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ABSTRACT: In this paper we consider an extension of the classic division problem with claims: The
division problem with multiple references. Hinojosa et al. (2012) provide a solution for this type of pro-
blems. The aim of this work is to extend their results by proposing an algorithm that calculates allocations
based on these results. All computational details are provided in the paper.
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1. Introduction

This paper is focused on the division problems with claims. A division problem consists of dividing a

determined quantity among a group of agents according to certain “characteristics” or “references”

related to these agents.

The simplest case of these problems, and the most studied in the literature, is that in which

each agent is characterized by a single number or a single parameter which is the reference or

characteristic of the agent. This model is defined as “the classic division problem”. Such situations

are presented in a variety of real problems. Classic examples appear in the Babylonian Talmud

(see Aumann and Maschler, 1985) in a context of bankruptcy, where the amount to divide (this

amount is called the estate) is insufficient to satisfy the claims of creditors.

The classic division problem can be extended in order to represent and analyze more situations

in modern life in a more realistic way. The classic division problem is presented in which the

reference of each agent is multi-dimensional, and therefore, the agents involved in the problem are

now characterized by several parameters, instead of just one. In this paper these are referred to as

multiple references.

The following situation can be represented as a division model with multiple references: A

certain project can be carried out in several countries, but there is no certainty as to which country

will finally develop such a project. There are several multinational enterprises involved at different

levels in the development of the project. These enterprises have perfectly calculated their costs

of participation according to the candidate country where the project is developed. These costs

will vary depending on the country where the project is carried out, because the legal aspects are

vary per country and the infrastructures of the multinational enterprises also differ. These costs

determine the references. The project receives financial support from an international organism,

and the problem is to divide the costs among the participant enterprises.

The Talmud rule is one of the most prominent rules in classic division problems. This rule can
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be generalized to the division problem with multiple references. Hinojosa et al. (2012) used the

Theory of Cooperative Games in order to provide an extension of the Talmud rule in this more

general context. They define a single-valued rule for these problems, the nucleolus of the coalitional

game, which assigns the maximum value attained across the various references to each coalition.

An important aspect to consider is the computational complexity of solution concepts, based

on the game theory. In a cooperative game with n-players, the number of valuations of the cha-

racteristic function of the game grows exponentially with the number of players. Therefore any

algorithm for the computation of solutions, such as the core, the Shapley value or the nucleolus,

which requires the manipulation of data, will have to take this fact into account. In recent years,

the interest in computational complexity aspects has been growing (see, for example, Deng and

Papadimitriou (1994), Deng et al. (1997), or Granot et al. (1998)).

Our interest is focused on the computation of the nucleolus of the game proposed by Hinojosa

et al. (2012). Unfortunately, there exists no closed-form formula for the nucleolus solution; in the

literature the usual practice is to compute it an iterative manner by solving a series of linear

programs (see, for example, Maschler et al. (1979), Owen (1995)). Our proposal consists of an

algorithm which calculates the allocations that the nucleolus provides. This procedure also shows

the complete path of awards of the rule.

2. The classic division problem

An estate E ∈ R+ of an infinitely divisible resource, has to be divided between N = {1, . . . , n}

agents according to certain references, represented by the vector c = (c1, c2, . . . , cn), where ci ∈

R+ represents the reference or characteristic of the agent i ∈ N . A classic division problem is

represented by (N, c, E). Let CN be the class of these problems. When there are no possible

confusions the division problem is denoted as (c, E).

The same formal model arises in a variety of contexts, for example, inheritance problems

(O’Neill 1982), in taxation problems (Young 1988, 1990), in bankruptcy problems (Aumann and

Maschler, 1985) and in cost-sharing problems (Moulin, 1987).

The purpose of this model is to determine the amounts that the agents will receive so that the

total sum is the total amount to be distributed. Formally, an allocation for a problem (c, E) ∈ CN

is a vector x ∈ R
N
+ , which satisfies the efficiency requirement,

∑

i∈N xi = E. Each component, xi ,

represents the assigned amount for the agent i in the division problem. Let X(E) ⊆ R
N
+ be the set

of all the allocations of the estate E. A division rule is a function R, that associates an allocation

R(c, E) ∈ X(E) with each division problem (c, E) ∈ CN . A good revision of the classic division

rules can be seen in Thomson (2003).

