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Abstract 

Are intelligent machines really 
intelligent? Is the underlying 
philosophical concept of intelligence 
satisfactory for describing how 
the present systems work? Is 
understanding a necessary and 
sufficient condition for intelligence? 
If a machine could understand, 
should we attribute subjectivity to 
it? This paper addresses the problem 
of deciding whether the so-called 
“intelligent machines” are capable 
of understanding, instead of merely 

processing signs. It deals with the 
relationship between syntax and 
semantics. The main thesis concerns 
the inevitability of semantics for 
any discussion about the possibility 
of building conscious machines, 
condensed into the following two 
tenets: “If a machine is capable of 
understanding (in the strong sense), 
then it must be capable of combining 
rules and intuitions”; “If semantics 
cannot be reduced to syntax, then 
a machine cannot understand”. 
Our conclusion states that it is not 
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1. Introduction

The intelligence of an agent, which can be a person or a bot, is 
a subjective property whose definition is unclear and heavily 
depends on the community that has studied it (Legg-Hutter, 
2007: 17). The main problems of studying this property, from 

necessary to attribute understanding 
to a machine in order to explain its 
exhibited “intelligent” behavior; a 
merely syntactic and mechanistic 
approach to intelligence as a task-
solving tool suffices to justify the 
range of operations that it can display 
in the current state of technological 
development.
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Resumen

Las máquinas inteligentes, ¿son 
realmente inteligentes? El concepto 
filosófico subyacente de inteligencia, 
¿es satisfactorio para describir cómo 
funcionan los sistemas actuales? 
El entendimiento, ¿es condición 
necesaria o suficiente para la 
inteligencia? Este artículo aborda el 
problema de decidir si las llamadas 
máquinas inteligentes son capaces de 
entender, en lugar de sólo procesar 
signos. Versa, así pues, sobre la relación 

entre sintaxis y semántica. La tesis 
principal alude a la inevitabilidad de 
la semántica para cualquier discusión 
sobre la posibilidad de construir 
máquinas conscientes, condensada 
en los siguientes enunciados: «Si 
una máquina es capaz de entender 
(en sentido fuerte), entonces debe 
ser capaz de combinar reglas e 
intuiciones»; «Si la semántica no 
puede reducirse a sintaxis, entonces 
una máquina no puede entender». 
Nuestra conclusión sostiene que no 
es necesario atribuir entendimiento 
a una máquina para explicar el 
comportamiento «inteligente» 
que exhibe; una aproximación 
meramente sintáctica y mecanicista a 
la inteligencia como herramienta de 
resolución de problemas basta para 
justificar el rango de operaciones 
que despliega en el estado actual del 
desarrollo tecnológico.

Palabras Claves

Entendimiento; inteligencia 
artificial; aprendizaje de máquinas; 

inteligencia.
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a scientific point of view, are two. First, to provide a culturally and 
anthropocentrically unbiased measure of it (Hilliard, 1979: 47-58); 
second, that applying this measure can only quantify the behavior 
shown by the agent but not the potential intelligence that the agent 
internally has (Das, 2019: 71-90). Even if we assume that the metric 
used to measure intelligence in general (which, for example in the case 
of the intelligence quotient, is very controversial), when one tries to 
design a test battery to measure the intelligence of an individual the 
result can be drastically biased as a consequence of the personality 
of the individual. For instance, consider an individual with a double 
exceptionality condition, both having an extreme non-verbal autistic 
syndrome disorder (ASD) and high capacities. This individual would 
have a high IQ level according to several tests but, probably, his 
condition will not allow him to complete the test, even to understand 
it as the rest of the people. However, its analytical skills may excel those 
of other individuals. Likewise, one may find more examples of this 
problem regarding memory and the animal kingdom. Consequently, 
some psychologists argue that the only thing that we can measure is 
external behavior. However, the computer science community tries 
to define intelligence within the range of an objective analytical 
expression.

Given these limitations, this paper is focused on whether artificial 
intelligence systems understand from the specific point of view of 
computational intelligence. Consequently, this excludes the analysis of 
understanding under the studied perspectives of emotional intelligence 
(Ghotbi; Seifert et alii, 2022: 181-192), human-like intelligence 
(Landgrebe, 2022), or general intelligence (Achler, 2012), which are 
broader terms, of undoubted psycho- logical relevance. Concretely, the 
computational intelligence of a system would be informally defined as 
the ability of an agent to learn how to efficiently and accurately solve a 
specific task, such as planning, regression, or classification, by having 
access to data or experimental observations. Interestingly enough, 
we will show how an intelligent agent, according to this definition 
of intelligence, does not need to understand a problem in order to 
solve it. Thus, we will explore a view of machine intelligence devoid 
of psychological factors, in whose framework we will try to explain 
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the behavior of these systems without invoking an intrinsic faculty of 
understanding, and therefore a set of mental states. The key concept is 
that a computational problem can be solved by computing a sequence 
of steps, an algorithm, that can be inferred from data without needing 
to understand what the data or the task means. We believe that this is 
the first paper that addresses whether artificial intelligence systems are 
able to understand under the mentioned notion of understanding and 
the computational intelligence perspective.

This paper is divided into two parts. The first section examines the 
present state of Artificial Intelligence, paying special attention to its 
historical development and the possibilities displayed by the most 
sophisticated tools so far designed, like Deep Learning. Through a 
combination of technical and non-technical language, it explains the 
fundamentals of Artificial Intelligence and its inferential machinery, 
including the most recent innovations in the field. 

The second section is philosophical. It addresses the conceptual 
problems posed by the properties of current intelligent machines, 
and it relies on the basic distinction between syntax (as sequential, 
sign processing following a set of rules) and semantics (as sign 
understanding, a process that demands “intuition” rather than 
rules). Concretely, we define intuition, adapting from the concept 
of irrational intuition (Pietka, 2022: 165-180), throughout this 
paper as the ability to understand,  in our specific notion, or perceive 
something immediately based on an irrational process, rather than on 
computational intelligence.

2. Current artificial intelligence 
approaches and models

Artificial intelligence was a term originally coined at the 1956 Dartmouth 
conference to describe programs whose behavior mimics that of human 
beings, considered intelligent. Since those years, several approaches have 
been used to generate artificial intelligence in a system. Without loss of 
generality, we split those approaches into four categories: expert systems 
using a logic inference engine, machine learning and deep learning models 
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and their variations, neurosymbolic artificial intelligence, and, lastly, 
probabilistic graphical models, and causality.

