, cost/volume, ouput/input, etc. Thus, this model has important 
applications in areas such as finance, transportation, information theory, forestry 
management, agricultural economics, education, resource allocation and others (see [7] 
and [8]). Recently, the fractional problem have appeared in environmental and natural 
resources problems ([9], [10], [11], among others). Previous work by Caballero and 
Hernández [12] shows that by using a simple linear test it is possible to determine 
beforehand the existence or absence of solutions that satisfy all the goals of the problem 
under study. Here we assume that not all goals can be satisfied and solve the linear 
fractional goal programming problem directly. Then we carry out a sensitivity analysis 
for the target values set by the decision-maker, that have been too constrictive.  

As said, in GP problems the decision-maker establishes target values for each 
objective. In general, the purpose of GP is to reach these target values as closest as 
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possible, minimizing the deviation between the target value and the level achieved for the 
corresponding attribute. The decision-maker’s preferences regarding the achievement of 
the targets may be incorporated in this scheme following different ways. Thus, there are 
several GP variants such as weighted GP, minmax GP and lexicographic GP, among 
others. Weighted GP implies a mathematical (cardinal) specification of weights for each 
goal and seeks for a solution that minimizes the weighted sum of all the unwanted 
deviation variables. The minmax GP approach minimizes the maximum deviation from 
the targets. Finally, Lexicographic GP involves a preemptive, ordinal weighting of goals 
that allocates them into priority levels and minimizes the unwanted deviation variables in 
a lexicographic order. Formally, weighted GP and minimax GP can be viewed as a 
particular case of lexicographic GP with a single priority level. Therefore, without loss of 
generality, we assume that we are dealing with the latter approach. A lexicographic GP 
problem can have a single goal or more within each priority level. This paper studies and 
solves the model generated in both instances. When there is more than one goal at a 
single priority level, we will take into account which approach (i.e. weighted or minimax) 
has been used to aggregate the goals of the level. When appropriate, a worked example is 
included in the section in order to assist the understanding of the algorithm. 

Thus, next section deals with the case of a single goal for a certain priority level. 
Following sections describe instances of more than one goal within a given priority level. 
In Section 3, we assume that goals were added using the weighted approach, and in 
Section 4 it is assumed that the minimax approach was the method chosen for adding 
goals in the level. Finally, we summarize the most significant conclusions of this work 
followed by the references. 

 
 

2. One goal per priority level 
We assume that our problem has p linear fractional objectives and a constraint 

set that is a convex polyhedron. Without loss of generality, we assume that the decision-
maker imposes a minimum target value for each objective. Thus, the unwanted deviation 
variables are the negative ones, that is, ni for i = 1, …, p. In the present section, we 
assume that, using the Lexicographic GP approach, the priority levels are imposed in 
such a way that in a given level s  there is only one goal, corresponding to the i-th 
objective. In this case, in level s, (where the index set of the goals in s will be denoted by 
Ns) the problem to be solved is as follows: 
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where A ∈ Mmxn(R) and b ∈ Rm.  
Let Xs = {x ∈ Rn / Ax ≤ b, x≥ 0, 11 −∈≥ sjjj N,...,Nju)x(g)x(f }, which 

includes the constraints (linear) that impose the satisfaction of goals in the previous 
levels; and  fj(x) = cj

tx + αj,  gj(x) = dj
tx + βj where cj, dj ∈ Rn, αj, βj ∈ R, j = 1, ..., p. In 

addition, we assume that gj(x), j = 1, ..., p are strictly positive for every x∈ X. Let us call 
p,...,j)x()x(g)x(f jjj 1==ϕ . 

 
It is clear that problem (1) is not easy to solve due to the non-linear constraint 

corresponding to the goal we are attempting to satisfy. Taking into account the following 
associated problem, 

 
 
 

                                  (2) 
 
 

 
Awerbuch et al in [1] showed that the solution of the linear problem (2) x* is not 

necessarily the solution of (1). However, in [12] it is shown that if the solution of (2) in 
the optimum is zero, then this point will be also the point solution of (1). In the other 
case, where the optimum of (2) is ni′* > 0, the following theorem determines the solution 
point of (1). 

 
Theorem 2.1. Let x** be the solution of the single-objective linear fractional problem 
 
 
 
If when solving (2) the solution is such that ni′* >  0, then (x**, ni**, 0) is the solution of 
(1) where ni** = ui− ϕi(x**). 
 

