25
Metafísica y Persona. Filosofía, conocimiento y vida
Año 16, Núm. 31, Enero-Junio, 2024, ISSN: 2007-9699
On Sommersian Concept Analysis
Sobre el análisis sommersiano de conceptos

UPAEP Universidad, México
josemartin.castro@upaep.mx

In this contribution we explore in what sense Sommers’ tree theory, a novel philoso-
-






En esta contribución exploramos en qué sentido la teoría arborescente de Sommers,


-

-


Introduction
-
-

1



Metafísica y persona. Filosofía, conocimiento y vida
Año 16, Núm. 31, Enero-Junio, 2024, ISSN: 2007-9699
26

decade of development, its connection with philosophy became clearer.
2

discipline with cultural import insofar as it is able to assist our rational com-


         -

3


-

-

-




in The Concept of MindGedankenexperiment to

         -

4
-
            





In a seminal paper entitled The Ordinary Language Tree, Fred Sommers in-
 -

5
 

2


, Formal Concept Analysis as Mathematical Theory of Concepts and Concept Hierarchies, pp.

, Formal Concept Analysis...
4

5

27
On Sommersian Concept Analysis

-




1. Formal Concept Analysis
-

-

the superconcept. Formally, this can described with the aid of a formal con-

A formal context is a structure K = <G, M, I> where G and M are sets, and I
G x MG, and MGegenstände-
MerkmalegImg, m I
gm

X G and Y M :
X X
I
:= {m M |gIm for all g X}
Y Y
I
:= {g G |gIm for all m Y }
A, B
such that A G, B M, A = B
I
, and B = A
I
A and B are called the extent and
A, B-
A
1
, B
1
A
2
, B
2
⇐⇒ A
1
A
2
⇐⇒ B
1
B
2





-




Metafísica y persona. Filosofía, conocimiento y vida
Año 16, Núm. 31, Enero-Junio, 2024, ISSN: 2007-9699




     
Aristotle x x x
 x x x
Fred Sommers x x x
 x x x
 x x x
Edith Stein x x x
 x x x
 x x x

4. Smart
Aristotle, G. Ryle, F. Sommers, R. Wille, S. Weil, E. Stein, H. Arendt, S.
Kovalevskaya.
7. Male, Mathematician, Smart 9. Female, Mathematician, Smart
0. Male, Female, Mathematician, Philosopher, Smart
1. Male, Philosopher, Smart 6. Female, Philosopher, Smart
2. Male, Smart7. Mathematician, Smart
8. Female, Smart
5. Philosopher, Smart
R. Wille
S. Kovalevskaya Aristotle, G. Ryle, F. Sommers S. Weil, E. Stein, H. Arendt
Aristotle, G. Ryle, F. Sommers, R. WilleR. Wille, S. Kovalevskaya
S. Weil, E. Stein, H. Arendt,
S. Kovalevskaya
Aristotle, G. Ryle, F. Sommers, S. Weil,
E. Stein, H. Arendt
29
On Sommersian Concept Analysis
2. Sommers’ tree theory

6
in order to understand the structure of lan-
-

          

-



term is said to span such an individual.
For example, red spans Aristotle, a car or a wall, but it does not span num-
ber π
nonred spans
whatever red spans, and it fails to span whatever red fails to span: π can-
           T| to
indicate the absolute value of a term T, as in mathematics, |red| would be
either rednonred
red-


-




-



6
, Robust Reality: An Essay in Formal Ontology
Metafísica y persona. Filosofía, conocimiento y vida
Año 16, Núm. 31, Enero-Junio, 2024, ISSN: 2007-9699
30


connected terms.
-


would be transitivity: any two terms U-related to a third must be U-related to
per-
son and prime, both of which are U-related to interesting but are not U-related
to each other.
          




then at least one of them must be included in the other. As an example, sup-
B| and |C|, and the third
term, to which they are both U-related, is |A

Now let |D
terms, say |B|, but N-related to |AE|, that
is U-related to |D| but not to |A|:
-

-




31
On Sommersian Concept Analysis




red
the same type.



          
       


First, consider a bona de example:



         
-

-


Metafísica y persona. Filosofía, conocimiento y vida
Año 16, Núm. 31, Enero-Junio, 2024, ISSN: 2007-9699
32
3. Sommersian Concept Analysis
-
         

Example 1:




-
-

3. Interesting, Person, Theorem
2. Interesting
1. Interesting, Person
3. Interesting, Theorem
Sor Juana, Juan Orol,
Sor Juana, Juan Orol,
Binomial Theorem
33
On Sommersian Concept Analysis
Example 2:


to intension

Example 3:
2. Behavior, Person, Brain
3. Mass
0. Malice
1. Malice, Mass
Person, Brain
Behavior, Person
Person
Metafísica y persona. Filosofía, conocimiento y vida
Año 16, Núm. 31, Enero-Junio, 2024, ISSN: 2007-9699
34

with respect to extension

       
Male| and |FemaleMale| and |Fe-
male|, and |Philosopher| and |Mathematician    


Philosopher
1
| and |Philosopher
2

-
4. Smart
Aristotle, G. Ryle, F. Sommers, R. Wille, S. Weil, E. Stein, H. Arendt,
S. Kovalevskaya.
7. Male, Mathematician, Smart
9. Female, Mathematician, Smart
0. Male, Female, Mathematician, Philosopher, Smart
1. Male, Philosopher, Smart
6. Female, Philosopher, Smart
2. Male, Smart7. Mathematician, Smart 8. Female, Smart 5. Philosopher, Smart
R. Wille
S. Kovalevskaya
Aristotle, G. Ryle, F. Sommers
S. Weil, E. Stein, H. Arendt
Aristotle, G. Ryle, F. Sommers, R. Wille
R. Wille, S. Kovalevskaya
S. Weil, E. Stein, H. Arendt,
S. Kovalevskaya
Aristotle, G. Ryle, F. Sommers,
S. Weil, E. Stein, H. Arendt
35
On Sommersian Concept Analysis



Finally, consider another example:
Example 4:



-



ConjectureC  
T(C)
be the concept tree associated to C, then if T(C)C
has an Eulerian path.
4. Interesting
2. Old, Interesting
3. Old, Interesting, Theory 1. Human, Old, Interesting 5. Interesting, Even, Prime
0. Human, Old, Interesting, Theory, Prime
Aristotle, Frege, Relativity, Darwinism, 2, 3
Aristotle, Frege, Relativity, Darwinism
Relativity, Darwinism Aristotle, Frege
2, 3
Metafísica y persona. Filosofía, conocimiento y vida
Año 16, Núm. 31, Enero-Junio, 2024, ISSN: 2007-9699
36
          
desideratum

Concluding remarks
In this contribution we explored in what sense Sommers’ tree theory could

  -


meantime, let us reconsider our intuitions about predicables and concepts.
References
,  Medieval Logic: An Outline of Its Development from 1250 to c.
1400,
, On Metaphysics
, Bare Facts and Naked Truths: A New Correspondence Theory
of Truth
,  Robust Reality: An Essay in Formal Ontology,
, Der Auau der realen Welt: Grundriß der allgemeinen Katego-
rienlehre
  and ,  Substance Among Other Categories -

,  Time and Modes of Being
, I., Ontological Investigations: An Inquiry into the Categories of Nature,
Man and Society
, E.J., The Four-Category Ontology: A Metaphysical Foundation for Natural
Science
,  The Concept of Mind
Mind
,  Formal Concept Analysis as Mathematical Theory of Concepts and Con-
cept Hierarchies
, 
of concepts, in Ivan Rival, editor, Ordered Sets
