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RESUMEN: 

La complejidad y el proceso donde emergen nuevos 

fenómenos a partir de más básicos son nociones 

básicas para entender y mejorar el aprendizaje. Por 
un lado, con conceptos complejos los estudiantes se 

desconciertan y el aprendizaje se vuelve muy difícil. 

Por otro lado, los procesos en los que emergen 
nuevos fenómenos parecen ser mágicos o ilusiones 

cognitivas. Parecen basarse en cualidades 

adicionales que no están incluidas en los fenómenos 

subyacentes. ¿Puede el docente simplificar las 
nociones complejas sin cambiarlas? Para ello, 

argumentamos que la complejidad y el proceso de 

emerger no son exclusivamente inherentes a objetos 
o fenómenos. También dependen del sistema 

perceptivo, motor y cognitivo del estudiante. Así, si 

el profesor ayuda a conectar nociones y fenómenos 

con el conocimiento innato y corporizado de los 
estudiantes, entonces estas nociones se vuelven 

menos complejas y el fenómeno emergente pierde su 

magia: se conecta lógicamente con los fenómenos 
subyacentes. En este artículo presentamos evidencia 

empírica del efecto en la comprensión de los 

estudiantes debido a la conexión establecida en dos 
conceptos matemáticos centrales del currículo y que 

se consideran muy desafiantes. 

 
 

PALABRAS CLAVE: COMPLEJIDAD 

EFECTIVA, INFORMACIÓN, FENÓMENOS 

QUE EMERGEN, COGNICIÓN CORPORIZADA, 
EDUCACIÓN MATEMÁTICA. 

 

 

ABSTRACT: 

Complexity and emergence are core notions for 

understanding and improving learning. On one hand, 

with complex concepts students struggle and 
learning becomes very difficult. On the other hand, 

emergence phenomena looks like magic or cognitive 

illusions, they seem to rely on extra qualities not 
included in the subjacent phenomena. Can the 

teacher simplify complex notions without changing 

them? In order to do that, we argue complexity and 

emergency are not exclusively inherent to objects or 
phenomena. They also depend on the perceptual, 

motor and cognitive system of the student. Thus, if 

the teacher helps to connect notions and phenomena 
to students' innate and embodied knowledge, then 

these notions become less complex and the emergent 

phenomenon loses its magic: it becomes logically 

connected to the subjacent phenomena. In this paper 
we present empirical evidence of the effect on 

students understanding due to the connection 

stablished in two core curriculum mathematical 
concepts that are considered very challenging. 
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1 INTRODUCTION 

What does it mean that a concept is complex? What 

does it mean that a phenomenon emerges from other 

phenomena? Complexity and emergence are notions 
that have being the subject of extensive studies 

(Kolmogorov, 1968; Chaitin, 1974; Holland, 1998; 

Gell-Mann, 1995, 2000; Simon 1996). They are 
crucial to understand the world and to interact with 

it. But what does it mean that a phenomenon is more 

complex than another one? How can complexity be 
measured? For example, why a straight line is 

simpler than other curves? If biology can be 

obtained from chemistry and chemistry from 

physics, then in what sense biology is more 
complex? Is it because biology requires more 

computational power to deduce it from physics than 

the computational power required to deduce 
chemistry from physics? Several challenges appear 

when the notion of complexity is studied. The 

mathematician John Casti (Araya, 2000b), suggests 
that to handle properly more complex structures 

such as the ones in the social sciences a new 

mathematics is needed. It would not be enough to 

explicit behavioral rules. It would be needed to 
describe systems with more flexible rules, rules that 

can improve themselves. More complexity also 

introduces the phenomenon of emergence. This 
means new structures and phenomena, which cannot 

be straightforwardly reduced to subjacent and 

simpler ones, seem to appear (emerge) as the 

complexity is increased. 
A definition of complexity of a phenomenon 

must somehow consider the difficulty to describe the 

phenomenon. For example, a widely used way of 
expressing this difficulty is to consider the size of 

the minimal description of the phenomenon 

(Kolmogorov, 1968; Chaitin, 1974). This idea, that 
in principle seems to be conceptually very clear, has 

a couple of hidden details that are crucial. First, 

there is the need to precise what does it mean to 

describe a phenomenon. Second, there is also the 
issue of the way to specify those descriptions. What 

marks or signs are used and on what format. The 

process of selection of the relevant factors is a 
critical one. A night can be described as a black sky, 

or, alternatively, as a sky filled with a very detailed 

distribution of stars. In the first case it is a very 
simple phenomenon, but in the second case it is a 

very complex one.  

Given this difficulty, it is common to define 

complexity of a phenomenon using an already made 
description of it. For example, a written description 

in English, or a mathematical equation, or an array 

of pixels of different colors. All of these descriptions 

can be viewed as a long string of zeroes and ones. 
Just think that any text with images and formulas 

written in a word processor is internally saved as a 

string of zeroes and ones. Nevertheless, it is 
important not to forget that the string of zeroes and 

ones presupposes a selection of certain features of 

the phenomenon.   
Murray Gell-Mann (Gell-Mann, 1995) proposes a 

definition of complexity that makes explicit this 

dependence on the previously selected 

characteristics of the phenomenon. Complexity is 
the size of the more compact description of the 

concepts, schemes and rules that capture the 

preselected regularities of the phenomenon. He call 
it, effective complexity, to differentiate it from other 

definitions. For example, a sequence of zeroes and 

ones produced by a random number generator has 
very low effective complexity if the description 

selected is the algorithm that the computer uses. 