2.1. Good-old artificial intelligence
Good-Old Fashioned Artificial Intelligence (GOFAI) refers to a family of 
AI techniques that emerged during the early days of artificial intelligence 
research, primarily focusing on symbolic reasoning and manipulation 
(Haugeland, 1989). These techniques involve the manipulation of 
abstract, human-readable symbols and representations of knowledge to 
solve problems and perform tasks. In addition to expert systems, which 
use knowledge bases filled with logic predicates and atoms, GOFAI 
encompasses a variety of other AI methods such as semantic networks 
(Sowa, 1992), frames, scripts, and planning algorithms (LaValle, 2006). 
These approaches aim to model human intelligence and problem-solving 
capabilities by encoding knowledge and reasoning processes explicitly in 
the form of symbols, rules, and relationships. While GOFAI techniques 
have been successful in solving well-defined, rule-based problems, they 
have faced limitations in dealing with uncertainty, adaptation, and learning 
from data, which are areas where newer AI methods, such as machine 
learning and connectionist approaches, have shown greater promise 
(Murphy, 2022).

Expert systems, one of the most successful forms of GOFAI, are 
knowledge bases filled with logic predicates and atoms. A knowledge base 
is a series of instructions that a knowledge engineer introduces to the 
system (whether an atom or a rule), with an antecedent and a consequent. 
More technically, those are Horn clauses. If the consequent is true, then 
the antecedent is also true. A logic programming language such as Prolog 
(Clocksin et alii, 2003) incorporates an inference engine that can read all 
the content of the knowledge base to solve queries put by the practitioner. 
Finally, the program can be used by a non-expert user to solve queries 
introduced with a user interface.

More technically, the inference engine uses the Selective Linear Definite 
clause resolution algorithm (SLD algorithm) to solve the query with the 
data previously introduced in the knowledge base. The SLD algorithm 
performs backward reasoning from the query selected by the user creating 



176 Carlos Blanco y Eduardo Garrido-Merchán

Claridades. Revista de filosofía 16/1 (2024)

a search tree of alternative computations to explore the knowledge base, 
where the query is associated with the root of the tree. The behavior 
displayed by this kind of system is performing a breadth-first search 
or, in some cases, more complex search, on a database. In other words, 
expert systems are database systems with a different search procedure 
and knowledge representation that the one used in relational (SQL) or 
document databases like MongoDB.

A trivial example of an expert system is the following one: We can have 
an atom representing that a dog is an animal, like animal(dog). Then, we 
can have a rule saying that every animal is a living being like

animal(X):-living being (X).     (1)

Hence, if the user introduces a query looking for a living being like

       :-living being (Y).             (2)

Fig. 1.  Visualization of the modules and information flux of an expert system.

Then, the system will retrieve Y = dog. Evidently, this approach 
presents multiple limitations. First, it does not account for uncertainty. In 
particular, the majority of relations between elements present uncertainty. 
For example, if I speak Spanish I may live in Spain, but I may also live 
in the United States. Fuzzy logic (Zadeh, 1988: 83-93) targets this issue 
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introducing fuzzy causal relations between predicates. However, fuzzy 
expert systems do not adapt to changes in the environment. If Spanish is 
no longer spoken in the United States in the next century, the system will 
not be able to readapt to this reality once it is programmed in a certain 
way. Most critically, a fuzzy expert system is essentially only executing if-
else statements and generating random numbers to verify whether a query 
is true or not.

In essence, there is no understanding here, no “internal assimilation” 
referred to a subject. Knowledge is hard-coded by the user; it is not 
adaptive to a change in the context of the problem. Expert systems are 
essentially databases whose queries are solved using the SLD algorithm. 
However, the behavior shown by expert system applications can be 
considered quite complex as more and more logic predicates and atoms are 
introduced into the database. Yet, without the presence of the knowledge 
engineer to maintain the knowledge base, the expert system is completely 
unable to interact with the environment, nor can it adapt to changes in it. 
Consequently, it does not display intelligent behaviour, as it is unable to 
solve any task that has not been hard-coded in the system through a clearly 
defined set of instructions.

2.2. Machine learning and deep learning models
As we have seen, expert system models do not adapt to changes in reality. 
Thus, it is unfeasible to work with them to solve certain tasks such as 
natural language processing of social networks. In this particular example, 
new significants S are born every year to reference the same meaning m. 
For example, Twitter users write “Whiskey” in more than 100 different 
forms (Wisky, guisky,  guiski,  güiski). Eventually, some ways  of  saying  
“Whiskey”  are  not used anymore as time flows. Most critically, if we 
would like to, for example, detect irony in such texts, the task would 
become even more difficult, as the variables involved can be all the words 
in the dictionary plus all the ways of writing those words not included in 
the dictionary but used by the speakers, plus all the possible combinations 
of an order of these words, being syntactically correct or not, as Twitter 
users do not necessarily write syntactically correct texts.
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The previous example, where the task to be solved lies in classifying 
the value of a categorical variable or performing regression of a 
continuous variable concerning other variables, presents huge problems 
to GOFAI, because the number of independent variables is very high 
(the dimensionality of the problem is very high, where each variable is 
considered a dimension). In consequence, the artificial intelligence 
community switched to using statistical learning techniques such as linear 
or logistic regression. In particular, these techniques associate a real-valued 
parameter b to each independent variable x to predict and explain the 
dependent variable y. In the case of linear regression, y = βx + u, these 
values can be computed with an analytical-closed expression that gives the 
optimal values β that minimize the errors, or residuals, committed by the 
predictor with respect to a particular sample of data.

An example is to predict the salary of an employee (y) knowing their 
years of experience at a company (x1), education level (x2), working hours 
(x3), or company sector (x4). The relation of the salary concerning the other 
variables is encoded in the values of the (β1, β2, β3, β4 and β5) parameters 
and in the expression y = βx + u that creates a linear dependence between 
the y and each xi. In particular, these values are fixed according to the data 
retrieved of all the employees of the company D = (X, y). As a consequence, 
if employees change or the company change and salaries too, we would 
only need to retrain the logistic regression model and it would find the 
new values of the β parameters. In particular, this would be easy to do 
periodically with software engineering.