One division rule that has been widely studied, in the case of bankruptcy problems, is the

Talmud rule (Aumann and Maschler, 1985). Suppose that c1 ≤ c2 ≤ . . . ≤ cn are the claims for an

estate E and that
∑n

i=1 ci ≥ E. For each division problem (c, E) ∈ CN , the Talmud rule assigns

to each agent i ∈ N ,

Ti(c, E) =

{

min
{

ci

2 , λ
}

if E ≤
∑

i∈N
ci

2

ci − min
{

ci

2 , λ
}

otherwise,

where λ ∈ R+ is such that
∑

i∈N Ti(c, E) = E is satisfied.

When the agents adopt cooperation agreements, a valid tool to study the division problems

is the Theory of Cooperative Games. A cooperative game is represented by a pair (N, v) where

N = {1, 2, . . . , n} is the set of agents or players, v is a function defined in the set of coalitions

(subset of N), with values in R, and v(∅) = 0. The value v(S), S ⊆ N , is a measure of what a
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coalition can obtain by itself, without the cooperation of the players in N \ S. In a cooperative

game, (N, v), it is often assumed that all the players decide to work together, whereby a grand

coalition N is formed. The central problem is to find a “fair” distribution of the total value v(N)

among the individual players i ∈ N .

A classic division problem can be associated with a cooperative game in different ways. The

most widely used way to do it, given in the literature was introduced by O’Neill in 1982. O’Neill

associates a cooperative game with the division problem (c, E) ∈ CN , denoted by (N, v(c,E)). This

game is defined as follows:

v(c,E)(S) = max

{

E −
∑

i/∈S

ci, 0

}

, ∀S ⊂ N.

The value v(c,E)(S) is a pessimistic valuation of what the coalition S can arrive at, since the first

values assigned to the agents which do not belong to S, determine its reference and if an amount

remains to be divided, E, it would be the amount that coalition S could have guaranteed. Note

that, in O’Neill’s game, the value of the grand coalition coincides with the total amount to divide

E (v(c,E)(N) = E). In what follows, v will be denoted instead of v(c,E), to simplify presentation.

An allocation for this game is a vector, x ∈ R
n
+, such that

∑

i∈N xi = v(N), where xi represents

the awards or the payoff to player i. The sum x(S) =
∑

i∈S xi is the payoff of the coalition S.

I∗(N, v) is the set of allocations of the game.

A solution concept for cooperative games is a correspondence which associates each game with

a nonempty set of allocations of the game. In this paper the nucleolus is used (Schmeidler, 1969)

as a concept solution. A good revision can be found in Maschler (1992).

The nucleolus of the game (N, v) is defined as:

N(N, v) = {x ∈ I∗(N, v)|H2n−2(e(x, S1), e(x, S2), . . . , e(x, S2n−2)) ≤L

≤L H2n−2(e(y, S1), e(y, S2), . . . , e(y, S2n−2)), ∀y ∈ I∗(N, v)},

where e(x, S) = v(S) − x(S) measures the dissatisfaction of coalition S at x. H2n−2 : R
2n−2 −→

R
2n−2 is a correspondence which orders vectors of dimension 2n − 2 into decreasing order and ≤L

means “non-greater” with respect to lexicographical order. The convexity and compacity of the

set I∗(N, v), ensures that the nucleolus is a unique allocation (Owen, 1995).

In a bankruptcy context, the Talmud rule coincides with the nucleolus of the corresponding

cooperative game (Aumann and Maschler, 1985). Serrano (1995) shows that in surplus sharing

problems, when D =
∑n

i=1 ci < E, the nucleolus assigns each player i ∈ N the amount xi =

ci + E−D
n , thereby extending the Talmud rule, in these problems, which implies an equal split of

the contested amount, which in this case is the surplus.

In this paper these ideas are generalized by considering an extension of the classic division

problem to situations in which the characteristic of each agent is multidimensional, and therefore,

several vectors of references have to be taken into account in the division.

