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RESUMEN: En las versiones clásicas del problema del material de corte, el objetivo es encontrar una solución para 

cortar un objeto principal en varias partes comúnmente llamadas piezas, para minimizar la pérdida total de recorte de la 

materia prima. Numerosos estudios han abordado este tipo de problema. Sin embargo, en las aplicaciones del mundo 

real, generalmente existen restricciones que hacen que la forma del problema sea diferente de la versión clásica y que 

sea más difícil de resolver. En este artículo se propone una técnica para resolver el problema del stock de corte 

unidimensional con dos objetivos, donde se busca minimizar al mismo tiempo la pérdida total de recorte de la materia 

prima y el número de setups a realizar. Esta técnica está constituida por dos etapas cuya primera consiste en generar 

todos los patrones de corte factibles y la segunda permite construir planos de corte, satisfaciendo las demandas, gracias 

a un subconjunto de estos patrones. Estos diferentes planes de corte representan todas las soluciones factibles, cada una 

de las cuales se caracteriza por un número de configuraciones y cantidad total de caídas 

Palabras Clave: pérdida de recorte, instalaciones, patrón de corte factible, plan de corte factible y un problema de 

stock de corte unidimensional con dos objetivos.. 

 

ABSTRACT: In the classic versions of the cutting stock problem, the aim is to find a solution to cut a main object into 

several parts commonly called pieces, in order to minimize the total trim loss of the raw material. Many studies have 

addressed this type of problem. However, in real-world applications there are usually constraints that make the 

problem shape different from the classic version and make it more difficult to solve. In this article we propose a 

technique to solve the one-dimensional cutting stock problem with two-objectives, where one seeks to minimize at the 

same time the total trim loss of the raw material and numbers of setups to be carried out. This technique is constituted 

of two stages whose first consists in generating all the feasible cutting patterns and the second allows to build cutting 

planes, satisfying the demands, thanks to a subset of these patterns. These different cutting plans represent all of the 

feasible solutions, each of which is characterized by a number of setups and total quantity of falls..  

Keywords: trim loss, setups, feasible cutting pattern, feasible cutting plan, cutting stock problem with two-objectives. 
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1.   Introduction 

     The cutting problem represents a family of problems studied in the domain of Operational Research. 

This problem appears in a large variety of sectors, such as those of the paper industry, aluminum and 

other metals, glass… etc. The study of these problems initially focused on the study of standard problems, 

while realistic solution approaches to cutting problems in practice do not only have to provide cutting 

plans, but also have to deal with other aspects and have to answer additional questions. One such aspect 

concerns the setups which may arise in industrial cutting processes whenever a new cutting pattern 

different from its predecessor is started and the cutting equipment has to be prepared in order to meet the 

technological requirements of the new pattern. Setups of this kind involve the trim loss of production time 

capacity and the consumption of resources. (Haessler, 1975) introduced a formulation of a one-

dimensional cutting stock problem with setup cost where he proposed a pattern generating heuristic 

algorithm called the sequential heuristic procedure (SHP), where a cutting plan is constructed sequentially 

by choosing such patterns that can be applied with high frequency and small trim loss, while Diegel et al, 

(1996) mentioned values for the cost of trim loss (c1) and cost of setup (c2) and they showed that there is 

a relationship between c1 and c2 depending on several factors such as: demand, due dates, labor costs… 

etc 

     Therefore, the optimization process is based on the presented model, polarizes on a particular type of 

solution which depends on c1 and c2. In this work, we will study the cutting stock problem with setup by 

the bi-objective approach, making it possible to obtain a set of efficient solutions which are not generally 

evaluated by a common scalar function. On the other hand, the one-dimensional cutting problem with 

setup cost expresses two contradictory objective functions, namely the total trim loss of the lost raw 

material, as well as the number of setups, which makes the use of the technique multi- objective to solve 

the problem more precise and more appropriate to reality.  

     For this purpose, we organize this paper as follows. In the next section, we will discuss some of the 

important work that has accompanied extensions of the cutting stock problem. Then we introduce the 

definition and the formulation of the one-dimensional cutting stock problem with cost of setup; also 

present some basic concepts of the multi-objective approach and also the definition and the formulation of 

multi-objective cutting stock problem with cost of setup. The fourth section is devoted to the resolution 

approach. In the fifth section we develop an algorithm to solve this problem. In the sixth section, we 

illustrate the proposed method with examples, and the last section concludes the paper. 

2.  Literature Review 

Cutting problems represent a fertile field of research both in terms of its applications and in terms of its 

resolution. However, the importance of the problem is even greater at the level of its extensions. This has 

prompted several researchers to undertake research on this problem. 

     Within the framework of single-objective optimization Gilmore and Gomory, (1961, 1963, 1965), 

between the years 1961 and 1965, used linear programming (LP) methods for solving the cutting stock 

problem (CSP) relying on the column generation technique to solve the industrial cutting problem, this 

method known from the modifications that were proposed by (Haessler,1980). Its modifications are based 

on controlling the generation of cutting patterns by using a more restrictive wording. (Farley, 1988), also 

proposed improvements of this approach aimed at adapting it to more practical situations. This adaptation 

is at the level of the generation of an initial solution. (Arbel, 1993) presented a large-scale optimization 

methods applied to the problem of cutting irregular shapes. Diegel et al (1996) have studied the 

configuration minimization conditions in the attitude trim loss problem.  (Suliman, 2001) developed a 

procedure for generating cutting patterns based on the creation of a search tree. Umetani et al, (2006) 

considered a one-dimensional cutting stock problem with a given number of setups, to minimize the 

number of stock rolls while constraining the number of different cutting patterns within a bound given by 

users. For this problem, they proposed a local search algorithm that alternately uses two types of local 

search processes with the 1-add neighborhood and the shift neighborhood, respectively. Delorme et. al, 
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(2015) reviewed the mathematical models and the exact algorithms developed in the last fifty years for 

one of the most famous combinatorial optimization problems, the cutting stock problem. They discussed 

the main approaches proposed in the literature, and they provided an experimental evaluation of the 

available software on different classes of benchmarks. 

Martinovic et al, (2018) considered the one-dimensional cutting stock problem which consists in 

determining the minimum number of given large stock rolls that has to be cut to satisfy the demands of 

certain smaller item lengths. They compared the proposed formulas with those in the literature from a 

theoretical and numerical point of view. Tanir et al, (2019) considered the one-dimensional cutting stock 

problem with divisible items, which arises in the steel industries. While planning the steel cutting 

operations, each item can be divided into smaller pieces, and then they can be recombined by welding. 

The objective is to minimize both the trim loss and the number of the welds. To achieve this they 

proposed a mathematical model for the problem is given and a dynamic programming based heuristic 

algorithm.  

     Within the framework of multi-objective optimization, the first work to appear in the literature was 

written by Kolen and Spieksma, (2000) on the multi-objective cutting stock problem with cost of setup. A 

few years later, Golfeto et al, (2009b) developed a symbiotic genetic algorithm applied to the multi-

objective cutting stock problem, to minimize the total trim loss and the number of setups. Salles-Neto et 

al, (2009) presented a study of the conditions for the weakly efficient solutions of the cutting stock 

problem with two-objectives, in which they considered the cost of trim loss and the cost of setup. Cui and 

Yang, (2010) considered three objectives: the total panel cost, the profit from the leftovers (the unused 

length of a panel is leftover once it is longer than a threshold) and the profit from the leftovers coming 

from past cutting operations. They proposed a two-stage heuristic algorithm: the first stage is a linear 

program that cuts the major part of the item demand whereas the second stage is a sequential heuristic 

that cuts the remaining item demand. Araujo et al, (2014) presented a genetic algorithm for the one-

dimensional cutting stock problem with setups, considering two conflicting objective functions: 

minimization of both the number of objects and the number of different cutting patterns used. They 

proposed a heuristic method based on the concepts of genetic algorithms to solve the problem. Cui et al, 

(2015) presented a pattern-set generation algorithm for the one-dimensional cutting stock problem with 

setup cost. Using an integer linear programming model to minimize the sum of material and setup costs 

over a given pattern set, and then describes a sequential grouping procedure to generate the patterns in the 

set.  