It is interesting to note that machine learning models can be interpreted 
as probabilistic models. For example, the previous example can be 
interpreted as the following multivariate normal distribution N with the 
following expression y = N (βX, σI) where the mean vector is βX and the 
covariance matrix is σI. As we will further see, neural networks can also 
be interpreted in this way, where for example in the case of classification, 
the last layer may be defined as a Bernoulli distribution whose probability 
depends on the matrix products of the rest of the layers. If we interpret 
models in this way, we can also generalize them in a Bayesian way, where 
each of the parameters of the regression β, or any other set of parameters 
θ, can be defined with a prior Gaussian distribution N(θ, σ). The posterior 
distribution p(θX) on the parameters θ would be defined by this Gaussian 
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prior and a likelihood function of the dataset D = (X, y) using Bayes 
theorem. Finally, to make more general predictions than classical machine 
learning, the predictive distribution on a new input value x⋆would be 
given by

p(y⋆ | X, θ, x⋆) = ∫p(y⋆ | θ, x⋆) p(θ | X)dθ ,   (3)

that is, a weighted sum of the predictions p(y⋆θ, x⋆) made by a model with 
parameters θ where the probability of that model based on data would 
be p(θX). Hence, machine learning can be embedded in the Bayesian 
framework. It is important to justify this vision on machine learning 
models because, if we can interpret them on a Bayesian framework, 
representing complex probabilistic graphical models, then, we can justify 
how GOFAI systems are particular cases of these models. In other words, 
machine learning generalizes GOFAI systems. Thus, and interestingly from 
a philosophical point of view, the properties of GOFAI systems would be a 
subset of those of machine learning models. In a first-order logic system, we 
can have properties such as if an event A happens, then B happens: AB. We 
can represent this relation of logical consequence by using a probabilistic 
graphical model concerning two random variables A and B causally chained. 
More concretely, using one conditional probability distribution p(BA), for 
example, a univariate Gaussian distribution p(BA, σ). If we set σ = 0 and 
A models a dichotomous variable with a value true represented as a 1, p(B | 
A = 1, 0), then B would be 1. Similarly, p(B | A = 0, 0) = 0. Hence, we can 
embed first-order logic with broader probabilistic graphical models. More 
interestingly, these models are much more flexible, as we the entire set of 
known parametric distributions with parameters belonging to the set of real 
numbers and even non-parametric distributions that can be estimated with 
algorithms such as kernel density estimators. Consequently, GOFAI systems 
are a subset of machine learning models, and hence, their properties are a 
subset of the ones of machine learning models. Moreover, as we have seen, 
both systems can be reduced to a sequence of computational steps that are 
eventually executed as binary code in a set of processors. As a consequence, 
both frameworks are instances of a universal Turing machine. Therefore, its 
properties are also a subset of those of a universal Turing machine, and can 
therefore be comprehended as instantiations of algorithmic processing, 
without the need of invoking some kind of semantic dimension.
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Coming back to a description of machine learning models, the majority 
of them are more complex than linear regression and lack an analytical 
close expression to obtain the best values of their parameters. On the 
other hand, those models have a higher capacity than linear regression, 
assuming fewer hypotheses about the data, and being able to represent 
more complex functions. For example, linear regression is only able to 
represent linear relationships between the independent variables and the 
dependent variable like lines, planes, or hyperplanes restricted by the 
parametrical function y = βx + u. However, neural networks or Gaussian 
processes can represent any function f such that y = f(X; θ), where θ is the 
set of parameters of the neural network or the Gaussian process that are fit 
to minimize a loss function of the predictions of the model y⋆ and the real 
data y. Nevertheless, these models are more difficult to fit and offer higher 
risk of committing dramatic failures on new data because of the overfitting 
problem.

For example, suppose that we have to predict the amount of information 
shared in a telecommunication system, y, whose number of clients is the 
30% market share of a country to build new infrastructure. That could 
be millions of customers with different services like the Internet, mobile 
phones whose characteristics, X, like age (x1) or whether they speak at day 
or night (x2) or the photos that they share (x3) are different non-structured 
data. Most importantly, a useful pattern may be a complex combination of 
the values of those variables and those variables can be counted by millions. 
For instance, a middle-aged person that is present on, at least, 4 social 
networks, travels using public transport, and has a high-quality smartphone 
is predicted to consume more than the average. Those patterns cannot be 
found automatically by regressions as they assume linearity, y = βx + u, but 
they can be found using Gaussian processes or neural networks as their 
models can fit any function such that y = f(X).

When the parameters of statistical models θ are learned via an iterative 
optimization algorithm, there is no analytical expression that provides an 
optimal solution for them. Based on correcting the values of the parameters 
θ as a result of a loss function of the error committed by the predictions of 
the model (y, y⋆θ), the computer science community called the family of 
those techniques “machine learning”.



Claridades. Revista de filosofía 16/1 (2024)

Do artificial intelligence systems understand? 181

In essence, we define the learning process of a machine learning model 
as follows: an algorithm A that learns from experience E concerning some 
class of tasks T and performance measure P, if its performance at tasks in 
T, as measured by P, improves with experience E (LeCun et alii, 2015). 
Given this abstract description, there are a plethora of machine learning 
algorithms that use this logic to solve different tasks such as classification or 
regression. For example, the k-Nearest neighbors algorithm classifies a point 
according to the values of the data that is more similar to it. The decision 
tree algorithm chooses the partitions that minimize the entropy of the 
dataset iteratively to build a set of rules to classify the label of an instance. 
The support vector machine computes the hyperplane that minimizes the 
generalization error of the predictions using kernel functions to make the 
data linearly separable. Recall that all those algorithms fit their parameters 
according to a given sample of data and have hyper-parameters whose 
values are chosen by users and generalize their behavior. For example, the 
similarity function of the k-nearest neighbors algorithm must be set by the 
user.

A particular machine learning algorithm whose parameter values θ are 
also set according to a training iterative optimization algorithm are neural 
networks. Neural networks were created as a reductionist analogy to the 
neural networks of biological beings. In particular, the basic architecture 
of a neural network consists of several neurons that are organized in layers 
where the links of every neuron with all the rest of the neurons are weighted 
by the value of a parameter. In essence, every neuron of the neural network 
is performing a generalization of linear regression y = α( βx + u), where α is a 
non-linear function, and the outputs of every neuron are transmitted to all 
the other neurons of the next layer of neurons of the network. When a new 
instance x⋆ is presented, its values are transmitted into the neural network 
via a feed-forward algorithm and the network predicts the associated value 
of the instance y⋆. Then, we can compute the error performed by the net (y, 
y⋆θ), and using a backpropagation algorithm based on the classic calculus 
chain rule of derivatives the weights of the network are reconfigured to 
adapt themselves to the new instance and minimize the generalization error, 
or loss function (y, y⋆θ), performed by the neural network.

Several hyper-parameters appear in neural networks such as the 
number of layers, number of neurons, learning rate, activation functions, 
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optimization algorithms, regularization, and more. Specifically, when the 
number of hidden layers, those in the middle of the input and output 
layer, is higher than two, the models are considered to belong to the deep 
learning class. In particular, these models are universal approximators of 
functions, that is, they can fit any function f , such that y = f(Xθ), given a 
representative dataset and architecture of the neural network established 
by its parameters and hyper-parameters represented by the set of values θ. 
However, as the model is more complex, it is more difficult to train, as it 
can suffer from overfitting.