3. The division problem with multiple references

Consider a fixed finite set of issues M = {1, 2, . . . , m}, a division problem with multiple references,

is a terna (N, C, E) where N = {1, 2, . . . , n} is the set of agents, E ∈ R++ is the estate to be

allocated, and C ∈ R
N×M
+ is the matrix of references. 1

1
R (R+, R++) denotes the set of all (non-negative, positive) real numbers, and R

N (RN
+ , R

N
++) the Cartesian

product of |N | copies of R (R+, R++), where |N | denotes the cardinal of N .
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An element of matrix C is denoted by c
j
i . For each i ∈ N , the ith row of matrix C, ci ∈ R

M ,

represents the references of agent i with respect to the different issues. For each j ∈ M , the column

cj ∈ R
N represents the references of all the agents corresponding to the jth issue. Matrix C is also

denoted as (ci)i∈N or as (cj)j∈M . When there is no possible confusion, the division problem with

multiple references is denoted as (C, E).

The class of all division problems with multiple references associated with the set of agents N

and the set of issues M is denoted by DM
N .

An allocation for (C, E) ∈ DM
N is a vector x ∈ R

N
+ , which satisfies the efficiency requirement,

∑

i∈N xi = E. Let X(E) ⊆ R
N
+ be the set of all the allocations for the division problem with

multiple references, (C, E) ∈ DM
N .

A division rule over DM
N is a function, R, that associates a unique allocation R(C, E) ∈ X(E)

with each problem (C, E) ∈ DM
N .

In Hinojosa et al. (2012) a rule was proposed which provides a unique allocation for division

problems with multiple references, and which coincides with the nucleolus of the cooperative game

and considers the maximum surplus across the issues as a measure of the dissatisfaction. In Section

4 a procedure for the implementation of this rule is presented.

3.1. Talmud rule with multiple references

For each division problem with multiple references, (C, E) ∈ DM
N , |M | coalitional games,

(N, v
j
(C,E)), j ∈ M , can be defined by the procedure proposed by ONeill (1982). That is, for

each j ∈ M and for each S ⊆ N , then v
j
(C,E)(S) = max

{

E − cj(N \ S), 0
}

, where cj(N \ S) =
∑

i∈N\S c
j
i .

The division rule is based upon the differences between what the coalitions obtain with a certain

allocation and their values in the coalitional games defined above.

For each allocation, x ∈ X(E), and each coalition, S ⊆ N , the |M | surplus functions are

evj

(C,E)
(x, S) = v

j
(C,E)(S) − x(S), j ∈ M . These functions measure the dissatisfaction of coalition

S at x with respect to all the issues, and plays a central role in the definition of the division rule.

The goal is to select allocations that are better in a lexicographic sense. If a unique vector of

references is considered, then a lexicographical order among the allocations can be defined, and a

unique best outcome can be determined, the nucleolus. For the case of several vectors of references,

the maximum surplus across the issues is considered as a measure of the dissatisfaction of coalition

S at x ∈ X(E), that is,

e(C,E)(x, S) = maxj∈M {evj

(C,E)
(x, S)} = maxj∈M {vj

(C,E)(S)} − x(S).

For each x ∈ X(E), a (2N −2)-dimensional vector, π(C,E)(x), is constructed with the maximum

surplus, e(C,E)(x, S), S ⊂ N , arranged in decreasing order. Vector π(C,E)(x) is a vector-valued

measure of the performance of allocation x with respect to all the coalitions which take into

account all the issues.

It is said that vector π(x) is lexicographically better than vector π(y), and it is denoted as

π(x) <lex π(y), if πk(x) < πk(y) for the first component, k, in which vector π(x) and vector π(y)

are different. This binary relation defines a complete order and therefore, a division rule can be

defined in the class DM
N by selecting, for each (C, E) ∈ DM

N , the allocation which lexicographically

minimizes π(x) from among all the allocations x ∈ X(E).

Definition 1 For each division problem with multiple references, (C, E) ∈ DM
N , the multiple-

reference Talmudic rule, MT , is defined as MT (C, E) = arg lex-minx∈X(E) {π(C,E)(x)}, where

π(C,E)(x) is a vector whose components are the maximum surplus across issues, e(C,E)(x, S), S ⊂

N , arranged in decreasing order.
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Note that for each (C, E) ∈ DM
N , the outcomes provided by the MT rule coincide with

those obtained with the nucleolus of the coalitional game (N, vmax
(C,E)), where vmax

(C,E)(S) =

máxj∈M {vj
(C,E)(S)}. This result follows from the fact that e(C,E)(x, S) = evmax

(C,E)
(x, S) for each

x ∈ X(E) and each S ⊂ N .