Proof.  
On the one hand, the constraints of (1) are verified by point (x**, ui − ϕi(x**), 0) 

because: 
 x** ∈ Xs   
 ϕi(x**) + (ui − ϕi(x**)) – 0 = ui.  
 By hypothesis, the goal is not verified in any point of Xs. Therefore it is not verified 

in x**, which means ϕi(x**) < ui. That is, ni** = ui − ϕi(x**) > 0. 
 Obviously pi** = 0 ≥ 0. 

On the other hand, this point also minimizes the value of ni among those that 
verify the constraints. By reductio ad absurdum, suppose (x*, ni*, pi*) is a solution of (1). 
According to our hypothesis and Theorem 1 in Caballero and Hernández [12], given that 
ni′* > 0, then also ni* > 0, that is, ui > ϕi(x*). Given that this point has to verify the 
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constraints of the problem, then necessarily ϕi(x*) + ni* − pi* = ui, where ni* > 0 and   
pi* ≥ 0, and therefore, pi* = 0. In other words ϕi(x*) + ni* = ui, which means that         
ni* = ui − ϕi(x*). 

 However, assuming that (x*, ni*, 0) is a solution of (1) would mean that           
ni* < ni**. That is, ui − ϕi(x*) < ui − ϕi(x**). This would mean that ϕi(x*) > ϕi(x**), 
where x** is the maximum of the function ϕi in Xs. This is a contradiction and thus point    
(x**, ni**, 0) is the solution of (1). � 

 
As said in the introduction, Soyster and Lev [3] designed a test problem that can 

be used to establish the equivalence between problems (1) and (2). If the optimal value of 
such a problem is zero, the equivalence between solutions for (1) and (2) is guaranteed. 
Using our notation, this test problem is as follows: 

“Let (x*, n′*, p′*) be the solution of (2) with n′* > 0. Then, if the optimal 
solution of the problem 

 max       fi( x ) − ϕi( x* ) gi ( x ) 
    s.t         x ∈ Xs 

is zero, then x* also solves (1).” 
 So, Theorem 1 is no more than a generalization of Soyster and Lev’ result 
because all this test problem does is to use the method of Dinkelbach [13] to verify 
whether  x* is or is not the solution of  
 

 
 
Once the goal programming problem has been solved, it makes sense to perform 

a sensitivity analysis of the target values which have been set. In this sense, the solution 
point of problem (1) itself offers the sensitivity analysis we are looking for and provides 
us with an interval within which we can be sure that there are points which satisfy the   i-
th goal. Indeed, if x** is the solution of (1), with ni** > 0, x** is the point of Xs that 
minimizes the unachievement of the goal and this minimum unachievement is precisely 
ni**. Therefore, the sensitivity interval is (−∞, ui − ni**]. Thus, given a target value for 
the goal i which is within the said interval, we can guarantee the existence of at least one 
point that will satisfy such a goal (satisfying previous levels). On the other hand, if the 
target value is out of the interval, we guarantee that the goal is not going to be satisfied. 

 
 

3. More than one goal per priority level. Weighted GP approach. 
In this section we will solve the following problem: 
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Where parameter λi represents the weight of each goal in the weighted GP 
approach. So these weights must verify that 1

1
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iλ , λi ≥ 0 i=1, …, k. 

In order to solve problem (3), we consider its associated linear problem  
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Similarly to the case of the previous section, if when solving (4) we obtain a 
solution such that 0'

1
* >∑

=

k

i
iinλ , in such a case there is not solution that satisfies all goals 

in such priority level and the value ∑
=

k

i
iin

1
*'λ  does not necessarily provide us with the 

minimum unachievement in Xs of the goals in the current priority level.  
Let us solve problem (3) directly, that is, we seek a feasible solution x∈ Xs which 

minimizes the weighted sum of deviations of the fractional criteria from their target 
values. Given an x ∈ Xs, for every i ∈ {1, ..., k},  when constraint fi(x) – gi(x) ui + n′i − p′i 
= 0 is verified, we have:   

 
• if (−ci + ui di)tx + (−αi + uiβi) > 0,  then n′i  = (−ci + ui di)tx + (−αi + uiβi)  
• if (−ci + ui di)tx + (−αi + uiβi) ≤ 0,  then n′i  = 0 

 
Given that ni = n′i / gi(x), then we can establish the following expressions of the 

variables ni in relation to x, for a given i within 1 and k: 
 