Instead, if the description selected is the exact 

sequence then it has a very high effective 
complexity. The phenomena can have diverse 

complexities depending on the regularities selected 

and described. Thus, the effective complexity of a 
phenomenon depends on an observer that describe 

the phenomenon. The observer could be a human, a 

non-human animal, or even a machine. It has to be 

something that selects regularities.  

2 COMPLEXITY 

2.1 Complexity depends on the Perceptual, 
Motor and Cognitive Systems of the 
Observer 

Let´s consider the example proposed in (Araya, 

2006). Look at figure 1, which is half of a figure 

designed by Leonard Kitts (Solso, 1994). 
 

  
Figure 1 

 
Imagine that the picture is analyzed by a simple 

machine that observes the image through a camera 

lens and that detects that over a black background 

there are several small white squares, arranged on 
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rows and columns. All the description produced by 

the machine would be the size of the squares and its 

distribution in an array of 18 columns and 9 rows. 
But such description also describes figure 2.  

 

  
Figure 2 

 

Another more sophisticated machine could detect 
that the squares of the original figure are arranged in 

different inclination angles. This machine include in 

the description all those inclination angles. Clearly 
figure 1 will be more complex for this machine since 

the description is longer. It requires to specify the tilt 

angle of each of the 162 squares (18 columns by 9 
rows). 

Look at figure 1 again. If you are like me, you 

will notice the spontaneous emergence of a dynamic 

pattern. Arcs that are formed and disappear, to again 
appear and disappear. Will other animals detect this 

dynamic pattern? For an observer that detects the 

dynamic pattern the complexity of figure 1 is clearly 
bigger than just an array of squares with different 

inclination angles. The observer that detects such a 

dynamic pattern phenomenon would require an 

additional description to be able to communicate 
what happens to another observer that is not viewing 

figure 1 and has never seen it before.  

Let´s imagine that we send the simple text 
description of the distribution of the white squares 

with its inclinations angles to another animal or 

machine. It can only detect or experience the 
dynamic pattern phenomenon if it has similar 

perceptual and processing algorithms to handle 

visual information. Moreover, the dynamic pattern 

detection requires not only that the observer has 
these perceptual and processing algorithms but also 

that he uses them to process the figure. If you send a 

textual description of figure 1 to another person that 
has never seen it, he would not experience the 

dynamic pattern. He will have to draw and paint a 

picture according to the textual description, and only 
when finished and then look with his own eyes at the 

drawn picture he will detect those dynamic patterns. 

Thus, the dynamic phenomenon depends critically of 

his particular vision system. This is similar to what 
you experience when watching movies. They are 

just a sequence of still pictures. It is your perceptual, 

motor and cognitive system that builds the 

movement.  

This example suggests that another component in 
complexity is the dependence on the perceptual, 

motor and cognitive systems of the observer. It is 

then an embodied complexity. Two observers that 
look at figure 1 but with different visual and 

cognitive systems, will most probably assign 

different complexity to figure 1.   

2.2 Embodied Information 

The dependence of complexity on the observer is 

similar to the dependence of the standard notion of 

information. For John Casti (2000), one of the most 

common uses of information is as a measure of 
novelty or surprise. Intuitively, if something is 

known and recurrent, then the fact that someone tells 

us that that event is occurring does not bring us 
much information. The information level is close to 

zero. On the contrary, if we are told that now is 

occurring something very infrequent then that 
warning bring us a lot of information. This means 

that the information of an event increases as the 

probability of the event is lower. Thus, it is much 

more information to you to know that there is a tiger 
close to you than to know that you are close to an 

ant. This is because you assign much less probability 

that a tiger appears close to you than an ant. Note 
that, similar to what happens to the notion of 

complexity, there is the critical dependence on the 

observer. The same event for an observer can be 

very improbable, and then brings high information 
to know about it, but for another observer could be 

highly probable. To a zoo worker it is not highly 

surprising to be close to a tiger. And thus, the fact of 
knowing that event, does not bring to him a lot of 

information.  

This means that the information of an event 
depends on the experience, knowledge and previous 

learnings of the observer. In other words, it depends 

on the a priori probabilities that the different events 

have for the observer. This is a crucial point, and it 
is one that shows the strong link between 

information and semantics. According to Rieke et al. 

(1997), the misunderstanding of this fact has led to 
the unsupported opinion that the theory of 

information is not relevant to biology and 

neurosciences. It is frequently argued that 
information theory does not take into account the 

features of the world that interest the organism, 

neither it would discard those facts or features that 

doesn´t interest him. And therefore, information 
theory would be “blind to semantics or meaning”. 

This erroneous conception has the origin in the 
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belief that the theory of information measures the 

information as in a computer hard drive, 

independent of any observer. That it is just a thing of 
bits, just an account of zeroes and ones. This is far to 

be that way. The information in Shannon´s theory 

depends on a priori probabilities. On these a priori 
probabilities are included the interests and 

knowledge on the observer. There it is the 

evolutionary design of the species, the ecological 
niche where the observer´s species has inhabited and 

reproduced by thousands of generations.   