In what follows, vmax is denoted instead of vmax
(C,E), and e(x, S) instead of evmax

(C,E)
(x, S) to simplify

presentation.

3.2. The path of awards of the rule

For each (C, E) ∈ DM
N , denote by c the vector whose components represent the minimum value

from among the references of each agent, ci = minj∈M{cj
i}, i ∈ N , and by c(N) =

∑n
i=1 ci.

Without any loss of generality, it is assumed that N = {1, 2, . . . , n} and c1 ≤ c2 ≤ . . . ≤ cn.

In Hinojosa et al. (2012) the path of awards2 of the rule is analyzed, by studying two possible

cases:

(a) The value of the estate is below the sum of the minimum references.

When the value of the estate does not exceed c(N), i. e., E ≤ c(N), then the MT rule

provides the same vector of awards as the Talmud rule for a classic division problem with

references equal to c.

(b) The value of the estate is above the sum of the minimum references.

If |N | = 2 and E > c(N) when applying the MT rule, then the difference E − c(N)

is allocated equally between the agents. As a consequence, for the two-agent case, the

outcomes obtained with this rule coincide with those obtained with the classic Talmud

rule with claims c. In Fig. 1. an example with two agents and two issues can be observed.

In case a), the path of awards of the MT rule is presented, when E ≤ c(N), and b), the

complete path of awards of MT is given.

When |N | ≥ 3 and E > c(N), then the path of awards of MT is piecewise linear, whereby

the last path is piecewise parallel to line x1 = x2 = . . . = xn. In other words, for each

matrix of references, the surplus above c(N) is distributed since proportionalities, which

continue changing up to a certain value for E from which any additional amount is assigned

in the same proportion among the agents.

4. Computational results

The computational complexity aspects of solution concepts in cooperative game theory have been

widely studied in the literature. In our case, our interest is focused on the nucleolus. On one hand,

some efficient3 algorithms have been developed for the implementation of the nucleolus in some

kinds of games, for instance in assignment games (Solymosi and Raghavan (1994)), in tree games

(Meggido, 1978), and in convex games (4) (Kuipers, 1996). On the other hand it has been proved

2The path of awards of the rule are all allocations that provides a rule for different amounts to be divided, E, and
for the reference vector, c.
3The size of a problem is the length of the encoding, i.e., the number of bits necessary to represent it. The running
time of an algorithm, t(ξ), is defined as the maximum (computation) time required to solve any problem with size
ξ. An algorithm is said to be polynomial or efficient if its running time t(ξ) is bounded by a polynomial in ξ.
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Fig. 1. The path of awards of MT .

that some problems are NP -hard4, for instance, for testing core membership5 (Faigle et al. 1997)

or computing the nucleolus of minimum cost spanning tree games (Faigle et al. 1998).

Our goal is the computation of the nucleolus of the game (N, vmax), which is not a convex

game, as can be seen in the example shown below.

Example 1Consider the division problem with multiple references with three agents, N = {1, 2, 3}
and two issues. The references are c1 = (3, 7, 10)t and c2 = (15, 9, 2)t. If we consider E = 9, then
the game (N, vmax) is the following:

Table 1. The Game (N, vmax).

S v1(S) v2(S) vmax(S) S v1(S) v2(S) vmax(S)

{1} 0 0 0 {1,2} 0 7 7
{2} 0 0 0 {1,3} 2 0 2
{3} 0 0 0 {2,3} 6 0 6

{1,2,3} 9 9 9

If S = {1, 2} and T = {2, 3} ,then the inequality vmax(S) + vmax(T ) ≤ vmax(S ∪ T ) + vmax(S ∩ T ) is
not satisfied, and the game is not convex.

The fact that game (N, vmax) is not convex, complicates the computation of the allocation MT rule
using an efficient algorithm. In general, no known algorithm computes the nucleolus either in polynomial
time or efficiently (see Potter et al. (1996)).