• if (−ci + ui di)tx + (−αi + uiβi) > 0, ni(x )= ((−ci + ui di)tx + (−αi + uiβi)) / (di

tx + βi)  (5)                              
• if (−ci + ui di)tx + (−αi + uiβi) ≤ 0,    ni(x) = 0 

 
In this way, to find the solution point of (3), we just have to minimize in Xs the 

weighted sum of expressions (5). However, in order to do this, we first have to establish 
the goals that can give rise to two different expressions of ni(x) within Xs. These goals are 
the ones that verify {x / ϕi(x) = ui} ∩ Xs ≠ ∅ and split the set Xs into two subtests: for one 
of them, ni(x) = 0; while for the other, ni(x) is given by expression (5). To locate those 
goals we propose solving for each i with 1 ≤  i ≤  k a GP problem with a single goal, 
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where the achievement function is h(ni, pi) = ni + pi, and then check whether the value of 
function h in the optimal solution is zero. Let us assume that out of the k goals in the 
current level, the first m goals fulfil such requirement, where m ≤ k.  

We consider a partition of Xs that includes all possible combinations of the 
constraints ϕi(x) ≥ ui on the one hand, and of ϕi(x) ≤ ui on the other for i = 1, ..., m. The 
constraints that have to be added to those existing in Xs to create the subsets of the 
partition are showed in Table 1: 

 
Table 1. Constraints to be added to Xs 

Subset Constraints to be added to the constraints of Xs 

Y1 ϕ1(x) ≥ u1, ϕ2 (x) ≥ u2, ϕ3 (x) ≥ u3, ..., ϕm (x) ≥ um 
Y2 ϕ1(x) ≤ u1, ϕ2 (x) ≥ u2, ϕ3 (x) ≥ u3, ..., ϕm (x) ≥ um 
. . . . . . 
Ym ϕ1(x) ≥ u1, ϕ2 (x) ≥ u2, ϕ3 (x) ≥ u3, ..., ϕm (x) ≤ um 

Ym+1 ϕ1(x) ≤ u1, ϕ2 (x) ≤ u2, ϕ3 (x) ≥ u3, ..., ϕm (x) ≥ um 
. . . . . . 
Y2m ϕ1(x) ≤ u1, ϕ2 (x) ≤ u2, ϕ3 (x) ≤ u3, ..., ϕm (x) ≤ um 

 

This partition of Xs is made up of, at most, 2m polyhedral subsets, where some of 
these subsets might be the empty set. To find the solution of (3), we propose to minimize 
the weighted sum of the corresponding expressions of ni(x) for each of these subsets. 

Therefore, the following 2m problems have to be solved, for each r from 1 to 2m: 
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where Ir = {i = 1, ..., k such that ϕi(x) ≤ ui in Yr} and λi is the weight corresponding to the 
i-th goal which we assume has already been normalized. 

Let us consider the optimal solution xr*, with a value in the objective function 
Or*, for r = 1, ..., 2m, and let 

mr 2,...,1
min
=

Or* = Or0*.Then xr0* is the optimal solution to the 

original goal programming problem (3). Thus, for solving (3), the following algorithm is 
suggested: 

 
Algorithm 3.1. 

 
• Step 1. Let {i = 1, ..., k / {ϕi(x) = ui} ∩ Xs ≠ ∅} = {1, …, m}. 
 
• Step 2. Make a partition of the set Xs into 2m subsets Yr as was described earlier. 

Let r = 1. 
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• Step 3. Given r, if Yr = ∅, go to step 4. 

If Yr ≠ ∅, using the algorithm in [14], solve the problem  
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where Ir = {i = 1, ..., k such that ϕi(x) ≤ ui in Yr}. 
Let xr* be its solution with a value of the objective function Or*. 

 
• Step 4.  If r = 2m, go to step 5. 

If r≠ 2m, let r = r + 1 and go back to Step 3. 
 

• Step 5.  Let J = {r = 1, ..., 2m / Yr ≠ ∅}. Calculate 
Jr

min
∈

Or* = O*. 
If Oi* =

Jr
min
∈

Or*, STOP: xi* is the solution of (3). 