For example, the presence of a predator in front 

of an observer is a very improbable event, but much 
more meaningful than the fact that he is next to an 

ant. To be in front of a natural predator is very 

relevant to his survival and is rather infrequent. It is 
a big surprise. Therefore to be warned about it is 

very valuable information.  This means that the a 

priori probabilities is a way to account for the model 
of the world that the observer has. These 

probabilities are critical to compute the information 

level of an event. Additionally, given that the 

observer´s world model is continuously varying, it 
changes while the observer interacts with the world 

and learn from it, then the same event means 

different levels of information according to when it 
is measured. The complexity of a phenomenon, 

similarly to the information of an event, depends on 

the observer and his perceptual, motor and cognitive 

system. It depends on his interests and experience. 
Therefore, it is connected to semantics, to the 

meaning that the phenomenon has for the observer. 

2.3 Dependence on the format 

The dependence on the observer and his perceptual, 
motor and cognitive systems leads us to another 

crucial aspect that has been recently attracted the 

attention of evolutionary psychology: the format in 
which the phenomenon is presented. A perceptual 

system works properly only if the input signal has 

the required format. If it is in a different format, it 

doesn´t work or it generates a different result. If 
figure 1 is presented as a list of zeroes, ones and 

instructions to reconstruct the image from those 

numbers, then the dynamic pattern phenomenon is 
not generated on the observer. The dynamic pattern 

emerges only if the observer has a perceptual system 

as the human visual system and he looks with his 
own eyes the reconstructed two dimensional image.  

Information described in formats mathematically 

equivalent could be processed by completely 

different algorithms, and therefore by different 
neuronal areas and circuits.  For this reason, even 

though two formats seems equivalent, the 

corresponding perceptual, motor and cognitive 

module can produce completely different responses.  

According to the evolutionary psychologists 
Leda Cosmides and John Tooby (1996), the 

cognitive system is a set of computational machines, 

each designed by natural selection to solve some of 
the recurrent problems of the species. Each of this 

machines works on a very specific environment and 

process information properly only if the information 
is in a very particular format. It is the format that for 

thousands of generations the corresponding machine 

has worked on and has being gaining a highly 

precise specialization. This format is what the 
psychologist Gerd Gigerenzer (2000) call the 

ecologically valid format.  

After reviewing the previous example, one could 
think that the complexity dependence is a particular 

case of visual input and the visual system. Let´s look 

other examples of different nature. Consider the 
mindreading system that recognize agents and its 

intentions. In 1944 Heider and Simmel (Baron-

Cohen, 1997) asked subjects to watch a silent short 

film in which two triangles and a circle move 
around. When the subjects were asked to describe 

what they had just seen, they described the figures as 

agents, socially interacting within them, and trying 
to pursue specific goals. According to Baron-Cohen, 

there is an innate intentionality detector system that 

interprets motion stimuli in terms of the primitive 

volitional mental states of goal and desire. In this 
case, from the movements of the geometric figures 

emerges a completely new phenomenon: a social 

drama. This is possible because the observer has the 
mechanisms already in place to automatically 

interpret certain objects and their movements as 

social interaction. Therefore, the complexity of the 
film and the emergence of a pattern of social 

dynamics depend critically on the intentional system 

of the observer.  Someone with a different 

intentional system or with one damaged as 
apparently is the case on certain autist patients, will 

not see the emergence of the social dynamics. 

Therefore the complexity of the film will be 
completely different. It would be needed to add an 

explicit account of the interpretation of the figures as 

agents and the whole set of motions as a social 
struggle to obtain certain goals. All these extra 

description would increase the length of the 

description, and therefore increase its complexity.  

Let´s analyze a more abstract case that illustrate 
the dependence of complexity on the observer 

cognitive system, with no or very little intervention 

of the perceptual and motor systems. Daniel 
Povinelli (Povinelli, 2000) in several experiments 
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with chimpanzees that required the use of tools to 

solve problems reaching foods on tubes, concluded 

that even though a major part of the same human 
perceptual-motor abilities are involved, the 

chimpanzees do not represent abstract variables as 

causes of objects interactions. This inability to 
reinterpret observable physical events in terms of 

unobservable causal phenomena (such as forces), is 

an important difference in the cognitive system of 
the two species. Without this ability, not only 

chimpanzees are unable to solve several simple 

problems using tools that young kids do solve, but 

also they are unable to detect certain regularities in a 
more abstract plane. For Daniel Povinelli the human 

cognitive system may effectively “crowd out” the 

most detailed level of perceptual information in 
favor of more abstract representations, and thus it is 

vulnerable to “conceptual intrusions”. Therefore a 

human observer would see emerge different 
phenomena than a chimpanzee observer. Since they 

suffer less from such conceptual intrusions, 

chimpanzees extract highly specific rules from their 

experiences. It seems that they exhibit skills of 
visual rule extraction which are superior to our own 

(Povinelli, 2000), and in some symbolic numeric 

tasks they exhibit skills of visual rule recollection 
much superior to humans (Inoue & Matsuzawa, T., 

2007). Something similar happens with autist 

patients, who pay more attention to details of objects 

and events, as proposed to more global and abstract 
levels. According to Allan Snyder (Snyder et Al., 

2004) with maturation the human mind becomes 

increasingly aware of concepts alone with exclusion 
of details. This inhibition of details from conscious 

awareness can be turned off on normal subjects by 

transcranial magnetic stimulation transforming their 
behavior to one closer to the behavior of autistic 

savants in several tasks (Bossomaier, 2004).   