So far, we have focused our presentation of artificial intelligence models 
on predictions, showing that any function can be predicted given enough 
data of its underlying probability distribution p(X, y), but deep neural 
networks are also able to generate data y from existing data x. For example, 
the DALLE-2 model (Ramesh et alii, 2021) can generate entirely new 
photos from text without human intervention. Indeed, it can generate “an 
astronaut riding a horse in a photorealistic style”.

 
Fig. 2. Generated photo by DALLE2 [12], without human intervention, when we 
input as a query “an astronaut riding a horse in a photorealistic style”.
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The Flamingo model (Alayrac et alii, 2022) is able to answer general 
purpose questions having as an input photos and text as we can see in 
Figure 3. And lastly, another example is the GPT-3 model (Floridi-
Chiriatti, 2020), which  can  write texts in a particular style of a writer 
by processing its texts. There are more examples of such deep neural 
network models that are, generally, transformer models (Lin et alii, 
2021). The intuition behind the transformer model, generally speaking, 
is that it has several encoder modules that learn a latent representation of 
the information such that several decoder models optimize the output, 
sometimes probabilistically, generated by the latent representation learned 
by the model. We can see a simple instance in Figure 4. In that example, 
we only have a single encoder and decoder module and both the input 
and the output are photos. In particular, this is a variational autoencoder 
model (Zhai, 2018).

Fig. 3. Examples of input queries processed by the Flamingo model, at the left 
of the figure, and the outputs generated by the Flamingo model, at the right 
coloured in pink [13].
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Fig. 4. Latent space of a transformer model that consist on Gaussian distributions that 
generate reconstructed images using sampling.

In that example, the deep neural network learns the mean vector and 
covariance matrix of the multidimensional Gaussian distribution of all the 
number symbols that minimizes the errors of the reconstructed image. 
Most critically, the reconstructed image is sampled from the Gaussian 
distribution, so the numbers generated by the network are completely 
novel. Having studied this example, we can think about DALLE-2 or 
GPT-3 as more  complex  models that follow this logic using much more 
complex high-dimensional distributions to encode texts and generate, for 
example, images.

Most interestingly, the latent space represents text or image information 
in a real high-dimensional space. Hence, we can use linear algebra to 
perform operation over the meaning of words, as described in Figure 5.

Fig. 5 Applying linear algebra to perform semantic operations over the latent space of 
a transformer model (Abadi et alii, 2016).
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However, we argue that these models do not understand the meaning 
of the words. They are just learning a high, dimensional meaning space 
representation of the words. In particular, the meaning of those words is a 
quale (meaning a “quality,” a unitarily grasped element that is incorporated 
into an internal world of perception) that emerges from that representation 
and is perceived by human beings. This process of perception resembles 
what has traditionally been understood as “intuition,” or immediate 
grasping (i.e., internal apprehension) of an idea. Yet, up to which point 
could understanding as such be conceived without invoking a certain 
concept of subjectivity? If we are speaking in terms of internal assimilation, 
it is mandatory to elucidate the nature of the system that performs this 
task. Its “internal” world must incorporate the possibility of referring the 
object of perception to its own “inner” dimension, to its own “subjective 
core”. Indeed, this subjective information is not perceived by machines. 
Machines limit themselves to operate with signs, following a set of rules 
(be it clearly defined by instructions, be it inferred by statistical learning) 
that allows them to reach logic conclusions, from a computational and 
not subjective perspective, based on a set of premises and a set of rules 
of inference. As sophisticated as the process of instruction may be, and 
admitting to the possibility of designing a flexible set of instructions, in 
which machines may learn to learn by themselves, thereby reaching a higher 
degree of independence concerning the initial set of instructions, it is, in 
any case, a syntactic process, whose nature is sequential and algorithmic. 
In none of the cases so far described has the syntactic dimension been 
abandoned. A truly qualitative leap, leading to the semantic dimension, 
would demand articulating the possibility of grasping a meaning, 
displaying an “intuitive” behavior, thereby manifesting the existence of an 
internal world. Consequently, although the model represents the meaning 
of the words, there is no convincing proof that the program shows any 
distinctive sign of consciousness, without hard philosophical assumptions 
like multiple realizability and the ones summarized on the functionalism 
school of thought (Merchán-Molina, 2020), “free intelligence”, and, 
hence, real understanding. Thus, even if complexity has increased in 
notable ways, the barrier between the syntactic and the semantic cannot 
be said to have been crossed (unless one admits some sort of mysterious 
“emergence” of properties, operating, virtually, ex nihilo, and without any 
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plausible mechanism that may allow us to follow the sequence of steps 
leading to it, in order to explain how the process of emergence takes place). 
Obtaining higher degrees of complexity in the syntactic dimension may be 
a necessary condition, yet it is not a sufficient condition for reaching the 
semantic domain, in which real understanding may take place. We will 
return to this question in the following section.

A demonstration of the claim mentioned in the previous paragraph 
(namely, that there is no need to invoke the concept of understanding, 
in its “strong” meaning, in order to explain the behavior of complex AI 
systems) is what adversarial attacks empirically show in neural networks. 
In particular, adversarial attacks try to add empirical evidence to verify the 
claim that these models do not understand the meaning representations that 
they learn. Concretely, the models are just minimizing a loss function that 
is estimated via the samples that the decoder modules generate using the 
information learned by the encoder modules. Figure 6 shows an example 
of the adversarial attack, where a panda photo correctly classified by a 
model is perturbated by white noise, making the model fail its prediction 
of the panda photo and classifying it as a gibbon with 99.3% confidence.

Fig. 6. Adversarial attack of a panda photo (Goodfellow et alii, 2014).

It is clear to human beings that the new photo is still a panda but the 
model fails dramatically. The cause of this behavior is that the model is 
learning spurious correlations about the panda but it does not understand 
the meaning of being a panda. Not being able to understand the meaning 
of an image may cause dangerous situations such as the one described in 
Figure 7.
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Fig. 7. Adversarial attack on a stop sign (Eykholt et alii, 2018).

Although adversarial attacks show that these models cannot understand 
by themselves, they also reveal that they could always grow in capacity to 
resist them, by being trained to avoid these attacks (Madry et alii, 2017). 
However, from a philosophical perspective, not being able to perceive 
the qualia of the representations implies a lack of understanding that 
makes the machine unable to appreciate, for example, the meaning of the 
images. From a statistical point of view, it is all about learning to fit curves, 
patterns, and correlation recognition in high dimensional probability 
distributions; a process that, once more, does not require any kind of 
allusion to the semantic dimension, and therefore to a strong conception 
of understanding, in which a being is endowed with mental states and can 
grasp the meaning of an object.