     Aliano et al, (2017) studied two objectives: the number of times a cutting pattern is used and the 

number of different cutting patterns. They aimed to generate all non dominated objective vectors and 

presented four procedures: the weighted sum method, the Chebyshev’s metric, the ε-Constraint method 

and an improved version of Chebyshev’s metric. Campello et al, (2020) presented a multi criteria study 

for the one dimensional integrated cutting stock and lot sizing problems arising in the paper industry. 

Their two objectives were minimizing total production costs, inventory costs of paper rolls and setup 

costs of machines and minimizing total material waste and inventory costs of items. They proposed two 

solution approaches: the weighting approach that minimizes the weighted sum of the objectives and an 휀-

constraint method where lot sizing related objective is minimized.  

3.  Mathematical modeling and methods  

Definition 1 We call a feasible cutting pattern a set of parts cut from an object and the position of each 

(of them) in the object. 

Definition 2 We call a feasible cutting plan a set of feasible cutting patterns to satisfy the different types 

of demand. 

3.1. Mathematical formulation of the one-dimensional cutting stock problem with setups cost 
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In this section, we describe the cutting stock problem with setups cost which was first introduced by 

(Haessler, 1975). Where we consider a problem which consists in cutting an object of size W into several 

parts called pieces of sizes wi < W , to satisfy n different sizes that we denote by di, i varying from 1 to n 

(demand vector), and each time we go from one cutting pattern to another, we change the position of the 

saws in the cutter, this fixing of the cutter often generates significant costs called setup, which we denote 

by c2. The number of times the cost c2 is incurred is equal to the number of cutting patterns used, i.e. the 

number of variables xj > 0. We introduce a boolean variable δ(xj)  equal to 1 when xj > 0 is equal to 0 

when xj = 0, where j = 1 … T. so by adding the term: c2∑ δ(xj)
T
j=1  to the total cost to be minimized, the 

cost function to be optimized is reduced to: 

 

           

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑠     𝑐1(𝑊 × ∑ 𝑥𝑗 − ∑ 𝑤𝑖𝑑𝑖
𝑛
𝑖=1

𝑇
𝑗=1 ) + 𝑐2∑ 𝛿(𝑥𝑗) 

𝑇
𝑗=1

𝑠. 𝑡. ∑ 𝑝𝑖𝑗𝑥𝑗
𝑇
𝑗=1 ≥ 𝑑𝑖        𝑖 = 1, … , 𝑛

𝑥𝑗 ∈ ℕ                   𝑗 = 1, … , 𝑇            

                                          (1)                                                                                                      

where c1 is the unit cost of trim loss, pij is the frequency of piece i in the cutting pattern j, di is the 

number of type i pieces requested, T is the number of cutting patterns, n is the number of different pieces 

sizes, xj is the number of times that the jth cutting pattern is used.  

3.2. Multi-objective optimization 

The following definitions are according to Ehrgott and Gandibleux, (2000). Multi-objective combinatorial 

optimization is part of the field of combinatorial optimization. The main specificity of multi-objective 

being the existence of several functions to be optimized, it is in particular necessary to revisit the notion 

of optimality of solutions. It can be defined by: 

 

                         
𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒  𝐹(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑛(𝑥))

𝑠. 𝑡.   𝑥 ∈ 𝐷.                                       
                                                         (2) 

Where n is the number of objectives (n ≥ 2), x =  (x1, x2… xk) is the vector representing the decision 

variables, each of the functions fi is to be optimized i = 1… n, i.e. to say to minimize or maximize and D 

represents the set of feasible solutions. The set ℝk which contains D is called a decision space. In the 

following, we suppose that all the objectives are to be minimized. The set ℝn which contains F is called 

the criteria space or the objective space. 

3.2.1. Concept of optimality in the sense of Pareto  

In order to compare the solutions in a multi-objective optimization problem, the concept of Pareto 

dominance is used. 

1. Given two vectors of criteria u, v ∈ F(D). We say that the decision vector u dominates the vector v 

(denoted u ≤ v) if and only if:  

 

∀ 𝑖 ∈ {1, 2, … , 𝑛},  𝑓𝑖(𝑢) ≤ 𝑓𝑖(𝑣) ∧ ∃ 𝑖 ∈ {1, 2, … , 𝑘}:  𝑓𝑖(𝑢) ≺ 𝑓𝑖(𝑣)  

 

(We say that u dominates v in the Pareto sense, means that F(u) is better than F(v) for all objectives, 

and there is at least one objective function for which F(u) is strictly better than F(v)). 

2. A solution x∗ ∈ D is an efficient solution if there is no x ∈ D such that F(x) dominates F(x∗). 

Conversely x∗ is inefficient. Therefore, a solution x∗is efficient if its criterion vector is not 

dominated by any criterion vector of another solution in D. That is, it is not possible to move in a 

feasible direction to decrease one of the objectives, without necessarily increasing at least one of the 

other objective values.  
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     The limiting efficiency is also known as Pareto optimal and the curve in the objective space formed     

by the non-dominated vectors which are in the Pareto optimal set is called the Pareto front. 

3.3. Mathematical formulation of the bi-objective cutting stock problem with setups  

Wäscher and Henn, (2013) showed that problem (1) can be replaced by a corresponding bi-objective 

optimization model, these results in a vector optimization model based on single stock size cutting stock 

problem inputs with setups. Whereas, the mathematical model of the two-objective cutting stock problem 

with setup, it will be as follows: 

 

Model Parameters 

 Let 

 W be the length of main object, 

 wi be the length of order piece i, (i = 1,…, n), 

 pij be the number of occurrences of the ith piece in the jth pattern, 

 

Decision variables 

Let 

 xj be the number of times the jth cutting pattern is used, j = 1,…, T, 

 

Objective functions 

We have two objective functions: 

 The total trim loss 

                         𝑀𝑖𝑛 (𝑓1(𝑥)) = 𝑀𝑖𝑛 (𝑊 × ∑ 𝑥𝑗 − ∑ 𝑤𝑖𝑑𝑖
𝑛
𝑖=1

𝑇
𝑗=1 )                                   (3)                                           

 number of setups 

                               𝑀𝑖𝑛 (𝑓2(𝑥)) = 𝑀𝑖𝑛(∑ 𝛿(𝑥𝑗)
𝑇
𝑗=1 )                                                           (4)                                                                                       

                                                           

Within the framework of these notifications, we can formulate a bi-objective model for the two-

dimensional cutting stock problem with setup cost described above, in the following form: 

 

          

𝑀𝑖𝑛 (𝑓1(𝑥)) = 𝑀𝑖𝑛 (𝑊 × ∑ 𝑥𝑗 −∑ 𝑤𝑖𝑑𝑖
𝑛
𝑖=1

𝑇
𝑗=1 )                                               

𝑀𝑖𝑛 (𝑓2(𝑥)) = 𝑀𝑖𝑛(∑ 𝛿(𝑥𝑗)
𝑇
𝑗=1 )                                                                           

 ∑ 𝑝𝑖𝑗𝑥𝑗
𝑇
𝑗=1 ≥ 𝑑𝑖        𝑖 = 1,… , 𝑛                                                                               

 𝑥𝑗 ∈ ℕ              𝑗 = 1,… , 𝑇                                                                                          

𝛿(𝑥𝑗) = {
1  𝑖𝑓 𝑥𝑗 > 0

0  𝑖𝑓 𝑥𝑗 = 0
                                                                                                

                                                                                              

    (5) 

3.4. Methods 

In this section, we present a technique for generating feasible cutting patterns, as well as the technique of 

building cutting plans to satisfy all the demands and also we propose a technique to solve the problem. 