2.4 Complexity is no a relative or arbitrary 
concept 

The perceptual, motor and cognitive systems have 

strong inductive and reasoning biases (Baum, 2004; 
Pinker, 2002; Mercer & Sperber, 2017). It is not a 

blank slate. This means that it looks for certain very 

specific patterns and discards most of other 
possibilities. The bias is encoded on our genetic 

code and in the interaction with the environment. 

For example, there is a bias for linear relations, and 
therefore we find a straight line much simpler than a 

quadratic or polynomial one, even when they are 

specified with the same number of parameters. This 

could be because straight line are important to 
navigation and prediction (line of the horizon, the 

trajectory of falling of an object). There is also a 

strong bias for faces, and therefore we find a face a 

simpler image than a detailed diagram of an 
electronic circuit, even if the diagram has less 

number of lines than the face. We easily see faces 

when exposed to visual stimuli like clouds, but we 
don´t see electronic diagrams. There is also a strong 

bias for cause-effect relations on temporally 

successive events and storytelling is our natural way 
of making causal sense (Sloman & Fernbach, 2017). 

There is also a strong bias towards real time 

performance and therefore towards frugal heuristics 

(Gigerenzer et al., 1999), that make possible fast and 
ecologically effective decisions. Learning would be 

impossible without all these built-in biases, because 

at any given moment the number of possible 
alternatives is mind boggling. 

These biases come from millions of years of an 

evolutionary process of selection and adaptation. 
Evolution has selected and refined computational 

algorithms that now contains a strong bias that 

successfully reflect the structure of the world. There 

is then a good fit between the structure of theses 
biases and heuristics and the structure of the 

environment where they are applied to (Gigerenzer 

et Al, 1999). With these biases subjects can learn 
very rapidly, because they explore a very small 

number of already tested and successful possibilities.  

This explains why we find certain phenomena 

simpler than other phenomena. The features that the 
observer selects are not arbitrary or random. They 

are selected because the observer´s perceptual, 

cognitive and motor system already know they are 
effective. They have a proved predictive power.  

Thus, complexity depends on the observer and 

his perceptual, motor and cognitive system. It is 
embodied. But these systems successfully capture 

the structure of the world. Two different human 

observers select the same features because they have 

the same inductive bias. Therefore the effective 
complexity will be similar. You and I agree that a 

straight line is simpler than other curves and that the 

movement of a stone falling is simpler than the 
movement of a jaguar.  

One could argue than a completely different 

being, a Martian for example, could select 
completely different features of phenomena and 

therefore its complexity would be different. But this 

would mean that his inductive biases are completely 

different from ours. This possibility cannot be 
discarded but any living being has to live under the 

same physics, and therefore much of the inductive 

biases have to be similar. For example the 
navigation system must be similar. Furthermore, if 
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they are social beings, then several strategies of 

social interaction have to be similar to our own. 

Under these same constraints it is difficult to 
conceive a radically different set of inductive biases, 

and therefore the observer will select somehow 

similar features and patterns. 

2.5 Ecologically valid strategies for 
teaching core concepts 

How can we apply these connections to innate and 

embodied knowledge for designing lessons? Let´s 

consider the case of fractions. This is a core 
mathematical concept that students start to learn 

from third grade.  Teaching fractions is perhaps the 

most challenging educational problem in elementary 

and middle school mathematics (Bailey et al., 2012; 
Siegler et al. 2010, Siegler et al. 2017). One critical 

problem is the interference induced by the two 

whole numbers that specify a fraction. Thus, when 
comparing two fractions, there are 4 whole numbers 

that have to be considered. It is widely documented 

that the biggest whole number primes the selection 
of the bigger fraction. This phenomenon is called the 

whole-number bias (Obersteoner et al, 2013). This 

effect is augmented when the two bigger whole 

numbers belongs to the same fraction (as numerator 
and denominator). However foraging and 

interchange ratios are widely used by several 

species, where organisms are constantly comparing 
ratios to make foraging and reproductively 

meaningful decisions. For example, there are widely 

documented biological markets in non-human 

primates where subjects track interchange ratios in 
the interchange of grooming with other services 

(Fruteau et al, 2009).  

Inspired in these facts we compared (Jiménez & 
Araya, 2013) the effect of a temporal frequency 

(foraging) format and an interchange format on the 

strength of whole number bias in fraction 
comparisons in 213 fourth graders (109 girls and 

104 boys). We considered three conditions: 

congruent tasks, when the biggest number belongs to 

the biggest fraction; simple incongruent tasks, when 
the biggest number belongs to the smallest fraction 

but the second biggest number belong to the biggest 

fraction; and the double incongruent tasks, when the 
two biggest numbers belong to the smallest fraction. 

Fraction comparisons using the time frequency and 

interchange formats produce high reduction of 
whole number bias for the simple incongruent tasks 

in comparison to normal symbolic format for 

fractions. A smaller but still statistically significant 

reduction of whole number bias is also obtained for 

the double incongruent case. This finding can be 

very useful to design strategies to teach fractions.  