2.3. Neurosymbolic artificial intelligence
Machine learning and deep learning systems have been criticized as just 
performing complex curve fitting. Although some models can be considered 
universal approximators of functions, they do not understand the semantics 
of the representation nor the causal relations between the regarded variables 
of the problem.

Motivated by this argument, the neurosymbolic community (De Raedt 
et alii, 2020) has introduced algorithms that incorporate the semantics of the 
concepts represented in deep learning models through labels and symbols 
as in GOFAI systems, in an attempt at providing them the semantics that 
a deep learning model is unable to understand. In essence, neurosymbolic 
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artificial intelligence is a hybrid of rule-based AI approaches with modern 
deep learning techniques.

A popular, and classical, example of a neurosymbolic model is a sum 
product network (Poon-Domingos, 2011). In particular, sum-product 
networks are directed acyclic graphs whose variables are leaves, their sums and 
products are internal nodes and it has weighted edges. Although they share 
some structure with a neural network, even its parameters being optimized 
using gradient descent methods as in the case of deep neural networks, they 
encode additional semantic features such as the sums and products.

Nevertheless, from our point of view, those semantics are also a syntactic 
feature added to the deep learning model to make it execute a particular 
logic given a particular state of the neural network. Thus, it will have the 
same drawbacks as GOFAI systems, although it will, sometimes, increase 
the accuracy of the deep neural network for particular cases of dramatic 
failures. For example, it can be used to reduce racism bias or explicit violence. 
Another argument is that neither deep learning systems nor rule-based 
systems are aware of themselves, and therefore it is questionable to attribute 
a strong form of understanding (or “real understanding”, in its proper 
semantic dimension) to them. Hence, we can hardly expect any sort of 
magical emergence of consciousness from current neurosymbolic artificial 
intelligence systems.

Fig.  8. Example of a sum product network dealing with prices of different providers 
such as Amazon. Sum product networks are able to introduce explicit meanings in its 
structure that can be interpreted as neurosymbolic artificial intelligence. However, even 
in models that introduce more rule-based AI combined with deep learning, semantics 
are introduced via syntax features.
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2.4. Casuality models and probabilistic 
graphical models

The previous models can represent knowledge of the real world and adapt 
to changes in context, as reinforcement or active learning algorithms do 
(Kaelbling et alii, 1996), even if it is achieved by representing fixed semantics 
as syntax labels (like neurosymbolic AI does). However, causal relations are 
not targeted by any of these models. Causality models (Pearl, 2009) try to 
determine the causal relations that can be present in a probabilistic graphical 
model that represents the dependencies of random variables. Probabilistic 
graphical models, like Bayesian networks, are useful models to encode 
probability distributions over high-dimensional problems. They consist 
of multivariate distributions over large numbers of random variables that 
interact with each other.

For instance, in the following figure we see an example of a probabilistic 
graphical model concerning lung cancer (Puente et alii, 2017). Each node 
represents a random variable of some event like a person that smokes. A 
probability distribution can be placed for every random variable and, if 
we sample that probability distribution, its result is introduced in another 
random variable that is causally linked by an edge in the graph. The whole 
probabilistic graphical model can be represented by a joint multivariate 
distribution.

Probabilistic graphical models have been used for causality introducing 
the do-calculus operator (Pearl, 2009). The intuitive idea is to deal with the 
fact that correlation is not causation in this framework. The do-calculus 
operator consists of conditioning a random variable to a particular observed 
value of it. For example, if we perform a real experiment and we observe 
that smoking causes lung cancer with a certain probability, we can condition 
the dichotomous random variable smoking to true. Hence, smoking is not 
anymore a random variable but a value, and the causal relation is represented 
by the graph.

Although causality has been widely applied in probabilistic graphical 
models, the model still does not understand what it knows or does not 
know. In essence, probabilistic graphical models encode causal relations and 
a multi-variate random variable; yet, they are representation models, not 
conscious models. Hence, they are not able to understand its representation, 
regardless of the complexity of their design.
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It is important to remark that the previous models represent reality as 
given knowledge and as a predefined architecture. However, they do not 
integrate a semantic perception of its representations. Indeed, one requires 
an external observer that perceives the qualia of the representations.

Fig. 9. Causal probabilistic graphical model (Puente, 2015) concerning 
the causes and effects of lung cancer. Each node represents a random variable 
and each edge represent the causal relation between the random variables. 
The whole probabilistic graphical model can be represented by a joint 
multivariate distribution.

3. Philosophical discussion
The second section of this paper deals with the nature of understanding and 
its essential role in addressing the question of the existence of intelligence 
in the so-called intelligent machines.

In this section, we will develop the idea of the non-computability of 
understanding (following, among others, Penrose, 1994).  In the view that 
shall be discussed, a satisfactory concept of understanding will be induced 
from the phenomenology of human understanding (and possibly from 
other forms of animal behavior), which requires the grasping (as internal 
assimilation, or meta- representation) of an object, beyond the mere 
manipulation of signs. Indeed, it demands ascribing meaning to a sign 
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and therefore having an intuition of a semantic content that cannot be 
reduced to the syntactic processing of instructions in an algorithmic way 
(and therefore in a finite number of steps), as a point of departure fixed 
from outside, by an external agent. Yet, this process cannot be explained 
without presupposing some kind of subjective or internal “instance” in 
charge of apprehending such a meaning. We exclude other definitions 
of meaning (Baumberger et alii, 2017; Sullivan, 2022) throughout this 
section, to focus, for the sake of coherence and brevity, on the previous 
definition of understanding. 

Instructions (which, for reasons of simplicity, sometimes we shall 
include under the general philosophical labeling of “rules”; the concept 
points to the presence of an initial determination, as flexible as it may 
be —indeed, it can be the result of statistical inference rather than direct 
programming—, opposed to the possibility of self-determining its own 
actions) can be defined as part of a syntactic domain, in which a set of 
orders allows the system to make transitions from premises to conclusions, 
following relations of logical consequence (If p then q is the basic rule of 
inference in a set of well-formed formulae). These instructions may offer 
direct rules, or they may generate the possibility that the system extracts 
patterns through models whose parameters are inferred by the processing 
of data or statistical inference (rather than simply relying on a strict, 
clearly defined, set of rules, as in old artificial intelligence). Yet, even if 
these systems manage to learn to learn, rather than following directly fixed 
rules, and they are capable of generating their own instructions “from 
inside”, their observed behavior still adheres to an algorithmic processing 
of information. Thus, they can be interpreted as examples of a universal 
Turing machine, as we shall discuss.