 
Before carrying out the sensitivity analysis, note that if there was only one goal 

at this level, the previous process would give the same results as those described in 
Section 2. Indeed, in the case of a single goal per level, given that the goal has not being 
satisfied, the number m of possible goals to be satisfied is m = 0. This means that the 
partition for Xs is made by a single subset which is the actual Xs. Given that in Xs we have 
ϕi(x) ≤ ui, the expression of ni(x) is ni(x )= ((−ci + ui di)tx + (−αi + uiβi)) / (di

tx + βi), that 
is,  ni(x) = iiiiii uxxgxguxf +−=+− )()()()( ϕ . Given that ui is a constant, the point in 
Xs that minimizes this expression of ni(x) also maximizes the function ϕi(x) in Xs.  

Regarding the sensitivity analysis, let us assume that the solution of problem (3), 
found with the suggested algorithm, is (x*, n1*, ..., nk*, p1*, ..., pk*). Thus, and using 
similar reasoning to that used in the previous section, we reach the conclusion that, at 
least, we have to lower the target values to the corresponding value of ϕi(x*) for each       
i = 1, ..., k. This assertion is based on the fact that point x*, obtained as a solution to 
problem (3), is the point that minimizes the weighted sum of the unachievements of the 
goals established in this priority level.  
 Let us conclude this section with a worked example that tries to assist in the 
understanding of the solution algorithm. 
 
Example 3.1 

Assume a problem whose opportunity set is X = {(x1, x2) ∈ R2/ 
5,4,4 2121 ≥+≤≤ xxxx } and suppose that in the first priority level we have the 

following goals, all with the same weight: 
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So that the problem that has to be solved is the following: 
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After solving the linear problem associated with (6), the solution in the optimum 
is greater than zero, so we conclude that there are no points that satisfy all the goals.  

 

 
Figure 1. Figure of Example 3.1 problem 

 
So we have to apply the algorithm proposed in order to solve (6) directly. The 

first step is to identify which of the four goals could be satisfied in this level. Figure 1 
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clearly shows that only goals ϕ3(x)≥ -1 and ϕ4(x)≥ 1 satisfy this requirement, and 
therefore, m = 2.  
 Thus, we have to partition the set X into 4 subsets, such as shown in Figure 1: 

Y1 = {x ∈ X / ϕ3(x) ≥ -1, ϕ4(x)≥ 1 },  
Y2 = {x ∈ X / ϕ3(x) ≤ -1, ϕ4(x)≥ 1 } = ∅  
Y3 = {x ∈ X / ϕ3(x) ≥ -1, ϕ4(x)≤ 1 },  
Y4 = {x ∈ X / ϕ3(x) ≤ -1, ϕ4(x)≤ 1 }. 

 The following is to solve three optimisation problems, one for each non-empty 
subset of X. Because the two first goals cannot be satisfied in either of these four subsets, 
in all of them we have to consider that ϕ1(x) ≤ 1 and ϕ2(x) ≤ 1. 
Therefore, the first problem to solve is the following: 
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After applying the algorithm in [14], we find that its solution is x1* = (3, 4) 
where the value of the objective function is O1* = 2.5. 

The second problem to solve is 
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whose solution is x3* = (1, 4) with a value for the objective function of O3* = 1.91667. 
The third problem to solve is 
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whose solution is x4* = (2, 3) with a value for the objective function of O4* = 2. 
 Therefore, taking O* = min {O1*, O3*, O4*} = O3* = 1.91667, the point that 
solves (6) is point x3* = (1, 4), since the weighted sum of deviations of the fractional 
criteria from their target values to the set X are minimized in this point. 

The values of the goals in this solution point are ϕ1(x*) = 0.75, ϕ2(x*) = 0, ϕ3(x*) 
= - 0.75, ϕ4(x*) =1/3 and therefore, the sensitivity analysis establishes that the target 
values of the first two goals have to be dropped at least to values u1’ = 0.75 and u2’ = 0 
and in the fourth goal to value u4’ = 1/3 in order to obtain points satisfying the goals in 
this level. We even can increase the target value for the third goal up to value u3’ = -0.75. 
We want to point out that those are the values that minimized the sum of the 
unachievements. In this case, this minimum sum of unachievement is O* = 1.91667. 
Although there are other ways of lowering the target values that lead to solutions 
satisfying the goals, these other ways imply a sum of deviations from the original target 
values greater than O*. 
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4. More than one goal per priority level. Minimax GP approach. 