 
Figure 3 

 

After the pretest students were randomly 
assigned to three training conditions. Fractions as 

partitions (the usual pizza like representations), 

fractions as temporal rates and fractions as 

interchange rates. Then all students answered a 
symbolic fraction comparison posttest. We found 

that for the double incongruent tasks the students 

that were trained in fractions as a temporal rate and 
fractions as interchange rates had better score than 

the other students. 

A similar study with first order equations was 
obtained (Araya et al., 2010).  A total of 236 seventh 

grade students who had never been taught algebraic 

equations before were randomly divided into two 

groups. The students in one group watched a 15-
minute video teaching them how to solve five 

different first-degree linear equations using a 

traditional symbolic strategy, while in the other 
group, the students watched a 15-minute video 

teaching them how to solve the same equations 

using four analogies for solving an equation: a two-
pan balance for the equals sign, a box for a variable, 

candies for numbers, and guessing the number of 

candies inside a box. The students were then tested 

on 12 equation solving problems, all of them 
written, using only symbolic notation. The group 

that watched the analogies video performed 

significantly better. Students with a below-average 
mathematics GPA who watched the analogies video 

did as well as students with an above-average GPA 

who watched the symbolic strategy video. Students 

who watched the analogies video also reached a 
better conceptual understanding, were better at 

making generalizations, did significantly better on 

reasoning problems involving equations, and had a 
better affective reaction. A possible explanation is 

that the two-pan balance equilibrium and the 

procedures of adding and subtracting the same 
amount of candies or boxes on both sides of the two-

pan balance are part of our biological primary 

cognition (Geary, 2007). This is probably folk 
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physics knowledge. The use of analogies establishes 

a mapping between such biologically primary 

knowledge and the abstract mathematical concepts 
of algebraic equation solving. 

3 EMERGENCE 

3.1 Embodiment in emergence 

According to John Holland (Holland, 1998), 

subassemblies have a critical role in fostering 
emergence. The combinations of basic building 

blocks is similar to what Holland call the Greek 

approach to machines, where every machine can be 
constructed from copies of six basic mechanisms: 

the lever, the screw, the inclined plane, the wedge, 

the wheel and the pulley. When several of these 

building blocks are put together sometimes an 
emergent phenomenon is produced. But, will the 

building blocks and rules for combining them be 

sufficient to be able to generate an emergent 
phenomenon? Holland uses generalized building 

blocks that he calls constrained generating 

procedures. These are systems that according to its 
inner states and the stimuli received behave in a 

definite way specified unequivocally by certain 

rules. Connecting these devices a new constrained 

generative procedure of a higher level is obtained. 
The new higher level devices can also be combined 

to obtain a device of even higher level, and so on. At 

certain level, different from the basic level, some 
regularities can be obtained. These regularities are 

the emergent phenomena that Holland studies. They 

are macro laws that not necessarily can predict all 

future behavior, but capture some of the important 
regularities at that description level. These 

regularities are detected when expressed in the right 

format, because they resonate with inductive biases 
of the perceptual, cognitive and motor system of the 

observer.  

To explore the role of the observer on the 
emergence of a new phenomenon when combining 

some building blocks we analyze some examples. 

First, consider the dynamic pattern phenomenon that 

emerges in figure 1. It seems that it is needed a 
minimum number of elements to have the 

emergence phenomenon. In the following sequence, 

the visual and cognitive algorithms produce a 
dynamic pattern if there are at least six rows and six 

columns of squares. Figure 9, for example, does not 

produce the dynamic pattern phenomenon on human 
observers.  

  

             
      Figure 4                              Figure 5 

 

        
   Figure 6            Figure 7       Figure 8    Figure 9 

  
Look now Figure 10. It has 16 squares arranged 

in a four by four array, where each square is rotated 

22.5 degrees with respect to a neighbor square. This 
Figure does not generate the dynamic pattern 

illusion in a human observer, and therefore we can 

agree that its complexity is less than the complexity 

of figure 1. However next to it there is Figure 11, 
which is exactly Figure 10 repeated four times 

towards the right and four times to the bottom of the 

page. Even though figure 10 does not generate the 
dynamic pattern illusion, Figure 11 does generate 

the dynamic illusion. Therefore, the act of repetition 

of the same figure generates a figure of higher 
complexity. This emergence of higher complexity 

shows again the dependence on the format and 

observer´s perceptual, motor and cognitive system. 

Since figure 10 doesn´t generate a dynamic 
phenomenon a textual description of figure 10 would 

seem to be enough to compute its complexity.  Then 

a textual description specifying the successive 
repetition of figure 10 would be enough to describe 

figure 11. But this is not so. It is required to do the 

repetition in the adequate visual format and then 
look at the formed figure 11 to appreciate that the 

complexity is more than just  the complexity of the 

seed figure 10 repeated 16 times.   