Understanding, in its “strong” sense, cannot consist merely in the 
syntactic dimension, in the manipulation of sequences of signs in a finite 
number of steps (which, so to speak, would allow us to adopt a “mechanistic 
approach” to the entire process, where understanding would be reduced to 
a sequential arrangement of elements). Rather, from a phenomenological 
point of view (and therefore from its observed manifestation in a human 
mind —and possibly in other forms of animal mind—) understanding 
implies ascribing meaning to a sign, and therefore the possibility of having 
an internal representation of that representation (the sign itself ), in which 
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the subject becomes aware of his representation. It is doubtful that AI, in 
its present stage of development, has reached the level of understanding, 
which would belong to a semantic domain, in which internal awareness 
permits to attribute meaning to symbols.

The problem of subjectivity is intimately connected with this question. 
Indeed, understanding, as a “non-blind processing of signs”, demands the 
possibility of having internal representations, i.e. mental states in which 
an agent is capable of referring representations to himself, to his internal 
structure, so to speak; id est, to a subject, or “pour soi”. How can this be 
comprehended without attributing a faculty of “intuition” (that is, of an 
immediate apprehension referred to his own mental state) to that agent, 
and therefore a nature similar to that of a subject, as is phenomenologically 
observed in the case of human beings? In a purely behavioristic approach, 
this notion of under- standing will seem superfluous. Indeed, this is the case 
we want to make: that understanding, as internal grasping of a meaning, 
is not necessary for explaining the behavior of AI machines. Whether it is 
necessary for explaining human behavior is a problem beyond the scope 
of this paper; we suspect that the answer is in the positive, yet, regardless 
of the reply given to it, the idea of understanding that we discuss here 
is more demanding, philosophically speaking, than a merely sequential, 
mechanistic approach (which could be identified, in psychological terms, 
with a simple association of stimuli), and it clearly points to a stronger 
conception of understanding as such, which would incorporate a potential 
subjective stance.

The duality between rules (once more, understood in a generic 
philosophical manner, encompassing direct rules through instructions 
and a more flexible design, in which the system infers its own rules from 
statistical pattern recognition —thus, “learning to learn” by itself—) and 
intuitions, or between syntax and semantics, seems irreducible in the 
present stage of human knowledge. One  cannot explain a hard form of 
understanding, of “subjective” apprehension (of “realization” of what is 
going on there, by being aware of meanings instead of simply using rules), 
without invoking the existence of the power to intuit, to “make present” 
that content to one’s own mental state. It     may even respond to a fatality of 
human reasoning (i.e., to a “transcendental impossibility”, in the Kantian 
sense, derived from the structure of our under- standing, which needs to 
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invoke a unity of apprehension through the idea of “I think”, the famous 
“ich denke”). Yet, it does not imply that AI will never achieve the goal of 
creating   a hard form of intelligence, one in which the machine is not only 
capable of processing information but also of apprehending meanings and 
therefore of understanding the “hard interpretation” of the term.

So to speak, if the processing of information can be regarded as 
“first- degree” assimilation —given that the machine needs to learn a set 
of rules or instructions—, the subjective assimilation of that information in 
terms of understanding, or intuitive grasping of meaning, is a second-degree 
assimilation, or an internal “formalization”, according not to a blind set of 
rules, formally defined —thus, syntactically—, but to its own subjective 
rules (to its own “intuition”). As sophisticated as the design of the system 
may be, and even if the system is not set to blindly obey an initially set 
number of instructions (as is the case with GOFAI, in contrast to neural 
networks, in which  there is statistical pattern recognition and the system 
is capable of, so to speak, “self-designing” itself ), we are still under the 
domain of syntax, with- out real awareness of what’s going on there, and 
thus without the possibility of attributing meanings to symbols.

An important question surrounding this problem can be framed in the 
following way: how is information represented?

If we constrain our analysis to information represented by the human 
mind, as is well known there are at least three main schools of thought. 
The initial paradigm in the cognitive sciences understood the human 
brain as a processing information machine, ruled by an internal symbolic 
code, or internal “language” (what Fodor has named “mentalese”; Fodor, 
1995). A single, unified code of representation would therefore underlie 
the brain’s ability to represent information about the external environment 
and its internal milieu. The limits of this paradigm, however, in particular 
its lack of specific neuronal translation, led to the development of a second 
paradigm. According to it, generally called “connectionism”, there is no 
single code in the brain. The different input/out- puts of a vast network 
of neurons processing in parallel are the way in which the brain stores and 
manages information. Of course, the creation of artificial neural networks 
is based upon this paradigm. Thus, its power to establish fruitful bridges 
between neurosciences and artificial intelligence has been one of the keys 
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to its success, taking into account that it contributes to reinforcing the 
computational view of the mind.

In any case, the weaknesses of this paradigm are also worth noticing. 
In particular, does it really explain understanding as such? We are still 
within the domains of  “information processing”, yet it is not clear that 
this approach to the nature of mental activity, as powerful as it may 
seem, incorporates a convincing theory of how a meaning is subjectively 
apprehended —i.e., how we understand anything at all.

An additional paradigm is that of “spatial models” (Gardenfors, 
2014). According to it, cognition can be modelled in topological and 
geometrical spaces. Inspired by geometrical categories, the paradigm 
suggests that information is organized in spatial structures representing 
“meanings” through connections (like relations of proximity, convexity, 
coordination...). Thus, one may speak in terms of a real “geometry of 
meanings”. In a more advanced development, this approach has been 
linked to some promising neuroscientific results concerning the encoding 
of spatial information by the brain. As Bellmund et alii (2018: 6415)
have written, “place and grid cells can encode positions along dimensions 
of experience beyond Euclidean space for navigation, suggesting a more 
general role of hippocampal-entorhinal processing mechanisms in 
cognition”.

Yet, the question as to the subjective formation of meaning remains 
essentially unanswered. All these approaches may attack specific 
dimensions of the problem. However, the do not solve the hard problem 
of meaning: what is it to understand? How do neural processes generate 
understanding? This question is intimately connected with the problem 
of attributing understanding to a computer, and therefore to the question 
concerning the nature of mental states.

The construction of a prototype through category spaces does not 
elucidate how we grasp meaning. Information processing through a set 
of instructions (given by design or spontaneously generated by statistical  
inference)  does not exhaust the conceptual problem of comprehending a 
meaning, because subjectivity is inevitably involved in the analysis. One 
can, indeed, develop sophisticated models in terms of conceptual spaces 
and the assignation of elements to “prototypes”, thereby establishing 
connections between different objects; yet, how do we “conceive”? How 
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do we assimilate an internal representation, even if, externally, it can be 
visualized as a set of prototypes situated in conceptual spaces?