3.4.1. Generation of feasible cutting patterns  

The idea of this heuristic developed here, is that after having arranged the lengths of the pieces types in 

descending order from the greatest length to the smallest length  (w1 > w2 > …> wn). At this stage, we 

calculate the number of times that the length of the first pieces type can be cut from the object length, 
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where we denote it by p11, and also calculate the number of times the length of the remaining piece types 

can be cut from the rest of the object length. Then, we go down p11 by 1, (that is to say, we put p21 =

 p11 − 1) and we cut the lengths of the rest of the pieces types from the object length. Where we keep 

shrinking p11 each time by 1, until there is no more pj1 where j ≥ 1 and in each we cut the lengths of the 

rest of the pieces types from the object length. Then, we fix pj1 in each of the values obtained, and for 

each value of pj1 we go down the number of times that the length of the second type of pieces has been 

cut from the object length (which means that we put pj1 in its first values and we start to lower the value 

of p12 each time by 1, where j ≥ 1) and calculating the number of times that can be cut for the remaining 

piece types from the object length in the same way as the first. This process is repeated for each part type 

length until i = n-1. Practically, we proceed as follows: 

 

1. Calculate p11 = ⌊
W

w1
⌋ where represents ⌊ ⌋ the whole lower part, 

2. For j = 1 and i varying from 2 to n, p1i = ⌊
W − ∑ p1𝑧×wz

i−1
z=1

wi
⌋, (Suliman., 2001), 

3. Decrease p11 by 1 (i.e. we put p21 = p11 − 1), 

4. For j = 2 and i varying from 2 to n, do p2i = ⌊
W − ∑ p2𝑧×wz

i−1
z=1

wi
⌋, 

5. Continue to decrease p11 each time by 1 and to calculate pji until the cancellation of p11 where 

j > 2 and i varying from j to n, 

6. The algorithm is updated by fixing pji where j ≥ 1 to the values found previously and the same 

operations are repeated with the length of the second type of parts, 

7. Repeat the same process for each part type length until i = n-1. 

 

In the end, we will have a matrix of size m × n where each of its lines is a cutting pattern that we denote 

by P and we call it the cutting matrix. 

                 

Algorithm 1.  Patterns generation algorithm 

                 

                Input: Standard Length, lengths of the part types, 

                Output: Feasible patterns, 

1. Arrange the lengths of parts requested, wi, i = 1, 2,…, n in descending order, i.e. (w1 > 

w2 > …> wn), where n is the number of parts requested, 

2. Calculate p11 = ⌊
W

w1
⌋, let be j = 1, for i = 2 to n do P1i = ⌊

W− ∑ p1z×wz
i−1
z=1

wi
⌋ ,         

3. let be  i = 1, h = 1, k = 1 

a) let be  j = 1, d = 1, 

b) if pji ˃ 0 then j = j + 1, l = 1, 

c) h = h + 1, 

d) if i = 1 then phi = pj−1,i − 1, 

                     For i := k + 1 to n do phi = ⌊
W− ∑ phz×wz  

i−1
z=1

wi
⌋, 

e) else for z := 1 to i-1 do phz = pj−1,z , 

                             For i := k do phi = pj−1,i − 1, 

                             For i: = k + 1 to n do phi =⌊
W− ∑ phz×wz  

i−1
z=1

wi
⌋, 

f) if phi ˃ 0 then let be  l = l + 1, d = d + 1 and go to (c) else go to (g), 

g) d = d + 1, 

h) if d < m, then go to (b) else if i < n − 1 then let be  i = i + 1, k = k + 1 and go to (a), 

else stop, 

4. Else let be j = j + 1, d = d + 1 and go to (b).  
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3.4.2. Cutting plans construction strategy 

In this section, we will show how to construct cutting plans and to justify this we present the following 

proposal. 

 

Proposition. Let P be a m ×n boolean matrix, w a column n-vector with strictly positive integer 

coordinates and a m-vector column is given by V = P × w. 

Let r, i, j, k and s be integers such that 1 ≤ r, i, j, k, s ≤ m with 𝑃𝑠
′ = 𝑃𝑖 + 𝑃𝑗 +⋯+ 𝑃𝑘 a sum of line 

vectors in the matrix P (respectively 𝑃𝑟  a line vector in the matrix P) and 𝑣𝑠
′ =  𝑣𝑖 + 𝑣𝑗 +⋯+ 𝑣𝑘, (∀ i ≠ j 

≠ k) a sum of components in the vector V corresponding to the vector   𝑃𝑠
′ (respectively vr a component in 

the vector V corresponding to the vector 𝑃𝑟), we have the following proposition: 𝑣𝑠
′ ≥ ∑ 𝑤𝑟

𝑛
𝑟=1 ⇔ 𝑃𝑠

′ ≥

(1,… , 1).  

Proof  

(i) If vs
′ ≥ ∑ wr

n
r=1  then  Ps

′ ≥ (1,… , 1), by opposite we have: if Ps
′ < (1,… , 1) then vs

′ < ∑ wr
n
r=1 . 

We multiply on the right the inequality Ps
′ < (1,… , 1) by the column vector w, therefore: 

 Ps
′ w < (1, … , 1)w ⇔  Ps

′ w < (w1 + w2 +⋯+wn )⇔ vs
′ < ∑ wr

n
r=1 . 

 

(ii) If  Ps
′  ≥ (1, … , 1), then vs

′ ≥ ∑ wr
n
r=1 . We have:  Ps

′  ≥ (1, … , 1) ⇔ Ps1
′  ≥ 1,  Ps2

′ ≥ 1,… ,  Psn
′ ≥

1. We multiply on the right each inequality of   Psi
′ ≥ 1 by wi where wi ∈ ℕ

∗and 1 ≤ i ≤ n, 

hence:   Ps1
′ w1 ≥ w1, … ,  Psn

′ wn ≥ wn ⇔  Ps1
′ w1+,… ,+ Psn

′ wn ≥ w1+,… ,+wn ⇔  Ps
′w ≥

∑ wr
n
r=1 ⇔ vs

′ ≥ ∑ wr
n
r=1 . □ 

     

     The process of building the cutting planes depends mainly on the cutting patterns that were generated 

by the previous algorithm, because each subset of these patterns satisfying the demands is considered as a 

cutting plane and to form these planes we code each feasible cutting pattern, where we assign the number 

1 to each component pij different from 0, and we assign the number 0 to each component pij equal to 0. 

We therefore form a coded cutting pattern; each of its values is either 0 or 1. Thus, a coded matrix is 

formed denoted by P′. Where, we multiply P′ by the sizes of the requested part types w, we get a column 

vector denoted by V, where V = ∑ ∑ prj
′ wj

n
j=1

m
r=1  and according to the previous proposition, we have for 

each sum of the components vs
′  = vi + vj +⋯+ vk, greater than or equal to ∑ wr

n
r=1  and Ps

′ = Pi
′ + Pj

′ +

⋯+ Pk
′  ≥ (1, … , 1), all the cutting patterns  Pi

′, Pj
′, Pk

′ corresponds to these components, forms a cutting 

plane (denoted by pdi) and thus, if there exists in vector V, a component vr greater than or equal to 

∑ wr
n
r=1 , and Pr

′  ≥ (1, … , 1) then the cutting pattern Pr
′ corresponds to this component forms a cutting 

plane and therefore each cutting plane with the smallest trims loss and a fixed number of setups, is an 

efficient solution. 

3.3.3. Problem solving 

Problem solving goes through two stages, the modeling stage and the resolution stage. 

 

Step 1. At this stage, we model how to calculate the sums of the components of vector V, that is, we 

model the vs
′ , where vs

′  = vi + vj +⋯+ vk, by a graph G = (X, U, C), where X : the set of vertices, U: the 

set of arcs, C: the evaluation of the arcs, in which, each component of the vector V represents by a vertex 

x of G and each sum of components xi + xj described by a arc u connect the vertex xi by the vertex xj, 

we also add a source vertex r join the vertices x of G which are located in front of the source vertex r. 

Then, we continue the modeling process as follows: 
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1. For j = 1 and i varying from 1 to m, let be xij = xi, 

2. For j varying from 1 to m-2 and i varying from m - j + 1 to 2 let be xi−1,j+1 = xij,  

3. j varying from 1 to m-1 and i varying from 1 to m - j we connect the vertices xij by the vertices 

xi+1,j,  

4. For j varying from 1 to m-2, i varying from 1 to m - j – 1 and z varying from i + 1 to m we 

connect the vertices xij by the vertices xz,j+1.  