Let´s consider now figure 12 as the seed figure 
and repeat it 4 times to the right and four times to 

the bottom of the page to form figure 13. Clearly 

figure 13 does not generate the same dynamic 
pattern phenomenon that figure 11 generates. It 

generates a different dynamic pattern illusion. It is 

not simple to say which is more complex, the one 

generated by 11 or the one generated by 13. 
However, it seems that the seed figure 10 is more 

complex than the seed figure 12, or at least than the 

seed figure 14 that also generates figure 13 by 
repetition.   
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Figure 10                                Figure 11 

  

     
        Figure 12                Figure 13                      Figure 14 

 
Now look again at figure 1 but from a distance of 

one or two meters far way. The squares seem fuzzy 

and the dynamic pattern phenomenon disappears. 

But a fuzzy image is equivalent to distort each 
square or pass it through a filter that adds noise. 

Therefore, each square is more complex, since a 

longer description is needed for each one. One 
would expect then that the complexity of the whole 

figure 1 seen from that distance is increased, but the 

dynamic pattern is now not present for a human 
observer. That means a more complex seed produces 

an apparently less complex output figure than the 

one produced from a simpler seed.  

It is difficult to explain these emergent 
phenomena if we let the observer out of the factors. 

For example, if we imagine a camera with a 

hardware specialized to recognize squares, then 
several squares will emerge from Figures 12 and 13, 

and no one from figure 10 and 11.   

3.2 Emergent illusions in cognition 

One could think that this view of emergence is 

particular to the visual system. It is just a 
phenomenon of visual illusion. One could also think 

that this type of emergent illusions happens also in 

other perceptual systems. It is more difficult though 

to believe that this emergent illusions also happens 
on more abstract phenomena, such as in 

mathematical thinking.  

Let´s look then a purely cognitive example, 
highly relevant in mathematics education. Let´s 

consider the discovery process in mathematics. 

Poincaré and Hadamard (Hadamard, 1945) have 
proposed a recombination and selection mechanism 

where the subject combine some very basic ideas, 

kind of building blocks, and selects the proper 

combination. We illustrates it here for an arithmetic 
task. Siegler and Stern (Siegler & Stern, 1998), and 

Siegler and Araya (Siegler & Araya, 2005) studied 

the discovery mechanism of young kids when 
solving arithmetic problems of the form “a + b – c”, 

with b>=c (for example: 24 +12-12). After several 

trials kids started to discover that when “b=c” the 
solution was “a” and there was no need to do “a+b”, 

and then subtract “b”. The mechanism proposed has 

several basic motor and cognitive actions that are 

postulated as the building blocks of any strategy the 
kids use to solve the problems. Some of these basic 

actions are: 

 

• look at the extreme left of the string “a+b-
c”,  

• shift visual attention to the right one 

position,  

• add the two numbers in top of the working 

memory,  

• load to the working memory the number that 

is located at the spot where the visual 
attention is directed, etc.  

 

With these basic building blocks the normal 
“computational strategy” (do “a+b” and then 

subtract “c”) can be expressed as the execution of 

the following 8 actions:   
 

1. look at the extreme left of the string 

“a+b-c”,  

2. load the number at the working memory 
where the visual attention is directed,  

3. shift attention one position to the right,  

4. load the number at the working memory 
where the visual attention is directed,  

5. add the two numbers at the top of the 

working memory,  
6. shift attention one position to the right ,  

7. load the number at the working memory 

where the visual attention is directed,  
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8. add the two numbers at the top of the 

working memory.  

 
We have thus two levels of description: the level 

of strategies (the higher level) and the level of the 

basic actions (the lower level). If we now represent 
graphically in as small machines each one of the 

four basic actions, then the “computational strategy” 

looks like the sequence in figure 15. It has to be read 
from right to left (as it is usual in the mathematical 

notation for the composition of functions). 

 

 
Figure 15 

 

This means that first the machine of the extreme 
right “O_Left” do its job: look at the extreme left of 

the string “a+b-c” and load the number at the 

working memory where the visual attention is 
directed. Then the following machine “O_sRight” 

operates: shift attention one position to the right and 

load the number at the working memory where the 

visual attention is directed. Next, machine “O_Sum” 
adds the two numbers at the top of the working 

memory. Then again “O_sRight” shifts attention one 

position to the right and load the number at the 
working memory where the visual attention is 

directed. Finally, “O_Sum” add the two numbers at 

the top of the working memory.   
If we insert the sequence “O_sLeft O-Sum 

OsLetft” in the position indicated 

 

 
we get the sequence in figure 16: 
 

 
Figure 16 

 

But this long sequence is redundant. It computes 
certain number that doesn t́ affect the final result. If 

the redundancy is eliminated the sequence in figure 

17 is obtained: 
 

 
Figure 17 

 
But this sequence is the low level of description 

of the strategy “Do b-c and then add a”, that in this 

case is just “a”.  Thus doing recombination of these 

basic actions, at some point emerges the “shortcut” 

strategy: “if b=c then a”. This discovery produces an 
“aha” moment of insight, but initially the shortcut 

strategy is used by the subject unconsciously. The 

discovery requires a cognitive mechanism for doing 
recombination of the building blocks. This is one 

mechanism that we are strongly biases towards. But 

also it is required a bias, called Goal Sketch Filter 
(Siegler, 1996; Siegler & Araya, 2005), that 

appreciates which type of recombination produce a 

feasible sequence of actions and which do not. There 

is also another heuristic that eliminates redundancy 
that could be generated at some point.  In this more 