In this section we suppose that the k goals in the current level s are added under 
the minimax approach. In this case the problem to solve is as follows: 
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As in previous cases, we associate a linear problem with the original problem 
which, once solved, will tell us whether there are any solutions that satisfy all the goals in 
that level or not. The linear problem is expressed as follows: 
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However, to solve (7) directly we should bear in mind that this problem is 
equivalent to  
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Given that for i = 1, …, k ϕi(x) are linear fractional functions and the ui values 
are previously given, the functions of this minimax problem are also linear fractional 
functions and therefore we are dealing with Generalized Fractional Programming. This 
problem has been widely studied in the literature and different algorithms are proposed to 
solve it. See, for example, the “Newmodm” algorithm [15].  

Next, we will carry out the sensitivity analysis. Once (7) has been solved, where 
x* is its solution, if x* is the unique solution, then the target values of the goals which 
have not been satisfied have to decrease to the value the goals take at this specific point. 

However, if x* is not the unique solution of (7), we have to continue with the 
analysis because there might be some objective functions for which it might be possible 
to establish target values higher than those reached in x* and still have points satisfying 
all the goals. For this case we propose an iterative algorithm that would lead us to the 
point where the unachievement of the goals at this level is minimized and so, provide us 
with the sensitivity analysis sought. In each iteration of this algorithm we take, from the 
goals not satisfied, those where the deviation variable d has reached its highest value d*. 
For these goals, (we assume that are the first m goals) we consider the following 
constraints: 

ϕi(x) = ui – d* = ϕi(x*)    i = 1, …,m 
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We add these to problem (7) as hard constraints, and eliminate the soft 
constraints corresponding to those goals. We continue with the process in this way until 
we either reach a unique solution for some of these problems or have finished improving 
all possible maximum values for the target values of the goals that have not been 
satisfied. 

The algorithm suggested is as follows: 
 

Algorithm 4.1 
 
• Step 1. Let k = 1; X1 = Xs and I1 = {1, ..., k}. 

 
• Step 2. Solve the linear fractional minimax problem using the Newmodm 

algorithm 

( )( )
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⎧ −

∈∈
)(maxmin xu iii

IiXx kk

ϕλ  

Let xk* be the solution point and θk* the value of the objective in xk*. 
 

• Step 3. Establish the following index set Jk, within Ik: 
Jk = { i ∈ Ik / θk* = ui – ϕi(xk*)}. 

Let Ik+1 = Ik \ Jk. 
 

• Step 4. If Ik+1 = ∅, STOP: xk* = x* is the point that minimizes the 
unachievement of the goals. 
If Ik+1 ≠ ∅, then let Xk+1 = Xk ∩ {x / ϕi(x) = ui – θk* / i ∈ Jk}. 
Let k = k + 1, and return to step 2. 
 
This is a fully convergent algorithm because in each iteration the set Ik becomes 

smaller because, given the actual construction of the value θk*, the index set Jk can never 
be an empty set. 

So, if x* is the point obtained after applying the algorithm, for i =1, …, k, let be 
u’i = ϕi(x*) if  ui > ϕi(x*), and u’i = ui if ui ≤ ϕi(x*). With these new target values, we 
make sure that the minimax GP problem corresponding to the current priority level s  has 
a solution that satisfies all the goals, given that at least point x* is one of them. However, 
with target values higher than u’i (for those goals where ui > ϕi(x*)) we guarantee the 
non-existence of points satisfying all the goals of the problem. This is ensured because x* 
is the point that minimizes the maximum unachievement of the goals established. 
Nevertheless, for target values such that ui ≤ ϕi(x*), we can assert that these target values 
could still be increased up to the value of ϕi(x*) and still be points that satisfy all the 
goals. 
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5. Conclusions 

In this work we have examined the goal programming (GP) problem from all 
possible perspectives when the objectives associated with the goals are linear fractional 
functions. 

We have carried out a comprehensive study and have derived algorithms capable 
of finding the points that solve the problem in a given priority level. We have explored all 
the possible cases, one goal per priority level and several goals per priority level. In this 
later case, the problem was also separately analysed for goals grouped according to the 
weighted GP approach or the minimax GP approach. In all the cases the non-linear 
problem derived has been solved. 

Once the linear fractional goal programming problem was solved for each case, 
we also carried out a sensitivity analysis of the target values set by the decision-maker. 
Thus, each section of the work includes relaxation values for the targets which guarantee 
the existence of solutions that satisfy all the goals in the current priority level.  
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