The grasping of the meaning of a concept is a remarkable activity. As 
is well known by experience, children are capable of understanding the 
meaning of certain words only after being exposed to a few examples. 
Neural networks, on the contrary, need a much higher number of examples 
to acquire a stable representation. How does the human mind manage to 
generalize, and how does it so quickly? How do we get to understand words 
in such rapid manner? Moreover, how do we represent and understand 
logical constants (“and”, “or”, “if ”...) and pure abstractions (totality, 
nothingness)?

Even if one can connect, on solid grounds, conceptual spaces with 
meaning, and words topologically mapped to a potential interpretation, 
the precise way in which this is done remains a mystery. The gap is 
too deep. We still do not know not only how psychological spaces of 
representation are related to the neural organization of the brain, or, why 
not, to the circuitry of a computer, but also how such psychological spaces 
are referred to our subjective experience, to our “understanding”. The 
problem of finding the exact correspondence between mind and brain 
is still present, because the creation of psychological spaces cannot be 
examined only “objectively”, externally, by representing it in terms of, for 
example, conceptual spaces: it also needs to address the internal dimension 
of the process, the way in which the subject becomes conscious of that 
representation, so that it does not merely consist of an arrangement of 
symbols, but of a meaningful experience. Mental maps are a useful tool 
to organize our understanding of how humans understand, but they do 
not explain the process of understanding itself, of “intuiting” a meaning, 
of “eureka”.

We are aware of the complexity of these questions. Indeed, in the literature 
there is no firm consensus as to the meaning, in absolutely non-ambiguous 
ways, of concepts like understanding, intelligence, mental state…, which 
are hardly amenable to quantification and to be identified with a clear 
set of empirical referents. This is a deep philosophical mystery, and we 
do not pretend to exhaust it. We simply suggest our own way of dealing 
with it and of applying it to the discussion about machine intelligence. 
What we argue is that no “hard notion of consciousness, understanding, 
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subjectivity, mental states…” is needed to explain how AI systems behave 
in the present. In our view, subjective grasping of meanings, intuition 
and understanding point to the hard problem of consciousness, which 
we do not claim to solve (this would be utopian). We claim that there is 
a necessary conceptual connection between intuition and understanding 
(the act of “seeing it”; the “eureka”, for example the difference between 
non-understanding a mathematical concept and getting to understand it, 
to “see it”). Here, understanding is taken in the strong sense, not as mere 
association of stimuli, unlike in behavioristic explanations, which would 
imply a “soft sense” of understanding: namely, one in which no reference 
to subjective mental states is needed, as no instance “parallel” to the chain 
of stimuli and responses is demanded as explanatory factor, in charge of 
supervising the whole process. 

The previous considerations can be summarized in the following 
tenets, which, in practical terms, work as axioms, induced from the 
phenomenology of how human understanding appears to operate:

“If a machine is capable of understanding (in the strong sense), then it must be 
capable of combining rules and intuitions”.

“If semantics cannot be reduced to syntax, then a machine cannot understand”.

It is clear that, if we accept these two tenets (which, once more, can 
be seen as definitions, or as ex hypothesi projections; however, one must 
bear in mind that they are not arbitrary, as they respond to legitimate 
inductions from phenomenological observations), in the present state of 
AI there is no legitimacy in stating that the so-called intelligent machines 
understand anything (and therefore that they are truly intelligent, in a 
psychological sense, which transcends mere task-solving, as it demands 
the existence of an internal mental state); they simply process information. 
They rest in the syntactic domain, without penetrating into the semantic 
domain. This thesis is, certainly, coincident with Searle’s famous Chinese 
room experiment (Searle, 1982); in our view, the system behind the door 
offers no sign of understanding Chinese, or of understanding anything 
at all. The process is not significant for itself, because there is no internal 
world to which this significance could be referred. Such inter nal world  is  
equivalent  to  the  traditional  philosophical  concept  of  “für sich”, of  



Claridades. Revista de filosofía 16/1 (2024)

Do artificial intelligence systems understand? 197

“for-itself ”: of a point of view, of a “subjective experience” to which the 
external —the element of perception— can be referred. As Thomas Nagel 
has written, 

let me first try to state the issue somewhat more fully than by referring to the 
relation between the subjective and the objective, or between the pour-soi and the 
en-soi. This is far from easy. Facts about what it is like to be an X are very peculiar, 
so peculiar that some may be inclined to doubt  their reality, or the significance 
of claims about them. To illustrate the connection between subjectivity and a 
point of view, and to make evident the importance of subjective features, it will 
help to explore the matter in relation to an example that brings out clearly the 
divergence between the two types of conception, subjective and objective. It 
is not equivalent to that about which we are incorrigible, both because we are 
not incorrigible about experience and because experience is present in animals 
lacking language and thought, who have no beliefs at all about their experiences 
(Nagel, 1974: 435-450).

Nevertheless, it is necessary to deepen into the question concerning the 
nature of understanding. Some sceptics may argue that we have deployed 
such a demanding notion of understanding that, ex hypothesi, a machine 
will never be able to understand, given that it will never be able to display 
subjective thinking, instead of assuming a notion of understanding that 
equates it to some sort of association of stimuli. By setting so high a barrier, this 
philosophical approach to understanding would prevent any computational 
architecture from ever achieving strong understanding as such.

In general terms, thinking can be defined as an association of mental 
contents. This approach to thinking can be applied not only to humans, 
but to any biological species capable of forming internal representations of 
the world, and therefore of having mental states. To think coincides with 
the act of analyzing and selecting mental contents; with an internal filtering 
of options in which a multiplicity of possible combinations gets reduced 
to a specific “piece of thought”. This relation of ideas must be expressed 
in a language. A language appears as a system of signs, useful for a certain 
agent for whom this  set of signs is significant. The feature of language as 
a system of signs has been encapsulated in Chomsky’s famous definition 
of language as “a set of (finite or infinite) sentences, each of finite length, 
constructed out of a limited set of elements” (Chomsky, 1957).

Chomsky has insisted on the difference between rules and representations 
in language (Chomsky, 1980), a distinction that can be extrapolated to 
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consciousness (and understanding as the act of a conscious subject). A 
competent agent must be capable of representing meanings, rather than 
simply following direct rules or patterns statistical extracted from data. It is 
questionable that there would be real communication (internal or external; 
with oneself or with others) without the possibility of understanding 
meanings, and therefore of intuiting a certain mental content, represented 
in that language.