abstract example, we see again the role of the 

cognitive and motor system of the observer in order 
to produce a new emergent strategy. A hypothetical 

observer, or a problem solver in this case, with a 

completely different cognitive system, even if he has 
the capability of action recombination, will probably 

not generate the shortcut strategy. There has to be in 

place the complete mechanism. For example, if this 

goal sketch filter were inexistent then the search of 
possibilities is huge and most strategies generated 

will not work. The generation of the new strategy is 

product of several strong inductive biases, like the 
one that decompose a phenomena as a combination 

of more elementary building blocks. With these 

biases the subject rapidly discover the shortcut 

strategy. This means, the emergence of this new and 
more efficient strategy to solve the problem is as 

dependent on the cognitive system as the structure of 

the problem “a+b-c”.   
The examples analyzed suggest that no clear law 

exist on how complexity and emergence is produced 

from the basic building blocks and rules of 
combining them alone. Everything seems to indicate 

the crucial role of the cognitive system of the 

observer. If the objects or events adequately 

combined resonates with the type of processing 
algorithms or inductive biases that the observer has 

then emergence is perceived by the observer.  

How about if we promote the use of a more 
innate format for arithmetic? For example if we train 

students to perform additions as translation to the 

right and subtraction as translation to the left on the 
number line. Would this training cause a faster 

discovery of the shortcut strategy and a faster ability 

to explain the strategy?  We have not realized a 

complete empirical study but we predict that the 
training in this spatial format have an impact on the 

time required to discover the shortcut strategy. We 

also predict that after the training students are less 
surprised by the shortcut strategy, losing the magic 
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“aha” moment, and that they will consider it a very 

natural strategy and can explain better why it works.  

3.3 Emergence is not arbitrary constructed 

Similarly to the complexity notion, the concept of 
emergence depends on the observer and his 

perceptual, motor and cognitive system. It is an 

embodied notion. Is it then an arbitrary construct? 
As we have argued, the cognitive system has strong 

inductive biases for certain very specific patterns. 

They have evolved throughout our evolutionary 
history. They are several specific and effective 

heuristics that meaningfully take advantage of a 

compressed structure of the world encoded in our 

DNA and in our interaction with the world. Thus the 
emergence of a “new” phenomena from their basic 

building blocks is dependent on the cognitive system 

of the observer. However, different human observers 
have the same biases. Therefore we see the same 

emergent phenomena. 

What about the radically new emergent 
phenomena that seems clearly not present on any of 

its building blocks? For example, some properties of 

a particular molecule that are not present on the 

atoms that compose it. There seems to emerge new 
properties independent of any observer. To see why 

this is not so, consider first that molecules and atoms 

are constructions that we have designed that capture 
some very specific regularities that our perceptual, 

motor and cognitive system detects. They are very 

successful in explaining and predicting several 

features of the world. Second, consider that atoms 
have been constructed with laws of interaction, and 

that these rules implicitly imply the laws of 

molecules. This is called “weak” emergence by 
Simon (Simon, 1996). Then how come we feel that 

there is an emergent phenomena? The trick is that at 

a higher level, as Holland puts it, we can also detect 
certain macro laws. They are laws detected at a 

higher level of description. These macro laws were 

not necessarily derived by the observer from the 

laws ruling at the level of atoms. These macro laws 
are detected by other pattern recognition biases of 

the observer. These macro laws only consider 

molecules, and not lower levels constructions. At the 
molecular level the macro law description is much 

simpler for the observer because it resonates with 

some of his inductive biases and require much less 
logical computing power. According to Holland 

(Holland, 1998) descriptions formulated at the 

higher level means greats gain in comprehension. 

However this doesn´t mean that these macro laws 
cannot be obtained throughout long chains of logical 

deductions from the laws of the lower levels 

(atoms). They could require very long calculations, 

even ones that are not feasible to do in reasonable 

amount of time.  
Brain power is not unlimited and is not content 

independent. The brain has to produce solutions in a 

very limited time. Therefore the basic biases are 
encoded in DNA and executed by the nervous 

system as frugal content specific heuristics. With 

these heuristics, regularities at different levels of 
description are detected. The fact that this 

organization of detected patterns of the world works 

is a product of several biases that the observer has. 

She can describe the high order patterns because her 
cognitive system recognizes those patterns, and this 

is much simpler than to deduce them from the 

properties of the atoms. The whole effect is that it 
seems to us as if they were new emergent rules, not 

present on the lower order rules of atoms, but they 

were already there. It is just that we are using a 
different pattern detection algorithm for the 

molecules than for the atoms.   

For example, on the “a+b-c” arithmetic task, it 

can be argued that the shortcut strategy can be 
deduced logically from the properties of integer 

numbers and the properties of the addition operation. 