Kohlberg (1972) shows that it is possible to obtain the nucleolus by solving a single linear program.
However, this presents a very high number of constraints. Owen (1974) shows that this program can be
reduced to another more manageable size. On the other hand, in Maschler et al. (1979) the nucleolus is
obtained by the definition of the lexicographic centre of a cooperative game, that is iteratively solvedd as a
series of linear programs. More recently, Sankaran (1991) reduced this sequence of problems. In Leng and

4NP (non polynomial) problems are those for which no known algorithm is developed in polymonial time. A problem
is NP -hard when it can be demonstrated that it can develop in polynomial time, therefore all the NP problems
would also be polymonial.
5The core of the game (N, v) is defined as {x ∈ R

N
+ |

P

i∈N
xi = v(N),

P

i∈S
xi ≥ v(S), ∀S ⊆ N}.
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Parlar (2010) an analytical method is proposed for computing the nucleolus without iterative calculations
involving linear programs, although this is only valid for a game with a small number of players (for
n = 3). In Puerto (2011), in a similar way to Owen (1974), a method is presented which permits the
implementation of the nucleolus by solving a single linear program. The advantage of this method is that
constraint coefficients are -1, 0, 1.

As noted above, it is usual practice to compute the nucleolus by solving iteratively a series of linear
programs. In our case, this procedure has been adapted to obtain allocations which provide the MT rule
in a division problem with multiple references. The algorithm provides the nucleolus of game (N, vmax).

The maximum surplus, vmax(S)−x(S), of the different coalitions of agents with allocation x is denoted

as ǫ. This ǫ, will be the value to be minimized in the problem. Given that vmax(S) = max
j∈M

{vj(S)}, with

vj(S) = max
n

E − cj(N \ S), 0
o

, j ∈M , then in order to assign vj(S) as 0, when amount E − cj(N \ S)

is not positive, two binary variables aj
S and bj

S , ∀S ⊂ N, ∀ j ∈ M , are introduced into the algorithms,
which take value 0 or 1 depending on the case. A larger positive constant is denoted as K.

Given the division problem with multiple references (C,E) ∈ CM
N , then the algorithm to compute the

MT rule, is as follows:

Algorithm

Step 1: Solve the problem (P.1):

min ǫ

s.t : (E − cj(N\S))a
j
S − x(S) ≤ ǫ, ∀S ⊂ N, ∀ j ∈M

(E − cj(N\S)) − aj
SK < 0, ∀S ⊂ N, ∀ j ∈M

(E − cj(N\S)) + bj
SK ≥ 0, ∀S ⊂ N, ∀ j ∈M

aj
S + bj

S = 1 , ∀S ⊂ N, ∀ j ∈M
x(N) = E
xi ≥ 0 , i = 1, 2, . . . , n

aj
S , bj

S ∈ {0, 1}, ∀S ⊂ N, ∀ j ∈M

If the optimal solution is unique, then the procedure ends and this allocation is the MT rule. Otherwise,
the optimal value of the problem (P.1) is denoted as ǫ1, and the set of constraints that are active for any
optimal solution as τ1.
Step 2: Replace the active constraints obtained in Step 1 by equalities, and solve the following problem
(P.2):

min ǫ

s.t : (E − cj(N\S))aj
S − x(S) = ǫ1, ∀S ∈ τ1, ∀ j ∈M

(E − cj(N\S))aj
S − x(S) ≤ ǫ, ∀S /∈ τ1 , S ⊂ N, ∀ j ∈M

(E − cj(N\S))− aj
SK < 0, ∀S ⊂ N, ∀ j ∈M

(E − cj(N\S)) + bj
SK ≥ 0, ∀S ⊂ N, ∀ j ∈M

a
j
S + b

j
S = 1 , ∀S ⊂ N, ∀ j ∈M

x(N) = E
xi ≥ 0 , i = 1, 2, . . . , n

aj
S , bj

S ∈ {0, 1}, ∀S ⊂ N, ∀ j ∈M

If the optimal solution of the problem (P.2) is unique, then the procedure ends. Otherwise, the optimal
value of the problem (P.2) is denoted by ǫ2, and the set of constraints that are active for any optimal
solution by τ2.
· · · · · ·
If Step n− 1 is reached and the algorithm has failed to stop, then:

Step n: Denote by ǫn−1 the optimal value of the problem in Step n− 1. By changing active constraints of
the problem obtained in Step n− 1 into equalities with ǫ = ǫn−1, then the following linear program (P.n)
is obtained and solved:
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min ǫ

s.t : (E − cj(N\{S}))aj
S − x(S) = ǫ1, ∀S ∈ τ1, ∀ j ∈M

· · · · · · · · · · · · · · · · · ·

(E − cj(N\{S}))aj
S − x(S) = ǫn−1, ∀S ∈ τn−1, ∀ j ∈M

(E − cj(N\{S}))aj
S − x(S) ≤ ǫ, ∀S /∈ τ1 ∪ τ2 ∪ · · · ∪ τn−1, ∀S ⊂ N, ∀ j ∈M

(E − cj(N\{S})) − aj
SK < 0, ∀S ⊂ N, ∀ j ∈M

(E − cj(N\{S})) + bj
SK ≥ 0, ∀S ⊂ N, ∀ j ∈M

aj
S + bj

S = 1 , ∀S ⊂ N, ∀ j ∈M
x(N) = E
xi ≥ 0 , i = 1, 2, . . . , n

aj
S , bj

S ∈ {0, 1}, ∀S ⊂ N, ∀ j ∈M

If the optimal solution of problem (P.n) is unique, then the procedure ends, otherwise, the algorithm
continues analogously, saturating the active constraints in each level until a problem with a unique solution
is obtained.

In each step there is at least one active constraint which is replaced by equality. After n steps there
are at least n− 1 equality constraints of this kind, which, along with the efficiency constraint, x(N) = E,
uniquely determine one unique payoff vector x∗. Therefore the algorithm for at most n steps.

Remark 1 The justification for the direction of inequalities in certain constraints of the linear program,
defined in the proposed algorithm, is as follows:

• When the amount
“

E − cj(N \ S)
”

, ∀S ⊂ N, j ∈ M , is greater than or equal to zero, then the

dissatisfaction for coalition S with respect to x is
“

E − cj(N \ S)
”

− x(S), the variable aj
S , has

to value 1 (and therefore bj
S has to take value 0). For this to happen, the corresponding constraint

is of strict inequality (see for example, constraint number 2 in problem (P.1)).

• When the amount
“

E − cj(N \ S)
”

, ∀S ⊂ N, j ∈M , is strictly negative, then the dissatisfaction

for coalition S with respect to x is −x(S), and the variable aj
S has to equal 0, which is equivalent

to bj
S taking value 1. This is obtained by making the corresponding constraint greater than or equal

(see constraint number 3 in (P.1)).

The iterative procedure proposed here to obtain the nucleolus, presents certain difficulties. It requires
(in each iteration), identification of the set of constraints which are active for any optimal solution of the
problem, and furthermore, the number of constraints in each problem is exponential in n.

Our goal is to reflect the complete path of awards of the MT rule. To this end, the aforementioned
iterative procedure is applied, with the advantage that it will only be necessary to compute the nucleolus
for a reduced number of amounts to divide. As shown in Hinojosa et al. (2012), the path of awards of
the MT rule is continuous and piecewise linear. This advantage enables our propose procedure to obtain
such a path of awards by simply computing the nucleolus for certain amounts, those in which the path of
awards has a slope change. The remaining allocations of rule MT can be easily deduced by means of an
algebraic expression.

In order to construct the procedure which enables the allocations given by MT rule in any division
problem with multiple references, (C, E) ∈ CM

N , the analysis is used of the path of awards of the MT rule
indicated in Section 3.2. According to this analysis, when the amount to divide does not exceed c(N),
i.e. E ≤ c(N), then the MT rule provides the same vector allocations as the Talmud rule for a classic
division problem with references equal to c. However, when E > c(N), the behaviour of the rule changes
with respect to the scalar case, since the surplus is not divided equally among the agents. A procedure for
computing such allocations is proposed here.

The algorithm starts by computing the allocation of the MT rule to divide an amount equal to c(N).
In this case x0 = MT (C, E) = c. The procedure obtains a surplus of coalitions, e(x0, S) = vmax(S) −
x0(S) with respect to this allocation, x0. This surplus, for each coalition S ⊂ N , enables its level of

dissatisfaction, Lx
0

(S), at x0 to be obtained. For example, Lx
0

(S) = 1 indicates that coalition S ⊂ N is
the most dissatisfied (it has the largest e(x0, S)) at x0. We can say that such a coalition is in the first
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level of dissatisfaction. Lx
0

(S) = 2 means that coalition S ⊂ N , is the second most dissatisfied with
respect to x0, i.e. this coalition is in the second level of dissatisfaction, and so on. Note that there can
be more than one coalition with the same level of dissatisfaction. Coalitions which have the same level
of dissatisfaction with x0 are denoted as Sx