 

Step 2. In this next step, we are researching a solution to the problem, which consists in finding the set of 

efficient solutions. In the graph that was formed from the modeling phase, we first start to initialize E =

{r}, E1j = Ø, (j = 1, 2…) and we fix c(I(u)) = 0 for each arc u at an initial end the vertex r. Then, we 

determine the vertices xij in X - E whose predecessors are in E, and we let be  Eij = Eij ∪ {xij}, as we 

calculate S(T(u)) = c(I(u)) + c(u). Now we do the test, if S(T(u)) ≥ ∑ wr
n
r=1  and Ps

′ = Pi
′ + Pj

′ +⋯+

Pk
′  ≥ (1, … , 1), where  Pi

′, Pj
′, Pk

′ the cutting patterns correspond to vi, vj, vk, then the cutting plane pdi 

corresponds to c(I(u)) = S(T(u)) is a feasible solution. In the next stage, we let be c(I(u)) = S(T(u))  

for the arcs which arec adjacent to the same vertex already defined as a predecessor. Then, we determine 

the vertices xij in X - E whose predecessors are in E. Let's repeat the same steps as the first stage. Where 

the calculation procedure is continued in the same way until we get very close (not improving the 

solution) or reach the theoretical value ∑ xj =
T
j=1  ⌈

∑ widi
n
i=1

W
⌉, where ⌈ ⌉ the upper integer part.  

            

Algorithm 2.  Cutting plan construction algorithm 

            

          Input: Feasible cutting patterns, 

          Output: Efficient solutions, 

1. Apply the patterns generation algorithm,  

2. Calculate the theoretical value:  ∑ Xj
T
j=1  = ⌈

∑ li×wi×di
n
i=1

W
⌉ ,  

a) If there are cutting patterns Pr where Pr ≥ (1,..., 1), then determine the corresponding 

cutting planes pdi and go to (b), else go to (3), 

b) Calculate xj = Max(⌈
di

pij
⌉), whrer ⌈

di

pij
⌉, the upper integer part of 

di

pij
  and Pij ≠ 0,  

c) Calculate the trims loss pti = W × ∑ xj −∑ wrdr
n
r=1

T
j=1 , 

d) Calculate Pt = Min(pti), and go to (3), 

3.     Code the feasible cutting patterns Pi as follows: Pij
′  = {

1  if  pij ≠ 0 

0 if  pij = 0
       

4.     Calculate V = ∑ ∑ prj
′ wj

n
j=1

m
r=1 ,   

5.     Let be  j = 1, for i := 1 to m do xij = xi, 

6.     For j := 1 to m-2 do 

                  For i : = m - j + 1 to 2 do xi−1,j+1 = xij, 

7.     For j := 1 to  m-1 do, 

                  For i : = 1 to m - j connect the vertex xij by the vertex xi+1,j, 

8.     For j := 1 to m - 2 do 

                  For i := 1 to m - j - 1 do 

                  For z : = i + 1 to m - j join xij by xz,j+1, 

9.     Let be  E = {r}, E1j = Ø, j = 1, 2…, c(I(u)) = 0 for each arc u at an initial end the vertex r, and 

       go to (10), 

10.  Determine the vertices xij in X - E whose predecessors are in E and let be  Eij = Eij ∪ {xij}, 

11.  Calculate S(T(u)) = c(I(u))  +  c(u), where u a terminal end arc(T) is the vertex xij, 
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a) If S(T(u)) ≥ ∑ wr
n
r=1  then determine the cutting patterns corresponding to the summits 

adding up S(T(u)) and go to (b), else go to (g ), 

b) If Ps
′ = Pi

′ + Pj
′ +⋯+ Pk

′  ≥ (1, … , 1), then determine the cutting plane pdi corresponds to 

the decoded patterns Pi, Pj, Pk, and go to steps (c), (d), (e) and (f) else go to (g), 

c) Calculate bij = ∑ piji≥1 , xj = Max(⌈
di

bij
⌉ ) where pij ≠ 0, and calculate xpdi=∑ xj

T
j=1 , 

d) If there are cutting plans for the same number of setups and the same xpdi , eliminate the 

redundant plans and go to (e), else go to (e), 

e) Calculate the trim loss: pti =  W × ∑ xj − ∑ wrdr
n
r=1

T
j=1 ,  

f) Calculate pt = Min (pti),  

g) Let be c(I(u)) = S(T(u)) for arcs which are adjacent to the same vertex already defined as 

a predecessor, 

h) If the number of arcs entering at a T(u) is greater than 1 then burst this end to the number of 

arcs entering at T(u), then let be c(I(u′)) =  S(T(u′)), c(Iˈ(u′′)) =  S(T(u′′)), …, and go to (i), 

else go to (i), 

i) Repeat E = E ∪ {xij}, and go to (10) until reaching or approaching the theoretical value of 

∑ Xj
T
j=1  = ⌈

∑ li×wi×di
n
i=1

W
⌉  j = 1, 2….  

 

3.4.4. Finiteness of the algorithm 

We check in this paragraph that the number of iterations is finite and the algorithm does not loop:  

 

(i) Cutting pattern generation algorithm: The idea in this step consists in calculating the frequency p11 

of the first part w1 on the main object W and each time decreased this frequency by 1 until the 

cancellation of p11 and calculate the other frequencies by p1i = ⌊
W− ∑ p1𝑧×wz

i−1
z=1

wi
⌋, the algorithm 

reiterated for each part until i = n-1. Indeed a considered part is not revisited a second time, so the 

algorithm does not loop and as the number of parts is finite then the number of iterations are finite, 

as shown in the following flowchart: 
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 Figure 1. Flowchart of the proposed algorithm 

z = 1 to i-1 do 

pji ˃ 0 

for j = 1, for i = 1 to n  do 

p1i = ⌊
W− ∑ p1𝑧×wz

i−1
z=1

wi
⌋ 

i = 1, h = 1, k = 1 

 
j =1, d =1 

 

i = k+1 to n do 

pih = p j-1,i - l 

i = k+1 to n do 

i = i +1 

1faire xij 

= xi 

phi ˃ 0 

j = j + 1,  l = 1 

h = h + 1 

 

   i = 1 phi = p j-1,i- l 

phi = ⌊
W− ∑ phz×wz

i−1
z=1

wi
⌋ 

phz  = p j-1, z 

i = k 

l  = l + 1 

d = d + 1 

d = d + 1  

d ˂ h 

i ˂ n -1 k = k + 1 

+1 

1faire xij 

= xi 

Stop 

1faire 

xij = 

xi 

j = j +1 

1faire 

xij = xi 

d = d +1 

1faire xij 

= xi 

p11 =⌊
W

w1
⌋ 

Start 
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(ii) Construction of the cutting planes, in this step the algorithm consists in adding the 

evaluations of the arcs of all the possible elementary paths in the graph G = (X, U, C), close 

to close, from the source vertex to where we can't develop the solution, in fact, only a vertex 

considered is visited only once, and since G is without circuit, therefore we do not loop in 

the algorithm, and as G with a finite number of vertices and arcs then the number of 

iterations is finite, as shown in the following flowchart: 

 

 

 

                                                                                                                                                                                                                                                                            

                                                       No    

             Yes  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Let be E = {r}, E1j = Ø, j = 1, 2… and c(I(u)) = 0 for each arc u at 

an initial end the vertex r,  

 

∃ Pr or Pr  ≥ (1, … , 1)  

Determine the corresponding pdi cutting planes 

Calculate xj = ⌈
di

pij
⌉, Pij  ≠ 0 where ⌈

di

pij
⌉ is the integer part of 

di

pij
 

corresponds 

Calculate pti = W × ∑ xj − ∑ wrdr
n
r=1

T
j=1  

corresponds 

Calculate Pt = Min(pti) 

Code the patterns Pi: Pij = {
1  if  pij ≠ 0 

0 if   pij = 0
 

 

Calculate  V = ∑ ∑ prjwj
n
j=1

m
r=1  

Let be j = 1, for i = 1 to m do xij = xi 

For j = 1 to m-2 do 

For i = m - j+1 to 2 do xi-1,j+1 = xij  

For j = 1 to m-1 do,  

For i = 1 to m - j connect the vertex xijfrom the vertex xi+1,j 

For j = 1 to m - 2 do 

For i = 1 to m – j – 1 do         

For z = i + 1 to m - j join xij by xz,j+1 

Calculate ∑ Xj
T
j=1  = ⌈

∑ li×wi×di
n
i=1

W
⌉ 
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Figure 2. Flowchart of the proposed algorithm 