Therefore, the shortcut strategy would be a strategy 
that is independent of any observer. It would depend 

only on the rules that define the integers and the 

addition. However, this is not how the kids generate 

and discover the shortcut strategy. The process is a 
slow discovery process that uses several heuristics 

and that under special laboratory conditions takes 

several weeks to generate the shortcut strategy. The 
logical deduction power of the human brain is very 

limited, and therefore most eight or nine years old 

kids don t́ deduce the strategy. We have a bounded 
rationality (Simon, 1996; Gigerenzer et Al, 1999), 

with very limited computing power for logical 

deductions, but it comes with very effective and 

simple heuristics. Using these heuristics or inductive 
biases, called ecological rationality by Gigerenzer, 

the new shortcut strategy is generated unconsciously 

in a long and stochastic process where several 
regressions to previous strategies take place (Siegler, 

1996; Siegler & Stern, 1998; Siegler & Araya, 

2005). In a long Darwinian process the frequency of 
use of the new strategy augments and at some point 

the subject becomes aware of it as well. This whole 

process is a mechanism that work at the level of 

strategies, a higher level than the level of basic 
actions. At some point after several times that the 

observer has already used the shortcut strategy he 

consciously detects it and perceives it as a new 
emergent strategy. Similarly to visual illusions, the 
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emergent phenomena surprises him and activates a 

chain of emotional reactions that goes with the “aha” 

experience.    
It is natural to wonder how come the atoms and 

molecules or the different objects and laws at the 

different levels of description fit so well with the 
world and have excellent predictive power. The 

answer is in the long process of construction, testing, 

and adjustments that these constructions have been 
experienced by centuries of systematic work. If for a 

particular phenomenon they don´t generate good 

predictions then at some point they are changed. 

Change in the atoms and its rules imply changes at 
the higher levels. Using this mechanism we have 

produced in some domains constructs with 

impressive predictive power.   
The emergence of a phenomenon from other 

more simple phenomena is very common in nature. 

Consider the emergence of consciousness. Each 
human cell is a small machine or robot that knows 

nothing about art or dogs. How come, asks the 

philosopher Daniel Dennett (Dennett, 2005, 2017), 

is it possible that even if they are conscious cells, 
they compose themselves into a thing with 

conscious thought about Bracque or poodles?   

Embodied emergence means that the perceptual, 
motor and cognitive systems of the observer plays a 

key role. As product of a long evolutionary process 

the search for certain specific patterns is encoded on 

his DNA and his interaction with the world. These 
algorithms captures relevant patterns of the world 

that are important for the survival of the species. 

Some of these algorithm search patterns at certain 
level of organization and need to attract the attention 

of the observer to those patterns. For example, to the 

patterns that correspond to a poodle. That´s why he 
consciously detect the poodle. Thus the emergence 

of consciousness is an embodied emergence. It is 

generated by the algorithms that detect those 

patterns at a much higher level of description than 
the cellular level. 

4 CONCLUSIONS 

Today we know that most reasoning is unconscious 

and abstract ideas arise from using our brains, 
bodies, and bodily experience. Even mathematics, 

once considered god´s thought, comes from 

perceptual, motor and basic innate mechanisms such 
as subitizing (Araya, 2000; Lakoff & Núñez, 2000; 

Soto-Andrade, 2006). According to George Lakoff 

and Mark Johnson (Lakoff & Johnson, 1999) “there 

exist no Fregean person from whom thought has 
been extruded from the body”. It is expected then 

that complexity and emergence, two basic notions 

conceived by our brains, depend on the observer and 

his perceptual, cognitive and motor system. 
Throughout several examples we have shown that 

there cannot exist a universal Fregean concept of 

complexity and emergence. This is not what 
everybody normally imagine about these concepts, 

since there is the implicit understanding that 

complexity and emergence are properties that 
depends only of the system, its elements and its 

organization. This is an example of the myth of 

objectivism (Lakoff & Johnson), where an observer 

independent world of objects exists. This world 
would contain objects such as stones and animals, 

and also would contain more abstracts objects like 

complexity and emergence. Nevertheless, we have 
seen that the complexity and the emergence of a 

phenomenon depends crucially on the observer and 

his body and brain. Furthermore, if the format of the 
information is changed, then complexity changes 

and a potential emergent phenomenon does not 

occur at all. The emergent phenomenon lives on the 

brain of the observer. It is constructed by his 
cognitive system, as a movie is constructed on the 

observer´s brain from several still images. 

Nevertheless this doesn´t mean that is arbitrary or 
completely subjective entity that doesn t́ correspond 

to real properties of the world. Because the observer 

uses evolved algorithms that detect highly 

meaningful patterns, the emergent phenomena that 
she detects are not arbitrary. Thus, in the end, the 

constructions built by different observers are not that 

different. They have a lot in common and they 
reflect real properties of the world. 

This view has important consequences for 

understanding nature and for education. Complex 
concept can be more easily understood if connected 

appropriately with intuitive and embodied 

knowledge, also called biologically primary 

knowledge. A similar process happens with the 
phenomena of emergence. If life is an emergent 

phenomenon, or consciousness is an emergent 

phenomenon, then this is something that emerges 
because they somehow resonates with the processing 

algorithms and circuits of our perceptual, motor and 

cognitive system. For example, it resonates with our 
intentional detector system. This emergence is not 

something universal that exists independent of 

human observers or observers with a cognitive 

structure similar to ours. These emergent phenomena 
are in our brains and body as much as they are out 

there in the external world. This connection with 

innate and embodied knowledge means important 
strategies for teachers. They have to help students 
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connect notions and phenomena to students' innate 

and embodied knowledge, then these notions 

become less complex and the emergent phenomenon 
loses its magic. This way students can realize that 

apparently new phenomena becomes logically 

connected to the subjacent phenomena. 
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