Understanding requires the assimilation of syntactic sequences; the 
perception of a logic referred to the subject, to its internal dimensions. 
The association of mental contents that underlies the phenomenon of 
understanding would be unintelligible without, precisely, the presence of 
a “mind”, of a mental state capable of attributing meaning to a syntactic 
sequence. The thinking subject assimilates a logical sequence by, so to 
speak, designing a “function of categorization”, which interprets the 
different elements at play in such mental association. Expressed in modern 
terms, this is essentially equivalent to the Kantian  perspective.  According  
to  the  philosopher  of  Königsberg, all acts of the understanding can 
be reduced to judgements, so that the understanding can be represented 
as a faculty of judging (Kant, 1908: B94). The Kantian categories are 
a faithful expression of the way in which the understanding (human 
subjectivity) processes the phenomenal multiplicity. “The I-think (ich 
denke) expresses the act of determining my existence” (Kant, 1908: B157): 
the act of thinking determines the subjectivity of the knower. Every act 
of understanding or sensitivity must be accompanied, as Kant says (Kant, 
1908: B132), by the I think; an intuition that is a representation prior 
to all thought. Once more, we return to the problem of subjectivity 
and, consequently, to the mind-body problem as the overall conceptual 
difficulty haunting the whole question about the possibility of constructing 
thinking machines. Who would be thinking, after all? Who would be 
understanding? Would the machine be the subject of anything? Would 
it possess an internal dimension, capable of controlling, as a supervising 
instance, the processing of information?

Critics may argue that this replicates the famous “ghost inside the 
machine” fallacy (which incurs in a homunculus problem, and therefore in 
a self-reflexivity paradox, expanded ad infinitum), but even if one adopts a 
clearly behavioristic account of mental processing, it is hard to understand 
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how to explain the phenomenon of comprehension, of the assimilation of 
a meaning. This “meta” framework, by which the mind supervises what 
if has before itself, is conceptually inseparable from the assumption of an 
internal dimension, of a “Self ”.

Generically, the act of thinking appears as the connection between 
mental contents through logical and grammatical constants. This 
phenomenon can also be visualized as the design of a function with an 
application domain: that of the objects on which that thought deals. 
However, this analysis of the fundamental characteristics of thought would 
be incomplete without distinguishing between the perspective of rules 
and that of intuitions (Blanco Pérez, 2020). In its most algorithmic or 
regulated facet, rational thought is structured by rules that guarantee the 
possibility of reaching consistent conclusions, and the thinking subject 
must show competence in the use of those rules. However, this thought 
must be supervised by a subject that assimilates the contents and is capable 
of apprehending a meaning, a unitary sense of the set of mental contents 
that constitute that specific thought. This assimilation of the object as such 
(be it a concept, a principle of reason or the integration of both within a 
proposition), evaluated in its unitary dimension and not only in that of the 
individual elements that constitute the object, seems to evoke a genuinely 
“intuitive” facet of the mind, where the analytical decomposition of the 
parts that come into play in the content of thought gives way to the 
elaboration of a unitary synthesis. Therefore, following syntactic rules or 
extracting them from statistical inference is not enough: it is necessary to 
take charge of them, even if precariously. 

These considerations do not imply, however, accepting a kind of 
unilateral and despotic primacy of the intuitive over the rational, as if 
elements inaccessible to a logical and scientific understanding appeared in 
thought. It is not magic. In fact, the contents of our intuitions have to be 
subsumed, in one way or another, in the general mechanisms of rational 
thought, in the rules that guide our intellectual processes. It would not be 
an exaggeration to maintain that intuitions obey some sort of “internal 
rules”, so the dream of explaining how human thought works would not 
be entirely banned from the scientific efforts of humanity.
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4. Conclusions
In the first section we have exposed and evaluated the present models 
of AI. Our critical assessment has included the problem of conscious 
representation, of the existence of mental states, and of the presence of real 
intuitions beyond the processing of information. We have tried to show 
that the AI systems, at their present stage of development, are incapable 
of grasping anything at all, as they cannot refer a certain representation 
to their own “self ”, or internal dimensions (to their “subjective core”). 
This dimension, which have labelled, rather generically, as “semantic” 
in opposition to “syntactic” (which would encompass the processing 
of information, be it by following a set of rules or by inferring them 
from statistical patterns), is, in essence, non-computable, intuitive, and 
subjective.

According to the evidence on the current state of AI, a syntactic scheme 
suffices to explain the behavior of the machine. Its observed behavior can 
be reduced to the processing information, after following a set of rules or 
after inferring it from its own process of statistical recognition of patterns. 
Thus, it would not be necessary to invoke a semantic dimension, of true 
(“strong”) understanding. By economy of hypothesis, it is then simpler 
to explain the observed phenomena without presupposing understanding 
in the machine, and therefore without presupposing some form, however 
elementary, of subjectivity (and, therefore, of the possibility of displaying 
autonomous behavior in decision making, stemming from the existence 
of an underlying subjective instance, of an I in charge of deliberating and 
acting). This is not an obstacle to the possibility of some kind of emergence 
of subjective properties (Moyal et alii, 2020) in highly computational 
complex systems (LeCun et alii, 2015), capable of “learning to learn” by 
inferring their own instructions. Nevertheless, this thesis is something that, 
at the present time, cannot be assessed with certainty. Yet, in the present 
state of development, AI models offer no clear sign of subjectivity. It is not 
necessary to postulate the existence of a mind inside the machine, and thus 
it is not necessary to assume mental states, and therefore subjectivity, in the 
so-called “intelligent machines”.

In our view, the exhibited behavior of machines can still be explained 
by a mechanism similar to that of cascades of Stimuli-Responses. We 
are facing a strictly computable process, since we can follow the precise 
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itinerary between the instruction and the response displayed, whose stages 
are finite in number. The fact that these instructions are so flexible as 
to allow the machine to reach its own conclusions after a processing of 
statistical inference does not invalidate our point. Moreover, in the case of 
human understanding it seems inevitable to introduce the self-referential 
dimension, the idea of an internal world, of mental states in which it 
makes sense to speak of sensation and understanding, and not of mere 
information processing, because there is a subject to whom we refer the 
process that we analyze as an objective phenomenon.

One could reply that our approach is biased by apriosim. By automatically 
defining understanding as we do, it is inconceivable that a machine could 
ever achieve it. Certainly, our idea of understanding is strong and intuitive, 
but it is also empirical, induced from the phenomenology of the process. 
It emerges from the observation of how we humans (and probably other 
animals) understand. It cannot be discarded that we may discover a 
mechanism to imitate subjectivity, and build mental states that make this 
self-referentiality possible. Only future research will be able to clarify this 
transcendental question. What seems out of doubt is that skepticism about 
the existence of strong AI is justified. The question, however, points to the 
possibility of designing systems in which the “computable” may be merged 
with the “non-computable”, and the processing of information may be 
integrated with some form of subjective assimilation.
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