Determine the vertices xij in X - E whose predecessors are in E and let be 

Eij = Eij∪{xij} 

S(T(u)) ≥ ∑ wr
n
r=1  

Ps
′ ≥ (1,… , 1) 

Determine the cutting patterns correspond to the summits adding 

S (T(u)) 

Determine the corresponding pdi cutting plane 

Calculate bij= ∑ piji≥1  , xj = Max(⌈
di

bij
⌉) where bij ≠ 0 and xpdi=∑ xj

T
j=1  

 

∃ of Pdi the same xpdi   

 

Eliminate redundant plans 

Calculate pti =  W × ∑ xj − ∑ wrdr
n
r=1

T
j=1  

Calculate Pt = Min (pti) 

Set c(I(ui)) = S(T(uj)) for the arcs which are adjacent to 

the same vertex already defined as a predecessor 

∃ a number of arcs 

entering at a T(u) > 1 

To burst I(ui) to card T(uj)) 

Let be E = E ∪{xij} 

∑ Xj
T
j=1  = ⌈

∑ li×wi×di
n
i=1

W
⌉    Stop 

Calculate  S(T(u)) = c(I(u)) + c(u), where u a terminal end arc is the vertex xij 

Let be  c(I(ui
′)) =  S(T(uj

′)), 

c(Iˈ(ui
′′)) =  S(T(uj

′′)), …, 
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3.4.5. Illustrative example.  

In this example we run the proposed algorithm. 

• W = 80, n = 3,  

• w = (w1, w2, w3) = (50, 40, 30),  

• d = (d1, d2, d3) = (4, 6, 11), 

1.  Calculate p11 = ⌊
80

50
⌋ = 1, Let be j = 1, for i = 2 to 3 do p12 = ⌊

W− ∑ p1z
1
z=1

w2
⌋ = ⌊

80 −1 ×50 

40
⌋ = 0    

p13 = ⌊
80 −1 ×50−0 ×40 

30
⌋ = 1, 

P = (1     0     1) 
2. Let be  i = 1, h =1, k =1, 

a) Let be  j =1, d =1,  

b) p11 =  1 ˃ 0  then  j := j +1, l =1, 

c) h = h + 1= 1 + 1 = 2, 

d) i = 1 then p21 =  p11 –  1 =  1 −  1 =  0, 

For i = 2 to 3 do p22 = ⌊
80 −0 ×50 

40
⌋ = 2 , p23 = ⌊

80 −0 ×50 −1 ×40 

30
⌋ = 1 , 

P = (
1     0     1
0     2     1

) 

e) p21 = 0 then go to (f), 

f) d = d  + 1 = 1 + 1 = 2, 

g) d = m = 2 

h) i = 1˂ n -1 = 2 then let be  i = i + 1= 2, k = k +1= 2, and go to (a), 

a) Let be  j = 1, d = 1, 

b) p12= 0,  

i) Let be  j = j +1= 2, d = d +1=2, 

b)   p22 = 2 ˃ 0 then j = j + 1= 3, l = 1, 

c)   h = h + 1= 2 + 1= 3, 

d)   For z = 1 to 1 do p31 = p21 = 0, 

      For i = k = 2 do p32 =  p22  − 1 =  2 –  1 =  1, 

      For i = 3 to 3 do p33 = ⌊
80 −0 ×50 −1 ×40 

30
⌋ = 1, 

         P = (
1     0     1
0     2     1
0     1     1

), 

e)   P32 = 1 ˃ 0, then let be l = l + 1= 2, d = d + 1 = 3 go to (c), 

c)   h = h + 1 = 4, 

d)  For z = 1 to 1 do p41 = p31 = 0, 

     For i = k = 2 do p42= p22 -2= 2 – 2= 0, 

     For i = 3 to 3 do p43 = ⌊
80 −0 ×50 −0 ×40 

30
⌋ = 2, 

         P = (

1     0     1
0     2     1
0     1     1
0     0     2

), 

        e)  P42 = 0, d = d + 1= 4, i = 2 = n -1, stop. 

               ∄ a cutting pattern Pr, (r = 1,…, 4) where Prj ≠ 0, (j = 1,…, 3), then go to (4), 

3. The theoretical value east ∑ Xj
T
j=1  = ⌈

770

80
⌉ = 10, 

4. The feasible cutting patterns coded are shown in the following matrix:  

 

P′ = (

1     0     1
0     1     1
0     1     1
0     0     1

) 
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5. The vector V = ∑ ∑ pij
′ wj

n
j=1

m
r=1 , presented in the following vector:  V = (

80
40
70
30

) 

            Be X = (x1, x2, x3, x4), U =  (u1, u2, u3  … ),  C = (80,  40, 70, 30) et m = cardinal (V) = 4. 

             j = 1, for i = 1 to 4 do x11 = x1, x21= x2, x31= x3, x41= x4,  

1. For j = 1 to 2, for i = 4 – j + 1 to 2 do  xi−1,j+1 = xij, 

j = 1, for i = 4 to 2 do x32 = x41, x22 = x31, x12 = x21,  

j = 2, for i = 3 to 2 do x23 = x32, x13 = x23,  

6. For j = 1 to 3, for i = 1 to  4 – j   connect the vertex xij by the vertex xi+1,j, 

For j = 1, for i = 1 to 3, connect x11 by x21, connect x21 by x31, connect x31 by x41 

For j = 2, for i = 1 to 2, connect x12 by x22, connect x22 by x32, 

For j = 3, for i = 1, connect x13 by x23, 

7. For j = 1 to 2, for i = 1 to 4 – j – 1, for  z = i + 1 to 4 - j  join xij by xz,j+1, 

j = 1, i = 1, for z = 2 to 3, join x11 by x22, join x11 by x32, 

j = 1, i = 2, for z = 3, join x21 by x32,  

j = 2, i = 1, for z = 2, join x12 by x23, 

 

 

                                                                                                 

   

 

 

 

   

 

 

Figure 3. Sum of vector components graph V 

E = {r}, E1j =  Ø, (j = 1… 3), c(I(u1)) =  0, c(I(u2)) =  0, c(I(u3)) =  0,  

1st iteration    

10. The vertex x11, x12, x13 are vertices in X – E whose predecessors are in E, Let be  E11 = {x11}, 

E12={x12}, E13={x13}, 

11. S(T(u1)) = c(I(u1)) + c(u1)) = 0 + 80 = 80 <  ∑ wr
3
r=1 , S(T(u2)) = c(I(u2)) + c(u2) = 0 + 40 <

  ∑ wr
3
r=1 , S(T(u3)) = c(I(u3))  +  c(u3)  =  0 +  30 =  30 < ∑ wr

3
r=1 ,  go to(c). 

c) Let be c(I(u4)) = S(T(u1)), c(I(u5)) = S(T(u1)), c(I(u9)) =  S(T(u1)), c(I(u6)) = S(T(u2)), 

               c(I(u7)) =  S(T(u2)), c(I(u8)) = S(T(u3)), and go to (d), 

       d)     Let be E = {r} ∪ {x11, x12, x13} = {r, x11, x12, x13} and go to (10),       

10.  The  vertex x21, x22, x23 are vertices in X – E whose predecessors are in E, Let be  E21 ={x11, 

x21}, E22 = {x12, x22}, E23 ={x13, x23}, 

x11 
c(u2) = 40 

x 12 

x 13 

c(u4) = 40 

 

c(u5) = 70 

 
c(u8) = 30 

 

c(u7) = 30 

 
c(u6) = 70 

 

c(u9) = 30 

 

x 23 

x21 

c(u10) = 70 

 

x22 

c(u11) = 30 

 

x 31 
c(u12) = 30 

 x32 c(u13) = 30 

 x 41

& 

r c(u1) = 80 c(u3) = 70 



Contribution to solving a one-dimensional cutting stock problem with two objectives based on the generation of cutting 

patterns 
15 

 
11. S(T(u4)) =  c(I(u4))   +  c(u4)   =  80 +  40 =  120, S(T(u5)) = c(I(u5))   +   c(u5)   =

80 +  70  =  150, S(T(u6)) = c(I(u6))  +  c(u6)  =  40  +  70  =  110, S(T(u7)) =

c(I(u7))   +  c(u7)   =  40 +  30 =  70, S(T(u8)) = c(I(u8))   +  c(u8)   =  70 +  30 =  100. 