0

l . All coalitions in Sx
0

1 have the same level of dissatisfaction

and represent those groups with the maximum surplus at x0. All the coalitions in Sx
0

2 have the second

maximum surplus at x0, and so on. Individual coalitions of agents dissatisfied with x0, Fx
0

= {i ∈
N | e(x0, {i}) ≥ e(x0, {j}) ∀ j ∈ N}, are also computed. When the amount to divide is larger than E∗ =

max
n

c(N), maxi∈N minj∈M{c
j(N \ {i})}

o

and Fx
0

= N , then the algorithm ends and each increment

of the amount to be distributed is divided equally among the agents (see Hinojosa et al. (2012)). Otherwise,
if neither of the two conditions above is satisfied, then the algorithm computes the nucleolus (by applying

the iterative method previously proposed) for a new amount, Ex = Ex
0

+ ε. This allocation is denoted by
x = MT (C, E), and is applied to calculate increasing the proportion of the amount to be divided, which

is then assigned to each agent according to the MT rule. This is denoted as αx
0

, namely, αx
0

= x−x
0

ε .

Note that this n-dimensional vector verifies
Pn

i=1 αx
0

i = 1. Ax
0

is the maximum increment of the amount

to divide for which two coalitions with the same level of dissatisfaction in x0, maintain such a level. In the

interval of the amount to divide which ranges from Ex
0

to Ex
1

= Ex
0

+ Ax
0

, the proportion αx
0

remains
constant. Therefore, any allocation of the MT rule in this interval can easily be deducted, as follows: For

each Ex ≥ Ex
0

and each 0 < ε < ε′ < Ax
0

with Ex
′

= Ex + ε and Ex
′′

= Ex + ε′, if x′ = x + εαx
0

then x′′ = x + ε′αx
0

. In Ex
1

, the slope of the path of awards of the MT rule can change, and hence it is

necessary to recompute the nucleolus for the amount Ex = Ex
1

+ε. This allocation allows the computation

to be performed in an analogous way to that described above: αx
1

, Ax
1

, Lx
1

(S), Sx
1

l and Fx
1

. Note that
the set {x0 = c,x1,x2, . . .} includes the allocations in the path of awards of the MT rule where the slope

of this path of awards can change. The procedure ends when Fx
k

= N (for a certain k) and the amount
to divide is greater than E∗.

An algorithm to compute the complete path of awards of the MT rule is described below:

Algorithm

IF E ≤ c(N)
x = T (c, E)

ELSE
k ← 0
xk ← c

Ex
k

← c(N)

Fx
k

← F c

βx
k

← ( 1
n , 1

n , . . . , 1
n )t

E∗ ← max



c(N), max
i∈N

min
j∈M
{cj(N \ {i})}

ff

WHILE Ex
k

< E∗ or Fx
k

6= N DO

Compute αx
k

, Ax
k

, y = xk + Ax
k

αx
k

,

Ey = Ex
k

+ Ax
k

, Fy

βx
k

← αx
k

IF E ≤ Ey

x = xk + (E − Ex
k

)βx
k

ELSE
k← k + 1
xk ← y

Ex
k

← Ey

Fx
k

← Fy

END IF
END WHILE
x = xk + (E − Ex

k

)βx
k

END IF
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We have designed a computer program which implements the procedure that describes the complete
path of awards of the MT rule. This program is employed to obtain the complete path of awards of the
MT rule in Example 1. The results are shown in Fig. 2.

Fig. 2. Path of awards of the MT rule.

For three agents the path of awards of the MT rule can be represented graphically (see Fig. 3.).

Fig. 3. Path of awards of the MT rule.
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5. Conclusions

We have addressed the extension of the classic division problem with claims to situations in which the
agents involved are characterized by several parameters instead of by a single parameter. For this class of
problems the nucleolus is analyzed, and an algorithm to compute the allocation provided by the MT rule
in a division problem with multiple references is described. This algorithm has been used to obtain the
path of awards of the MT rule. This rule has a continuous, piecewise linear path of awards, and this allows
the procedure presented to calculate the nucleolus only in certain quantities: Those in which the path of
awards of the rule has a slope change. The remaining path of awards can easily be deduced through a
simple algebraic expression.
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