a) S(T(u4)) ≥  ∑ wr
3
r=1 = 120  so the cutting patterns P1

′ = (1, 0, 1) et  P2
′ = (0, 1, 0)  corresponds to 

v1, v2, can be formed a cutting plane, go to (b), 

b) P1
′′ = P1

′ + P2
′
 = (1, 1, 1) ≥ (1, 1, 1) then the decoded cutting patterns P1, P2 forms a noted cutting 

plane  pd1  = {
P1 = (1, 0, 1)
P2 = (0, 2, 0)

 , 

a) S(T(u5)) ≥  ∑ wr
3
r=1 = 120  so the cutting patterns P1

′ = (1, 0, 1) and  P3
′ = (0, 1, 1), 

corresponds to v1, v3, can be formed a cutting plane, go to (b), 

b) P2
′′ = P1

′ + P3
′
 = (1, 1, 2) ≥ (1, 1, 1) then the decoded cutting patterns P1, P3 forms a noted 

cutting plane   Pd2 = {
P1 = (1, 0, 1)
P3 = (0, 1, 1)

,  and go to (c). 

c) xpd1  = {
Max ⌈

4

1
,
11

1
⌉ = 11  

Max ⌈
6

2
⌉ = 3

 , xpd2  = {
Max ⌈

4

1
,
11

2
⌉ = 6  

Max ⌈
6

1
,
11

2
⌉ = 6

,   

ptpd1= 80 × (11 + 3) – (4 × 50 + 6 ×40 + 11×30) = 3, 5 %, 

ptpd2= 80 × (6 + 6) – (4 × 50 + 6 ×40 + 11×30) = 1, 9 %, 

Pt = Min(ptpd1 , ptpd2) = 1. 9%, 

d) Let be c(I(u10)) = S(T(u4)), c(I(u9)) = S(T(u1)), c(I(u11)) = S(T(u4)), c(I(u12
′ )) =  S(T(u5)), 

c(I(u12
′′ )) =  S(T(u6)) and go to (e), 

e) Let be E = {x11, x12, x13} ∪{x21, x22, x23}={r, x11, x12, x13, x21, x22, x23} and go to (10), 

2nd iteration 

10. The  vertices x31, x32 are vertices in X – E whose predecessors are in E, E31 ={x11, x21, x31}, E32 

={x11 x21, x32},  E32
′  ={x11, x22, x32

′ }, E32
′′  ={x12, x22, x32

′′ }, 

11. S(T(u10)) = c(I(u10))  + c(u10)  =120 + 70  =190, S(T(u9))  = c(I(u9))  +  c(u9)  = 80 + 30  = 110, 

S(T(u11))  = c(I(u11)) + c(u11)  = 120  + 30  = 150, S(T(u12
′ )) = c(I(u12

′ )) + c(u12
′ )  = 150 + 40 = 

190, S(T(u12
′′ )) = c(I(u12

′′ )) + c(u12
′′ ) = 110 + 30 = 140. 

a) S(T(u10)) ≥  ∑ wr
3
r=1 = 120 so the cutting patterns P1

′ = (1, 0, 1),  P2
′ = (0, 1, 0) and P3

′ = (0, 1, 1), 

corresponds to v1, v2, v3, can be formed as a cutting plane, go to (b), 

b)  P3
′′ = P1

′ + P2
′
 + P3

′ = (1, 2, 2) ≥ (1, 1, 1) then the decoded cutting patterns  P1, P2 and P3, forms a 

noted cutting plane Pd3 = {

P1 = (1, 0, 1)

P2 = (0, 2, 0)

P3 = (0, 1, 1)
, 

a) S(T(u11)) ≥  ∑ wr
3
r=1 = 150, so cutting patterns  P1

′ = (1, 0, 1),  P2
′ = (0, 1, 0) and P4

′ = (0, 0, 1), 

corresponds to v1, v2, v4, can be formed a cutting plane, go to (b), 

b) P4
′′ = P1

′ + P2
′
 + P4

′
 = (1, 1, 2) ≥ (1, 1, 1) then the decoded cutting patterns  P1, P2 and P4, forms a 

noted cutting plane  Pd4 = {

P1 = (1, 0, 1)

P2 = (0, 2, 0)

P4 = (0, 0, 2)
 ,  

a) S(T(u12
′ )) ≥  ∑ wr

3
r=1 = 120 so cutting patterns  P1

′ = (1, 0, 1),  P3
′ = (0, 1, 1) and P4

′ = (0, 0, 1), 

corresponds to v1, v3, v4, can be formed a cutting plane, go to (b), 

b) P5
′′ = P1

′ + P3
′
 + P4

′
 = (1, 1, 3) ≥ (1, 1, 1) then the decoded cutting patterns  P1, P3 and P4, forms a 

noted cutting plane   Pd5 = {

P1 = (1, 0, 1)

P3 = (0, 1, 1)

P4 = (0, 0, 2 )
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a) S(T(u12
′′ ))  ≥  ∑ wr

3
r=1 = 120  so cutting patterns P2

′ = (0, 1, 0), P3
′ = (0, 1, 1) and P4

′ = (0, 0, 1) 

corresponds respectively to v2, v3, and v4, can be formed as a cutting plane, go to (b), 

b) P6
′′ = P2

′ + P3
′
 + P4

′
 = (P21

′  + P31
′

 + P41
′ , P22

′  + P32
′

 + P42
′ , P23

′ + P33
′

 + P43
′ ) = (0, 2, 1) ∃ P21

′  + P31
′

 + P41
′ = 

0,  then  ∄ pdi, go to (c), 

c) xpd3= 

{
 
 

 
 Max ⌈

4

1
,
11

2
⌉ = 6

 Max ⌈
6

3
⌉ = 2 

Max ⌈
6

3
,
11

2
⌉ = 6

 , xpd4  = 

{
 
 

 
 Max ⌈

4

1
,
11

3
⌉ = 4

 Max ⌈
6

2
⌉ = 3 

Max ⌈
11

3
⌉ = 4

, xpd5  = 

{
 
 

 
 Max ⌈

4

1
,
11

4
⌉ = 4

 Max ⌈
6

1
,
11

4
⌉ = 6 

Max ⌈
11

4
⌉ = 3

 

d) ptpd3= 80 × (6 + 6 + 2) – (7 × 50 + 11 ×40 + 4×30) = 3, 5 %, 

ptpd4= 80 × (4 + 3 + 4) – (4 × 50 + 6 ×40 + 11×30) = 1, 1 %, 

ptpd5= 80 × (4 + 6 + 3) – (7 × 50 + 11 ×40 + 4×30) = 2, 7 %, 

Pt = Min(ptpd3 , ptpd4 , ptpd5) = 1, 1 % .    

Stop because the value of ∑ Xj
3
j=1 = 4 + 3 + 4 = 11, is very close to the theoretical value in the sense of the 

integer number ∑ Xj
T
j=1  = 10, therefore is not improvement of solution. 

So the set of efficient solutions presented in the following table: 

Table 1. Set of efficient solutions 
 

No   of Solutions Efficient solutions Percent (%) of Trims loss Number of setups 

4.  Results and discussion 

4.1. Results 

In the first part of this section, we present the results obtained using our proposed method called 

construction of the cutting plan method noted by (CCPM) and compare them with some of the results 

found in the literature.  

     Where we first compare it with a technique for solving a one-dimensional single-objective cutting 

stock problem, we have chosen for this a work published by Pazand and Mohammadi, (2009) where they 

proposed an extension of Haessler's heuristic algorithm to solve a one-dimensional cutting stock problem 

with a cost of setups, (We noted it by EHH) and they treated real examples in the film industry (from our 

comparative study we use examples 1 and 2) by three different methods: 

1. Integer linear programming method of Gilmore and Gomory (ILP), 

2. Sequential heuristic method of Haessler (SHH), 

3. Hybrid method of Pazand and Mohammadi (EHH). 

     In the second part of this section, we will compare the CCPM technique to that of the genetic 

algorithm proposed by Araujo et al. (2014) to solve a one-dimensional bi-objective cutting stock problem 

with setups, where we select 30 instances out of 40 available in Umetani et al. (2003), as these examples 

are taken from a chemical fiber company in Japan. According to the following data: 

 Number of types of ordered items: n varies from 4 to 20, 

 Object length: W = 5180 for the first 15 instances and W = 9080 for the remaining 15 instances, 

 Item length: wi were randomly generated in the interval [500, 2000], 

1 Pd4 1.1 3 

2 Pd1 1.9 2 
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 Demand: di were randomly generated in the interval [2, 264] and they aggregated the demand di of 

the items that have the same length wi. Which is common in the literature (Lee, 2007), Golfeto et al. 

(2009b). 

     We present the data of the first example in Table 2, as for the results obtained by the three methods in 

Table 3, and the set of efficient solutions obtained using CCPM is presented in Table 4. And for example 

2, we present the data in Table 5. As for the results obtained by the three methods in Table 6 and the set 

of efficient solutions obtained using CCPM is presented in Table 7. 

Table 2. Required cutting lengths and demands 

n =13                                                            W = 6480 mm 

                                  i                    wi (mm)                 di (mm)                          i                 wi (mm)                 di (mm)    

                                  1                     1200                         14                               8                    720                          62                

                                  2                     1100                          8                                9                    680                          24 

                                  3                     1020                         22                              10                   600                          72 

                                  4                      960                          14                              11                   560                           8     

                                  5                      900                           8                               12                   510                         100        

                                  6                      850                           8                               13                   400                          12                        

                                  7                     760                           40 

 

Table 3. Results obtained by the three methods 

 Method                                    Percent (%) of Trims loss           Number of cutting patterns 

                                      ILP                                                              0                                                    11 

                                     SHH                                                           18.4                                                  6    

                                     EHH                                                           5.3                                                    6   

   

Table 4. Result obtained by our algorithm (CCPM) 

N° efficient solutions Percent (%) of Trims loss Number of  setups 

1 2.13 13 

2 2.86 12 

3 3.67 11 

4 4.52 10 

5 4.61 9 

6 5.24 8 

   7 6.73 7 

8 7.31 6 

9 8.46 5 

    

Table 5. Required cutting lengths and demands  

n =13                                                            W = 6480 mm 

                         i                  wi (mm)                 di (mm)                           i                wi (mm)                 di (mm)    

                         1                      510                         54                               8                     950                         12                

                         2                      600                         18                                9                   1020                        32 

                         3                      680                         61                               10                  1100                         30 

                         4                      720                         17                              11                   1140                         22     

                         5                      730                         33                              12                   1200                         32        

                         6                      760                         14                              13                   1356                         54                        

                         7                      900                         12 
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    Table 2 represents a vector of efficient solutions for an instance of size n = 13, for different part type 

lengths and different order sizes. The accuracy of the results obtained ranges from 8.46% total trim loss 

and 5 setups to 2.13% total trim loss and 13 setups, with an estimated execution time of less than one 

minute. However, compared to the results in Table 3, there are techniques used that gave a better result. 

     The results obtained by the three methods are shown in the following table: 

Table 6. Results obtained by the three methods 

Method Percent (%) of Trims loss Number of cutting patterns 

   

ILP 0.36 13 (one of them infeasible) 

SHH 6.62 8 

EHH 9.98 5 

 

Table 7. Result obtained by CCPM   

N° efficient solutions Percent (%) of Trims loss Number of  setups 

1 1.51 13 

2 1.90 12 

3 2.07 11 

4 3.61 10 

5 3.89 9 

6 4.02 8 

   7 4.21 7 

8 4.72 6 

9 
10 

5.01 
5.20 

5 
4 

 

     The results obtained by the proposed method by Araujo et al. (2014) named MOGA and our method 

named CCPM are shown in Table 8 for the object length W = 5180 and Table 9 for the object length W = 

9080.      

     The results obtained by CCPM in this example represent a range of efficient solutions ranging from 

5.20% trim loss of raw material with 4 numbers of setups to 1.51% of total trim loss with 13 numbers of 

setups. Comparison of these results with those given in Table 6 shows that CCPM dominates EHH 

because the latter provides an optimal solution of 9.98% wasted raw materials and 5 numbers of setups, 

while CCPM in 5 setups the total trim loss is 5.01%. Same for SHH, CCPM provides an efficient solution 

of 4.02% wasted raw materials with 8 setups, while SHH provides an optimal solution of 6.62% wasted 

raw materials at the same number of setups. As for ILP, it was better than CCPM as it provides a solution 

0.36% wasted raw materials with 13 setups, while CCPM with the same number of setups has wastage of 

1.51%. 

     Reading the results presented in Table 8, we can see our proposed method provided efficient solutions 

for each of the instance studied, so that each solution is characterized by a number of setups and a 

quantity of raw material waste of a reasonable execution time, where it did not exceed in most cases a 

minute. 

     Comparing these results is with those obtained by MOGA, where it was noted that CCPM is dominant 

in the majority of instances, for example, in instances of Fiber 06, Fiber 07, Fiber 09, Fiber 10, Fiber 13b, 

Fiber 17 and Fiber 28 and other. CCPM dominates MOGA, while the latter dominates in the solution of 

Fiber 08, Fiber 13a, and Fiber 19.  
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     In Table 9, the length of the main object has been increased while the lengths of the requested part 

types remain the same; we have observed that the CCPM has remained stable for this change, which 

means that it has provided solutions for all instances studied with the same efficiency. As for the 

comparison of results, it is similar to the one we saw in Table 8, where CCPM in many instances 

dominates MOGA. 

Table 8. Setup and percentage trim loss obtained by CCPM and MOGA, (W = 5180) 

Setup          MOGA          CCPM Setup      MOGA           CCPM Setup    MOGA          CCPM 

      Instance Fiber06  5180  

  7                                   1.413 

  6               2.09             1.829 

  5               8.27             2.557        

  4                                   3.365 

  3                                   5.632 

     Instance Fiber07  5180 

 10                                  1.263 

  9                                   1.784   

  8                                   2.152 

  7                                   2.836 

  6                                   3.062        

  5                                   3.475 

  4           4.98                 4.264             

  3           8.16                 6.113 

     Instance Fiber08  5180 

 10                                 2.045                                 

  9                                  2.468 

  8                                  2.731 

  7                                  4.012   

  6                                  4.472 

  5          3.26                 5.469        
  4          4.46                 7.582   

  3          6.86                 9.381        

  2                                 10.563 
       Instance Fiber09  5180 

  9                                  4.231 

  8                                  7.756    
  7       9.36                    9.067 

  6                                  9.978 

  5      11.28                  10.043 
  4                                 10.648 

  3                                 11.054   

  2                                 11.672 
     Instance Fiber10  5180 

  14                               1.543      

  13                               1.879 
  12                               2.432 

  11                               2.874 

  10                               3.061  
   9                               3.453 

   8                               3.976 

   7                               4.120 
   6        4.20                4.206 

   5        7.17                7.132 

   4       47.31              10.056 
   3                              15.216 

   2                              20.542       

       Instance Fiber14 5180 
  11                              1.054 

  10                              1.768 

   9                               3.546 
   8                               4.672 

   7                               6.453 

   6     5.45                   6.872 
   5                               8.590 

   4                               9.441 
   3                              11.632 

      Instance Fiber11  5180        

 12                                   1.575      

 11                                   2.123 

 10                                   3.857 

  9                                    4.379 

  8                                    4.937 

  7          2.98                   5.075    

  6          9.13                   6.654 

  5          12.20                 7.475 

  4          14.67                 8.536 

      Instance Fiber13a  5180 

 14                                  1.854 
 13                                  2.631 

 12                                  2.753 

 11                                  3.214 
 10                                  3.879 

  9        4.24                    5.625 

  8        6.06                    7.541   
  7       10.05                  10.638  

  6                                  11.057 

  5                                  12.631 
  4                                  13.542 

  3                                  16.564 

  2                                  21.076 

     Instance Fiber13b  5180 

 9                                    1.112      

 8                                    1.921 

 7                                    2.027 

 6       2.92                      2.671 

 5      10.26                     3.758   

 4                                    6.531 

 3                                    8.042 

 2                                   11.463 

     Instance Fiber18  5180 

 14     2.97                      2.113  
 13     4.03                      3.734 

 12    47.56                     5.316 

 11                                  7.472 
 10                                  8.521 

  9                                  10.346 

  8                                  10.965 
  7                                  11.678 

  6                                  14.054   

  5                                  14.732 
  4                                  17.125 

  3                                  17.543 

     Instance Fiber20  5180 

 16     3.96                      2.075 

 15     7.11                      3.326 

 14     32.31                    5.647   
 13     99.81                    5.874 

 12                                  6.366 

 11                                  8.529 
 10                                 10.321 

  9                                  11.654 

  8                                  13.426 
  7                                  16.563 

  5                                  17.454 

Instance Fiber19  5180 

 25                                   0.879 

 24                                   1.065 
 23                                   1.211                               

 22                                   1.645 

 21                                   1.936 
 20                                   2.043 

 19                                   2.227                                

 18                                   2.566 

 17                                   2.876   

 16                                   3.210 

 15                                   3.346 
 14                                   3.951 

 13                                   4.323 

 12                                   4.774 
 11                                   5.120                     

 10      5.77                      6.431 

  9       8.92                      9.057              
  8                                   10.546                                   

  7                                   13.472 

  6                                   22.551 
  5                                   29.475 

  4                                   36.328 

  3                                   41.547 

       Instance Fiber28b  5180 

 22            2.86                1.751 

 21            4.49                3.094    

 20            7.76                3.762 

 19            28.90               4.105    

 18                                    4.845 

 17                                    5.312 

 16                                    5.982 

 15                                    6.836   

 14                                    7.128 

 13                                    7.471 

 12                                    8.326 

 11                                    8.852       

 10                                    9.120                                    

  9                                    10.541 

  8                                    11.043   

  7                                    11.453 

  6                                    13.683 

  5                                    14.543 

      Instance Fiber17  5180 

 10     3.01                        2.322          

  9      5.30                        4.231 
  8      9.63                        8.766 

  7     44.62                       9.775  

  6                                    10.111                                 
  5                                    13.012 

  4                                    15.636 

      Instance Fiber23 5180 
  16    2.83                         1.021 

  15    4.26                         2.349 

  14                                    2.744 
  13                                    4.272 

  12                                    5.763 
  11                                    7.264 
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   2                              15.211   4                                  19.677 
  

 

  10                                    8.063 
   9                                    10.211  

   8                                    10.782 

   7                                    12.134 
   6                                    14.652 

   5                                    16.212 

   4                                    19.580 

 

Table 9. Setup and percentage trim loss obtained by CCPM and MOGA, (W = 9080)) 

Setup          MOGA          CCPM Setup      MOGA           CCPM Setup    MOGA         CCPM 

        Instance Fiber07  9080 

4              5.95                  1.763 

3                                       4.262                     
2            11.52                  5.647                                      

1                                       7.551 

        Instance Fiber08  9080 
 

4          1.03                     1.121  

3          3.13                     2.054 
2        19.97                     5.533 

1                                    10.324 

      Instance Fiber09  9080 
5       2.86                        1.768 

4                                      2.976 

3                                      4.421 
2                                      5.043 

1                                      7.665  

     Instance Fiber10  9080 
5      1.76                        1.421 

4      12.20                      2.443 

3                                     3.775 
2                                     5.543      

1                                     8.654   

   Instance Fiber11 9080  

 5     2.38                       1.057 

 4     5.07                       2.648 

 3    11.90                      2.975 

 2                                   4.073 

 1                                   7.751 

    Instance Fiber13a  9080 

 6    2.25                        1.843 

 5   44.25                       3.612 

 4                                   4.221 

 3                                   5.475      

 2                                   7.452 

 1                                 10.761 

   Instance Fiber13b 9080 

 5     3.08                       2.371 
 4     28.85                     3.542 

 3                                   7.683 

2                           12.631                                   
                                    38.654 

   Instance Fiber14b 9080 

7      5.62                      1.852            
6     16.94                     3.237   

5                                   3.875 

4                                   4.534 

3                                   6.352 

2                                  15.471 

    Instance Fiber15, 9080  

 6        1.31                   1.765 

 5        7.64                   3.878 
 4       13.97                  4.555 

 3                                  6.653 

 2                                  8.677 
 1                                 10.543 

    Instance Fiber16, 9080 

 13         2.95                1.574 

 12         7.24                2.745 

 11        93.04               3.231  

 10                               5.162 

  9                                5.874 

  8                                6.213 

  7                                7.532 

  6                                9.041 

  5                                9. 543                                

  4                               11.112 

  3                               15.653 

  2                               20.434 

      Instance Fiber17, 9080  

 12                                2.041 

 11      3.18                   2.767 

 10                                4.422 

  9      16.07                  6.321 

  8      71.96                   9.032 

  7                                  9.544 

  6                                11.999 

  5                                12.323 

  4                                14.655 

  3                                17.543 

  2                                20.765 

     Instance Fiber18, 9080 

 9        2.34                   1.058 

 8        4.20                   2.673                          

 7        6.06                   4.012 

 6        6.86                   4.831            

 5                                  5.063 

 4                                  6.561 

 3                                  7.842 

      
 

     Instance Fiber28b, 9080 

 19            2.42           2.202 

 18            5.23           3.743 

 17            23.50         5.372  

 16            32.54         6.865 

 15                              7.428 

 14                              7.881 

 13                              8.455 

 12                             10.463 

 11                             11.054   

 10                             11.658 

  9                              13.124 

  8                              13.461 

  7                              15.547 

  6                              16.934 

  5                              18.725 

       Instance Fiber26, 9080 

 15            1.00            1.074 
 14                               1.762 

 13            1.94            2.875 

 12            17.89          3.764   
11                                5.547 

 10                               9.056  

  9                                10.423 
  8                                13.522 

  7                                14.053 

  6                                14.346                                                                              
  5                                16.871 

  4                                18.346                                      
      Instance Fiber29, 9080 

 13         3.03                2.054 

 12                                3.021 
 11         5.89                3.213 

 10                                4.890 

  9                                 6.743 
  8                                 7.047 

  7                                 7.852   

  6                                 9.362                                    
  5                                10.541 

  4                                11.752 

  3                                16.445 
  2                                25.322     

 

 

4.2. Discussions    
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The algorithm proposed in this study have been tested on several real samples, either in instances, come 

from a chemical fiber company in Japan, or in film industry in different sizes using the Delphi program 

on a computer with the specifications following: Xeon® Silver 4110 machine (2.1 GHz/8 cores/11.00 

MB/85 W) Ram 16 GB, DDR4 2400T HDD 1 TB Sata DVD-RW Windows 10 Pro 64 bit. It has proven 

its effectiveness especially for the problems studied in this work where the execution time in most cases 

did not exceed one minute. 

     In this pilot study, we noted that CCPM is a competitive method because it provides a set of solutions 

that are generally better than single-criteria methods. Moreover, it often dominates compared to the bi-

objective method MOGA. 

5. Conclusions and future work 

The work presented in this article is based on the use of the multi-objective approach to solve a one-

dimensional cutting stock problem with setup cost; the problem therefore consists in minimizing two 

objective functions: the total trim loss of the material first and the number of setups. Under duress to 

satisfy the demand, this approach is different to the single-objective combinatorial optimization approach 

in different ways, for example the notion of an optimal solution resulting from a single evaluation of 

several costs of an objective function may not always be the best way to solve the problem especially if it 

is possible to evaluate each cost separately, as in the case of cutting stock problems when it comes to 

minimizing the total trim loss and the number of setups. Where the independent evaluation of each 

objective makes it possible to calculate a set of compromise solutions for which there is no other solution 

that is better on each of the objectives. As these solutions are called efficient solutions, this would make 

the study more realistic. For this we have presented a new method based on the generation of cutting 

patterns and the constriction of cutting planes to seek efficient solutions to this extension of the cutting 

stock problem. The experiments show that the proposed method often gives better results compared to the 

methods of the literature. At the end of this work, we emphasize that one future course of action is to 

adapt the proposed approach to the two-dimensional cutting stock problem. Additionally, supporting two-

step solutions can improve our approach and increase its efficiency. 
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